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Groups of Graphs of Groups
David P. Byrne, Matthew J. Donner, Thomas Q. Sibley

St. John’s University

Abstract. We classify all groups of color preserving automorphisms (isometries) of edge
colored complete graphs derived from finite groups.

For any group G we construct a complete edge colored graph G with vertices the
elements of G. Denote the edge from a to b by ab, as opposed to the product ab. Define a
color function   : G  G by g  g,g1. For a,b  G, define the color of the edge
ab to be ab1. These colored graphs are related to Cayley graphs, although a Cayley
graph is not colored and need not be complete. (See [4] and [5].) If g  g1  e, the identity
of G, then g  g and the edges of color g form a regular graph of degree 1. If g  g1,
the edges of color g form a regular graph of degree 2. Colored graphs generalize the
notion of distance and   generalizes absolute value for the real numbers. These colored
graphs are related to homogeneous symmetric coherent configurations, but generalize
them in a different way. (See [2] for more on coherent configurations.) The original proofs
of these results appear in the honors theses of the first two authors ([1] and [3].)

Definitions. An isometry of G is a bijection  of G such that for all a,b  G,
ab1 ab1. The set of all isometries of G is IG and IeG is the subset fixing e.

Example 1. The colored graph for the cyclic group n can be represented as a regular
n-gon, as Figure 1 illustrates. For n  3, I n  Dn. That is, I n is isomorphic to the
dihedral group for a regular n-gon. Also, Ie n has two isometries: the identity permutation
 and the bijection  taking each element to its inverse. Similarly, has I   D , the
infinite dihedral group and Ie  has the two isometries  and .

Figure 1. The cyclic group 6.

For any group G, IG is the group of color preserving automorphisms of the colored
graph G. For all   IeG and g  G, to preserve the color g, g is either g or g1.
Hence if   IeG, 2 is the identity isometry . (See [6].) Thus IeG is an elementary
abelian 2-group and so, if finite, is of the form  2n, for some n  0. For any finite group G,
the Classification Theorem, stated below, classifies the group IG, the group of the graph



of the group. Elementary abelian 2-groups, which we will abbreviate as Boolean, play an
important role in the classification theorem as well as the isometry groups IeG.

Classification Theorem. Let G be any finite group. Then IG  G unless one of the
following occurs.

a) G is abelian and not a Boolean group. In this case, IG  G  2.
b) For some n  0, G  Q8   2n, where Q8 is the quaternion group. In this case, IG

has eight times as many elements as G and is isomorphic to IQ8   2n, where
IQ8  2   22.

c) G is not in previous cases and is isomorphic to Y or to C  Y, where C is an abelian,
non-Boolean group and Y is either 4 or a dicyclic group Q2k , for some power 2k. In this
case, IG  G  2.

While this classification only applies to finite groups, many of the lemmas and theorems
leading up to it apply to all groups. We will indicate which properties apply only for finite
groups. The first lemma uses Cayley’s Theorem to find a subgroup of IG isomorphic to G.

Lemma 1. For a group G and g  G, the mapping g : G  G given by gx  xg is an
isometry of G. The set G  g : g  G forms a subgroup of IG isomorphic to G. If G is
finite, then |IG|  |G|  |IeG|.

Proof. For x, y, g  G, gxgy1  xgyg1  xgg1y1 xy1. Hence, g

is an isometry. The set G  g : g  G gives the right regular representation of G in
Cayley’s Theorem. Thus G is a subgroup of IG and is isomorphic to G. Further, the orbit
of e under IG is the entire group. So if G is finite, the Orbit Stabilizer Theorem gives
|IG|  |G|  |IeG|. 

Remark. Even if G is infinite, every element of IG can be written in a unique way as
the composition g  , where g  G and   IeG.

An element g with g  g1 can’t be moved by an isometry in IeG since there is only one
edge xe with color g, namely ge. An induction argument shows that any group G
generated by elements of order 2 has IG  G and so is isomorphic to G. For example,
Boolean groups, dihedral groups and symmetric groups have isometry groups isomorphic to
the original group. We look for conditions on the group G so that IeG is nontrivial, implying
it has more isometries than  and so IG has isometries besides those in G. In Example 1,
the group n has 2n isometries and Ie n has a nontrivial isometry. We generalize this
situation to all abelian groups and a little more broadly.

