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Abstract The school bus-driver problem with resource constraints (SBDP-RC) is an op-
timization problem with many practical applications. In the problem, several
vehicles are prepared to pick up a number of pupils in which the total resources
of all vehicles are lower than a predefined value. The aim is to find a schedule
that minimizes the sum of the pupils’ waiting times. The problem is NP-hard in
the general case. In this paper, we propose a two-phase metaheuristic to solve
the problem. The first phase creates an initial solution by using an insertion
heuristic. After this, the post phase improves the solution by a general variable
neighborhood search (GVNS) with a random neighborhood search combined
with the shaking technique. The proposed metaheuristic algorithm is tested
on a benchmark to show its efficiency. The results show that the algorithm
received good feasible solutions fast. In many cases, better solutions can be
found compared to previous metaheuristic algorithms.
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1. Introduction

1.1. Motivation
Some variants of SBDP-RC are the cumulative multiple traveling salesmen problem
(C-TSP), multiple deliverymen problem (mDMP), and multiple traveling repairman
problem (mTRP). These consider a set of vehicles to find a route that minimizes the
total waiting times of all of the clients [3, 5, 8, 12, 14, 15, 18]. In mDMP and mTRP,
there are no constraints. SBDP-RC has many practical applications (which can be
found in [19]). There is only one vehicle whose resources are infinitive in the original
school bus-driver problem (SBDP) [19]. This means it can run for as long as it wants;
however, it is impossible in real situations when vehicles have strict regulations on
resources such as oil, gas, etc. This paper considers two new assumptions: 1) multiple
vehicles; and 2) the maximum total resources RMmax of all vehicles. We describe the
problem: a set of vehicles at a starting depot and clients at different locations. The
aim is to obtain a tour such that each client is picked up in which the total resources
of all vehicles are limited and the total waiting times of all clients are minimized.

1.2. Problem statement
A complete graph Kn includes a set of n vertex V = {v1, v2, ..., vn} and a distance
matrix C = {c(vi, vj) | i, j = 1, 2, ..., n} (c(vi, vj) that is the cost to travel from
vertex vi to vj). A resource matrix RM = {r(vi, vj)} shows the required resource
consumption to travel from vertex vi to vj . Let R = (1, 2, ..., k) be a set of k vehicles.
All vehicles start at a depot s = v1. Let RMmax be the maximum total resources of
all vehicles. A route T = (R1, ..., Rl, ..., Rk) consists of a set of routes. Each route
Rl = (v1, ..., vh, ..., vm, vm+1 = v1) is created by vehicle l − th. The waiting time of
vh (1 < h ≤ m) on Rl is the cost of the path from v1 to vh:

l(P (v1, vh)) =

h−1∑
i=1

c(vi, vi+1) (1)

Let W (Rl) be the total of the waiting times of Rl, and the resource consumption of
route Rl (LR) is the total of the resource consumption on its edges.

W (Rl) =

m+1∑
h=2

l(P (v1, vh)) (2)

LR(Rl) =

m∑
i=1

r(vi, vi+1) (3)

The aim is as follows:

W (T ) =

k∑
l=1

W (Rl) → min (4)
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The resource consumption of each vehicle must satisfy the following:

k∑
l=1

LR(Rl) ≤ RMmax (5)

SBDP-RC requires a solution that begins at v1 and visits each vertex exactly once such
that the waiting times of the route are minimized. In this problem, we are interested
in a Hamiltonian cycle; this means that the deliverymen return to the vertex from
which they began their routes. Consider the example of the small graph that is shown
in Figure 1.
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Figure 1. Example of how SBDP-RC is represented in drawing

Assume that we have complete graph K12 = 0∪{1, 2, 3, ..., 12}. All vehicles start
at the main depot (vertex 0), and each pupil’s location corresponds to a vertex in
the graph. The cost values to travel between two vertices are highlighted in black,
while the resource consumption values are highlighted in red. We have route T =

(R1 = (v0, v2, v5, v8, v11, v0), R2 = (v0, v1, v4, v7, v10, v0), R3 = (v0, v3, v6, v9, v12, v0)).
Assume that the value of RMmax is 100; the waiting times for each route are calculated
as follows:

W (R1) = c(v0, v2) + c(v0, v2) + c(v2, v5) + c(v0, v2)

+c(v2, v5) + c(v5, v8) + c(v0, v2)

+c(v2, v5) + c(v5, v8) + c(v8, v11)

+c(v5, v8) + c(v0, v2) + c(v2, v5)

+c(v5, v8) + c(v8, v11) + c(v11, v0)

= 2 + (2 + 5) + (2 + 5 + 8)

+(2 + 5 + 8 + 9) + (2 + 5 + 8 + 9 + 12) = 84
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W (R2) = c(v0, v1) + c(v0, v1) + c(v1, v4) + c(v0, v1)

+c(v1, v4) + c(v4, v7) + c(v0, v1)

+c(v1, v4) + c(v4, v7) + c(v7, v10)

+c(v0, v1) + c(v1, v4) + c(v4, v7)

+c(v7, v10) + c(v10, v0)

= 3 + (3 + 6) + (3 + 6 + 7)

+(3 + 6 + 7 + 12) + (3 + 6 + 7 + 12 + 10) = 94

W (R3) = c(v0, v3) + c(v0, v3) + c(v3, v6)

+c(v0, v3) + c(v3, v6) + c(v6, v9)

+c(v0, v3) + c(v3, v6) + c(v6, v9)

+c(v9, v12) + c(v0, v3) + c(v3, v6)

+c(v6, v9) + c(v9, v12) + c(v12, v0)

= 4 + (4 + 10) + (4 + 10 + 11)

+(4 + 10 + 11 + 12)

+(4 + 10 + 11 + 12 + 5) = 122

The waiting times for the route are as follows:

W (T ) = 84 + 94 + 122 = 300

The resource consumption of each route is as follows:

LR(R1) = r(v0, v2) + r(v2, v5) + r(v5, v8)

+r(v8, v11 + r(v11, v0)

= 5 + 4 + 3 + 10 + 5 = 27

LR(R2) = r(v0, v1) + r(v1, v4) + r(v4, v7)

+r(v7, v10) + r(v10, v0)

5 + 8 + 6 + 10 + 7 = 36

LR(R3) = r(v0, v3) + r(v3, v6)

+r(v6, v9) + r(v9v12) + r(v12, v0)

= 8 + 5 + 5 + 6 + 7 = 31

LR(T ) = 27 + 36 + 31 = 94

The solution is feasible because the total resource consumption of all routes LR(Ri)

(i = 1, ..., 3) is less than RMmax.
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1.3. Literature review
As we know, SBDP-RC has not been studied much. In the literature, several vari-
ants of the problem have been proposed; we describe these as follows: 1) mDMP or
mTRP is the case when the resources are infinitive. Several metaheuristics for solv-
ing the problem were proposed in [3, 13, 17]. The experimental results showed that
several algorithms [3, 13, 17] gave good solutions fast for large instances of up to 500
customers; 2) mTRP with distance constraint (mTRP-DC) is the case where the max-
imum duration of each vehicle is lower a predetermined value. The two metaheuristic
algorithms in [6, 11] can be applied well to the problem in a reasonable amount of
time; 3) Capacitated mTRP [9, 19] is the case where the vehicle’s capacity does not
exceed the permitted limit. The metaheuristic in [6] also receives good feasible so-
lutions fast; 4) mTRP with profits (mTRPP) aims to find a solution to maximize
the total revenue. In this case, some vertices may not be visited. The metaheuristic
algorithm in [10,18] produced good instances with up to 200 vertices; 5) The delivery-
man problem (DMP) with (without) time windows is a special case of mTRP where
there is a only vehicle to run. Numerous metaheuristic algorithms [2, 4, 5, 12] for the
problem have also been developed. The experimental results showed their expressive
performance for large instances; 6) Recently, a new variant of mTRP post-disaster
was introduced in [1,7]. In this case, an additional cost for a road-clearance operator
is involved in the function cost. They tested their algorithms on the Istanbul data set.

