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Abstract— Autonomous systems in material handling are 

increasingly prevalent in logistics, offering benefits such as 

flexibility, adaptability, robustness, and sustainability. To fully 

harness these advantages, a novel paradigm, the Digital 

Continuum, is proposed for the development and operation of 

such systems. A critical component of the Digital Continuum is a 

deeply integrated digital system model, which serves as a 

simulation, training, and test environment for virtual agents 

corresponding to physical robots. To ensure robust performance 

in learned behavior, a large number of learning environments is 

needed, thus highlighting the importance of an automated 

generation process. This process can significantly reduce modeling 

effort and is yet to be developed. This paper presents the 

derivation of requirements for an automated learning 

environment generation approach, unifying elements from Digital 

Continua, intralogistics, and robotics domains. Furthermore, the 

paper briefly discusses the research gap in the context of existing 

procedural content generation and domain randomization 

approaches. By addressing these requirements and bridging the 

research gap, a generation approach has the potential to 

profoundly facilitate the development and operation of 

autonomous systems in logistics. 

Keywords—autonomous systems, Digital Continuum, 

intralogistics, learning environments, simulation-based artificial 

intelligence, procedural generation. 

I. MOTIVATION AND BACKGROUND 

Over the past few decades, there has been a trend towards 
increasing autonomy in logistics systems, driven by rapid 
technological advances in Industry 4.0 [1]. Especially recent 
advances in artificial intelligence (AI) in combination with 
physically correct simulation environments have fueled new 
possibilities for autonomous decision-making in logistics.  

The fundamental characteristic of autonomous systems is 
that they can achieve a given goal and independently adapt to a 
given, unknown situation accordingly, without human control or 
detailed programming [2]. In general, there are two types of 
autonomous systems: virtual and physical [3]. Virtual 
autonomous systems operate solely in the virtual realm, such as 
the internet. They are capable of taking autonomous action, such 
as defending against cyber-attacks or negotiating contracts 
between companies. Physical autonomous systems, on the other 
hand, have a tangible impact on the physical world, either as 
individual systems or as part of a networked cyber-physical 

system (CPS). Examples include collaborative robots, drones, 
and surgical robots.  

Both types of autonomous systems have multiple benefits in 
logistics systems that often operate under demand fluctuations 
and uncertainties. Their independent decision-making 
capabilities enable autonomous systems to adapt to changes in 
supply networks independently and to scale according to the 
current demand. This makes these systems flexible, robust, and 
sustainable, as they can adjust themselves to the current and 
possible future circumstances. A very apparent instance of this 
trend is the evolution of automated guided vehicles (AGV) into 
autonomous mobile robots (AMR) in intralogistics. Where AGV 
depend on centralized planning and control systems and operate 
on predefined paths, AMR have the potential to enable self-
contained, decentralized planning, execution, control, and 
optimization of internal material and information flows [4]. 

The development towards autonomy forces a paradigm shift 
from centralized, hierarchical organizations towards networked 
and autonomous systems which presents several challenges. 
Firstly, decentralized decision-making in general requires new 
methods and concepts to find appropriate overall system 
behavior. Due to the stochastic dependencies of the independent 
interaction of AMR with each other and with their environment, 
it is hardly possible to estimate the behavior of the system using 
analytical methods, especially if their behavior adapts 
depending on the situation [1]. Secondly, AMR systems that 
already support decentralized decision-making in practice 
oftentimes are not as autonomous as they could be. Their 
autonomy is limited to specific systems or tasks, and the 
respective planning and control decisions are hard coded into the 
decentralized decision logic of the systems [5]. This leads to the 
fact that the control software is hard to synchronize to changes 
in the physical system and adaptions always involve human 
intervention, which prohibits AMR from fulfilling the entirety 
of their potential benefits. Overall, new methods and concepts 
are required to find appropriate and adaptable system behavior 
through decentralized decision-making.  