Definitions. Define  : G  G by x  x1. A group G is nearly commutative iff for all
x,y  G, xy  yx.



Lemma 2. A group G is nearly commutative iff  is an isometry.
Proof. Let G be nearly commutative and a, b  G. Then ab1  a1b

 ba1  ab11  ab1 since an element and its inverse have the same color.
Conversely, suppose  is an isometry for G. Then
ab  ab  a1b1  a1b11  ba. 

We will determine the nearly commutative groups later in this paper. They will include
parts a) and b) in the Classification Theorem, as well as Boolean groups. By Lemma 2, an
abelian group G has the isometries  and  in IeG. If G is Boolean, every element is its
own inverse and so    in this case. Indeed, in this Boolean case, IeG  . All other
abelian groups G have    and so have at least two isometries in IeG. Theorem 9
implies that abelian groups have no other isometries in IeG. To do so, Theorem 9
determines which groups have more than two isometries in IeG. Surprisingly, we show
that all groups with more than two isometries in IeG have eight isometries and form a
family of direct product groups of the quaternion group Q8 with Boolean groups. Further,
Theorem 10 shows that groups in this family are also the only non-abelian nearly
commutative groups. Theorem 3.3 in [2] identifies several properties that match with the
class of groups we call nearly commutative.

Figure 2. The Quaternions, Q8.

Example 2. Figure 2 gives (most of) a colored graph for the eight element quaternion
group Q8. (For clarity the figure omits the edges xx, which form a fourth color.) Recall that
Q8 can be presented abstractly as i, j : i2  j2, ji  ij1 . We build the isometries of

I1Q8 from three generators, which move i, j and k independently. An inspection of
Figure 2 confirms that the bijection  fixing all of Q8 except for switching i and i is an
isometry. Similarly  and  are isometries, where  fixes all elements except for switching j
and j and  fixes all elements except for switching k and k. Any isometry of I1Q8 fixes
1. So the isometries of I1Q8 are determined by where they move i, j and k. Hence ,
 and  generate I1Q8, which is isomorphic to  23. Thus IQ8 has 64 elements. We



describe IQ8 using three additional generators. For  the isometry switching 1 and fixing
all other elements, ,,,   24. Let   i     and   j    . Then  and  act
on 1, i, j,k as 1, ij,k and 1, ji,k, respectively, without affecting the  signs. Hence
,   22 and this group acts on ,,, by conjugation. Hence IQ8  2   22.

We next extend Example 2 using direct products.
Lemma 3. Let G and H be groups with a,b  G, h  H and h  h1. If a  b, then

a,h  b,h.
Proof. From a  b, we have two cases: a  b or a  b1. If a  b, then

a,h  b,h and a,h  b,h. If a  b1, then a,h1  a1,h1  b,h and the
result follows from the definition of  . 

Theorem 4. For any group G, IeG  2  IeG and IG  2  IG  2.
Proof. We find a subgroup T of IG  2 isomorphic to IG. We use T to determine all

of IG  2. For a group G and   IG, we first show that   IG  2, where
x,y  x,y. Now a,bc,d1  a,bc,d1  ac1,b  d for
a,b, c,d  G  2. Since  is an isometry, ac1  ac1. By Lemma 3  is an
isometry. Then the subgroup T    IG  2 :   IG with x,y  x,y is
isomorphic to IG and T  IeG  2  IeG.

Next we show that IeG  2  T. Let   IeG  2. Since x  x or x  x1 for
x  G,  maps each subgroup to itself. Thus  leaves G  0  g, 0 : g  G stable and
so is an isometry of G  0, which is isomorphic to G. Thus there is   IeG such that for
all g  G , g, 0  g, 0. Note that e, 1 has order two and for all g  G,
e, 1  g, 0g, 11  g, 0g, 11  g, 0g, 11. Further,
g, 0g, 11  e, 1. Since e, 1 is of order two, g, 11  g, 11. Hence for
all x  2, g,x  g,x and IeG  2  T. Thus IeG  2  T  IeG  2, which we
saw is isomorphic to IeG.

