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Tom Sibley 

Beauty Bare 

The two words of my title may conjure up images of Botticelli's "The Birth 
of Venus," but they actually come from a sonnet extolling the austere 
beauty of mathematics. 

Euclid Alone Has Looked On Beauty Bare 
by Edna St. Vincent Millay 

Euclid alone has looked on Beauty bare. 
Let all who prate of Beauty hold their peace, 
And lay them prone upon the earth and cease 
to ponder on themselves, the while they stare 
At nothing, intricately drawn nowhere 
In shapes of shifting lineage; let geese 
Gabble and hiss, but heroes seek release 
From dusty bondage into luminous air. 
0 blinding hour, 0 holy, terrible day, 
When first the shaft into his vision shone 
Of light anatomized! Euclid alone 
Has looked on Beauty bare. Fortunate they 
Who, though once only and then but far away, 
Have heard her massive sandal set on stone. 

The image of the ultimate in beauty as "nothing, intricately drawn no
where" may seem odd at first, but it catches the essential abstractness of 
mathematics. Mathematics emphasizes form (or structure) above all. Nev
ertheless, pure form, even for mathematicians, needs connections with our 
intuitions. When structure unites with intuition in new and revealing ways, 
the thrilling insight is, I feel, the "Beauty bare" which Millay evokes. I hope 
to share with you a sense of the beauty and insight I find in mathematics, 
especially in my research. 

It seems particularly appropriate to start with Euclid, in honor of both 
Edna St. Vincent Millay's tribute and his seminal role in the history of 
mathematics. Indeed, some have claimed that Euclid's Elements is the sec
ond most important book in Western civilization, after the Bible. It can 
legitimately be said that all Westerners since Euclid have seen geometry in 
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the clothing of Euclid's exposition. This perhaps justifies Millay's saying 
that "Euclid alone has looked on Beauty bare." By starting with Euclid, I 
also hope to ground my discussion of structure and intuition in more famil
iar material before turning to my research. 

Figure 1 shows Euclid's diagram for the Pythagorean Theorem, undoubt
edly one of the greatest theorems in all of mathematics. If you remember 
this theorem at all, it may be only as a memorized formula "a2 + 62 = c2." 
However, its meaning is geometrical, not algebraic. The areas of the two 
smaller squares in the figure always equal the area of the larger square, pro
vided the angle at C is a right angle. Euclid provides a clever, structural 
proof of this theorem, which I will omit here. Instead, let me give a quick 
summary of what I mean by structure in mathematics. 

Modern structural mathematics focuses on a united body of theorems, 
justified by formal reasoning, rather than diagrams or examples, and these 
theorems support a variety of interpretations. 

Euclid's great work, The Elements, was the premier example of structural 
mathematics from his day until the nineteenth century. His text consists 
of hundreds of theorems with their proofs, building a tightly united system 
without any word of explanation or intuition. However, from a modem 
point of view, Euclid depended rather strongly on unstated assumptions 
which seemed obvious because of his diagrams. I will consider the notion 
of alternative interpretations later; for now let me weave the second main 
theme of this talk into the discussion with an intuitive argument for the 
Pythagorean Theorem. 

Consider the large square in Figure 2 with its four shaded right triangles, 
all with sides of length a and b and hypotenuse c. The unshaded part is a 
square with side c, the "c2" part of the Pythagorean Theorem. By sliding 
three of the triangles, as in Figure 3, we transform the unshaded part into 
two squares with sides a and b. Thus these two squares have area equal to 
the area of the square with side c: a2 + 62 = c2• Beautiful! 

What qualifies as intuitive? While intuition, unlike structure, has a per
sonal component to it, there are some common aspects of intuition. Above 

2. 
C, 

Figure I. Euclid's diagram 
for the Pythagorean Theo
rem. 
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Figure 2. The four triangles Figure 3. The four triangles 
leave an area of c1 in this leave two areas totaling a1 + 
arrangement. b1 this way. 
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all, intuition needs to be clear and immediate. It should guide our think
ing. A good intuition can create the feeling that the details are unneces
sary in order to understand the heart of the idea - the insight is already 
internalized. Intuition often depends on an insightful example, a well
drawn diagram or a novel way of looking at the question- in short the 
particular, instead of the general or the abstract. Many sources can inspire 
our intuition in mathematics-geometry, physics, numerical patterns and 
even symbolic formulations. Moreover, intuition deepens with increased 
understanding. Since I am at heart a geometer, I will concentrate on geo
metrical intuition. 