A technology supporting this evolution is simulation-based 
AI. AI techniques allow to solve multi-objective optimization 
and to include complex dependencies, which is required when 
learning to find good overall system behavior through 
decentralized decision-making [4]. Combined with simulation, 



AI techniques can be used to train autonomous agents in digital 
system models whose behavior can be transferred to the physical 
world. On a robotic level, there have been numerous studies that 
have shown how autonomous agents in a simulation can learn 
behavior that can be transferred to the real world (see [6]). A 
major advancement for this field has been the emergence of deep 
reinforcement learning (RL). However, current approaches of 
deep RL in robotics are still limited to lab settings, and far from 
being able to train AMR that can deal with the complexity and 
diversity of tasks and environments in the real world [7]. 

A possible solution to this challenge could be provided by 
the industrial metaverse. The industrial metaverse is a concept 
that involves creating digital representations of reality, which 
allow for interactions and decision-making with the power to 
impact the physical world, thereby merging physical and digital 
reality. However, most current use cases of the industrial 
metaverse are focused on the interaction of humans with virtual 
models and with each other in the virtual reality [8] and lack 
solutions for the specific requirements of AI-based autonomous 
systems, especially regarding continuously adapting and 
improving autonomously made decisions, while ensuring 
conformity and alignment with the intentions of the system 
designers. Developers of generative AI, such as OpenAI, are 
currently addressing this issue of the alignment problem in AI 
for their future releases, in this case of models for ChatGPT [9]. 
A potential solution is seen in deploying continuously improved 
models incrementally, instead of large new releases. This 
approach follows a continuous feedback-deployment loop 
between physical and digital reality, as in the DevOps principle. 

An open question is, how the principles of the metaverse and 
ensuring alignment of AI-based decisions can be applied to 
developing and operating autonomous systems in a way that 
allows to reach the full potential of autonomy in logistics 
systems. This paper introduces the paradigm of a Digital 
Continuum (DC) for logistics to address this question. 

The DC for logistics is based on the idea of an increasingly 
close connection between the physical and digital reality, 
forming a control loop between these worlds that incorporates 
AI methods to continuously optimize and adapt the systems 
behavior. The result is high-frequency logistics where decisions 
and transactions are made autonomously and in real time. In this 
context, digital systems models are increasingly evolving from 
representations to drivers of physical processes. They are an 
essential prerequisite to serve as digital twins and, above all, as 
learning and test environments for autonomous systems, such as 
AMR in intralogistics. By learning beneficial behavior in the 
digital reality, the learning process can be sped up, parallelized 
and new behavior tested without damage in the physical world. 
Achieving robust results in these digital training environments 
requires a large number of different learning and test 
environments to cover a wide variety of real-world 
circumstances, before the trained models can be applied to the 
physical world and improve the behavior of autonomous 
systems there.  

Digital learning environments are expensive to model 
manually. For DC to become a reality and for AMR to reach 
their full potential, automatically generating learning and test 
environments for autonomous systems becomes inevitable. In 

the field of procedural content generation (PCG) and domain 
randomization (DR) approaches for automatically generating 
varying digital content have been developed for several decades, 
yet until now there is no approach to generate learning 
environments for autonomous systems that fulfills all the 
requirements from DC, logistics and robotics. 

In conclusion, autonomous systems have the potential to 
revolutionize logistics and supply chain management, but 
further research and development are needed around paradigms 
to develop and operate these systems to allow complete 
autonomy and how the required digital learning environments 
for these systems can be generated automatically. 

In the following sections, the concept of DC is introduced in 
more detail and the need for different learning and testing 
environments for autonomous systems identified. The 
requirements for an approach to generate these environments for 
AMR in intralogistics, as an example of autonomous systems in 
logistics, are then derived and compared at a high level with 
existing approaches of PCG in the following section. Finally, the 
conclusion summarizes the need for further research. 

II. DIGITAL CONTINUA IN LOGISTICS 

The paradigm of the DC in logistics describes how through 
the seamless connection of the physical and the digital world as 
well as development and operations, and through leveraging 
advanced methods in AI, it becomes possible for autonomous 
systems in logistics to reach new levels of autonomy.  

