
32

Rejection of learning how to code and the problem of
‘non-use’ in the history of computer cultures
PatryK WasiaK
Institute of History, Polish Academy of Sciences

Abstract
This paper investigates how a host of social actors, such as computer science experts
and educators, discursively constructed both positively valued ‘user-programmers’
and negatively valued ‚non-programmers,‘ that is computer users who reject the
practice of writing programs on their computers. I argue that the central theme
of such a strategy was user agency and the question of having control over the
technology that one is using in everyday life. Firstly, I investigate two key themes
of the discursive construction of non-programmers in the era of the microcomputer
of the 1980s, the discourses towards economies and social development related
to computer literacy programs, and next, the key role of programming as a
developmental tool for children’s education. Later, I compare that historical era
with the contemporary ‘learn to code’ movement and investigate how it outlines the
disadvantages of the neglect of learning programming.

Keywords: non-use, programming, computer culture, retroprogramming, computer
literacy, LOGO, learn to code

T his paper aims to investigate how
a host of social actors, primarily

computer science experts and educators,
discursively constructed negatively valued
“non-programmers,” that is computer users
who reject the practice of writing programs
on their computers. This is a longitudinal
study that seeks to compare the cultural
logic of the construction of this specific
form of “non-use“ of computers in two
historical settings. The first setting is the era
of microcomputers of the 1980s with the
emergence of the popularity of BASIC and
LOGO programming languages accompanied
by the mass market for books and magazines
dedicated to the learning of coding skills. The
second setting is contemporary computer
culture with the ‘learn to code’ movement
that pathologies the rejection of learning how
to write program code in the époque of the
convenience of the availability of instantly
downloadable programs summarized by
‘there is an app for that’ slogan.
While discussing these two historical settings
I aim to highlight both continuity and change
between the campaigns for the popularization
of programming among computer users in the
1980s and the contemporary “learn to code”
movement. To do so, I investigate how three

campaigns were structured with the key the-
mes and strategies of convincing computer
users how they will benefit by learning coding
skills. Such an investigation also highlights the
discursive construction of those who do not
learn how to code as irrational and unwilling
to learn new valuable skills related to the use
of digital technologies. It helps to better grasp
the historical trajectory of the social imagi-
nary of the digital divide that is regularly de-
scribed only as a recent development in the
Internet era (Warschauer, 2003).
Digital studies scholar David Golumbia noted
that “The computer encourages a Hobbesian
conception of this political relation: one is either
the person who makes and gives orders (the
sovereign) or one follows orders” (Columbia,
2009, 224). My paper will illustrate how the
discursive construction of practices of non-use
of computers as tools for programming, and
‘giving orders’ to computers became embedded
in the public imagery of computer use.
I argue that in all three discourses, the central
theme was the user agency and the question of
having control over the technology that one
is using in everyday life. I will discuss how
both discourses in the 1980s were structured
upon the utopian imagery of the positive
impact of computers on personal lives and

Wasiak, P. (2023). Rejection of learning how to code and the problem of ‘non-use’ in the history of computer
cultures. medien & zeit, 38(1), 32–42.

medien & zeit
1/2023

33

economies if computer users would exercise
their agency by learning how to control
computers by programming them. Differently,
the contemporary ‘learn to code’ movement’s
discourse is structured upon the anti-utopian
vision of the dominance of actors that form
the economy of digital capitalism and exert
control over the lives of computer users
who lack knowledge, that is coding skills,
necessary to resist them.
This is also an exploratory paper and I intend
to elaborate on the problems of studying how
to research computer “non-users.” Various
forms of computer use are linked with the
emergence of easily recognizable cultural
identities such as a hacker, gamer, or a
colloquial ‘computer nerd.’ Differently, except
for contemporary ‘digital detox’ campaigns,
the non-use of computers usually does not
stimulate the emergence of such identities.
For that reason, Eric Baumer and colleagues
in their paper on technology non-use have a
problem with how to refer to those non-users.
As they note, “the non prefix seems ill-suited.
Non-hackers? Non-players?” (Baumer, et al.,
2015b). For the sake of clarity in this article,
I will use a similar ‘non-programmer’ term.
Aside from investigating a historical
trajectory of the case of “non-use” related
to computerization, I aim to contribute to
medien & zeit special issue by highlighting
the lack of scholarly interest and theoretical
considerations of the ‘non-use’ and ‘computer
laggards’ in the history of computer cultures.
The history of computing is dominated by
the innovators, such as computer science
professionals, hardware and game designers,
and early adopters such as hackers, computer
hobbyists, and individuals who innovatively
appropriated computers in a variety of
professional settings. However, little attention
has been paid to the late majority and even
less to the laggards.
In my investigation, I draw from the
interpretative framework of studies on the
figure of technology user in Science and
Technology Studies, such as the seminal How
users matter? edited volume (Oudshoorn
& Pinch, 2003) and media studies. Such a
toolset helps me to deconstruct key elements
of the repertoire used by social actors who
publically argued about the benefits of
being a user-programmer for both personal
development and social and economic