The previous equality and the remark after Lemma 1 show that T is the subgroup of all
isometries in IG  2 that take G  0 to itself. Now any isometry of G  2 takes G  0
to itself or its one other coset G  1. (See [6].) Hence T has index two in IG  2. Then
 defined on G  2 by x,y  x,y  1 is an isometry. Further, for   T,       .
Thus IG is the internal direct product T  . Hence IG  2  IG  2. 

Corollary 5. For any natural number n, the group Q8   2n has eight isometries fixing
the identity and IQ8   2n is isomorphic to IQ8   2n   2   22   2n.

Theorem 9 will show that Q8 and the direct products in Corollary 5 are the only ones
with more than two isometries fixing the identity.

Lemma 6. In a group G, suppose that   IeG and g  G such that g  g1  g but
  . Then g has order four and for all h  G, if h  h, then

gh1  hg (Equation 1).



Proof. Suppose that g  g1  g but h  h. Then hg1  hg1  hg.
By definition of  , either hg1  hg or hg11  hg. Since g1  g, the first case can’t
happen. Thus gh1  hg.

The isometry  acts on the cyclic subgroup g as the isometries in Example 1. Since
e  e and g  g1  g, from Example 1 we have gi  gi, for any i. For a
contradiction, suppose g doesn’t have order four (or order one or two). Then g2  g2. As
in the previous paragraph, g2h1  hg2. We substitute Equation 1 into both sides of this last
equality to get ghg  gh1g. By cancellation, h  h1. Since we assumed that   , there is
some h  G such that h  h, but h  h1, giving a contradiction. So g has order four. 

Lemma 7. In a group G let H  h  G :   IeG, h  h. Then H is a subgroup
of G.

Proof. By definition of IeG, e  H. Further, if h  H, then h1  H because  either
switches an element and its inverse or it leaves both fixed. To show closure, let h, j  H.
Suppose for a contradiction that   IeG and hj  hj1  j1h1  hj. Then
  j  h    j  h fixes e and so   IeG. Then h1  h1. But j  j and so
j  h    j  hh1  jhj. This gives h1  jhj or j1h1  hj, a contradiction. Thus
hj  H and H is a subgroup. 

Lemma 8. Suppose G is a group with a,b  G, a,b  Q8 and there is an isometry
  IeG such that a  a and b  b1. Then for all x  G, either x,a  Q8 or
x  Ca, the centralizer of a.

Proof. Let x  G with all the hypotheses holding. From the presentation of Q8 we know
that ab  ba1. Either x  x or x  x1. We will further split each of these cases into
two subcases.

Suppose x  x. By Equation 1, xb  bx1. Suppose in addition, xa  xa. Then
xab  ba1x1. Also xab  xba1  bx1a1. Cancellation of ba1x1  bx1a1 gives
a1x1  x1a1, showing x  Ca in this subcase. For the other subcase, suppose
xa  a1x1  xa. Equation 1 gives xxa  xax1 and so xa  ax1, one of the relations
to show a,x  Q8. Now a  a, so similarly axa  xaa1  x or xa  a1x. Then
ax1  a1x, giving a2  x2, the other relation to show that a,x  Q8.

Next we assume that x  x1  x. Then ax  xa1. For the next subcase, suppose
that bx  bx. Then b  bxx1  x1x1b1 and b2  x2. Further, x has order four, so
b2  x2. Since a2  b2  x2 and ax  xa1, a,x  Q8. For the final subcase, suppose that
bx  x1b1  bx. Then abx  bxa1. Also ab  ba1. Then ba1x  bxa1. Cancelling
and rearranging gives ax  xa. But ax  xa1, contradicting a  a1, eliminating this case.
Thus in each subcase either a,x  Q8 or x  Ca. 

Theorem 9. Let G be a finite group with more than two isometries in IeG. Then there
is n  0 such that G  Q8   2n.