To our knowledge, the above algorithms are the best algorithms for the problem’s
several variants. However, resource constraints are not involved; therefore, these
algorithms are not easily adapted to SBDP-RC.

1.4. Our algorithm and contribution
The problem can be solved by exact and heuristic (or metaheuristic) algorithms. An
exact algorithm obtains an optimal solution, but it consumes much time. Heuristic
approaches include the classical heuristic and metaheuristic algorithms: the former
finds a solution fast, but the solution’s quality may not be good; on the other hand,
the latter reaches a near-optimal solution in a short amount of computation time.
Therefore, metaheuristic is a suitable approach for solving large-scale problems; how-
ever, its efficiency is mainly evaluated through experiments.

A good metaheuristic needs to maintain a balance between exploration and ex-
ploitation strategies. The main contributions of this work can be summarized as
follows:

• From an algorithmic perspective, the proposed metaheuristic consists of two
phases: 1) in the first phase (the construction phase), an initial solution is created
based on the insertion heuristic scheme. This step aims to obtain a good-enough
solution; 2) the post-phase (the improvement phase) improves the solution cre-
ated from the previous one. Starting from a good-enough solution helps the
algorithm to increase the chance of improving the solution’s quality. In this
phase, we use the randomized variable neighborhood search scheme (RVNS) to
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investigate various neighboring solutions to find good solutions. RVNS aims to
exploit a good solution space that is explored. Two additional characteristics
are integrated into the proposed algorithm. First, according to a distance met-
ric, the algorithm accepts a solution that is worse than the current solution if
it is far from it; this enhances the exploration of far-away valleys. Second, the
search is allowed to move to unfeasible solution spaces by using a penalty method.
When a constraint is violated, the value of the parameter increases to drive the
search toward feasible regions. This means that the algorithm tries to exploit
the feasible regions that are explored. After this, we enlarge the search space by
decreasing it if no better solutions can be found. By doing this, the algorithm
has a higher chance of finding better solutions. When the algorithm still fails
in finding better solutions, the shaking technique is applied to move the search
toward a completely new solution space that is unexplored.

• From the computational perspective, our algorithm obtains good feasible solu-
tions fast for instances with large sizes. Additionally, the algorithm receives
better solutions as compared to the previous algorithms in many cases.

The rest of this paper is organized as follows. Section 2 introduces our algorithm; then,
the experiments are described in Section 3. Sections 4 and 5 discuss and conclude the
article, respectively.

2. Proposed algorithm
2.1. Variants of VNS
We describe VNS, GVNS [13], and shaking [12], respectively.

• VNS is described in [13]. It is divided into two main steps: 1) shaking, and a local
search step. In the step, shaking implements the move to a random solution. The
second phase consists of applying a local search to the solution and selecting the
best one in a neighborhood set.

• Randomized VNS (RVNS) [13] is a variant of VNS. In RVNS, the search proce-
dure is performed randomly to generate neighbor solutions.

• GVNS [13] is a variant of VNS. GVNS is a version of VNS in which VNS is applied
as the improvement procedure. In this article, we use GVNS with a random
neighborhood search.

• Skewed-GVNS [13] is an extension of basic GVNS that explores solution spaces
that are far from the incumbent solution. Therefore, we can accept worse solu-
tions if they are different from the incumbent.

2.2. Neighborhood investigation
Several neighborhoods [8, 14] in the literature are applied to exploit the search
region. Let Nk(k = 1, ..., km) be a set of neighborhood structures. Now, let
T = (R1, R2, ..., Rl) be a tour with l routes, we then introduce a novel neighbor-
hood structure.
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For inter-route: it optimizes a route.
• Forward (N1) pushes a vertex forward one position. This neighborhood of R

is defined as a set N1(R) = {Ri = (v1, v2, ..., vi−1, vi+1, vi, ..., vm) : i = 2, 3, ...,

m− 1}. The complexity time is O(n).
• Backward (N2) pushes a vertex backward one position. This neighborhood of

R is defined as a set N2(R) = {Ri = (v1, v2, ..., vi, vi−1, vi+1, ..., vm) : i = 2, 3, ...,

m− 1}. The complexity time is O(n).
• Exchange-adjacent (N3) exchanges each pair of adjacent ver-

tices. This neighborhood of R is defined as a set N3(R) = {Ri =

(v1, v2, ..., vi−2, vi, vi−1, vi+1, ..., vm) : i = 3, 4, ...,m − 1}. The complexity
time is O(n).

• Exchange (N4) exchanges the positions of each pair of vertices.
This neighborhood of R is defined as a set N4(R) = {Rij =

(v1, v2, ..., vi−1, vj , vi+1, ..., vj−1, vi, vj+1, ..., vm) : i = 2, 3, ...,m − 3; j =

i+ 3, ...,m}. The complexity time is O(n2).
• 2-opt (N5) removes each pair of edges from the tour and reconnects

them. This neighborhood of T is defined as a set N5(T ) = {Tij =

(v1, v2, ..., vi, vj , vj−1, ..., vi+2, vi+1, vj+1, ..., vm) : i = 1, ..., n−4; j = i+4, ...,m}.
The complexity time is O(n2).

• 3-opt (N6) reallocates three vertices to another position. This
neighborhood of R is defined as a set N6(R) = {Ri =

(v1, v2, ..., vi−1, vi, vj+1, ..., vk, vi+1, ..., vj , vk+1...., vm) : i = 2, 3, ...,m − 5, j =

4, ...,m− 3, k = 6, ...,m− 1}. The complexity time is O(n3).
For intra-route: Intra-route is used to swap or exchange vertices between two dif-
ferent routes.

• Exchange-2-routes N7(R) exchanges two vertices from different routes.
The swap-2-route neighborhood of Rl and Rh is defined as a set
N8(T ) = {Ti = (R1, ..., R2, ..., Rl = (v1l, v2l, ..., vih, vil+1, ..., vml), ..., Rh =

(v1h, v2h, ..., vil, vih+1, ..., vmh), ..., Rk) : il = 2, 3, ...,ml− 1, ih = 2, 3, ...,mh− 1}.
The complexity time is O(n2)

• Insert-2-routes N8(R) removes a vertex in turn and inserts it at
the best possible position in the other. An insert-2-route neigh-
borhood of Rl and Rh is defined as a set N8(T ) = {Ti =

(R1, ..., R2, ..., Rl = (v1l, v2l, ..., vih−1, vih, vil+1, ..., vml), ..., Rh = (v1h, v2h, ...,

vih−1, vih+1, ..., vmh), ..., Rk) : il = 2, 3, ...,ml − 1, ih = 2, 3, ...,mh − 1}. The
complexity time is O(n2).

2.3. Restricted infeasible solution space

Infeasible solutions are penalized by a value. With route T , letV S(T ), LR(Ri) be
a penalty value and the resource consumption of route Ri. Penalty value V S(T )

is computed as follows: max{(
∑k

i=1 LR(Ri)−RMmax), 0}. The solutions are then
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calculated in accordance with W ′ = W + PV × V S(T ), in which PV is the penalty
factor. If the solution is feasible, then LR ≤ RMmax and W ′ = W .

To make the algorithm’s structure more readable, a flowchart of the proposed
algorithm is described in Figure 2. The proposed algorithm consists of two phases.
Algorithm 1 depicts the whole process in pseudocode.

