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Groups of Graphs of Groups
David P. Byrne, Matthew J. Donner, Thomas Q. Sibley

St. John’s University

Abstract. We classify all groups of color preserving automorphisms (isometries) of edge
colored complete graphs derived from finite groups.

For any group G we construct a complete edge colored graph G with vertices the
elements of G. Denote the edge from a to b by ab, as opposed to the product ab. Define a
color function   : G  G by g  g,g1. For a,b  G, define the color of the edge
ab to be ab1. These colored graphs are related to Cayley graphs, although a Cayley
graph is not colored and need not be complete. (See [4] and [5].) If g  g1  e, the identity
of G, then g  g and the edges of color g form a regular graph of degree 1. If g  g1,
the edges of color g form a regular graph of degree 2. Colored graphs generalize the
notion of distance and   generalizes absolute value for the real numbers. These colored
graphs are related to homogeneous symmetric coherent configurations, but generalize
them in a different way. (See [2] for more on coherent configurations.) The original proofs
of these results appear in the honors theses of the first two authors ([1] and [3].)

Definitions. An isometry of G is a bijection  of G such that for all a,b  G,
ab1 ab1. The set of all isometries of G is IG and IeG is the subset fixing e.

Example 1. The colored graph for the cyclic group n can be represented as a regular
n-gon, as Figure 1 illustrates. For n  3, I n  Dn. That is, I n is isomorphic to the
dihedral group for a regular n-gon. Also, Ie n has two isometries: the identity permutation
 and the bijection  taking each element to its inverse. Similarly, has I   D , the
infinite dihedral group and Ie  has the two isometries  and .

Figure 1. The cyclic group 6.

For any group G, IG is the group of color preserving automorphisms of the colored
graph G. For all   IeG and g  G, to preserve the color g, g is either g or g1.
Hence if   IeG, 2 is the identity isometry . (See [6].) Thus IeG is an elementary
abelian 2-group and so, if finite, is of the form  2n, for some n  0. For any finite group G,
the Classification Theorem, stated below, classifies the group IG, the group of the graph



of the group. Elementary abelian 2-groups, which we will abbreviate as Boolean, play an
important role in the classification theorem as well as the isometry groups IeG.

Classification Theorem. Let G be any finite group. Then IG  G unless one of the
following occurs.

a) G is abelian and not a Boolean group. In this case, IG  G  2.
b) For some n  0, G  Q8   2n, where Q8 is the quaternion group. In this case, IG

has eight times as many elements as G and is isomorphic to IQ8   2n, where
IQ8  2   22.

c) G is not in previous cases and is isomorphic to Y or to C  Y, where C is an abelian,
non-Boolean group and Y is either 4 or a dicyclic group Q2k , for some power 2k. In this
case, IG  G  2.

While this classification only applies to finite groups, many of the lemmas and theorems
leading up to it apply to all groups. We will indicate which properties apply only for finite
groups. The first lemma uses Cayley’s Theorem to find a subgroup of IG isomorphic to G.

Lemma 1. For a group G and g  G, the mapping g : G  G given by gx  xg is an
isometry of G. The set G  g : g  G forms a subgroup of IG isomorphic to G. If G is
finite, then |IG|  |G|  |IeG|.

Proof. For x, y, g  G, gxgy1  xgyg1  xgg1y1 xy1. Hence, g

is an isometry. The set G  g : g  G gives the right regular representation of G in
Cayley’s Theorem. Thus G is a subgroup of IG and is isomorphic to G. Further, the orbit
of e under IG is the entire group. So if G is finite, the Orbit Stabilizer Theorem gives
|IG|  |G|  |IeG|. 

Remark. Even if G is infinite, every element of IG can be written in a unique way as
the composition g  , where g  G and   IeG.

An element g with g  g1 can’t be moved by an isometry in IeG since there is only one
edge xe with color g, namely ge. An induction argument shows that any group G
generated by elements of order 2 has IG  G and so is isomorphic to G. For example,
Boolean groups, dihedral groups and symmetric groups have isometry groups isomorphic to
the original group. We look for conditions on the group G so that IeG is nontrivial, implying
it has more isometries than  and so IG has isometries besides those in G. In Example 1,
the group n has 2n isometries and Ie n has a nontrivial isometry. We generalize this
situation to all abelian groups and a little more broadly.