progress. Such a positively valued model of
the future was juxtaposed with the imagery
of possible future perils related to the
negligence of the development of coding skills
by computer users.
My paper is structured as follows. First, I
make a brief review of relevant works that
help to understand the cultural logic behind
the non-programmer figure. I will also discuss
why not only such a figure but more broadly,
the non-use of computer technologies has
been overlooked in the scholarship on the
history of computing. In the next sections,
I will investigate two key themes of the
discursive construction of non-programmers
in the era of the microcomputer of the 1980s,
that is the discourse towards economies
and social development related to computer
literacy programs, and next, the key role of
programming as a developmental tool for
children education. Finally, I will discuss the
contemporary ‘learn to code’ movement and
investigate how it outlines the disadvantages
of the neglect of learning programming.

Computer non-users and computer
history

Not only the history of computing but also
the broader field of history of technology
traditionally share the same focus on
technological innovation and those who
design and commercialize new technologies.
Only recently have scholars turned their
attention to technology users and diverse
practices of using, or possibly rejecting to
use technological innovations. The seminal
edited volume How users matter (Oudshoorn
& Pinch, 2003a) includes not only theoretical
consideration on practices of technology
use but also two papers on the rejection of
using technologies such as telephones in the
early Twentieth Century United States (Kline,
2003) and a study on the rejection to use the
internet (Wyatt, 2003). Nelly Oudshoorn and
Trevor Pinch in the introduction to the volume
express their agenda: “One important research
question addressed in this book is how users
are defined and by whom” (Oudshoorn &
Pinch, 2003b, 2). As this medien & zeit
issue shows there is still an urgent need to
supplement such an agenda by asking how
non-users are defined and by whom.

medien & zeit
1/2023

34

The history of computing is still primarily
focused on researching those who pioneered
technological innovation, both technology
designers and a range of actors that played a
role in the early stages of the dissemination of
such an innovation. Historian of computing
Patricia Galloway in her theoretically oriented
paper discusses “Inventor-Early Adopter
Dialectic” (Galloway, 2011). This title
summarizes the dominant theme of historical
studies of computing which focus on these two
groups. Firstly, the inventors such as those
who design and commercialize computers and
to a lesser extent software (Campbell-Kelly
& Aspray, 2004; Ceruzzi, 2003). Secondly,
early adopters who appropriate technologies
in professional and household settings, or
a broad category of ‘hackers’ (Alberts &
Oldenziel, 2014). However, for now, there is
still little research on further groups from the
diffusion of innovation model: early majority,
late majority, and particularly laggards.
Aside from a range of contemporary studies
on the ‘digital disconnection’ particularly the
rejection of social media (for instance, Moe
& Madsen, 2021; Woodstock, 2014; Goodin,
2017; Hesselberth, 2017), there are virtually
no historical studies on non-use of computers.
The closest historical work that addresses the
social choices of using or rejecting computers
in professional and home environments is
a monumental edited volume by Rob Kling
(Kling, 1996a). Contemporary cultures of
non-use leave some traces such as manifestos
and personal testimonies over social media
detox. There are two reasons for the lack of
virtually any historical sources which were
produced by non-programmers as well as any
documents that explicitly address them. As
Baumer and colleagues note, cultures of use
can influence the emergence of some cultural
identities: “Moving beyond the individual,
the voluntary non-use of technology may
function as the production or performance of
a particular sociocultural identity” (Baumer
et al., 2015a). Differently computer laggards
who were not interested in the adoption of
computers in their professional and private
lives did not produce a similar identity.
As Wyatt notes, studying non-use poses a
particular problem due to the lack of sources
but also the inability to apply the classical
paradigm of social sciences:

“Non-users may not be a very
cohesive group as people may have
very different reasons for not using
the Internet. This invisible group is
another instance of the difficulties
posed by an over-literal interpretation
of the dictum to ‘follow the actors.’”
(Wyatt, 2003, 78)

For that reason, we can only investigate how
other social actors defined users and not-
users according to their agenda. According
to a historian of science Adele Clarke, in
such a case both users, and particularly non-
users, are ‘implicated actors.’ As Clarke and
colleagues note:

“Implicated actors are actors silenced
or only discursively present in
situations. In discourse data, they
are usually constructed by others for
others’ purposes. There are at least
two kinds. The first, while physically
present, are silenced, ignored, or
made invisible by those having greater
power in the situation. Second are
those not physically present but solely
discursively constructed by others,
usually disadvantageously. Neither
kind of implicated actor is actively
involved in self-representation.”
(Clarke et al., 2015, 16, cf Oushdorn
and Pinch, 2003, 6.)