The Pythagorean Theorem is important not because it was proven long 
ago or because it has intuitive or structural proofs. Rather, it is itself a key 
structural component in mathematics. We use this theorem frequently to 
build more mathematics. Practical people centuries ago used the relation
ship a2 + b2 = c2 to ensure that they had built a right angle. Students for 
4000 years have solved word problems that rely on this relationship. A 
particularly revealing use of the Pythagorean Theorem from over 140 years 
ago emphasizes Edna St. Vincent Millay's image of mathematics as "noth
ing, intricately drawn nowhere." By 1850, a few daring mathematicians 
were using the Pythagorean Theorem as the basis for exploring geometry 
in four and more dimensions. They used their intuition about geometry to 
extend the two-dimensional formula a2 + b2 = c2 and the three-dimensional 
formula a2 +62 +c2 = d2 ( which is also correct) to a2 +62 +c2 +d2 = e2 in four 
dimensions, where they simply defined this to be correct. Neither they nor 
any one else can see in more than three dimensions, yet their intuition led 
them to a profound structure which encompasses many real-world appli
cations. Nowadays, the bold insight which led to higher dimensional ge
ometry is used as a building block in linear algebra, which in turn is used 
in fields as varied as biology, business, economics and physics. 

The structural role of the Pythagorean Theorem illustrates a remark of 
the mathematician George F. Simmons. "If [structural mathematics] is to 
justify itself, it must possess aesthetic qualities akin to those of a good piece 
of architecture. It should have a solid foundation ... each part should bear a 
meaningful relation to every other part, and its towers and pinnacles should 
exalt the mind." Certainly the investigation of four and more dimensions 
qualifies as exalting the mind. 

Intuition and structure are powerful together-and both are essential. By 
itself, intuition can lead us astray all too easily. Rather than recite impor
tant historical examples, I wish to give a more personal one. During my 
dissertation research, I came up with a conjecture that excited me. My 
description to my adviser of my intuition so convinced him that he ex
claimed, "I'm morally certain that is true." Two days later, I had shown it 
was false. When I reminded him of his earlier statement, he laughed and 
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said, "This just shows that ethics has no place in mathematics." Neverthe
less, intuition does have a place. Structure alone too easily can become 
empty formulas and so can lose its meaning. Even more, without intuition, 
mathematicians could create very few conjectures, let alone find proofs of 
them. 

My research on equidistance relations has drawn inspiration from sev
eral mathematical areas. The original source was a famous paper written in 
1869 by the English mathematician Arthur Cayley. After I read his paper, 
I realized I could turn one of his intuitive geometrical ideas into a formal 
proof using mathematics developed since 1950. On this geometrical base, 
I found that important parts of algebra, graph theory and statistical design 
theory all fit together fruitfully. 

Consider a simple object-a regular hexagon, shown in Figure 4. I want 
to look at the relationship of the distances between the six comers. These 
distances fall into three categories: 

ABBCCDDEEFFA ACCEEABDDFFB ADBECF 

So far, so unexciting. Now look at the distances between the six comers 
of a triangular prism, as shown in Figure 5. When we consider the actual 
distances, this shape is quite different from a regular hexagon. However, the 
categories for the distances mimic those for the hexagon: 

Thus we see there is a common underlying structure of these two geo
metrical objects which is easily overlooked when we know too much. By 
ignoring the actual distances, we can focus on a deeper structure, 
equidistance. This structural connection between these particular shapes 
is not just coincidental. It is perhaps not obvious, but the notion of sym
metry, central to many areas of mathematics and its applications, depends 
only on equidistance, not on the actual distances. Each motion of the prism 

F C Figure 5. A triangular prism. 

Figure 4. A hexagon. b 

47 SAINT JOHN'S 



~ 
Figure 6. One-point homogeneous figures . 

which brings it back onto itself corresponds to a motion of the hexagon. 
In technical language, their groups of symmetries are isomorphic; in more 
straight-forward terms, they have matching symmetries. The perfect fit 
between the equidistance structure and the structure of the symmetries of 
these two figures is mathematically beautiful. 

Geometric shapes that people find pleasing usually possess many symme
tries-indeed enough symmetries so that each point looks like each other 
point. Such shapes are called one-point homogeneous. (See Figure 6 above 
for several examples.) 

Definition. A set is one-point homogeneous provided there are symmetries 
which move any given point of the set to every other point of the set. 

My thesis adviser often talked about the importance of finding the cor
rect definition. At first I thought he meant just that we needed to make our 
intuitive notions precise. For example, compare the preceding definition 
of one-point homogeneous with a common description of our student 
bodies here at Saint Benedict's and Saint John's as homogeneous. Later 
I came to understand that a good definition can unlock a string of inter
connected results-of beautiful structure-that otherwise may have re
mained hidden. This happened to me when I developed the definition of 
a closed substructure. 