T = Insertion Heuristic

T' = Perturbation(T, p)

T'=RVNS(T')

iter<IterMax

iter=0

yes

p=0

p++

p<level_max

no

time<t_max

start

no

Return the best
solution

no

found better or 
accept worse  

solution  
 

T          T' 
p=0 

iter=0
iter++

yes no

yes

yes

Figure 2. Flowchart of skewed GVNS algorithm
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Algorithm 1 Skewed GVNS
Input: T, IterMax, lvel_max, and tmax are a starting solution, the number of iterations,

the strength of the perturbation procedure, and the maximum time to run, respectively.
Output: the best-found solution T ∗.
1: repeat
2: {Step 1: construction step}
3: T ← Construction(v1, V );{T is an initial solution. It can be feasible or infeasible}
4: p = 1;
5: {Step 2: improvement step}
6: while (p < lvel_max) do
7: iter = 0;
8: while (iter < IterMax) do
9: T

′
← T ;

10: {driving the search to a new promising solution space}
11: T

′
← Perturbation(T,p);

12: {implement RVNS to exploit good solution space}
13: T

′
= RVNS(T

′
);

14: {accepting the worse solution}
15: if (W (T

′
) < W (T )× (1 + β × d(T

′
, T )) or (W (T

′
) < W (T ∗)) then

16: T ← T
′
;

17: p=0;
18: iter=0;
19: {update best solution}
20: if ((W (T

′
) < W (T ∗)) and (T is feasible)) then

21: T ∗ ← T
′
;

22: end if
23: else
24: iter ++;
25: end if
26: end while
27: p++;
28: end while
29: until time < tmax

30: return T ∗;

2.4. Construction

Algorithm 2 shows the constructive procedure. Assume that we have a partial solution
and V

′ is a list of unvisited vertices (V ′ ⊆ V ). To complete the partial solution,
a vertex in V

′ needs to be inserted. We need to select a vertex and the position
to insert it into the solution. We use a greedy scheme to pick a vertex so that its
insertion causes the solution with the lowest cost. A solution is generated when all
of the vertices of Kn are routed. The procedure then returns the feasible solution (if
any). Otherwise, for added randomness in routing, it tries to generate n solutions;
then, the one with the minimum fitness value will be returned.
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Algorithm 2 Construction(v1,Kn)
Input: v1,Kn are a main depot and the graph, respectively.
Output: A starting solution T .
1: S = ∅; {S is the list of infeasible routes}
2: FOUND=False;
3: T = φ; {Initially, T is empty}
4: for (l = 1; l ≤ k; l ++) do
5: Rl ← Rl ∪ v1; {k routes start at depot}
6: end for
7: repeat
8: repeat
9: Select a random route Rl(Rl ∈ R);

10: Randomly pick a new vertex v and an inserted position j < |Rl| so that the cost of
R

′
l after inserting is minimal; {|Rl| is the number of vertices inRl}

11: Update Rl by R
′
l ;

12: until all vertices are visited
13: for (i = 1; i ≤ k; i++) do
14: T ← T ∪Ri;{update all routes in the tour}
15: end for
16: if (T is feasible) then
17: return T ;
18: else
19: S ← S ∪ T ;
20: end if
21: until |S| < n

22: if FOUND=False then
23: T ←− solution with minimum cost W ′ in set S;
24: end if
25: return T ;

2.5. Improvement
In the second step, it tries to improve the feasible solution that was created by the
previous phase. In this step, we use RVNS in [13] to exploit the neighborhood so-
lutions. Whenever a given neighborhood of set N fails to improve the current best
solution, RVNS randomly selects another neighborhood from the same set to con-
tinue the search. The aim of using RVNS is to exploit a good solution space that
has just been explored. Preliminary experiments indicate that randomly selecting
another neighborhood can find better solutions than a deterministic order. If we find
a better solution, it becomes the new current solution. However, the search cannot
escape from very large valleys in some cases. In this paper, we adopt a skewed VNS
approach that permits moves to worse solutions to explore more valleys that are far
from the current solution. The aim is to support the search for getting out of huge
valleys. Here, we make a move from solution T to neighboring solution T

′′ if

W (T
′
) < W (T )× (1 + β × d(T, T

′
) (6)
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Let d(T, T
′
) be the metric distance between T , and T

′ ; this shows the difference
between the two solutions. The greater and greater the metric distance is, the more
and more the difference is. In mathematical respect, the distance is the minimum
number of transformations from T to T

′ . When there exists no polynomial operator
for calculating d(T, T

′
), d(T, T ′

) is n (the number of vertices in the graph) minus the
number of vertices that have the same position in both T and T

′ .
The detail of the improvement step is described in Algorithm 3.

Algorithm 3 RVNS(T)
Input: T is a route.
Output: A new solution T .
1: Initialize neighborhood list NL;
2: while NL 6= 0 do
3: Choose a neighborhood N in NL at random
4: T

′
← arg min N(T ); {Neighborhood search}

5: if ((L(T
′
) < L(T )) then

6: T ← T
′

7: Update NL;
8: else
9: Remove N from the NL;

10: end if
11: end while

The aim of the perturbation mechanism is to maintain exploration; it drives the
search to a new promising solution space. If the mechanism implements too-small
shaking moves, the search gets stuck into the local optima. Conversely, large moves
in the shaking drive the search to unpromising or infeasible spaces. In an approach
to fulfill the omission, we use a new shaking technique that was developed from the
original double-bridge technique [12] (see Figure 3).
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6 5

4

3

1 2

8

7

6 5

4

3

original
solution

new 
solution

Figure 3. Double bridge
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A randomly neighboring solution T
′′ is generated by the double-bridge or random

exchange method; then, it replaces the current solution if (W (T
′′
) > (1−ρ)×W (T ∗))

(ρ is a threshold ratio). The shaking procedure performs p times, where ρ is a pa-
rameter that is called the strength of the shake. The shaking is applied successfully
in [19].

The detail is described in Algorithm 4.

Algorithm 4 Perturbation(T, p)
Input: T, T ∗, p are the route, the best current route, and the value to control the strength

of the perturbation, respectively.
Output: a route T .
1: i = 1;
2: while (i < p) do
3: {Select random method to shaking}
4: rnd=rand(2);
5: if (rnd == 1) then
6: T

′
← Apply double-bridge in T ;

7: else
8: T

′
← Exchange randomly vertices in T ;

9: end if
10: T

′′
← arg min 3-opt-(T

′
);

11: if (W (T
′′
) > (1− ρ)×W (T ∗)) then

12: T ← T
′′

13: break;
14: else
15: i++;
16: end if
17: end while
18: return T ;

The algorithm finishes after tmax seconds or when the best-found solution is
reached.

3. Evaluations
Our algorithm is implemented on a single-threaded Pentium 4 core i7 2.50 GHz pro-
cessor with 16 GB of RAM.

As we know, the parameter values quite strongly affect the quality of the so-
lutions. The choices of parameter values were conducted in the preliminary experi-
ments. Finding the best configuration by running all instances would be computa-
tionally too expensive, so we implemented our analysis on some selected instances.
This determined configuration was tested in multiple combinations, and the one that
presented the best solution was chosen. In Table 1, we define a range for each of
the five parameters that yielded 1875 different parameter combinations and ran the
algorithm for some selected instances of these combinations. This exhaustive search



Earl
y bir

d

Hybrid Variable Neighborhood Search for solving school bus-driver problem… 309

for the best parameter combinations was useful as a benchmark for evaluating the
algorithm. Looking at the parameter combinations, we found the following settings
so that our algorithm could obtain the best solutions: β=5, PV =5, IterMax = 10,
lvel_max = 10, ρ = 0.3, and t_max = 300.