Proof. Suppose G is a group with more than two isometries in IeG, say, ,  and  are



in IeG. Further, IeG is a Boolean group, so    is a fourth element of IeG. Without
loss of generality, there are a, b  G such that a  a1  a, b  b  b1, b  b1  b
and so   b  b1. Also, a    a, so one is a and one is a1. Without loss of
generality, a  a and   a  a1. Using  and Equation 1 we have ab1  ba, one
relation needed to show that a,b  Q8.

Next, for a2  b2, Lemma 6 shows that a has order four. Replacing  with , we see that
ba1  ab and b is also of order four. Also, a and b don’t commute: If ab  ba and ab1  ba,
we have b  b1, contradicting the order of b. For    we have
ab    a  b  a1b1. Then either ab  a1b1 or ab  a1b11  ba.
But the second equality is impossible and the first one gives a2  b2. So a,b  Q8.

If a,b  G, we are done. Suppose a,b  G. Note for i, j  1, , n that
a,b, t i : a2  b2, ab1  ba, t i2  e, at i  t ia, bt i  t ib, t it j  t jt i gives a presentation of

Q8   2n. To start verifying this presentation for G, we show that if g,h  G and h  h1,
then gh  hg. Thus any elements of order two can be used as t i in the presentation. Let
g, h  G and h  h1. By Equation 1, if g is moved by any isometry of IeG, then gh1  hg
and so h commutes with g. Now suppose all isometries of IeG fix g. By Lemma 7, gh is
also fixed. Since a is not, by Equation 1 gha  agh1 as well as ag1  ga and
ah  h1a  ha. Then gha  agh1  ah1g1  ahg1  hag1  hga. By cancellation,
gh  hg and h commutes with all of G.

Suppose for a contradiction that G is not of the required form and H is a maximal
subgroup of G generated by a, b and some (possibly empty) set of t i satisfying the abstract
presentation of Q8 or Q8   2n. So there is some x  G with x  H. We consider three
cases for x and find tn1 satisfying the relations of the t i so that x is generated by H and tn1,
giving a contradiction.

First suppose that x  Ca  Cb. Either x  x1 or x  x. For the first option,
Equation 1 gives xb1  bx. But x  Cb, so xb1  xb, giving b1  b, which is impossible.
So x  x. From Equation 1, ax1  xa. But x  Ca, so ax1  ax and x1  x. Then x
commutes with all of G and can be tn1.

Next, without loss of generality, suppose that x  Ca, but x  Cb. By Lemma 8,
x,b  Q8 and so x2  b2. Then xa has order two: xaxa  x2a2  x2b2  b4  e. Thus xa
commutes with all of G and can be tn1.

Finally suppose that x  Ca and x  Cb. By Lemma 8, x,a  Q8, x,b  Q8 and
a,b  Q8. Then xab has order two: xabxab  xax1bab  x2abab  x2ba1ab  b4  e. Pick
xab  tn1. In each case, H is not maximal and so G must have the required form. 

Theorem 10. Let G be a finite non-abelian, nearly commutative group. Then
G  Q8   2n for some n  0.

Proof. Suppose G is a finite non-abelian nearly commutative group. We first show that
G contains a subgroup isomorphic to Q8. There are a, b  G such that ab  ba. Since G is
nearly commutative, we know ab  ba. Hence either ab  ba, which is false, or
ab  ba1  a1b1. This last gives a2  b2, one relation needed to show that a,b  Q8.
Also from nearly commutative we have aba1  a1ab  b. There are two options,



but aba1  b gives ab  ba, a contradiction. The other option aba1  b1 gives ab  b1a,
showing that a,b  Q8.

If a,b is all of G, we are done. Otherwise we follow the structure of the proof of
Theorem 9. The only difference is the case when x  Ca and x  Cb. Note that
a  Cb, so xa  Cb. Then we repeat the argument of the previous paragraph to show
that ax,b  Q8. Then b2  ax2  axax  a2x2  b2x2. Thus e  x2, which brings us back
to the argument of this case in Theorem 9. Hence G  Q8   2n, for some n  . 