Definitions. Define  : G  G by x  x1. A group G is nearly commutative iff for all
x,y  G, xy  yx.



Lemma 2. A group G is nearly commutative iff  is an isometry.
Proof. Let G be nearly commutative and a, b  G. Then ab1  a1b

 ba1  ab11  ab1 since an element and its inverse have the same color.
Conversely, suppose  is an isometry for G. Then
ab  ab  a1b1  a1b11  ba. 

We will determine the nearly commutative groups later in this paper. They will include
parts a) and b) in the Classification Theorem, as well as Boolean groups. By Lemma 2, an
abelian group G has the isometries  and  in IeG. If G is Boolean, every element is its
own inverse and so    in this case. Indeed, in this Boolean case, IeG  . All other
abelian groups G have    and so have at least two isometries in IeG. Theorem 9
implies that abelian groups have no other isometries in IeG. To do so, Theorem 9
determines which groups have more than two isometries in IeG. Surprisingly, we show
that all groups with more than two isometries in IeG have eight isometries and form a
family of direct product groups of the quaternion group Q8 with Boolean groups. Further,
Theorem 10 shows that groups in this family are also the only non-abelian nearly
commutative groups. Theorem 3.3 in [2] identifies several properties that match with the
class of groups we call nearly commutative.

Figure 2. The Quaternions, Q8.

Example 2. Figure 2 gives (most of) a colored graph for the eight element quaternion
group Q8. (For clarity the figure omits the edges xx, which form a fourth color.) Recall that
Q8 can be presented abstractly as i, j : i2  j2, ji  ij1 . We build the isometries of

I1Q8 from three generators, which move i, j and k independently. An inspection of
Figure 2 confirms that the bijection  fixing all of Q8 except for switching i and i is an
isometry. Similarly  and  are isometries, where  fixes all elements except for switching j
and j and  fixes all elements except for switching k and k. Any isometry of I1Q8 fixes
1. So the isometries of I1Q8 are determined by where they move i, j and k. Hence ,
 and  generate I1Q8, which is isomorphic to  23. Thus IQ8 has 64 elements. We



describe IQ8 using three additional generators. For  the isometry switching 1 and fixing
all other elements, ,,,   24. Let   i     and   j    . Then  and  act
on 1, i, j,k as 1, ij,k and 1, ji,k, respectively, without affecting the  signs. Hence
,   22 and this group acts on ,,, by conjugation. Hence IQ8  2   22.

We next extend Example 2 using direct products.
Lemma 3. Let G and H be groups with a,b  G, h  H and h  h1. If a  b, then

a,h  b,h.
Proof. From a  b, we have two cases: a  b or a  b1. If a  b, then

a,h  b,h and a,h  b,h. If a  b1, then a,h1  a1,h1  b,h and the
result follows from the definition of  . 

Theorem 4. For any group G, IeG  2  IeG and IG  2  IG  2.
Proof. We find a subgroup T of IG  2 isomorphic to IG. We use T to determine all

of IG  2. For a group G and   IG, we first show that   IG  2, where
x,y  x,y. Now a,bc,d1  a,bc,d1  ac1,b  d for
a,b, c,d  G  2. Since  is an isometry, ac1  ac1. By Lemma 3  is an
isometry. Then the subgroup T    IG  2 :   IG with x,y  x,y is
isomorphic to IG and T  IeG  2  IeG.

Next we show that IeG  2  T. Let   IeG  2. Since x  x or x  x1 for
x  G,  maps each subgroup to itself. Thus  leaves G  0  g, 0 : g  G stable and
so is an isometry of G  0, which is isomorphic to G. Thus there is   IeG such that for
all g  G , g, 0  g, 0. Note that e, 1 has order two and for all g  G,
e, 1  g, 0g, 11  g, 0g, 11  g, 0g, 11. Further,
g, 0g, 11  e, 1. Since e, 1 is of order two, g, 11  g, 11. Hence for
all x  2, g,x  g,x and IeG  2  T. Thus IeG  2  T  IeG  2, which we
saw is isomorphic to IeG.