In my case, ‘non-programmers’ were obviously
present since only a small percentage of
computer users wrote even a rudimentary
program. However, they were silenced by
those who shaped the public discourse on
programming. The most suitable term to
discuss the host of social actors who took
part in such construction is ‘the network of
technology promoters’ (Rip & Talma, 1998,
313).

As I will discuss in subsequent sections,
the discourse towards the necessity of
using computers to learn how to write
programs, and the relevant silencing of ‘non-
programmers’ was shaped by the key theme
of user’s control over technologies they
use. While discussing the issue of control,
I will refer to the imagery of technological
utopianism and anti-utopianism. As Rob
Kling insightfully summarizes the core
elements of both imaginaries:

medien & zeit
1/2023

35

“Technological utopianism does
not refer to a set of technologies. It
refers to analyses in which the use of
specific technologies plays a key role
in shaping a Utopian social vision,
in which their use easily makes life
enchanting and liberating for nearly
everyone. In contrast, technological
anti-utopianism examines how certain
broad families of technology facilitate
a social order that is relentlessly
harsh, destructive, and miserable.”
(Kling, 1996b, 42).

Later I will highlight how such imagery
was used as a point of reference in all three
historical cases.

Computer literacy projects of the
1980s

The key moment for the cultural history of
computing in the 1980s was the shift from
the computer as a professional device located
and used in professional, institutional, or
scientific settings into a home technology.
Such a shift was accompanied by a
substantial effort to shape a new computer
user according to guidance by a network
of technology promoters: hardware and
software manufacturers, computer science
professionals, and educators. Historians of
computing Tom Lean and Alison Gazzard in
their studies of popular computing in Great
Britain in the 1980s grasped the cultural logic
of such public campaigns towards raising
awareness of the need for mass ‘computer
literacy’ (Lean, 2016; Gazzard, 2016). Home
computers such as the Apple II, Commodore
64, and ZX Spectrum were extensively used
to play computer games and run available
software. However, technology promoters
engaged in shaping the social imagery of
the microcomputer emphasized the critical
role of programming as a practice that has
tremendous benefits not only for those who
will decide to learn how to code but also
more broadly for societies and economies
in the years to come. There were some
discussions on what exactly computer users
should learn to succeed in the new economy.
As Kling summarizes such debates on what
exactly ‘computer literacy’ education should
focus on:

“Must all effectively educated citizens
have any special knowledge of
computer systems? If so, what kinds
of insights and skills are most critical,
those that are akin to computer
programming or those that are akin
to understanding how organizational
information systems function?”
(Kling, 1996a, 13)

My research suggests that both programming
and learning how to operate information
systems such as databases were equally
considered key skills for a computer literate
person.
While a range of primary sources for the
history of computing such as computer
magazines, popular books, and television
programmers offer extensive coverage of
programming techniques and the benefits of
programming, they very scarcely include any
depictions of those who were not interested
in coding. They only addressed those who ‘do
not code yet’ with a selection of arguments on
the purposefulness of learning how to write
code. Going back to the aforementioned
Kling’s question, “Must all effectively
educated citizens have any special knowledge
of computer systems?”, in the 1980s the
publically accepted answer was clearly “yes,
all educated citizens are obliged to have a
degree of knowledge on computer systems”
More specifically, such desired degree of
knowledge included at least rudimentary
coding skills.
It is necessary to mention the exception of
the emerging gaming culture that to some
extent legitimized gaming as a publically
accepted form of computer use. As Graeme
Kirkpatrick notes the 1980s was an era
when game publishers and game magazine
editors successfully carried out a campaign
of “Making Games Normal” (Kirkpatrick,
2014, 2015). Computer magazines dedicated
exclusively to computer games, as well as
majority of computer press, recognized
gaming as the legitimate sole purpose of
using a computer at home. But evengaming
magazines encouraged gamers to learn how
to code and regularly included tutorials
on how to modify available games or even
encouraged readers to design and code their
own games.
In the decade of microcomputers programming
became also identified as a rudimentary form

medien & zeit
1/2023

36

of interaction with a computer: As Lean
notes: “At the time programming was seen
as key to developing a working knowledge
of computers” (Lean, 2016). As an instance
of how in the 1980s technology producers
imagined programming as a natural form of
computer use, I can bring the user’s manual
for the Commodore VIC-20, the predecessor
of the Commodore 64. First, the user was
instructed on how to connect the computer to
the monitor and power supply. Just after that
the manual presented a very simple program
to type in and the user was instructed: “Try
typing this program: type this program
exactly as shown and see what happens!”
(Personal Computing on the VIC 20,
Commodore Electronics Ltd., 1982, 2). Aside
from dedicated computer periodicals and
books even magazines that had nothing to
do with computers published short tutorials
on programming in BASIC, and some
public broadcasters introduced short-lasting
television courses on BASIC programming.
Historian of technology Janet Abbate
discusses how programming became identified
as a form of social empowerment embedded
in utopian visions of social change (Abbate,
2018). As she notes: “Coding was a path to
intellectual awakening or immediate social
goals” (138). She also remarks how learning
how the network of computer technology
promoters claimed how learning coding will
address several social problems:

“programming skill has been variously
constructed as a shift of power from
management to labor, a means of
economic uplift for minorities, or a
thinking tool for children. I argue that
coding initiatives have always been
embedded in politics and that the
specific types of power associated with
computer skill have been tied to the
social identities of coding proponents
and their intended beneficiaries.”
(Abbate, 2018, 134)

Abbate mentions several different campaigns
that claimed an optimistic future for those
who will make an effort to learn how to code.
Here I would like to add that in the 1980s,
programming became presented as a skill
that will be necessary for most white-collar
jobs (Kling, 1996a). Such campaigns usually
did not explicitly mention what will happen

to those who reject learning such a new skill.
However, using the aforementioned summary
by Abbate we may conclude that those who
will reject it would not be able to control
their life projects and still will be powerless
labor, minorities devoid of opportunities for
economic uplift, and children that did not
learn how to think.
Technology promoters presented
programming as a key skill that can help to
find a place as a highly paid programmer.
Here I would like to bring an example of how
a utopian vision of programming skills was
performed in commercial imagery. An advert
for a software publisher in Byte magazine in
1981 presented a comic strip about a bored
young white-collar worker with a passion
for programming titled “How I made it big
writing microcomputer software” (Byte,
December 1981, 313). First, the protagonist
of the strip complained “I have so much fun
writing programs for my little micro […]
The only trouble is, I still have to get up at
7:00 and go to my boring job.” After finding
a publisher for his programs he was able to
change his life: “As so, here I am today, on
my newly purchased yacht somewhere off
Greece.” Those who do not learn how to
program were missing out on such a lucrative
opportunity. We may use this advert to learn
that those who would not learn to program
will still have to carry on their boring jobs
instead of sailing their own yachts. As
Lean summarizes, “Computer advertising
explained that the information technology
age was coming and that people risked being
left behind if they did not adapt” (Lean,
2016).
The aforementioned instances of the discourse
towards programming do not include
specific references to the figure of the non-
programmer. However, they clearly show that
in the decade of microcomputers in the 1980s
using computers for programming became a
highly desirable and obvious form of computer
use similarly to using computers to access the
internet in the 2000s, which has been grasped
by Wyatt as “a worldview in which adoption
of new technology is the norm” (Wyatt,
2003, 78). Despite the availability of such
knowledge, only a minor part of computer
users became actually interested in coding.
Referring to Clarke and colleagues this is an
instance when social actors while physically

medien & zeit
1/2023

37

present, were ignored and made invisible by
those who had an impact on shaping public
imagery of computing (Clarke et al., 2015,
16).

Programming as children’s
development

The aforementioned campaign for computer
literacy equally emphasized both intellectual
and practical elements of learning how to
program computers. Here I would like to
focus on an accompanying campaign of
programming as a way of revolutionizing
children’s development. The imagery of
‘child-programmer’ was an instance of how
learning programming was a way of reaching
an ‘intellectual awakening’ for children
(Abbate, 2018, 138). Generally, children
were identified as those who particularly
easily and naturally acquire computer skills.
For instance, the Byte magazine editor
pictured the desired vision of how adolescents
should interact with computers: “a typical
high school student could use computers
to write compositions, memorize facts and
vocabulary, understand relationships and
concepts in mathematics and science, and
write computer programs.” (Byte, February
1987, 149)
American Family Computing magazine
regularly published reports on ‘computing
families.” In one of such stories we can find
what parents expect from their children:
“Both Tony and Penny Morris are obviously
pleased that their kids program their own
games (fairly simple ones), or at least can
if they want to.” (Frenkel, C., How to
Program Success Into Your Computer, Family
Computing, September 1983, 46).
Referring to Wyatt (2003, 78), this is another
instance of a normative model of computer
use. Both aforementioned sources inexplicitly
shape pathological imagery of children non-
programmers, as those who will not benefit
from the educational opportunities offered by
computers and also disappoint their parents.
The most notable case for a normative
approach toward children-programmers can
be found in works by mathematician and
educator Seymour Papert who developed the
LOGO program language at the MIT inspired
by Jean Piaget’s cognitive development theory.