Table 1
Variable parameters

Parameters Value ranges
PV 2 ≤ PV ≤ 0, incremented by 2
β 2 ≤ β ≤ 10, incremented by 2
IterMax 5 ≤ IterMax ≤ 20, incremented by 5
level_max 5 ≤ level_max ≤ 20, incremented by 5
t_max 100 ≤ t_max ≤ 300 seconds incremented by 100

The experiments were implemented on benchmark instances for capacitated VRP
in [15] and several random data sets. These were as follows:

• The random data set: the cost matrix elements (cij) were independent and uni-
formly chosen from random integers (from 0 to 500). The resource matrix ele-
ments (rij) were independent and uniformly chosen integers from 0 to 500 – cij .
These cost matrices were symmetrical; moreover, these costs satisfied the triangle
inequality. The maximum resource (Rmax) was computed by using the following
formula:

Rmax = d(1− ∝)×
∑
i∈V

∑
j∈V

rijx
c
ij+ ∝ ×

∑
i∈V

∑
j∈V

rijx
r
ije (7)

The xc
ij values represented the optimal solution for C-mTSP in which the cost

matrix was defined by matrix cij . Similarly, the xr
ij values represented the opti-

mal solution of problem
k∑

i=1

LRi → min (8)

where the cost matrix was defined by matrix rij . The number of vehicles was
generated randomly within a range of [n5 ,

n
10 ]. α was used to control the tightness

of the resource constraint. Beginning with α = 1, the resource constraint became
tight; if α = 0, the problem became an unconstrained problem. They chose
α =0.5, 0.75, and 1 and varied the sizes of the instances (between 30 and 150
vertices) to create 300 instances. In formula Rmax, the approximate solutions
were used instead of finding the optimal solutions. The approximate solutions
were computed by using the metaheuristic in [6, 16]. All of the instances were
supported upon request.

• Christofides et al.: this data set consisted of instances such as CMT6, CMT7, ...,
and CMT14.

• Z. Luo et al. and S. Nucamendi-Guillén et al.: 250 instances were used in the
experiments; the optimal solutions of these can be obtained from [11].
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3.1. Results

The performance of the proposed algorithm was compared to the initial solution from
the construction phase as follows:

Gap1[%] =
Best.Sol − Init.Sol

Init.Sol
× 100% (9)

The execution time of the proposed algorithm in each run was measured in seconds.
Each instance was run ten times. In the tables, OPT, Init.Sol, Best.Sol, Aver.Sol,
and T corresponded to the optimal solution, the initial solution, the best solution, the
average solution, and the average time by seconds over ten executions, respectively.

Table 2.
Our results for ins-30-x with $=0.5$

Table 3.
Our results for ins-40-x with α = 0.5

instances $Init.Sol$ SKEWED-GVNS instances $Init.Sol$ SKEWED-GVNS
best.sol aver.sol Gap1 Time best.sol aver.sol Gap1 Time

ins-30-1 4,326.63 3,367.16 3,367.16 -22.18 0.19 ins-40-1 5061.54 4,173.1 4,173.1 -17.55 0.38

ins-30-2 — 3,047.12 3,047.12 — 0.19 ins-40-2 — 4,338.94 4,338.94 — 0.39

ins-30-3 — 3,092.38 3,092.38 — 0.2 ins-40-3 — 4,081.79 4,081.79 -15.17 0.41

ins-30-4 4,333.55 3,608.81 3,608.81 -16.72 0.21 ins-40-4 — 4,273.97 4,273.97 — 0.39

ins-30-5 — 3,089.98 3,089.98 — 0.18 ins-40-5 — 3,987.33 3,987.33 — 0.39

ins-30-6 3,878.61 3,118.82 3,118.82 -19.59 0.18 ins-40-6 4846.46 4,272.83 4,272.83 — 0.4

ins-30-7 — 2,890.81 2,890.81 — 0.2 ins-40-7 — 4,074.3 4,074.3 — 0.38

ins-30-8 — 3,247.83 3,247.83 — 0.19 ins-40-8 — 4,282.6 4,282.6 -10.15 0.42

ins-30-9 — 3,052.64 3,052.64 — 0.19 ins-40-9 — 4,566.88 4,566.88 — 0.4

ins-30-10 4,202.63 3,184.64 3,184.64 -24.22 0.2 ins-40-10 5403.42 4,195.86 4,195.86 — 0.41

ins-30-11 — 3,139.65 3,139.65 — 0.2 ins-40-11 — 4,360.23 4,360.23 — 0.42

ins-30-12 3,789.79 3,073.56 3,073.56 -18.90 0.19 ins-40-12 4831.03 3,894.8 3,894.8 — 0.41

ins-30-13 — 3,075.03 3,075.03 — 0.2 ins-40-13 — 4,102.23 4,102.23 — 0.42

ins-30-14 3,783.01 3,005.11 3,005.11 -20.56 0.19 ins-40-14 — 4,197.87 4,197.87 — 0.39

ins-30-15 — 3,080.24 3,080.24 — 0.18 ins-40-15 — 4,092.98 4,092.98 -11.14 0.4

ins-30-16 — 3,134.26 3,134.26 — 0.21 ins-40-16 — 4,344.44 4,344.44 — 0.39

ins-30-17 — 3,210.07 3,210.07 — 0.2 ins-40-17 — 4,134.12 4,134.12 — 0.39

ins-30-18 — 3,247.09 3,247.09 — 0.18 ins-40-18 — 4,265.24 4,265.24 — 0.4

ins-30-19 4,059.33 3,185.03 3,185.03 -21.54 0.19 ins-40-19 5204.03 4,108.38 4,108.38 — 0.38

ins-30-20 — 2,954.77 2,954.77 — 0.19 ins-40-20 — 4,165.23 4,165.23 — 0.4

Table 4.
Our results for ins-50-x with $=0.5$

Table 5.
Our results for ins-100-x with α = 0.5

instances $Init.Sol$ SKEWED-GVNS instances $Init.Sol$ SKEWED-GVNS
best.sol aver.sol Gap1 Time best.sol aver.sol Gap1 Time