As a consequence of Theorem 9, IeG has order one, two or eight. Those with order
eight are specified in Theorem 9. Those with  and  as isometries are nearly commutative.
By Theorem 10 non-abelian nearly commutative groups exactly coincide with the groups of
Theorem 9. Hence the abelian groups must have only  and  as isometries. Thus the
previous theorems classify all isometry groups IG except the case when IeG has two
isometries and   IeG. The dicyclic groups Q4n with n  2 satisfy these conditions, as
Example 3 below illustrates. Example 4 follows and gives a more general form and
Theorem 12 shows these examples cover all groups with these conditions.

Example 3. The presentation of the dicyclic group Q4n with 4n elements is
a,b| an  b2, ba1  ab . These equations force a2n  e  b4. Also, every element can be

written in the form ai or aib, where 0  i  2n. Further, aibaib  baiaib  b2  an, so
each of the 2n elements aib is of order four. (See Figure 3 for a partial illustration of Q12.
The elements ai form the cyclic subgroup on the outside and the elements aib are all part of
four cycles.) Define the bijection  on Q4n by ai  ai and aib  anib, which is the
inverse of aib.

We use cases to show that  is an isometry. The color of the edge aiak clearly doesn’t
change. For the edge aibak, note that
aibak1  anibak  aniakb  anikb and aibak1  aikb. Since anikb

and aikb are inverses, color is preserved. For the edge aibakb, similarly
aibakb1  anibakb  aniakb2  anikan  aik and
aibakb1  aibankb  aiankan  aik.



Figure 3. The dicyclic group Q12.

Remark: In Q4n, if n  2, then Q8 has other isometries. However, by Theorem 9, if n  2,
then there are at most two isometries in IeG. Also note that 4 acts like it is a dicyclic
group "Q4," where we take a  2 and b  1.

Example 4. Let C be any abelian non-Boolean group and Y be 4 or Y be a dicyclic
group Q2n with 2n elements. Note that  is an isometry of C, and since C is not Boolean,
  . As in Example 3, we take a and b to be the generators of Y. The mapping  taking Y
into , given by ai   and aib   is readily shown to be a homomorphism. Define
the semidirect product C  Y by c,yd, z  cyd,yz, where y  y. Then the
subgroup C  ai  c,ai : c  C and 0  i  2n1 is abelian and
c,aibc,aib  cc1, aib2  e,b2 and so c,aib is of order four. Define the bijection 
on C  Y by c,ai  c,ai and c,aib  c,aib1  c,a2n2ib. We verify that  is an
isometry as in Example 3 . Further, since C is not a Boolean group, there is some c such
that c2  e. Then c,abc,e  cc1,ab  e,ab, while c,ec,ab  c2,ab. Thus
c,abc,e does not equal c,ec,ab, showing that C  Y is not nearly commutative.
Hence IeC  Y has only the two isometries  and .

Lemma 11. Let G be any non-nearly commutative group and suppose that IeG has
exactly two isometries. Then H  h  G :   IeG, h  h is an abelian subgroup of
G with index two. Further, for all x, y  H, x2  y2 .

Proof. By Lemma 7 and the hypotheses, H is a proper subgroup of G. Let h  H and
x  G\H. From Equation 1, hx  xh1 or x1hx  h1. Thus conjugation by x inverts all of H.
Inversion is thus an automorphism of H, showing H is abelian. Further, for x, y  G\H, we
have xy1hxy  y1h1y  h. Then xy  H, showing H has index 2. Finally we show
x2  y2. For  the non-identity isometry in IeG, xxy1  xxy1  x1xy1.
Since x  x1, then xxy1  x1xy1. By the definition of  , xxy11  x1xy1 or
xyx1  x1y1x1. So xy  x1y1 and x2  y2  y2 since y has order four by Lemma 6. 

Theorem 12. Suppose G is a finite non-nearly commutative group, IeG has two
elements and   IeG. Then G is isomorphic to Y or to C  Y, where C is an abelian group
and Y is either a dicyclic group Q2n with 2n elements or Y is 4.