A. Concept of a Digital Continuum 

A DC emerges when physical and digital reality interact with 
each other and form an unbroken control loop that incorporates 
methods of AI to continuously optimize itself (see Fig. 1) [10].  

Information on the physical environment is transmitted to a 
digital system model, that serves as the digital twin. By ensuring 
that the digital model captures the physical model as close to 
reality as necessary for the use case, the model can be seen as a 
digital reality. Within this digital reality, simulation and training 
runs can be conducted and improved system behavior can be 
determined. After testing the behavior in the digital reality and 
ensuring the alignment with the system designers’ intentions, the 
adjusted code encompassing the behavior, e.g., weights of 
neural networks, can be delivered to the physical reality. The 
impact of the newly deployed control logic in the physical 
system is again perceived by sensors and an update is given to 
the digital world. A continuous highly complex and dynamic 
feedback loop emerges allowing for the system to find 

 

Fig. 1. Digital Continuum through the seamless merging of the physical 

and digital worlds. 
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increasingly good behavior and increasingly accurate digital 
system models.  

This process allows for autonomous systems to incorporate 
more and more complex decisions, until they reach a new level 
of autonomy. The crucial decisions for a systems behavior and 
reactions to changes are made in the digital world, therefore 
elevating digital twins to digital reality and digital models to 
drivers of physical processes. 

The DC comprises all scopes of logistics use cases, from 
physical hardware and near-hardware applications, that are 
combined with digital development, to strategic decisions of real 
and digital supply chains, connecting the planning, tender, 
dispatching, and operations elements of supply chain 
management in the real world with their digital counterparts. 

B. Characteristics of Digital Continua 

Independent of the area of application or use case, every DC 
exhibits the same characteristics, potentially in different 
manifestations. 

1) Computational continuity 
The computational continuity property deals with the 

necessary architecture of computing capacities for DC. In order 
for DC to emerge, a continuous data processing infrastructure 
must be established between the physical and virtual system 
through distributed computing power. 

Computational continuity is a key aspect of what has 
previously been defined as a “digital continuum” in the high 
performance computing community (see [11]). However, the 
DC in logistics presented in this paper includes additional 
aspects, that are described in the following characteristics. 

Autonomous entities at the IoT device level present in the 
physical system are equipped with data processing capacities, as 
they are able to independently convert input signals from the 
perceived environment into appropriate actions and send data 
from the perceived environment to their digital counterpart. 
Before arriving at the data centers where the digital reality of the 
systems is operated, the data passes through various nodes of the 
network, where it can be aggregated and converted, each of 
which equipped with processing capacities. Large (potentially 
infinite) computing capacities are available in data centers to 
determine computationally intensive decisions and behaviors. 
These decisions and behaviors are then (re-)transmitted to the 
computing units and to the actors of the physical system. 

Therefore, the environments in which software modules are 
deployed and data is processed in DC range from edge and fog 
nodes to large data centers. These environments form a 
federation of systems and functions with unified communication 
and management mechanisms for all participating systems, 
creating a data processing continuum. 

2) Data continuity 
In order for a DC to form the base for a new level of 

autonomy of logistic actors, the data and information that is 
generated in the physical and the digital world must not only be 
seamlessly available from “shop floor to cloud”, as the 
computing continuity describes, but also from “source to sold”, 
and from “cradle to grave”. 

To achieve data continuity, logistics actors, i.e., enterprises, 
cyber-physical systems (CPS) and individual IoT devices, must 
be connected through data spaces. All actors have access to the 
same, unique data set (single point of truth) and organize data 
spaces while respecting data sovereignty. Data spaces can 
contain historical, current, and predictive data and can be held 
centralized or decentralized. It is possible to continuously 
integrate and organize data and information in real-time across 
entire supply chains and down to the physical level of material 
handling or robots, making the data required for decision-
making or learning situations available at the right level of 
abstraction. 

Data continuity also means, that the same data must be 
available for decision algorithms in both, the physical and the 
digital world. The mapping continuity property elaborates on 
this idea. 