ins-50-1 — 5,786.72 5,786.72 — 0.65 ins-100-1 — 9,060.56 9,086.39 — 7.55

ins-50-2 — 5,732.18 5,732.18 — 0.71 ins-100-2 — 9,479.07 9,505.48 — 7.56

ins-50-3 — 5,500.63 5,500.63 — 0.69 ins-100-3 — 9,318.44 9,353.17 — 7.57

ins-50-4 — 5,255.76 5,255.76 — 0.69 ins-100-4 — 9,975.8 10,018.88 — 7.51

ins-50-5 — 5,228.71 5,228.71 — 0.69 ins-100-5 — 8,739.14 8,795.51 — 7.59

ins-50-6 — 5,560.95 5,560.95 — 0.7 ins-100-6 — 8,714.62 8,746.88 — 7.5

ins-50-7 — 5,634.2 5,634.2 — 0.69 ins-100-7 — 9,475.01 9,533.76 — 7.59

ins-50-8 — 5,314.96 5,314.96 — 0.68 ins-100-8 — 9,362.01 9,449.89 — 7.56

ins-50-9 — 5,675.45 5,675.45 — 0.66 ins-100-9 — 9,499.02 9,554.44 — 7.57

ins-50-10 — 5,724.62 5,724.62 — 0.65 ins-100-10 — 9,759.77 9,781.25 — 7.6

ins-50-11 — 5,635.41 5,635.41 — 0.68 ins-100-11 — 9,544.57 9,570.97 — 7.56

ins-50-12 — 5,403.72 5,403.72 — 0.72 ins-100-12 — 9,559.82 9,601.6 — 7.52

ins-50-13 — 5,861.04 5,861.04 — 0.71 ins-100-13 — 9,411.15 9,484.9 — 7.53

ins-50-14 — 5,404.58 5,404.58 — 0.72 ins-100-14 — 9,198.61 9,338.95 — 7.56

ins-50-15 — 5,920.14 5,920.14 — 0.67 ins-100-15 — 9,469.08 9,509.66 — 7.57

ins-50-16 — 5,391.8 5,391.8 — 0.7 ins-100-16 — 9,141.91 9,219.16 — 7.55

ins-50-17 — 5,406.67 5,406.67 — 0.71 ins-100-17 — 9,494.98 9,543.66 — 7.5

ins-50-18 — 5,346.13 5,346.13 — 0.71 ins-100-18 — 9,223.54 9,253.63 — 7.52

ins-50-19 — 5,530.46 5,530.46 — 0.71 ins-100-19 — 9,734.48 9,792.45 — 7.54

ins-50-20 — 5,584.8 5,584.8 — 0.65 ins-100-20 — 9,466.97 9,536.23 — 7.57



Earl
y bir

d

Hybrid Variable Neighborhood Search for solving school bus-driver problem… 311

Table 6.
Our results for ins-150-x with $=0.5$

Table 7.
Our results for ins-30-x with α = 0.75

instances $Init.Sol$ SKEWED-GVNS instances $Init.Sol$ SKEWED-GVNS
best.sol aver.sol Gap1 Time best.sol aver.sol Gap1 Time

ins-150-1 — 12,847.44 12,952.77 — 22.26 ins-30-1 5422.92 4,315.47 4,315.47 -20.42 0.21

ins-150-2 — 12,536.4 12,711.55 — 20.91 ins-30-2 — 3,650.47 3,650.47 — 0.21

ins-150-3 — 13,177.79 13,205.59 — 21.35 ins-30-3 — 3,934.51 3,934.51 — 0.19

ins-150-4 — 12,482.99 12,523.83 — 22.97 ins-30-4 4562.64 4,093.33 4,093.33 -10.29 0.18

ins-150-5 — 13,874.35 13,925.38 — 25.25 ins-30-5 — 3,639.7 3,639.7 — 0.18

ins-150-6 — 13,428.54 13,465.47 — 21.32 ins-30-6 5155.67 3,894.79 3,894.79 -24.46 0.19

ins-150-7 — 12,436.1 12,482.01 — 20.95 ins-30-7 — 3,744.96 3,744.96 — 0.22

ins-150-8 — 12,982.57 13,035.8 — 22.29 ins-30-8 — 4,002.47 4,002.47 — 0.21

ins-150-9 — 12,725.95 12,795.25 — 23.05 ins-30-9 — 3,524.27 3,524.27 — 0.19

ins-150-10 — 12,571.01 12,656.57 — 25.17 ins-30-10 4655.47 4,013.16 4,013.16 -13.80 0.23

ins-150-11 — 12,668.12 12,710.78 — 22.84 ins-30-11 — 3,866.87 3,866.87 — 0.21

ins-150-12 — 13,233.53 13,254.91 — 23.37 ins-30-12 4671.65 3,540.8 3,540.8 -24.21 0.22

ins-150-13 — 13,451.53 13,518.38 — 23.06 ins-30-13 — 3,680.01 3,680.01 — 0.21

ins-150-14 — 13,250.7 13,268.47 — 24.25 ins-30-14 4115.54 3,473.46 3,473.46 -15.60 0.18

ins-150-15 — 12,616.63 12,646.25 — 22.97 ins-30-15 — 3,959.72 3,959.72 — 0.19

ins-150-16 — 13,424.2 13,461.36 — 24.75 ins-30-16 — 3,919.45 3,919.45 — 0.18

ins-150-17 — 12,804.89 12,852.46 — 23.7 ins-30-17 — 3,893.27 3,893.27 — 0.21

ins-150-18 — 13,178.89 13,201.46 — 20.89 ins-30-18 — 3,583.23 3,583.23 — 0.19

ins-150-19 — 12,796.92 12,824.38 — 21.43 ins-30-19 4096.69 3,383.12 3,383.12 -17.42 0.18

ins-150-20 — 13,221.89 13,271.57 — 23.35 ins-30-20 — 4,011.25 4,011.25 — 0.19

Table 8.
Our results for ins-40-x with $=0.75$

Table 9.
Our results for ins-50-x with α = 0.75

instances $Init.Sol$ SKEWED-GVNS instances $Init.Sol$ SKEWED-GVNS
best.sol aver.sol Gap1 Time best.sol aver.sol Gap1 Time

ins-40-2 — 4,782.68 4,782.68 — 0.42 ins-50-2 — 6,483.58 6,483.58 — 0.72

ins-40-3 — 5,382 5,382 — 0.41 ins-50-3 — 7,317.84 7,317.84 — 0.68

ins-40-4 — 4,942.35 4,942.35 — 0.39 ins-50-4 — 6,902.98 6,902.98 — 0.65

ins-40-5 — 5,009.46 5,009.46 — 0.42 ins-50-5 — 6,708.91 6,708.91 — 0.68

ins-40-6 5,643.02 4,921.11 4,921.11 -12.79 0.38 ins-50-6 — 6,485.7 6,485.7 — 0.69

ins-40-7 — 5,164.31 5,164.31 — 0.40 ins-50-7 — 7,293.44 7,293.44 — 0.67

ins-40-8 — 5,464.17 5,464.17 — 0.38 ins-50-8 — 7,295.72 7,295.72 — 0.71

ins-40-9 — 5,672.01 5,672.01 — 0.41 ins-50-9 — 6,309.42 6,309.42 — 0.66

ins-40-10 — 5,665.7 5,665.7 — 0.42 ins-50-10 — 7,456.7 7,456.7 — 0.69

ins-40-11 5,941.67 5,139.66 5,139.66 -13.50 0.41 ins-50-11 — 6,419.1 6,419.1 — 0.69

ins-40-12 — 4,862.79 4,862.79 — 0.42 ins-50-12 — 6,303.54 6,303.54 — 0.68

ins-40-13 — 5,333.96 5,333.96 — 0.4 ins-50-13 — 6,452.13 6,452.13 — 0.66

ins-40-14 — 5,535.54 5,535.54 — 0.41 ins-50-14 — 6,364.6 6,364.6 — 0.69

ins-40-15 — 4,781.72 4,781.72 — 0.41 ins-50-15 — 6,591.04 6,591.04 — 0.66

ins-40-16 — 4,922.74 4,922.74 — 0.42 ins-50-16 — 7,434.25 7,434.25 — 0.69

ins-40-17 — 6,001.77 6,001.77 — 0.43 ins-50-17 — 6,795.34 6,795.34 — 0.71

ins-40-18 — 5,516.58 5,516.58 — 0.41 ins-50-18 — 6,809.74 6,809.74 — 0.68

ins-40-19 6,363.44 5,464.19 5,464.19 -14.13 0.42 ins-50-19 — 6,730.15 6,730.15 — 0.69

ins-40-20 — 5,224.37 5,224.37 — 0.39 ins-50-20 — 6,405.47 6,405.47 — 0.72

Table 10.
Our results for ins-100-x with $=0.75$

Table 11.
Our results for ins-150-x with α = 0.75

instances $Init.Sol$ SKEWED-GVNS instances $Init.Sol$ SKEWED-GVNS
best.sol aver.sol Gap1 Time best.sol aver.sol Gap1 Time