His most influential work is Mindstorms.
Children, Computers, and Powerful Ideas
(1980) in which Papert presented his concept
of using computers in children’s development
drawing from the philosophical dichotomy
of being controlled by technology/controlling
technology. As he noted in Mindstorms…, in
the ordinary educational environment “The
computer programming the child” (19).
Differently, “In the LOGO environment
the relationship is reversed: The child, even
at preschool ages, is in control: The child
programs the computer” (19). Papert did
not elaborate on what exactly means that
the computer is programming the child, but
here we can see a discursive construction of
a child non-programmer as someone who
does not have his or her agency and simply
follow orders. As we may assume simply
using available software meant that the child
passively follows orders given by those who
designed such software. Lean in his book
discusses the impact of Papert’s work on
using computers in education:

“In common with microcomputing
in general, programming was an
important part of school computing
in the 1980s. Educational computing
articles of the time have an underlying
rational of empowering children,
an idea that they should program
computers rather than be programmed
by computers.” (Lean 2016)

In Papert’s work we may find several claims
that programming is natural for children:

“When I have thought about what
these studies mean I am left with
two clear impressions. First, that
all children will, under the right
conditions, acquire a proficiency with
programming that will make it one
of their more advanced intellectual
accomplishments. Second, that the
‘right conditions’ are very different
from the kind of access to computers
that is now becoming established as
the norm in schools.” (1980, 16)

Similarly, as another educator engaged in
the LOGO project claimed, offering children
access to LOGO is like “leading fish to water”
(Higginson, W., Leading Fish to Water, Byte,
August 1982, 328). Practical explanation of

medien & zeit
1/2023

38

how Papert’s educational program works can
be found in highly influential work by Sherry
Turkle (1984). She studied how a small group
of “child programmers” took part in computer
courses by using BASIC and LOGO under
the supervision of MIT educators. Turkle’s
work provides a classical study for human-
computer interaction and educational and
philosophical studies. However, the children
from her study definitely didn’t come from an
average American school and her study does
not situate them in any social, cultural, and
economic contexts of the United States of the
early 1980s.
It is important to note that other studies
on the history of computer education in
schools are frequently written by educators
themselves (for instance Tatnall & Davey,
2014). They primarily investigate the use of
computers in teaching computer science and
programming. However, such investigations
are mostly biased since the authors
enthusiastically discuss the successes of such
educational campaigns and do not address
children who struggle to learn to program or
declare their lack of interest in their subject.
A much more down-to-earth study of
computers in education has been written by
Larry Cuban (2001) and the title of his book:
Oversold and Underused. Computers in the
Classroom tells much about the realities of
computer classrooms.
Cuban in his work discusses a key issue
relevant to the use/non-use dichotomy.
Previously, Turkle in her influential study
showed a classroom environment where
computers are at the same time physically
present and used exactly as intended by
educators who designed computer education
curriculum based on Papert’s work. Cuban,
drawing from his fieldwork in the educational
system in the US showed that the physical
presence of computers in classrooms does not
automatically guarantee that computers will
be used as proponents of computer education
expect to.
Similarly, in more recent work on the much-
hyped One Laptop Per Child project Morgan
Ames (2019) shows how MIT educators
and policy-makers from the Global South
expected that simply providing every child
in the Globa South with access to a laptop
would solve a range of educational, social
and economic problems. Both Cuban and

Ames articulate the issue of the “non-use”
of computers that are physically available in
educational environments. For both authors
“non-users” are not silenced actors (Clarke
et al., 2015, 16,). Instead, they offer complex
investigations into why some educational
programs shaped by technology enthusiasts
do not work as intended.
Such an approach significantly differs from
works by computer science educators. Such
studies on computer use in education usually
do not include any elaboration on those who
for some reason do not embrace computer
science teaching offered in educational
systems (Tatnall & Davey, 2014). Such
works imagine non-users as late majority or
laggards that simply require more effort from
educators to successfully evolve into “users.”

‘Learn to code’ movement

Both discursive constructions of pro-
grammers and relevant silencing and ignoring
of non-programmers discussed above have
been strongly influenced by the utopian visi-
ons of the positive impact of computers on
the future along with the promises of “ma-
king life enchanting and liberating for nearly
everyone” (Kling, 1996b, 42). Differently,
the contemporary ’learn to code’ movement
which emphasized the need to learn how to
write code is still equally driven by a utopian
and anti-utopian vision of the positive impact
of computing on the future. If we look at the
arguments of those who promote the move-
ment’s objectives, we see a much a dark vision
of computing in the contemporary world. As
I will discuss further, such a vision includes
non-programmers.
The ‘learn to code’ movement is a promi-
nent part of contemporary computer cul-
ture. Computers are ubiquitous and virtually
everyone has some basic knowledge of using
computers to run programs and browse the
internet, but only a small percentage of users
ever learned at least rudimentary coding
skills. In such a context ‘learn to code’ move-
ment identifies the ability of programming
as a forgotten knowledge and identifies the
problem of the convenience of ‘there is an
app for that’ (Miller and Matviyenko, 2014)
culture that results in the dominance of the
model of casual computer use and the neglect