Proof. Given such a group G, let   IeG with   . By Lemma 11 the elements of G
fixed by  form an abelian subgroup H of index two. Also, for a fixed y  G\H, y2  H and y2

has order two. We can write H as the product of cyclic groups of prime power order:
H  C1  C2 Ck and have y2  C1. Since y2 is of order two, C1 has order 2k for some k.
Let d be a generator of C1. Let C be C2 Ck and let Y be generated by y and d. By
Lemma 6, dy  yd1 or y1dy  d1. Further C1 has one element of order two, so d2k1  y2.
Thus Y  Q2k1 , unless k  1, in which case Y  4. If C  e, we’re done.

Suppose that C  e. Note that C  Y  e. Also every element of G is in H or the



coset yH. Thus every element of G is of the form cz, where c  C and z  Y. Next we show
that C is normal in G. Let b  C and cz  G. Then cz1bcz  z1bz since b,c  C, an
abelian group. By Lemma 6, z1bz is b or b1, and both are in C.

Finally, we show G  C  Y. Since C is abelian, the inversion  is an automorphism.
Define  : Y  AutC by x   if x  C1 and x   if x  C1. As in Example 4,  is the
homomorphism used to define C  Y. We prove the function  : C  Y  G given by
a,x  ax is an isomorphism. By the decomposition of H every element of G can be
written in one of two forms, aw or awy, where w  C1. Clearly, a,w  aw and
a,wy  awy, so  is a bijection. We show operation preservation by cases. Let c,d  C
and w  C1 and z  Y. Then using Equation 1 in the middle we have
c,wyd, z  cd,wyz  cd1wyz  cwd1yz  cwydz  c,wyd, z.
Similarly, c,wd, z  cd,wz  cdwz  cwdz  c,wd, z. 

Classification Theorem. Let G be any finite group. Then IG  G unless one of the
following occurs.

a) G is abelian and not a Boolean group. In this case, IG  G  2.
b) For some n  0, G  Q8   2n, where Q8 is the quaternion group. In this case, IG

has eight times as many elements as G and is isomorphic to IQ8   2n, where
IQ8  2   22.

c) G is not in previous cases and is isomorphic to Y or to C  Y, where C is an abelian,
non-Boolean group and Y is either 4 or a dicyclic group Q2k , for some power 2k. In this
case, IG  G  2.

Proof. Let G be a finite group. By Theorem 9, IeG has one, two or eight elements.
The case with eight elements is determined by Example 2, Corollary 5 and Theorem 9,
giving part b. For the situation when there are two isometries in IeG, we consider first the
case when   IeG. By Lemma 2, G is nearly commutative. By Theorem 10 and Corollary
5, G is therefore abelian, giving part a. Theorem 12 and Example 3 and 4 give part c, the
case with two isometries in IeG and   IeG. Otherwise, IeG has only one isometry
and so by Lemma 1, IG  G, which is isomorphic to G. 

While we have classified isometry groups of finite groups, several related questions
remain open. First of all, can this classification be extended to infinite groups? Also, we can
define a "similarity" of a group G to be a permutation of the elements of G that consistently
permutes the colors of the edges of the graph of G. That is,  is a similarity of G iff for all
a,b,c,d  G, if ab1  cd1, then ab1  cd1. It is known that all group
automorphisms of a group are similarities. It is conjectured that all similarities are
compositions of group automorphisms and isometries. (Remark. Cameron in [2] uses
automorphism for what we call an isometry and weak automorphism for what we call
similarity. Given the connection between group automorphisms and similarities, we feel it is
advantageous to have different terms.) Next, one can modify the definition of  . In
particular, combining colors by allowing x  y even if y  x,x1, gives a generalization
of the notion of a norm in a finite vector space. One can then ask what the isometry and



similarity groups are for these colored graphs. Finally, we can replace the group G with a
"homogeneous loop," as defined in [6]. In particular, a Cayley loop Cn with 2n elements
generalizes the quaternions Q8  C3 and, for n  3, has many isometries: IeCn has 22n11

elements. Very little is known about the isometry groups and similarity groups of
homogeneous loops.

Acknowledgements. We wish to thank the referees and Dr. Bret Benesh for their help in
simplifying and clarifying some of the proofs.
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