3) Mapping continuity 
For the decision-making algorithms operating within a DC, 

it must be indistinguishable whether they are operating in the 
physical or digital world. This is a necessary condition for using 
the digital reality of a system as an environment for testing and 
learning alternative behaviors that can be transferred to the 
physical world.  

To achieve the state of continuous mapping, also called 
mapping continuity, it is necessary to consider two conditions: 

Appropriate choice of the level of detail: The accuracy with 
which the digital representation of the system corresponds to 
reality should be chosen reasonably. For use cases at a hardware-
level, a detailed representation of reality in terms of physics and 
appearance of objects proves to be of crucial importance(closing 
the sim-to-real gap, see e.g. [12]). At the supply chain level, 
where potentially the behavior of entire companies is 
determined the essential elements of realistic representation are 
more concerned with inventory quantities, transportation times, 
weather conditions, etc. 

Maintain the twin property between the physical and digital 
realities: The digital representation of the system must always 
be kept up to date with the physical system, and the physical 
system must be able to adapt in real-time to the decisions and 
behaviors determined in the digital world.  

4) Development continuity 
Development continuity is the characteristic that defines the 

essential benefits of a DC and distinguishes it from the idea of 
the industrial metaverse. It integrates all three characteristics 
defined above and is achieved by applying the ideas and 
practices of the DevOps approach in software development to 
the development and operation of autonomous logistics systems.  

In a digital reality, advantageous decisions about the 
behavior of autonomous systems can be learned continuously 
and at any given time. The learned behavior is then tested in 
instances of the digital reality that the autonomous decision 
algorithms have not previously encountered. This ensures that 
the learned behavior is consistent with the intent of the system 
designer. If it passes the quality test, the learned behavior is 
continuously applied to the physical reality in small incremental 
changes. This creates a closed loop of learning, testing, 



execution, and feedback, where changes in the physical world 
lead to changes in the digital world, and vice versa. It enables 
the acceleration of the process from development to delivery of 
software and hardware adjustments to the production 
environment, ensuring alignment of AI-based decisions and 
enabling continuous learning, improvement, and adaptation. 

Starting the process of developing an autonomous system in 
a DC means that the process of becoming operational is not a 
sudden and significant implementation but can be integrated into 
the continuous loop and achieved incrementally. During the 
development phase the autonomous system can be trained in 
various digital learning environments for situations that it may 
encounter in the physical, operational system. Once the system 
is deployed in the physical world, the pretrained algorithms can 
be increasingly adapted to the system in which they eventually 
operate, and during the operational phase the systems remain 
adaptable to future changes.  

The characteristics of DC underline the importance of digital 
system models for learning and testing beneficial behavior 
before it is applied to the physical world. Finding the right policy 
to adapt to a given set of environmental states through training 
in a digital model, instead of the real world has several 
advantages such as the training being faster, cheaper, and more 
scalable [7]. To find behaviors that are robust to the large 
number of real-world circumstances, a large variety of learning 
environments is required that sufficiently covers possible 
combinations of environmental states. However, building such 
models is expensive, especially for robotic applications, such as 
AMR in intralogistics, which require physically accurate models 
to adequately represent sensors and actuators. Therefore, 
approaches that automatically generate a large number of 
different digital learning and test environments are necessary to 
realize the vision of DC. In the next section, the requirements 
for the generation of digital learning and testing environments 
for AMR in intralogistics are derived. 

III. DERIVATION OF REQUIREMENTS 

The requirements that an approach to generate learning and 
testing environments for AMR in a DC should fulfill can be 
derived from the characteristics of DC, characteristics of AMR 
in intralogistics and policy learning in robotics (see Fig. 2). 

A. Requirements of Digital Continua 

DC and in particular their central property of development 
continuity provide the fundamental motivation for creating 
digital learning and testing environments for autonomous 
systems. It is used in both the development and the operation 
phases of autonomous systems and imposes different 
requirements on the digital environments in each of them (see 
Fig. 2 A.). 