ins-100-2 — 11,918.03 12,255.49 — 7.58 ins-150-2 — 17,086.84 17,153.01 — 20.91

ins-100-3 — 12,165.69 12,269.22 — 7.56 ins-150-3 — 18,298.93 18,464.18 — 21.35

ins-100-4 — 12,933.18 13,254.95 — 7.59 ins-150-4 — 16,547.86 16,595.89 — 22.97

ins-100-5 — 12,044.79 12,149.64 — 7.53 ins-150-5 — 17,248.65 17,296.95 — 25.25

ins-100-6 — 12,320.63 12,395.63 — 7.58 ins-150-6 — 17,712.47 17,906.1 — 21.32

ins-100-7 — 13,457.59 13,519.61 — 7.56 ins-150-7 — 17,526.23 17,623.58 — 20.95

ins-100-8 — 12,257.46 12,429.89 — 7.51 ins-150-8 — 17,397.08 17,423.55 — 22.29

ins-100-9 — 12,624.86 12,709.53 — 7.53 ins-150-9 — 16,464.06 16,530.44 — 23.05

ins-100-10 — 12,245.88 12,459.77 — 7.58 ins-150-10 — 16,225.31 16,274.28 — 25.17

ins-100-11 — 13,660.47 13,816.61 — 7.52 ins-150-11 — 17,450.13 17,552.88 — 22.84

ins-100-12 — 12,190.61 12,274.93 — 7.52 ins-150-12 — 17,132.49 17,185.51 — 23.37

ins-100-13 — 11,916.83 12,037.89 — 7.50 ins-150-13 — 16,654.95 16,704.26 — 23.06

ins-100-14 — 11,919.56 12,117.9 — 7.54 ins-150-14 — 17,565.19 17,657.84 — 24.25

ins-100-15 — 13,297.69 13,615.24 — 7.53 ins-150-15 — 17,697.85 17,831.64 — 22.97

ins-100-16 — 12,624.08 12,756.94 — 7.5 ins-150-16 — 18,417.19 18,460.34 — 24.75

ins-100-17 — 11,133.37 11,234.6 — 7.53 ins-150-17 — 17,755.1 17,883.79 — 23.71

ins-100-18 — 13,204.53 13,411.35 — 7.51 ins-150-18 — 16,932.19 17,060.23 — 20.89

ins-100-19 — 12,913.24 13,060.93 — 7.55 ins-150-19 — 16,571.58 16,682.76 — 21.43

ins-100-20 — 12,327.74 12,393.17 — 7.56 ins-150-20 — 18,509.04 18,669.14 — 23.35
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Table 12.
Our results for ins-30-x with $=1$

Table 13.
Our results for ins-40-x with α = 1

instances $Init.Sol$ SKEWED-GVNS instances $Init.Sol$ SKEWED-GVNS
best.sol aver.sol Gap1 Time best.sol aver.sol Gap1 Time

ins-30-1 — 7,568.362 7,568.362 — 0.19 ins-40-1 — 11,730.64 11,730.64 — 0.41

ins-30-2 — 7,639.978 7,639.978 — 0.18 ins-40-2 — 12,041.5 12,041.5 — 0.39

ins-30-3 — 7,253.102 7,253.102 — 0.2 ins-40-3 — 11,571.29 11,571.29 — 0.42

ins-30-4 — 7,180.649 7,180.649 — 0.19 ins-40-4 — 11,922.62 11,922.62 — 0.42

ins-30-5 — 7,231.949 7,231.949 — 0.19 ins-40-5 — 11,296.76 11,296.76 — 0.38

ins-30-6 — 6,656.719 6,656.719 — 0.2 ins-40-6 — 11,635.67 11,635.67 — 0.39

ins-30-7 — 5,784.973 5,784.973 — 0.19 ins-40-7 — 11,326.47 11,326.47 — 0.38

ins-30-8 — 7,396.452 7,396.452 — 0.18 ins-40-8 — 11,625.75 11,625.75 — 0.4

ins-30-9 — 7,081.527 7,081.527 — 0.19 ins-40-9 — 17,797.43 17,797.43 — 0.38

ins-30-10 — 7,164.16 7,164.16 — 0.18 ins-40-10 — 12,859.52 12,859.52 — 0.41

ins-30-11 — 8,250.379 8,250.379 — 0.21 ins-40-11 — 14,354.51 14,354.51 — 0.4

ins-30-12 — 6,746.225 6,746.225 — 0.21 ins-40-12 — 10,198.71 10,198.71 — 0.38

ins-30-13 — 7,105.159 7,105.159 — 0.18 ins-40-13 — 13,391.86 13,391.86 — 0.39

ins-30-14 — 6,499.687 6,499.687 — 0.2 ins-40-14 — 12,604.11 12,604.11 — 0.41

ins-30-15 — 8,739.84 8,739.84 — 0.2 ins-40-15 — 13,146.88 13,146.88 — 0.39

ins-30-16 — 7,812.669 7,812.669 — 0.2 ins-40-16 — 10,972.01 10,972.01 — 0.41

ins-30-17 — 9,027.127 9,027.127 — 0.21 ins-40-17 — 11,334.91 11,334.91 — 0.42

ins-30-18 — 6,518.759 6,518.759 — 0.21 ins-40-18 — 13,012.16 13,012.16 — 0.41

ins-30-19 — 8,521.913 8,521.913 — 0.21 ins-40-19 — 11,238.14 11,238.14 — 0.39

ins-30-20 — 8,406.84 8,406.84 — 0.21 ins-40-20 — 11,814.5 11,814.5 — 0.39

Table 14.
Our results for ins-50-x with $=1$

Table 15.
Our results for ins-100-x with α = 1

instances $Init.Sol$ SKEWED-GVNS instances $Init.Sol$ SKEWED-GVNS
best.sol aver.sol Gap1 Time best.sol aver.sol Gap1 Time