The previous equality and the remark after Lemma 1 show that T is the subgroup of all
isometries in IG  2 that take G  0 to itself. Now any isometry of G  2 takes G  0
to itself or its one other coset G  1. (See [6].) Hence T has index two in IG  2. Then
 defined on G  2 by x,y  x,y  1 is an isometry. Further, for   T,       .
Thus IG is the internal direct product T  . Hence IG  2  IG  2. 

Corollary 5. For any natural number n, the group Q8   2n has eight isometries fixing
the identity and IQ8   2n is isomorphic to IQ8   2n   2   22   2n.

Theorem 9 will show that Q8 and the direct products in Corollary 5 are the only ones
with more than two isometries fixing the identity.

Lemma 6. In a group G, suppose that   IeG and g  G such that g  g1  g but
  . Then g has order four and for all h  G, if h  h, then

gh1  hg (Equation 1).



Proof. Suppose that g  g1  g but h  h. Then hg1  hg1  hg.
By definition of  , either hg1  hg or hg11  hg. Since g1  g, the first case can’t
happen. Thus gh1  hg.

The isometry  acts on the cyclic subgroup g as the isometries in Example 1. Since
e  e and g  g1  g, from Example 1 we have gi  gi, for any i. For a
contradiction, suppose g doesn’t have order four (or order one or two). Then g2  g2. As
in the previous paragraph, g2h1  hg2. We substitute Equation 1 into both sides of this last
equality to get ghg  gh1g. By cancellation, h  h1. Since we assumed that   , there is
some h  G such that h  h, but h  h1, giving a contradiction. So g has order four. 

Lemma 7. In a group G let H  h  G :   IeG, h  h. Then H is a subgroup
of G.

Proof. By definition of IeG, e  H. Further, if h  H, then h1  H because  either
switches an element and its inverse or it leaves both fixed. To show closure, let h, j  H.
Suppose for a contradiction that   IeG and hj  hj1  j1h1  hj. Then
  j  h    j  h fixes e and so   IeG. Then h1  h1. But j  j and so
j  h    j  hh1  jhj. This gives h1  jhj or j1h1  hj, a contradiction. Thus
hj  H and H is a subgroup. 

Lemma 8. Suppose G is a group with a,b  G, a,b  Q8 and there is an isometry
  IeG such that a  a and b  b1. Then for all x  G, either x,a  Q8 or
x  Ca, the centralizer of a.

Proof. Let x  G with all the hypotheses holding. From the presentation of Q8 we know
that ab  ba1. Either x  x or x  x1. We will further split each of these cases into
two subcases.

Suppose x  x. By Equation 1, xb  bx1. Suppose in addition, xa  xa. Then
xab  ba1x1. Also xab  xba1  bx1a1. Cancellation of ba1x1  bx1a1 gives
a1x1  x1a1, showing x  Ca in this subcase. For the other subcase, suppose
xa  a1x1  xa. Equation 1 gives xxa  xax1 and so xa  ax1, one of the relations
to show a,x  Q8. Now a  a, so similarly axa  xaa1  x or xa  a1x. Then
ax1  a1x, giving a2  x2, the other relation to show that a,x  Q8.

Next we assume that x  x1  x. Then ax  xa1. For the next subcase, suppose
that bx  bx. Then b  bxx1  x1x1b1 and b2  x2. Further, x has order four, so
b2  x2. Since a2  b2  x2 and ax  xa1, a,x  Q8. For the final subcase, suppose that
bx  x1b1  bx. Then abx  bxa1. Also ab  ba1. Then ba1x  bxa1. Cancelling
and rearranging gives ax  xa. But ax  xa1, contradicting a  a1, eliminating this case.
Thus in each subcase either a,x  Q8 or x  Ca. 

Theorem 9. Let G be a finite group with more than two isometries in IeG. Then there
is n  0 such that G  Q8   2n.