medien & zeit
1/2023

39

of understanding of the role of software as
the backbone of contemporary technological
infrastructures.
The most prolific member of this movement
is Code.org (https://code.org/), a nonprofit
that, according to its website is “dedicated
to expanding access to computer science
in schools and increasing participation by
young women and students from other
underrepresented groups.” This website also
prominently includes slogans such as “Learn
computer science. Change the world.“ and
“Learn today, build a brighter tomorrow.”
In 2013 during the ‘Hour of Code” initiative,
the movement received an influential celebrity
endorsement by president Barack Obama,
who became ‘the first president-programmer’
(Finley, 2014). In his public speech Obama
directly confronted ‘there is an app for that’
culture’: “Don’t just buy a new video game,
make one. Don’t just download the latest
app, help design it” (President Obama asks
America to learn computer science, uploaded
by Code.org, https://www.youtube.com/
watch?v=6XvmhE1J9PY).
The aforementioned slogan “build a
brighter tomorrow” clearly suggests that
our contemporary world is not so bright
since most computer users do not know
how to code and do not know how the
software they use every day works. As
software studies scholar Wendy Chun put
it “Knowing software, … enable us to fight
domination or rescue software from “evil-
doers” such as Microsoft” (Chun, 2011, 21).
And what exactly digital ‘evil-doers’ do, can
be summarized by the title of digital studies
scholar Jathan Sadowski’s book: Too Smart.
How Digital Capitalism Is Extracting Data,
Controlling Our Lives, and Taking Over the
World (2020). Such imagery corresponds
with remarks by Kling on the dark side of
computerization:

“Much less frequently, authors
examine a darker social vision when
any likely form of computerization
will amplify human misery—
people sacrificing their freedom to
businesses and government agencies,
people becoming dependent on
complex technologies that they don’t
comprehend, and sometimes the image
of inadvertent global thermonuclear
war.” (Kling, 1996b, 41)

The movement perceives learning how to
understand and write software as a method
of challenging the domination of the digital
economy potentates and empowering
individual users. As Abbate notes: “Code.
org began to fuse the concerns of corporate
interest, education, and social justice into
a single discourse equating coding with
empowerment (Abbate, 2018, 147). Going
back to the previously quoted remark by
Wyatt, the movement identifies the fact
that the adoption of technology, that is
programming, is not a norm (Wyatt, 2003,
78) as an acute social and economic problem.
As a remedy, the movement intends to
popularize the model of computer use in
the 1980s and bring back programming ’as
key to developing a working knowledge of
computers” (Lean, 2016).
Interestingly, the ‘learn to code movement
is countered by a strong opposition of those
who bring ‘non-programmers’ into the
spotlight and explain why mass learning how
to write rudimentary code is not a cure for
acute social and economic problems (Shapiro,
2016; Farag, 2016). Moreover, in the era
of public knowledge of the exploitation of
employees in the digital economy, it is clear
that programming would not guarantee a
yacht, only plausibly a poorly paid job in an
open space with compulsory overtime during
‘crunch times.’

Discussion

In all three cases, I have discussed how a
host of actors promoted not only computers
as a technology of the future but also
programming as a specific desirable form
of computer use that will realize the full
potential of technology. All three campaigns
towards the need for learning how to write
programs strongly resembles Wyatt’s study of
the Internet:

“Everyone is clearly understood as a
potential user of the Internet. Access
to the technology is seen as necessarily
desirable, and increasing access is the
policy challenge to be met in order to
realize the economic potential of the
technology” (Wyatt, 2003, 68).

https://code.org/
https://www.youtube.com/watch?v=6XvmhE1J9PY
https://www.youtube.com/watch?v=6XvmhE1J9PY

medien & zeit
1/2023

40

Going back to the question “how non-users
are defined and by whom?” We have seen
that such promoters of computerization did
not explicitly define ‘non-programmers’ but
rather made them silent and invisible (Clarke
et al., 2015, 16). However, by investigating
their visions of the benefits of the ability
of programming and, thus, having control
over one’s life, we can conclude that ‘non-
programmers’ will not be able to control their
lives in the upcoming era of the information
society.
All three historical cases shows how definition
of use/non-use of technology was structured
with a dichotomy of having control/being
controlled. However, there is a key difference
between the 1980s and the contemporary
world. In the 1980s the enthusiasm towards
programming was driven by the optimistic
utopian vision of the future with promises
based on the benefits of the skillful use of
new technology. Differently in contemporary
culture, the imagery of programming is
equally structured with similar utopian
visions of the possible future and anti-utopian
vision of contemporary currents with digital
economy ‘evil-doers’ (Chun, 2011, 21).
Finally, I would like to highlight the
key difference between non-use of social
media and ‘non-programmers.’ According
to contemporary ‘digital disconnection’
campaigns, those who use social media are
being controlled by those who design such