ins-50-1 — 14,106.51 14,106.51 — 0.66 ins-100-1 — 27,057.58 27,057.58 — 7.6

ins-50-2 — 15,379.81 15,379.81 — 0.69 ins-100-2 — 31,577.52 31,577.52 — 7.52

ins-50-3 — 14,673.36 14,673.36 — 0.66 ins-100-3 — 31,368.54 31,865.88 — 7.53

ins-50-4 — 15,568.05 15,568.05 — 0.69 ins-100-4 — 35,170.95 36,844.13 — 7.5

ins-50-5 — 18,326.42 18,326.42 — 0.7 ins-100-5 — 29,465.04 29,465.04 — 7.5

ins-50-6 — 15,658.96 15,658.96 — 0.69 ins-100-6 — 33,834.39 33,834.39 — 7.51

ins-50-7 — 16,049 16,049 — 0.67 ins-100-7 — 31,232.81 31,564.27 — 7.53

ins-50-8 — 14,314.39 14,314.39 — 0.7 ins-100-8 — 34,686.89 34,686.89 — 7.57

ins-50-9 — 17,116.64 17,116.64 — 0.68 ins-100-9 — 32,528.43 32,528.43 — 7.59

ins-50-10 — 15,602.31 15,602.31 — 0.66 ins-100-10 — 31,729.91 31,729.91 — 7.57

ins-50-11 — 16,023.11 16,023.11 — 0.7 ins-100-11 — 28,907.83 28,907.83 — 7.51

ins-50-12 — 16,622.5 16,622.5 — 0.71 ins-100-12 — 29,973.64 29,973.64 — 7.51

ins-50-13 — 13,123.83 13,123.83 — 0.68 ins-100-13 — 30,783.42 31,725.25 — 7.52

ins-50-14 — 15,487.54 15,487.54 — 0.66 ins-100-14 — 36,420.11 36,420.11 — 7.58

ins-50-15 — 16,834.38 16,834.38 — 0.71 ins-100-15 — 30,665.7 32,796.53 — 7.6

ins-50-16 — 18,836.45 18,836.45 — 0.66 ins-100-16 — 34,633.73 34,633.73 — 7.58

ins-50-17 — 15,876.96 15,876.96 — 0.65 ins-100-17 — 35,676.21 35,676.21 — 7.53

ins-50-18 — 17,389.61 17,389.61 — 0.69 ins-100-18 — 36,236.66 36,236.66 — 7.6

ins-50-19 — 15,744.37 15,744.37 — 0.68 ins-100-19 — 27,781.99 27,781.99 — 7.56

ins-50-20 — 17,926.06 17,926.06 — 0.66 ins-100-20 — 34,543.9 34,543.9 — 7.52

In Tables 2 through 16, Column 1 shows the output of the construction phase,
while Columns from 2 through 5 correspond to the best solution, the average solution,
Gap, and the running time of the proposed algorithm after ten runs, respectively. The
differences in the objective function between SBDP-RC and C-mTSP on the selected
instances are described in Table 17. Columns V NS and GVNS in Table 17 show
the results of Ban et al.’s algorithm in [7] and the proposed algorithm, respectively.
Tables 18 through 20 indicate the comparison between the proposed algorithm and
several state-of-the-art metaheuristics in terms of solution quality. Each column in
the two tables represents the best solution for each algorithm [3,6, 9, 11,16,17].
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Table 16.
Our results for ins-150-x with α = 1

instances $Init.Sol$ SKEWED-GVNS
best.sol aver.sol Gap1 Time

ins-150-1 — 51,935.16 51,935.16 — 25.21

ins-150-2 — 51,619.08 51,619.08 — 23.17

ins-150-3 — 51,128.4 51,128.4 — 20.79

ins-150-4 — 45,907.51 45,907.51 — 22.34

ins-150-5 — 49,550.98 49,550.98 — 22.43

ins-150-6 — 50,172.08 51,424.18 — 21.37

ins-150-7 — 54,480.96 54,480.96 — 20.81

ins-150-8 — 48,266.6 49,162.37 — 22.85

ins-150-9 — 52,480.74 52,480.74 — 21.51

ins-150-10 — 54,577.25 54,824.7 — 22.11

ins-150-11 — 59,166.86 59,166.86 — 21.64

ins-150-12 — 49,901.4 49,901.4 — 23.19

ins-150-13 — 52,308.1 52,308.1 — 22.79

ins-150-14 — 60,906.43 60,906.43 — 21.01

ins-150-15 — 52,200.39 52,200.39 — 24.96

ins-150-16 — 51,574.42 51,574.42 — 22.75

ins-150-17 — 49,579.06 49,579.06 — 22.41

ins-150-18 — 47,973.87 47,973.87 — 20.61

ins-150-19 — 50,491.7 51,272.83 — 24.95

ins-150-20 — 52,295.16 52,539.81 — 21.69

From Tables 2 through 16, the construction step quickly gave good feasible so-
lutions when the constraint was not tight (α = 0.5). However, since the constraint
became tight (the values of α were 0.75 and 1), the construction phase could not
find feasible solutions in some cases. Even for the large instances (from 50 to 150
vertices), the construction failed to reach feasible solutions with all values of α. This
implies that the construction was not good for instances with tight constraints as well
as large sizes. On the other hand, the improvement phase reached feasible solutions
in all cases. Moreover, in the cases where the construction phase obtained feasible
solutions, the average difference of the post phase compared with the construction
phase was quite obvious. The average gap value was large and significant. The pro-
posed algorithm was the first metaheuristic algorithm for the problem; therefore, it
is impossible to compare it directly to other algorithms. Nevertheless, our algorithm
produces feasible solutions for instances with 150 vertices – even in the case of tight
constraints. It is a significant improvement when reaching feasible solutions for large
instances is NP-hard.

The difference in the objective function between SBDP-RC and C-mTSP on the
selected instances is described in Table 17. The average difference was very large when
the constraint was tight. This indicates that the resource constraint also affected the
solution quality strongly. Moreover, the best solutions for C-mTSP were infeasible
solutions for SBDP-RC. Obviously, the good methods for C-mTSP or mTRP could not
be easily applied to solve SBDP-RC; therefore, developing the algorithm for SBDP-
RC is necessary. To show the efficiency of our algorithm for some variants of SBDP-
RC, we implemented our algorithm on mTRP and mTRP-DC instances (Tables from
18 through 20). The experimental results in Table 14 show that our algorithm’s
performance was good for mTRP-DC when the optimal solutions for the instances
with 80 vertices could be found in a short computation time. To the best of our
knowledge, the algorithms in [6, 11] failed to reach optimal solutions in many cases.
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On average, our Gap1 (1.29) was better than their Gap1 (1.43). When compared to
Ban et al.’s (VNS) [3], Ezzine et al.’s (EA) [17], and N. Guillén’s (NGA) [16] algorithms
for mTRP instances, our solutions outperformed VNS [3] and EA [17] in all cases
while being comparable to N. Guillén’s solutions (Table 19). Moreover, our algorithm
received optimal solutions for the problem with up to 76 vertices. In the capacitiated
cumulative vehicle-routing problem (CCVRP) [9], our algorithm obtained the known
best solutions in most of the instances (Table 20). The results were comparable with
the proposed algorithms for CCVRP in terms of solution quality and running time.
The comparison was very valuable, as these algorithms are considered to be the best
metaheuristic algorithms for mTRP, mTRP-DC, or CCVRP in the literature.

Table 17
Difference of objective function between two problems on selected instances with α = 1

Instances SBDP SBDP-RC diff%
ins-30-1 3,065.37± 7,568.36 59.5

ins-30-2 3,186.74± 7,639.98 58.29

ins-30-3 3,103.10± 7,253.1 57.22

ins-30-4 3,195.08± 7,180.65 55.5

ins-40-1 4,229.21± 11,730.6 63.95

ins-40-2 4,229.21± 12,041.5 64.88

ins-40-3 4,031.50± 11,571.3 65.16

ins-40-4 4,223.01± 11,922.6 64.58

ins-50-1 5,780.46± 14,106.5 59.02

ins-50-2 5,287.84± 15,379.8 65.62

ins-50-3 5,365.22± 14,673.4 63.44

ins-50-4 5,388.70± 15,568.1 65.39

ins-100-1 9,056.89± 27,057.6 66.53

ins-100-2 9,285.91± 31,577.5 70.59

ins-100-3 8,684.86± 31,368.5 72.31

ins-100-4 8,801.22± 35,171 74.98

ins-150-1 12,932.36± 51,935.2 75.1

ins-150-2 11,876.05± 51,619.1 76.99

ins-150-3 12,793.13± 51,128.4 74.98

ins-150-4 12,866.01± 45,907.5 71.97

± The values were the best solutions for SBDP,
but they were infeasible solutions for SBDP-RC.