Proof. Suppose G is a group with more than two isometries in IeG, say, ,  and  are



in IeG. Further, IeG is a Boolean group, so    is a fourth element of IeG. Without
loss of generality, there are a, b  G such that a  a1  a, b  b  b1, b  b1  b
and so   b  b1. Also, a    a, so one is a and one is a1. Without loss of
generality, a  a and   a  a1. Using  and Equation 1 we have ab1  ba, one
relation needed to show that a,b  Q8.

Next, for a2  b2, Lemma 6 shows that a has order four. Replacing  with , we see that
ba1  ab and b is also of order four. Also, a and b don’t commute: If ab  ba and ab1  ba,
we have b  b1, contradicting the order of b. For    we have
ab    a  b  a1b1. Then either ab  a1b1 or ab  a1b11  ba.
But the second equality is impossible and the first one gives a2  b2. So a,b  Q8.

If a,b  G, we are done. Suppose a,b  G. Note for i, j  1, , n that
a,b, t i : a2  b2, ab1  ba, t i2  e, at i  t ia, bt i  t ib, t it j  t jt i gives a presentation of

Q8   2n. To start verifying this presentation for G, we show that if g,h  G and h  h1,
then gh  hg. Thus any elements of order two can be used as t i in the presentation. Let
g, h  G and h  h1. By Equation 1, if g is moved by any isometry of IeG, then gh1  hg
and so h commutes with g. Now suppose all isometries of IeG fix g. By Lemma 7, gh is
also fixed. Since a is not, by Equation 1 gha  agh1 as well as ag1  ga and
ah  h1a  ha. Then gha  agh1  ah1g1  ahg1  hag1  hga. By cancellation,
gh  hg and h commutes with all of G.

Suppose for a contradiction that G is not of the required form and H is a maximal
subgroup of G generated by a, b and some (possibly empty) set of t i satisfying the abstract
presentation of Q8 or Q8   2n. So there is some x  G with x  H. We consider three
cases for x and find tn1 satisfying the relations of the t i so that x is generated by H and tn1,
giving a contradiction.

First suppose that x  Ca  Cb. Either x  x1 or x  x. For the first option,
Equation 1 gives xb1  bx. But x  Cb, so xb1  xb, giving b1  b, which is impossible.
So x  x. From Equation 1, ax1  xa. But x  Ca, so ax1  ax and x1  x. Then x
commutes with all of G and can be tn1.

Next, without loss of generality, suppose that x  Ca, but x  Cb. By Lemma 8,
x,b  Q8 and so x2  b2. Then xa has order two: xaxa  x2a2  x2b2  b4  e. Thus xa
commutes with all of G and can be tn1.

Finally suppose that x  Ca and x  Cb. By Lemma 8, x,a  Q8, x,b  Q8 and
a,b  Q8. Then xab has order two: xabxab  xax1bab  x2abab  x2ba1ab  b4  e. Pick
xab  tn1. In each case, H is not maximal and so G must have the required form. 

Theorem 10. Let G be a finite non-abelian, nearly commutative group. Then
G  Q8   2n for some n  0.

Proof. Suppose G is a finite non-abelian nearly commutative group. We first show that
G contains a subgroup isomorphic to Q8. There are a, b  G such that ab  ba. Since G is
nearly commutative, we know ab  ba. Hence either ab  ba, which is false, or
ab  ba1  a1b1. This last gives a2  b2, one relation needed to show that a,b  Q8.
Also from nearly commutative we have aba1  a1ab  b. There are two options,



but aba1  b gives ab  ba, a contradiction. The other option aba1  b1 gives ab  b1a,
showing that a,b  Q8.

If a,b is all of G, we are done. Otherwise we follow the structure of the proof of
Theorem 9. The only difference is the case when x  Ca and x  Cb. Note that
a  Cb, so xa  Cb. Then we repeat the argument of the previous paragraph to show
that ax,b  Q8. Then b2  ax2  axax  a2x2  b2x2. Thus e  x2, which brings us back
to the argument of this case in Theorem 9. Hence G  Q8   2n, for some n  . 