Consider the eight corners of a cube. We have been taught to describe 
the cube as built from a bunch of "square substructures glued together." 
After all, that is how we make a model of a cube. However, when looking 
only at the distances of the corners from one another, it is far from obvi
ous that these squares are any more fundamental than, say, the rather cu
rious hexagon shown in Figure 7. (In fact, this hexagon is even one-point 
homogeneous.) The problem is that the edge distance connects the corners 
together in many ways, making it impossible to know how to separate one 
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Figure 7. A cube and two 
possible "substructures." 
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potential substructure from another. However, there is a substructure of the 
cube that does have a natural separation from the rest of the cube. In Fig
ure 8 four of the corners are connected to form a triangular pyramid, all of 
whose sides are the same length. The distance from one corner of this 
pyramid to another corner of the same pyramid can never lead us out of 
the pyramid. The definition of a closed substructure below generalizes 
this situation. 

Definition. A subset Y is a dosed substructure of X provided that no dis
tances which connect two points within Y also connect a point in Y with 
a point outside Y. 

My inspiration for this notion came when I noted that the curious 
porperty I just described about the triangular pyramid within the cube 
matched the intuition of closure in algebra. For example, among all of the 
numbers, the integers( ... , -2, -1, 0, 1, 2, 3, ... ) are closed under addition. 
That is, the sum of two integers is always an integer. This closure does not 
hold for every collection of numbers. For example the set of odd numbers, 
such as 1 and -7, is not closed under addition since 1 + (-7) = -6, an even 
integer. 

I have found a sequence of results that focus on these notions of closure 
and homogeneity, especially one-point and two-point homogeneity. Albert 
Chiu, a student working with me last year, extended some of my results for 
higher levels of homogeneity. The most important of these results gener
alize some key theorems of group theory (a part of algebra) to geometric 
structures. I will describe the least complicated of these results, LaGrange's 
Theorem, and I will even indulge your curiosity and prove it. After all, 
what is a mathematics essay without proofs? Incidentally, Joseph-Louis 
LaGrange (17 36-1813) was a noted mathematician who contributed to 
many areas of mathematics. I will not digress to discuss the theorem he 
found. 

LaGrange's Theorem for Geometry. If a finite, one-point homogeneous 
equidistance structure X has a closed substructure Y, then the number of 
points in X is a multiple of the number of points in Y. 

The triangular pyramid inside the cube of Figure 8 illustrates this theo
rem since the total number of corners (8) is a multiple of the number of 
corners ( 4) of the pyramid. So does the triangle atop the triangular prism 
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Figure 8. A triangular pyramid 
as a substructure of a cube. 
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in Figure 5. (I need to make a technical proviso: the length of the upright 
on the prism does not equal the side of the triangle.) 

Proof. Suppose Y is a closed substructure of X, which is one-point ho
mogeneous. By homogeneity, there must be copies of Y throughout X since 
every point in Y looks like every other point in X. However, Y is special: 
it is closed. That implies that two of the multiple copies of Y in X cannot 
include any of the same points. To see this, recall that closure guarantees 
that distances within Y cannot also be distances from Y to the rest of X. 
This means that every point of X must be in just one copy of Y. Of course, 
all the copies of Y must have the same number of points. Hence, the total 
number of points in X must be the product of the number of points in Y 
times the number of copies of Y in X. That is, the number of points in X 
is a multiple of the number of points in Y. Q.E.D. 

This proof is very structural, depending on only the formal properties of 
the key terms. However, my realization that this was a theorem arose first 
intuitively, based on revealing examples. Furthermore, this theorem fits 
into a wider structure of mathematics. Rather than discussing other results 
I have shown, I want to try to relate some of these ideas to other areas. The 
amazing ability of mathematics to have fruitful applications is a manifes
tation of the interplay of structure and intuition. The structure provides the 
mathematical power, but a new intuition is needed to realize that this struc
ture, developed in one context, fits with another context. 

One-point homogeneous structures are not only pretty, they are impor
tant in chemistry, physics and other areas. Crystals, like diamonds and salt, 
can be modeled on the atomic level by lattices of points which are one
point homogeneous. Hermann Helmholtz, a noted 19th century scientist 
realized the importance of homogeneity for our understanding of physical 
space. He discussed the "facts" that were essential for us to function in 
space. His key fact is that we must be able to move and tum rigid bodies 
freely without distortion. This is equivalent to asserting the homogeneity 
of space. Originally, Helmholtz thought that among continuous spaces only 
traditional Euclidean geometry was homogeneous. However, mathemati
cians soon pointed out that hyperbolic and spherical geometries are just as 
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Figure 9. The structure 
of a sa lt crystal. The 
squares represent sodium 
ions and circles represent 
chlorine ions. 
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homogeneous. Somewhat more recently, Einstein's development of the 
special theory of relativity uses a homogeneous four-dimensional geometry. 