In the development phase, since the exact logistics system in 
which the autonomous robots will operate is not yet determined, 
a variety of different digital learning environments are helpful to 
increase the generalizability of the learned behaviors and to 
achieve good results even in unfamiliar digital and physical 
environments. Therefore, learning environments should allow 
autonomous systems to be trained and tested in a variety of 
environments to prepare them for as robust as possible 
deployment in different real-world systems.  

Similarly, in the operational phase of autonomous systems 
in intralogistics, the ability to handle unknown and changing 
environments is necessary, as environmental parameters such as 
the physical structure of the system or the workload to be 
processed may change on short notice. To automatically adapt 
the system to the new situation without manual intervention in 
the programming of the control logic, digital learning and testing 
environments with varying environmental parameters are also 
required in this phase. In contrast to the development phase, the 
requirement in the operational phase is not to generate 
completely new digital models, but to be able to adjust specific 
environmental variables in an existing one. 

A requirement for the learning and testing environments that 
is relevant for both, the development and operation phases, is 
that the learned behaviors are applicable in the physical reality 
based on the training in the digital reality. Only in this way is it 
possible to make use of the advantages of learning in digital 
worlds for the physical handling of material flows. 

Finally, a requirement of DC for learning environments for 
autonomous systems is that the level of detail in the learning 
environment should be tailored to the learning task. In order to 
minimize the computational effort for the generation the 
learning environments as well as for the learning process itself, 
the principle of relevance from the principles of proper modeling 
applies to the appropriate level of abstraction: Only those facts 
should be modeled that are relevant for the underlying modeling 
purpose which means that the learning environment should not 
be as precise as possible, but as accurate as necessary [13]. 

The learning tasks that are relevant for AMR in intralogistics 
and therefore dictate the appropriate level of abstraction for the 
learning environments for AMR in a DC depend on their 
characteristics and tasks. 

B. AMR in intralogistics 

There are two main characteristics of AMR in intralogistics 
that define the learning tasks in digital environments: 
decentralized decision-making and autonomous execution of 
transports (see Fig. 2 B.). 

Autonomous systems are designed to make decentralized 
decisions and take actions based on the information they receive 
about the state of their environment. Each entity of the 
autonomous system forms its own decision-making unit, which 
can be flexibly added or removed from the system and can react 
to the environment independently. This fundamental 
characteristic is crucial for the benefits of autonomous systems 
in intralogistics, as it ensures that the systems are highly scalable 
and adaptable. In order to take advantage of this feature in the 
physical reality for as many planning and control tasks as 
possible, and thus to make the systems as flexible as possible, 
the same computing and decision-making architectures as in the 
physical reality must be replicable in the digital reality. 
Therefore, decentralized decision-making mechanisms of digital 
agents must be trainable in a learning environment for AMR in 
intralogistics. 

The decisions to be made the entities of autonomous systems 
in intralogistics systems are typically related to the execution of 
transports of one or more handling units, e.g., for put away, 
picking, or replenishment [4]. The way that these transports are 



performed determines the overall system behavior and is defined 
by planning and control decisions as well as the behavior of each 
of the AMR at the robotic level. Therefore, these are the levers 
that determine advantageous system behavior and represent the 
learning tasks for the learning environments.  

The planning and control decisions of AMR fleets that affect 
the execution of transports include the following: resource 
management, scheduling, dispatching, path planning, collision 
avoidance, orientation in dynamic environments, and failure 
handling. The authors of [4] and [14] have identified various 
studies that have been conducted on each of these individual 
decision tasks. They have noted that several studies have been 
conducted in the recent past to address several of these planning 
and control problems simultaneously and that deep RL has the 
potential to address these problems successfully. These studies 
suggest that there is a trend towards integrating the individual 
decision problems to identify the optimal behavior that 
encompasses all decisions at once. Therefore, a learning 
environment for AMR in intralogistics should enable 
autonomous agents to learn the best behavior that includes these 
planning and control decisions. The environment should include 
the variables, that these decisions are usually made upon. 