As a consequence of Theorem 9, IeG has order one, two or eight. Those with order
eight are specified in Theorem 9. Those with  and  as isometries are nearly commutative.
By Theorem 10 non-abelian nearly commutative groups exactly coincide with the groups of
Theorem 9. Hence the abelian groups must have only  and  as isometries. Thus the
previous theorems classify all isometry groups IG except the case when IeG has two
isometries and   IeG. The dicyclic groups Q4n with n  2 satisfy these conditions, as
Example 3 below illustrates. Example 4 follows and gives a more general form and
Theorem 12 shows these examples cover all groups with these conditions.

Example 3. The presentation of the dicyclic group Q4n with 4n elements is
a,b| an  b2, ba1  ab . These equations force a2n  e  b4. Also, every element can be

written in the form ai or aib, where 0  i  2n. Further, aibaib  baiaib  b2  an, so
each of the 2n elements aib is of order four. (See Figure 3 for a partial illustration of Q12.
The elements ai form the cyclic subgroup on the outside and the elements aib are all part of
four cycles.) Define the bijection  on Q4n by ai  ai and aib  anib, which is the
inverse of aib.

We use cases to show that  is an isometry. The color of the edge aiak clearly doesn’t
change. For the edge aibak, note that
aibak1  anibak  aniakb  anikb and aibak1  aikb. Since anikb

and aikb are inverses, color is preserved. For the edge aibakb, similarly
aibakb1  anibakb  aniakb2  anikan  aik and
aibakb1  aibankb  aiankan  aik.



Figure 3. The dicyclic group Q12.

Remark: In Q4n, if n  2, then Q8 has other isometries. However, by Theorem 9, if n  2,
then there are at most two isometries in IeG. Also note that 4 acts like it is a dicyclic
group "Q4," where we take a  2 and b  1.

Example 4. Let C be any abelian non-Boolean group and Y be 4 or Y be a dicyclic
group Q2n with 2n elements. Note that  is an isometry of C, and since C is not Boolean,
  . As in Example 3, we take a and b to be the generators of Y. The mapping  taking Y
into , given by ai   and aib   is readily shown to be a homomorphism. Define
the semidirect product C  Y by c,yd, z  cyd,yz, where y  y. Then the
subgroup C  ai  c,ai : c  C and 0  i  2n1 is abelian and
c,aibc,aib  cc1, aib2  e,b2 and so c,aib is of order four. Define the bijection 
on C  Y by c,ai  c,ai and c,aib  c,aib1  c,a2n2ib. We verify that  is an
isometry as in Example 3 . Further, since C is not a Boolean group, there is some c such
that c2  e. Then c,abc,e  cc1,ab  e,ab, while c,ec,ab  c2,ab. Thus
c,abc,e does not equal c,ec,ab, showing that C  Y is not nearly commutative.
Hence IeC  Y has only the two isometries  and .

Lemma 11. Let G be any non-nearly commutative group and suppose that IeG has
exactly two isometries. Then H  h  G :   IeG, h  h is an abelian subgroup of
G with index two. Further, for all x, y  H, x2  y2 .

Proof. By Lemma 7 and the hypotheses, H is a proper subgroup of G. Let h  H and
x  G\H. From Equation 1, hx  xh1 or x1hx  h1. Thus conjugation by x inverts all of H.
Inversion is thus an automorphism of H, showing H is abelian. Further, for x, y  G\H, we
have xy1hxy  y1h1y  h. Then xy  H, showing H has index 2. Finally we show
x2  y2. For  the non-identity isometry in IeG, xxy1  xxy1  x1xy1.
Since x  x1, then xxy1  x1xy1. By the definition of  , xxy11  x1xy1 or
xyx1  x1y1x1. So xy  x1y1 and x2  y2  y2 since y has order four by Lemma 6. 

Theorem 12. Suppose G is a finite non-nearly commutative group, IeG has two
elements and   IeG. Then G is isomorphic to Y or to C  Y, where C is an abelian group
and Y is either a dicyclic group Q2n with 2n elements or Y is 4.