Substructures, like homogeneity, have shown their worth in other fields. 
In particular, Henry Jacobowski use this idea in "The Biochemistry and 
Economics of Thrombosis" (p. 11 ff.). He writes about the goal of analyz
ing and even, he hoped, predicting the three dimensional folding of pro
teins using a much simplified model of the protein. In this model, each 
amino acid is represented by one of three signs ( +, - or O) depending on 
its electrical charge. In effect, we think of the amino acids as closed sub
structures of one of three kinds. We do not need to know the chemical in
formation within these substructures, but only how they interrelate geo
metrically. It is an interesting and difficult mathematics problem and an 
important chemistry problem to determine what three dimensional shapes 
are compatible with the linear string of +, - and O signs. 

I cannot claim any direct applications of my own research, but a closely 
related area, statistical design theory, does have important applications. 
Statistical design theory does not require as logically strong of a property 
as homogeneity. Basically, we need to insure that the design itself does not 
introduce any bias into an experiment. While this unbiasedness is weaker 
in principle than homogeneity, in practise almost all known designs are 
homogeneous. Homogeneous designs are much easier to create and, more
over, the structure of homogeneity allows a clear proof that bias is avoided. 
Consider an example developed by one of the founders of twentieth cen
tury statistics, Sir R. A. Fisher. 

Imagine we want to test the interactions of five types of seeds (A, B, C, 
D, E) and five types of fertilizers (a, b, c, d, e). Clearly, we need to test each 
type of seed with each type of fertilizer, requiring twenty-five pairs: Aa, Ab, 
Ac, ... , Ba, ... , Ee. However, we need to be careful how we arrange these 
pairs in the rows of the field, so as to avoid unintentionally favoring one 
type of seed or fertilizer. One part of the field might have better drainage 
or better soil, etc. Hence to avoid bias, we require that each row and col
umn in our experiment have each type of seed and each type of fertilizer 
just once. 

Fisher solved this problem and the more general problem using homo
geneous geometrical structures developed at the turn of the century from 
pursuing a mathematical intuition unrelated to any application. Figure 10 
gives one possible solution. To see the pattern in Figure 10, think of the 
types of seeds lining up on "parallel lines" ( which manage to wrap around 
the field) and the types of fertilizers lining up on another set of "parallel 
lines." This geometry even has its own algebra which fits it as perfectly as 
ordinary algebra fits Euclidean geometry. 

In this example from statistics, the geometric intuition of lines has been 
expanded to achieve new insights. This illustrates my favorite quotation 
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Dd Ee Aa ~ Cc 
De Ed Ae Ba Cb 

Be Ca Db ~ Ad a---Ac ~ Ce 

Cd De E;------_ Ab 

Da 

Be 

Figure 10. One solution where each 
type of seed and each type of fertil
izer appear once in each row and 
column. Note that the top three As 
form a line sloping down from the 
left and that the other two As con
tinue this pattern. The other capital 
letters continue this pattern, while 
the small letters form a different 
pattern of parallel lines that wrap 
around the square. 

from Galileo: " ... while logic is a most excellent guide in governing our 
reason, it does not, as regards stimulation to discovery, compare with the 
power of sharp distinction which belongs to geometry." 

From my own personal point of view, the above example has another 
wonderful aspect-it contains in hidden form my equidistance relations. I 
was rather surprized when I realized that I could reinterpret equidistance 
relations in terms of lines. However, as a mathematician, I also realized that 
that is very much the nature of mathematical structure. One abstract struc
ture can have a variety of interpretations. I was able to prove how to char
acterize lines in terms of equidistance relations. This means that all the 
properties of equidistance relations apply to lines. In fact, lines turn out in 
this interpretation to be closed substructures. Furthermore, since the en
tire geometrical structure is one-point homogeneous, LaGrange's Theorem 
holds. Thus the total number of points ( the 25 pairs of seed and fertilizer 
types) must be a multiple of the number of points on each line (the five 
times each type of seed or type of fertilizer appears) . 

Beautiful. The structure is flexible enough to fit in a totally unexpected 
situation. From an important vantage point, our intuitions of distances and 
lines have a common structure. One goal of mathematics is to make such 
common structure apparent. In the uniting of our intuitions under this 
common structure, we become like Euclid-the beholders of"Beauty bare." 

Tom Sibley is associate professor of mathematics at Saint John's University. An 
earlier version of "Beauty Bare" was delivered as a Faculty Colloquium lecture 
on October 14, 1992. 
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