 The system variables on which planning and control 
decisions in intralogistics typically depend are the number of 
transports to be executed between sources and destinations of a 
system, and the paths to be taken to make these moves. The 
number of transports to be executed depends on the respective 

load scenario under which the system is operating, which may 
vary, for example, due to seasonal changes, days of the week, or 
even throughout the day if the inbound and outbound material 
flows of a system are divided into different shifts. The flexible 
adaptability of autonomous systems becomes particularly 
interesting when the load scenario changes abruptly due to an 
unexpected disruption in the supply chain. To find the most 
advantageous system behavior under different and rapidly 
changing load scenarios, different intensities of material flows 
should be representable in a learning environment. 

The paths taken to execute transports depend on the physical 
structure of the intralogistics system and the locations where 
transports need to be picked up and delivered. The physical 
structure of the system refers to the arrangement of functional 
areas and technical equipment within the functional areas. One 
of the differences between AMR and traditional AGVs is that 
AMR do not rely on predetermined paths and can navigate 
individual paths through their autonomous perception and 
navigation capabilities. In order to prepare autonomous systems 
to find their paths even in unfamiliar or changing environments, 
the structure of the system should be changeable in learning 
environments.  

In addition to planning and control decisions based on the 
load scenario and structure of an intralogistics system, the 
robotic behavior of each entity in an autonomous system also 
determines the overall system behavior. Typical learning tasks 
at the robotic level include learning acceleration and braking 
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Fig. 2. Requirements for an approach to generate learning environments for AMR in intralogistics 



behavior, object recognition, navigation and path finding, e.g., 
depending on masses, friction coefficients, and surface 
appearance properties. These robotic aspects determine the 
times and the paths that AMR in the physical world take to 
perform a transport. Therefore, these aspects should be included 
in a digital learning environment to determine the overall system 
behavior based on realistic assumptions.  

After defining the learning tasks, the next section explores 
the requirements derived from how autonomous agents learn in 
digital environments. 

C. Policy learning in robotics 

Recently, deep RL has been shown to be key to training 
advantageous behaviors of autonomous agents in digital 
environments. A learning environment for autonomous agents 
should, therefore, be able to simulate the elements that define a 
RL task, which include perceiving states of the environment, 
executing actions based on the perception, and receiving 
rewards based on the quality of the chosen action [15] (see Fig. 
2 C.). The environmental states that the agents must perceive 
and based on which they decide for a possible action, as well as 
the reward function, are closely related to the learning task and 
thus to the tasks of autonomous systems in intralogistics. The 
mapping between environmental states and actions according to 
the reward function is called a policy which is the central 
element that is eventually applied in the physical environment to 
achieve the same behavior of a digital agent on a robot in the 
real world. 

Before a learned policy is applied in the real world, it must 
be tested in a variety of digital environments to ensure that it has 
not been overfitted during training and is consistent with the 
indented behavior. Research has shown that using a variety of 
different training environments can improve an agents’ ability 
to generalize and there is some early evidence that highly diverse 
training environments can promote the emergence of meta-
learning in recurrent neural networks, allowing adaption to 
situations not seen during training [7]. The main idea of 
randomized learning environments is therefore to increase the 
diversity of a dataset by adding modified versions of already 
existing data and thus increasing generalization [6]. For 
autonomous agents this means training an agent in many 
simulated learning environments, where certain properties are 
different in each environment. The goal is to learn a single policy 
that works well in all of them to increase robustness to changes 
in the environment and to facilitate the transfer of policies to the 
physical world real world, since no digital learning environment 
can perfectly capture the complexity and variability of the 
physical environment. [12]. An approach to generating learning 
environments for AMR should therefore include randomizations 
of the environmental aspects that affect the learning tasks. 

D. Summary of requirements 

The requirements for learning environments for AMR in 
intralogistics systems in a DC, derived from the areas of 
development continuity, AMR in intralogistics, and policy 
learning in robotics, emphasize the need for diverse, randomized 
simulation models as learning and test environments (see Fig 2. 
D.). These requirements can be divided into technical 
requirements and randomization requirements. 