technology with specific ways of forming
an addiction to such use and applying non-
transparent algorithms. As Baumer and
colleagues note: “non-use may represent an
individual’s attempt to regain (a sense of)
self-control over their own technology use.
[…] In many of these cases, the discourse is
one of control.” (Baumer et al., 2015a).
In all three historical cases discussed in my
paper, the situation was reversed. Actors
who shaped the discourse equaled ‘use,’ that
is learning how to program, with having
control over technology. Contrary, ‘non-
use’ was equaled with the situation when
technology, or some malevolent social forces,
have control over computer users.
Finally, I would like to highlight the lack of
scholarly investigations on how social actors
perceive not only the use/non-use dichotomy
but rather a hierarchy of different forms of
using digital technologies. There is extensive
literature from game studies scholars on the
history of controversies over gaming as a
legitimate form of using digital technologies
(Kirkpatrick, 2014, 2015; Madigan, 2016;
Kowert & Quandt, 2015). However, those
studies focus primarily on the issue of
legitimization, a single form of computer
use. We need more works that would offer
investigations on a continuum between
programming as an idealized purposeful and
creative form of computer use and non-use.

References

Abbate, J. (2018). Code Switch: Alternative Visions of Computer Expertise as Empowerment
from the 1960s to the 2010s. Technology and Culture, 59 (1), 134-159.

Alberts, G., & Oldenziel, R. (Ed.). (2014). Hacking Europe. From Computer Cultures to
Demoscenes. Springer.

Ames, M. (2019). The Charisma Machine. The Life, Death, and Legacy of One Laptop per
Child. MIT Press.

Baumer, E., Morgan G. Ames, M., Burrell, J., Brubaker, J., & Dourish, P. (2015a). Why study
technology non-use? First Monday, 20 (11), 2 November 2015
https://firstmonday.org/ojs/index.php/fm/article/download/6310/5137

Baumer, E., Morgan G. Ames, M., Burrell, J., Brubaker, J., & Dourish, P. (2015b). On the
importance and implications of studying technology non-use. ACM Interactions, XXII, 2,
March-April 2015, https://interactions.acm.org/archive/view/march-april-2015/on-the-
importance-and-implications-of-studying-technology-non-use

Campbell- Kelly, M. & Aspray, W. (2004). Computer: A History of the Information Machine.
Westview Press.

Ceruzzi, P. (2003 [1998]). A History of Modern Computing, 2nd ed. MIT Press.
Chun, W. (2011). Programmed Visions Software and Memory. MIT Press.

https://firstmonday.org/ojs/index.php/fm/article/download/6310/5137
https://interactions.acm.org/archive/view/march-april-2015/on-the-importance-and-implications-of-studying-technology-non-use
https://interactions.acm.org/archive/view/march-april-2015/on-the-importance-and-implications-of-studying-technology-non-use

medien & zeit
1/2023

41

Clarke, A., Friese, C., & Washburn, R. (Ed.). (2015). Situational Analysis in Practice. Mapping
Research with Grounded Theory. Left Coast Press.

Cuban, L. (2001). Oversold and Underused. Computers in the Classroom. Harvard University
Press.

Farag, B., (2016). Please don’t learn to code, TechCrunch website, May 11, 2016,
https://techcrunch.com/2016/05/10/please-dont-learn-to-code/).

Finley, K. (2014). Obama Becomes First President to Write a Computer Program, Wired, Dec. 8 2014,
https://www.wired.com/2014/12/obama-becomes-first-president-write-computer-program/)

Galloway, P. (2011). ‘Personal Computers, Microhistory, and Shared Authority: Documenting
the Inventor-Early Adopter Dialectic. IEEE Annals of the History of Computing, 33)2),
60-74.

Gazzard, A. (2016) Now the Chips Are Down: The BBC Micro. MIT Press.
Golumbia, D. (2009). The Cultural Logic of Computation. Harvard University Press.
Goodin T. (2017). OFF: Your Digital Detox for a Better Life. Octopus.
Hesselberth P. (2017). Discourses on disconnectivity and the right to disconnect. New Media &

Society, 20 (5), 1994–2010.
Kirkpatrick, G. (2014). Making Games Normal: Computer Gaming Discourse in the 1980s.

New Media & Society 18 (8): 1439–1454.
Kirkpatrick, G. 2015. The Formation of Gaming Culture: UK Gaming Magazines, 1981–1995.