Proof. Given such a group G, let   IeG with   . By Lemma 11 the elements of G
fixed by  form an abelian subgroup H of index two. Also, for a fixed y  G\H, y2  H and y2

has order two. We can write H as the product of cyclic groups of prime power order:
H  C1  C2 Ck and have y2  C1. Since y2 is of order two, C1 has order 2k for some k.
Let d be a generator of C1. Let C be C2 Ck and let Y be generated by y and d. By
Lemma 6, dy  yd1 or y1dy  d1. Further C1 has one element of order two, so d2k1  y2.
Thus Y  Q2k1 , unless k  1, in which case Y  4. If C  e, we’re done.

Suppose that C  e. Note that C  Y  e. Also every element of G is in H or the



coset yH. Thus every element of G is of the form cz, where c  C and z  Y. Next we show
that C is normal in G. Let b  C and cz  G. Then cz1bcz  z1bz since b,c  C, an
abelian group. By Lemma 6, z1bz is b or b1, and both are in C.

Finally, we show G  C  Y. Since C is abelian, the inversion  is an automorphism.
Define  : Y  AutC by x   if x  C1 and x   if x  C1. As in Example 4,  is the
homomorphism used to define C  Y. We prove the function  : C  Y  G given by
a,x  ax is an isomorphism. By the decomposition of H every element of G can be
written in one of two forms, aw or awy, where w  C1. Clearly, a,w  aw and
a,wy  awy, so  is a bijection. We show operation preservation by cases. Let c,d  C
and w  C1 and z  Y. Then using Equation 1 in the middle we have
c,wyd, z  cd,wyz  cd1wyz  cwd1yz  cwydz  c,wyd, z.
Similarly, c,wd, z  cd,wz  cdwz  cwdz  c,wd, z. 

Classification Theorem. Let G be any finite group. Then IG  G unless one of the
following occurs.

a) G is abelian and not a Boolean group. In this case, IG  G  2.
b) For some n  0, G  Q8   2n, where Q8 is the quaternion group. In this case, IG

has eight times as many elements as G and is isomorphic to IQ8   2n, where
IQ8  2   22.

c) G is not in previous cases and is isomorphic to Y or to C  Y, where C is an abelian,
non-Boolean group and Y is either 4 or a dicyclic group Q2k , for some power 2k. In this
case, IG  G  2.

Proof. Let G be a finite group. By Theorem 9, IeG has one, two or eight elements.
The case with eight elements is determined by Example 2, Corollary 5 and Theorem 9,
giving part b. For the situation when there are two isometries in IeG, we consider first the
case when   IeG. By Lemma 2, G is nearly commutative. By Theorem 10 and Corollary
5, G is therefore abelian, giving part a. Theorem 12 and Example 3 and 4 give part c, the
case with two isometries in IeG and   IeG. Otherwise, IeG has only one isometry
and so by Lemma 1, IG  G, which is isomorphic to G. 

While we have classified isometry groups of finite groups, several related questions
remain open. First of all, can this classification be extended to infinite groups? Also, we can
define a "similarity" of a group G to be a permutation of the elements of G that consistently
permutes the colors of the edges of the graph of G. That is,  is a similarity of G iff for all
a,b,c,d  G, if ab1  cd1, then ab1  cd1. It is known that all group
automorphisms of a group are similarities. It is conjectured that all similarities are
compositions of group automorphisms and isometries. (Remark. Cameron in [2] uses
automorphism for what we call an isometry and weak automorphism for what we call
similarity. Given the connection between group automorphisms and similarities, we feel it is
advantageous to have different terms.) Next, one can modify the definition of  . In
particular, combining colors by allowing x  y even if y  x,x1, gives a generalization
of the notion of a norm in a finite vector space. One can then ask what the isometry and



similarity groups are for these colored graphs. Finally, we can replace the group G with a
"homogeneous loop," as defined in [6]. In particular, a Cayley loop Cn with 2n elements
generalizes the quaternions Q8  C3 and, for n  3, has many isometries: IeCn has 22n11

elements. Very little is known about the isometry groups and similarity groups of
homogeneous loops.
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