1) Technical Requirements: 
1. High-fidelity, holistic simulation models: To ensure 

that the learned behavior is transferable to the real 
world, the learning environments must be high-fidelity, 
holistic simulation models that include a physics engine 
to accurately reproduce physics effects. These models 
should provide an appropriate level of detail to support 
learning tasks ranging from sensor and actor level for 
individual robot behavior to planning and control 
decisions that depend on the detailed perception of the 
environment. 

2. Parameterizable user interface: Users should be able 
to interact with the generation algorithm by specifying 
the elements of an environment to be randomized and 
the number of learning environments required. This 
fulfills the DC requirement to generate learning 
environments during the operational phase of an 
autonomous system and in specific test cases during the 
development phase. 

3. Decentralized decision-making: To support policy 
learning through deep RL, learning environments must 
allow for the behavior of autonomous agents to be 
executed in a decentralized manner. This allows agents 
to make decentralized decisions about actions based on 
their individual perception. 

4. Functional models: The generated learning 
environments should be functional and allow the 
intended processes to occur. For AMR learning 
environments, this means that the models must allow 
agents to perform transports, handle realistic objects, 
and access all locations where transports need to be 
picked up or dropped off. 

2) Randomization Requirements: 
1. Realistic and reasonable layouts and contents: The 

generated environments should represent realistic and 
reasonable layouts and contents of intralogistics 
systems, following general design principles. This 
ensures the transferability of learned behavior to the 
physical world. All functional areas required for 
processes from goods-in to goods-out should be 
included. 

2. Varied learning environments: To ensure that the 
learned behavior is generalizable and robust to changes 
in the real system, the learning environments should be 
varied.  

To create an approach that can produce a wide variety of 
different and effective learning environments, the following 
elements should be considered: 

• Randomization of location and size of functional areas: 
This allows agents to learn more robust navigation and 
adapt to unknown and changing environments. 

• Randomization of pick-up and delivery points for 
transport orders: This ensures that agents learn to 
perform transports in unknown and changing 
environments, without focusing on a particular setting of 
environmental characteristics. 



• Randomization of content in functional areas: This 
aspect improves the agents' perception of the 
environment and increases robustness to different 
technologies being used in the functional areas and 
objects that may block the path. 

• Variation of intensity of transport relationships: To 
prepare autonomous systems for different performance 
requirements and future load scenarios, the intensity of 
transport relationships between sources and sinks should 
be varied. 

In conclusion, DC for intralogistics require digital, high-
fidelity learning environments that serve as training and test 
beds for the beneficial behavior of autonomous agents. For the 
learned behavior to be transferable to the real world, a variety of 
randomized learning environments is essential. The content that 
is randomized depends on the parameters of the learning 
environment on which autonomous decisions are based. The 
manual generation of different complex learning environments 
is time consuming and costly, so an approach to generate them 
automatically is needed. In the field of PCG and DR, approaches 
for automatically generating varying digital content have been 
developed for several decades. 

IV. PROCEDURAL CONTENT GENERATION AND DOMAIN 

RANDOMIZATION 

PCG has its origins in the field of video game development 
[16].  It refers to a computational technique that involves the use 
of algorithms to automatically generate content, without the 
need for direct human input. In addition to video game design, 
it is now widely used in fields such as art, music, and even 
scientific simulations. DR can be seen as a simple form of PCG, 
with its origins in the machine learning community, and as a way 
to counter overfitting in machine learning. While originating in 
different domains, PCG and DR both subsume approaches to 
generating data or content for video games or simulations using 
algorithms, with the goal of creating variability and 
unpredictability in the generated content ([7], [17]). In the 
following, the term PCG will be used to represent both PCG and 
DR. For more information on specific approaches to PCG see 
e.g., [7] and [18]. 

The following section presents relevant work related to the 
generation of training environments for autonomous systems in 
a DC. In particular, generation approaches from the application 
areas of facility layout design, material flow simulation models, 
and digital environments in robotics are considered.  