Table 18
Average experimental results for mTRP with distance constraint [4]

Instances VNS [4] skewed-GVNS
gap1 Time gap1 Time

pr1002_40_x 0.28 0.47 0.00 0.38
brd14051_40_x 0.26 0.45 0.00 0.34
fnl4461_40_x 0.26 0.35 0.00 0.29
d15112_40_x 0.30 0.80 0.00 0.36
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Table 18 (con’t.)
nrw1379_40_x 0.47 0.81 0.00 0.74
pr1002_50_x 0.54 0.77 0.00 0.77
brd14051_50_x 0.63 0.90 0.00 0.71
fnl4461_50_x 0.59 0.75 0.00 0.71
d15112_50_x 0.44 0.46 0.00 0.72
nrw1379_50_x 0.54 0.72 0.00 0.73
pr1002_60_x 4.75 1.99 0.53 1.16
brd14051_60_x 3.65 1.83 0.66 1.17
fnl4461_60_x 2.69 1.64 0.48 1.12
d15112_60_x 3.60 2.02 0.56 1.16
nrw1379_60_x 4.21 1.88 0.63 1.12
pr1002_70_x 3.67 2.82 0.88 1.16
brd14051_70_x 3.59 3.07 0.50 1.15
fnl4461_70_x 0.62 2.84 3.82 1.16
d15112_70_x 0.69 2.53 2.73 1.16
nrw1379_70_x 0.64 2.64 4.53 1.11
pr1002_80_x 0.68 9.25 3.87 3.58
brd14051_80_x 0.57 10.47 3.32 3.56
fnl4461_80_x 0.73 9.11 4.05 3.59
d15112_80_x 0.41 8.99 2.86 3.57
nrw1379_80_x 0.95 11.04 3.06 3.53
aver 1.43 3.14 1.29 1.40

Table 19
Results of our algorithm as compared to previous algorithms in mTRP instances [3, 9, 18]

Instances VNS [3] EA [9] NGA[18] skewed-GVNS
best.sol Time

E30k3 2,108.26 — — 2,097.3 0.26
E30k4 2,623.65 — — 2,595.11 0.25
E51k5 2,623.65 3,320 2,209.64* 2,209.64 0.42
E76k10 2,786.07 4,094 2,310.09* 2,310.09 0.84
E76k14 2,201.13 3,762 2,005.40* 2,005.4 0.76
E76k15 2,400.17 — — 2,377.5 0.83
E101k8 — 6,383 — 4,051.47 2.57
E101k14 — 5,048 — 3,288.53 2.78
P40k5 1,793.14 — 1,537.79* 1,537.79 0.31
P45k5 2,336.43 — 1,912.31* 1,912.31 0.35
P50k7 1,878.81 — 1,547.89* 1,590.47 0.68

Note that: * symbol ’*’ is the optimal value
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Table 20
Results of our algorithm as compared to previous algorithms in CCVRP instances [11, 18]

Instance CCVRP skewed-GVNS
best.sol Time

CMT1 2,230.35 2,230.35 1.80
CMT2 2,391.63 2,391.63 6.22
CMT3 4,045.42 4,045.42 18.87
CMT4 4,987.52 4,987.52 84.14
CMT5 5,809.59 5,838.32 287.4
CMT11 7,314.55 7,314.55 21.10
CMT12 3,558.92 3,558.92 15.41

To compare their time complexity, two perspectives can be considered as follows:
• Theoretical time complexity: the time complexity of skewed-GVNS is mainly

to explore neighborhoods in RVNS. In RVNS, the 3-opt consumes more time
than the other neighborhoods. Assume that, when k is its maximum number
of runs in skewed-GVNS, the proposed algorithm requires O(k × level_max ×
IterMax×O(n3)) ×O(n3) times (n is the number of vertices). The theoretical
time complexity of skewed-GVNS is O(n3) times. In [3], Ban et al. showed
that their algorithm required O(k1 ×Tsol× |Rl| × |Rh|). In the worst case when
Tsol = O(n) and |Rl| and |Rh| = n, their algorithm required O(n3). In [17], they
converted k-TRP to TRP by using a k-means clustering algorithm. They then
solved each sub-problem by applying an integer linear programming formulation.
The approach consumed a great deal of time for large instances; therefore, the
approach was not suitable for the problem with large sizes. Finally, in [16], their
algorithm that was based on VNS required O(n2) for 2-opt and Tsol = O(n) for
calculating the cost of a neighboring solution. Their time complexity was the
same as that of skewed-GVNS.

• Time complexity by CPU times: because our skewed-GVNS and the [3, 16,17]
algorithms were run on computers with different configurations, comparing their
running times was done relatively. Our running time grew quite moderately when
compared to NGA [16], while it was the same as with the one of VNS [3] and
better than the one of EA [17].

4. Discussions
A metaheuristic is a good approach for solving optimization problems with large sizes
when it can produce a good solution quickly. Skewed-GVNS [13] is a popular scheme
that succeeds in solving optimization problems [3, 4, 6, 14]; it is not a new method in
the literature. However, to apply it to a specific problem, we have to answer many
open questions:

• How can we use and combine neighborhoods with exploring and exploiting a good
solution space?

• How many neighborhoods can be used to balance solution quality with running
time?
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• How do we escape the local optima?
• How do we escape from very large valleys?

Therefore, many algorithms have been developed on VNS variants in the literature;
however, their solution qualities are different. Applying VNS variants and popular
techniques to solve the problem successfully is our contribution in this work.

A good metaheuristic must balance between exploitation and exploration. Ex-
ploration generates diverse solutions to explore a search space, while exploitation
focuses on searching in a good local region by exploiting it. To do this, the proposed
algorithm brings the insertion heuristic (RVNS) and perturbation schemes together.
Moreover, two characteristics have been integrated into the proposed algorithm; the
role of each component is summarized as follows:

• The initial solution is created based on the insertion heuristics scheme in the
construction phase.

• The post phase improves the initial solution. In this phase, RVNS ensures the ex-
ploitation by investigating various neighboring solutions. The algorithm accepts
a solution that is worse than the current one, which drives the search to escape
huge valleys. In addition, the search is adjusted by using the penalty function.
Therefore, though the search is enlarged, it is not far from the feasible regions
that are explored.

• Shaking is used to move the search to completely new solution spaces, hoping to
find better solutions.

The experimental results showed the good performance of the proposed algorithm.
Summarily, there are three ways to use our algorithm:

• The first option is to run the construction phase. This way is the fastest; however,
it cannot reach any feasible solution when the constraint is tight in many cases.
This way should be used since the constraint is not tight.

• The second option is to run the proposed algorithm with one iteration. This way
is the best choice for trading off the quality of the solution and running time.

• The last option is to run the proposed algorithm with 50 iterations. The way is
the best choice for solution quality; however, it consumes much time for instances
with large sizes.

Moreover, the algorithm reaches optimal values for those instances with 80 customers
in an acceptable amount of time. It also obtains better solutions than the algorithms
in [3, 6, 17] in many cases, while it is comparable with other algorithms [9, 16]. The
experimental results indicate that the algorithm can be applied well for various prob-
lems.

5. Conclusions

We propose a metaheuristic algorithm to solve the SBDP-RC problem. The con-
struction phase creates an initial solution, while the post phase develops it. The
experimental results showed that the proposed algorithm can reach optimal solutions
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for problems with 80 customers. Additionally, our algorithm gives better solutions
than previous algorithms in many cases. Finally, we suggest three ways to use the
algorithm effectively. However, the running time does not meet practical applications;
therefore, this will be our focus in future research.

6. Appendix

The representation of the solution that we use here is an array of l integer strings
(l is the number of vehicles). The sequence of each number in the string is the order
of visiting these customers. In Figure 1, we have a representation of a solution as
follows:
T = (R1, R2, R3)

R1 = (v0, v2, v5, v8, v11, v0)

R2 = (v0, v1, v4, v7, v10, v0)

R3 = (v0, v3, v6, v9, v12, v0)
Here, we give three solutions for ins-30-1 with three different α values (0.5, 0.75, 1):
α = 0.5
W (T ) = 3367.16
R1 = 0-9-11-16-21-22-23-25-15-24-17-12-14-29-18-19
R2 = 0-2-1-27-5-6
R3 = 0-7-4-28-8-10-13-26-20-3
α = 0.75
W (T ) = 4315.47
R1 = 0-4-14-17-25-23-22-15-24-11-16-21-13-10-5-26-6-20-3
R2 = 0-8-27-1-2
R3 = 0-7-28-12-18-29-19-9
α = 1
W (T ) = 7568.36
R1 = 0-18-21-17-15-25-9-12-2-7-8-24
R2 = 0-10-26-6-27-29
R3 = 0-4-1-11-22-13-19-20-23-5-16-3-14-28
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