Palgrave Macmillan.
Kline, R. (2003). Resisting Consumer Technology in Rural America: The Telephone and Electrification.

In N. Oudshoorn & T. Pinch (Ed.). How users matter: The co-construction of users and technology.
MIT Press, 51-66.

Kling, R. (Ed.). (1996a [1991). Computerization and Controversy: Value Conflicts and Social Choices.
Academic Press.

Kling, R. (1996b). Hopes and Horrors: Technological Utopianism and Anti-Utopianism in Narratives
of Computerization. In Kling, R. (Ed.). (1996a [1991). Computerization and Controversy: Value
Conflicts and Social Choices. Academic Press, 40-58.

Lean, T. (2016). Electronic Dreams. How 1980s Britain Learned to Love the Computer. Bloomsbury.
Madigan, J. (2016). Getting Gamers. The Psychology of Video Games and Their Impact on the People

Who Play Them. Rowman & Littlefield.
Miller, P. & Matviyenko, S. (Ed.). (2014). The Imaginary App. MIT Press.
Moe, H., Madsen, O. (2021). Understanding digital disconnection beyond media studies. Convergence:

The International Journal of Research into New Media Technologies, 27(6), 1584–1598.
Oudshoorn, N. & Pinch, T. (Ed.). (2003a). How users matter: The co-construction of users and

technology. MIT Press.
Oudshoorn, N. & Pinch, T. (2003b). Introduction: How users and non-users matter. In: Oudshoorn, N.

& Pinch, T. (Ed.). (2003). How users matter: The co-construction of users and technology. MIT
Press, 1–25.

Papert, S. (1980). Mindstorms. Children, Computers, and Powerful Ideas, Basic Books.
Rip, A. & Talma, S. (1998). Antagonistic Patterns and New Technologies In Disco, C. & van der

Meulen, B. (Ed.) Getting New Technologies Together Studies in Making Sociotechnical Order. De
Gruyter, 299-322.

Sadowski, J. (2020). Too Smart. How Digital Capitalism Is Extracting Data, Controlling Our Lives,
and Taking Over the World. MIT Press.

Shapiro, J. (2016). President Obama Wants Every Kid To Learn Coding--For All The Wrong Reasons,
Forbes, January 31, 2016, https://www.forbes.com/sites/jordanshapiro/2016/01/31/president-
obama-wants-every-kid-to-learn-coding-for-all-the-wrong-reasons/

Tatnall, A. & Davey, B. (Ed.) (2014). Reflections on the History of Computers in Education Early Use
of Computers and Teaching about Computing in Schools. Springer.

Turkle, S. (1984). The Second Self: Computers and the Human Spirit. Simon & Schuster.
Warschauer, M. (2003). Technology and Social Inclusion. Rethinking the Digital Divide. MIT Press.
Woodstock, L. (2014). Media resistance: opportunities for practice theory and new media research.

International Journal of Communication, 8, 1983-2001.

https://techcrunch.com/2016/05/10/please-dont-learn-to-code/
https://www.wired.com/2014/12/obama-becomes-first-president-write-computer-program/
https://www.forbes.com/sites/jordanshapiro/2016/01/31/president-obama-wants-every-kid-to-learn-coding-for-all-the-wrong-reasons/
https://www.forbes.com/sites/jordanshapiro/2016/01/31/president-obama-wants-every-kid-to-learn-coding-for-all-the-wrong-reasons/

medien & zeit
1/2023

42

Wyatt, S. (2003). Non-users also matter: The construction of users and non-users of the Internet In:
Oudshoorn, N. & Pinch, T. (Ed.). (2003). How users matter: The co-construction of users and
technology. MIT Press, 67–79.

Research for this article was supported by the National Science Centre, Poland, grant 2020/37/B/
HS3/03610. I would like to express my gratitude to the editors and two anonymous reviewers
for their comments that helped me to revise and improve my manuscript.

PatryK WasiaK,
Dr., associate professor, Institute of History, Polish Academy of Sciences,
holds MA titles in sociology and art history (Warsaw University) and PhD in
cultural studies (Warsaw School of Social Sciences and Humanities). Former
fellow of the Volkswagen Foundation, the Center for Contemporary History
Potsdam, the Netherlands Institute of Advanced Study, and the Andrew W.
Mellon Foundation. His research interests include the cultural history of the
Cold War, history of home technologies and history of computing. Currently
he works on the the history of amateur programming and neo-liberal socio-
economic order in the 1980s. His current project is supported with a 4-year
research grant from the National Science Centre of Poland. He has published
articles in IEEE Annals of the History of Computing, International Journal of
Communication, and History and Technology.

	Rejection of learning how to code and the problem of ‘non-use’ in the history of computer cultures PATRYK WASIAK