In the field of facility layout design a variety of PCG 
approaches have been applied in industry. For example, Kaiser 
et al. have applied answer set programming to generating highly 
constrained warehouse layouts [19]. The results are 2D 
warehouse models that lack high-fidelity attributes and 
functionality. Dannapfel et al. [20] have applied evolutionary 
algorithms to facility layout planning and have developed a 
concept for randomly arranging functional areas in a given 
space, but have not included the technical equipment in the 
functional areas and the functionality in the model. Qian at al. 
have explored general layout design via ML [21] but did not 
apply their method to high-fidelity modeling of intralogistics 
systems. López at al. developed a RL based framework to 

generate virtual system models and validated it through a 
workstation layout [22]. Their approach does not include 
functional features.  

 

Fig. 3. Warehouse model as digital learning enviroment by Nvidia and 

Fraunhofer IML [23] 

Finally, Nvidia has developed Isaac Sim™, a robotics 
simulation and data-generation tool, that allows high-fidelity 
modeling of warehouse environments that can be used for 
learning use cases at a robotic level. In collaboration with 
Fraunhofer IML they have included digital robot models of 
physical prototypes that have been developed at Fraunhofer IML 
for logistic use cases (Fig. 3) [23]. Isaac Sim™ also provides a 
toolkit that uses a wavefunction-collapse algorithm to generate 
randomized high-fidelity warehouse models equipped with 
pallet racking [24]. While Isaac Sim™ fulfills many of the 
requirements for learning environments for AMR in DC, it does 
not support the automatic generation of a wide variety of layouts 
randomized on a functional area and equipment level yet and is 
not planned to include the functionality requirement. 

PCG has also been used to generate material flow 
simulations in discrete manufacturing (see [25] for a survey) and 
warehouse simulation models [26]. These models focus on 
discrete-event simulation of the material flow therefore not 
fulfilling the high-fidelity requirement of learning environments 
for AMR. 

In terms of robotics learning environments, for instance, 
OpenAI used a Progressive PCG (PPCG) approach to train a 
robot in increasingly complex digital models to solve a rubics 
cube with one hand and then applied this knowledge in the real 
world [27]. Their approach demonstrates principles of robotic 
learning but lacks application to learning behavior of robots in 
intralogistics systems. 

Overall, PCG has proven to be an effective tool for 
generating learning environments (and data) for training 
autonomous systems, enabling the creation of expansive, 
diverse, and modifiable environments. This capability is 
essential for the proficient development and deployment of AI-
driven autonomous systems in the logistics domain. While there 
are promising approaches to PCG in the context of training 
environments for autonomous systems within a DC, thus far, no 
approach has yet addressed all the relevant requirements 
comprehensively. This is due to the complexity of the 
requirements and the need for a coherent and efficient 
integration of the different components. 



V. CONCLUSION AND OUTLOOK 

Autonomous systems have the potential to fundamentally 
transform the logistics industry. However, in order to fully 
realize this potential, adequate and comprehensive approaches 
for the development and implementation of such systems are 
needed. The DC paradigm offers a promising approach by 
leveraging the seamless fusion of physical and digital reality to 
achieve a new level of autonomy through AI-based methods. 
Extending the industrial metaverse with an AI-based autonomy 
approach enables continuous optimization and adaptation of 
these systems in many use cases. 

In this regard, the creation of suitable digital learning and 
testing environments is crucial. Due to the necessary mapping 
of physical complexity to virtual models, the scale and the high 
number of required variations, automatic generation of these 
environments should be pursued. However, current PCG 
approaches are still insufficient to generate learning and testing 
environments that meet the diverse requirements of AI-based 
autonomous systems in DC. This reveals a research gap that 
needs to be closed in order to fully exploit the potential of AI-
based autonomous systems. Only within a fully continuous 
development process can AI-based autonomous systems AMRs 
be effectively deployed in intralogistics systems. 

In summary, the concept of the DC in combination with AI-
based autonomous systems has enormous potential for the future 
of the intralogistics industry. As PCG approaches evolve within 
high-fidelity simulation environments, digital learning and 
testing environments will become the central tool to 
revolutionize the continuous development of intralogistics 
systems even during operation. Successful deployment of the 
DC could finally achieve a level of automated adaptivity at the 
system level that is needed to allow highly autonomous systems, 
resulting in a more resilient and adaptive global supply chain. 
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