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Enhancing Near-Field Wireless Localization with
LiDAR-Assisted RIS in Multipath Environments
Omar Rinch, Student Member, IEEE, Ahmed Elzanaty, Senior Member, IEEE, Ahmad Alsharoa, Senior

Member, IEEE

Abstract—In next-generation wireless networks that adopt
millimeter-waves and large reconfigurable intelligent surfaces
(RISs), the user is expected to be in the near-field region,
where the widely adopted far-field algorithms based on far-
field can yield low positioning accuracy. Also, the localization
of user equipment (UE) becomes more challenging in multipath
environments. In this paper, we propose a localization algorithm
for a UE in the near-field of a RIS in multipath environments.
The proposed scheme utilizes a light detection and ranging
(LiDAR) to assist the UE positioning by providing geometric
information about some of the scatterers in the environment.
This information is fed to a sparse recovery algorithm to
improve the localization accuracy of the UE by reducing the
number of variables (i.e., angle of arrivals and distances) to be
estimated. The numerical results show that the proposed scheme
can improve the localization accuracy by 65% compared to the
standard compressed sensing (CS) scheme.

Index Terms—Reconfigurable intelligent surface (RIS); light
detection and ranging (LiDAR); wireless localization; near-field.

I. INTRODUCTION

With the increasing demand for centimeter-level localization
accuracy, future networks are expected to enable accurate
localization aided by sensing systems [1]. However, poor chan-
nels with non-line of sight (NLoS) component can limit the
performance of such systems. In this regard, a reconfigurable
intelligent surface (RIS) can be considered to create a non-
direct line-of-sight (LoS) link that enhances positioning [2].

The advent of millimeter-wave (mm-wave) communications
have introduced spatial sparsity in the channel model, pro-
viding a unique opportunity to apply sparse recovery local-
ization techniques. For instance, works such as [3] and [4]
exploit the sparsity in the channel model to propose an RIS-
aided localization algorithm with high accuracy by considering
a continuous domain for the sparse localization variables,
i.e., atomic norm minimization. However, the utilization of
mm-wave and large surfaces such as the RIS can promote
near-field channel models where coupling between the bearing
angles and the distances exist due to the considerable curvature
of the wavefront of the received signals [5]. As a result,
the method in [3] is constrained by the near-field computa-
tional optimization complexity and is not straightforward to
be extended to multipath environments while the model in
[4] considers far-field only. Such coupling can be relaxed
by exploiting the spatial symmetry in the uniform linear
array (ULA) structure along with an on-grid sparse recovery
algorithm, promoting a less complex solution that can be
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applied in multipath environments [6]. However, the accuracy
is still limited by the considered resolution for angles and
distances, i.e., quantization errors in compressed sensing (CS).

The limited number of radio-frequency (RF) chains restricts
the CS measurements, thereby affecting the capability to detect
multipath components and consequently reducing localization
accuracy. A viable strategy to address this is the integration
of sensors, specifically light detection and ranging (LiDAR).
By supplying geometric information, LiDAR can improve the
detection of multipath components. LiDAR’s utility extends
beyond this; for example, [7] employed LiDAR for LoS block-
age prediction, while [8] and [9] used LiDAR for predicting
future BS beams from a codebook. Yet, its application in
enhancing RIS-aided near-field wireless localization remains
unexplored.

In this paper, we propose using LiDAR to enhance near-
field RIS localization of user equipment (UE). We employ a
base station (BS) with LiDAR sensors to estimate the location
of scatterers within its field of view. These locations are input
to a CS-based algorithm as partial support, and the CS is used
to estimate the UE location. The contributions of this paper
are as follows:

• We propose enhancing RIS-aided near-field wireless lo-
calization by utilizing LiDAR technology to gain insights
into the multipath environment.

• We propose LiDAR data processing technique that takes
the LiDAR three dimensional (3D) cloud data measure-
ments as input and estimates the locations of the scatterers
in the environment as an output.

• We modify the received measurements to decouple the
range and bearing angles due to the near-field.

• We feed the location of the detected scatterers to CS
algorithm as partial support to localize the UE.

• We further use the estimated scatterers’ locations to
optimize the RIS such that we maximize the signal-to-
noise ratio (SNR) at the receiver.

Notation: Matrices are denoted by capital and bold letters
X, vectors are denoted by bold and lowercase letters x, and
scalars are denoted by non-bold letters x or X . The transpose,
conjugate, pseudo-inverse, and Hermitian transpose operators
are (.)T , (.)∗, (.)†, and (.)H , respectively. diag(.) converts a
vector into a diagonal matrix, INU is an identity matrix of
size NU, ||.||2,1 and ||.||F are the L2 over L1 norm and the
Frobenius norms. xl, xb∗, and xb,l are the lth column, bth row,
and bth element of the lth column of X, respectively. U ≜
{−U,−U + 1, · · · , U} and B ≜ {−B,−B + 1, · · · , B}.

II. SYSTEM MODEL

We consider a wireless localization system that consists of
a UE, BS, and RIS located at pU = [xU, yU]T , pB = [xB, yB]T ,
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Fig. 1: The proposed system scenario and architecture.

and pR = [xR, yR]T , respectively. We consider multiple-
input multiple-output (MIMO) orthogonal frequency-division
multiplexing (OFDM) system with flat fading characteristics
where the number of antennas in the UE, BS, and the RIS are
given as NU, NB, and NR, respectively. We assume that all
the stations are equipped with ULAs. We consider a multipath
environment where multiple scatterers are involved with LBR

and LUR being the number of scatterers/paths between the
(BS and the RIS) and the (RIS and the UE) respectively.
The l-th scatterers is located at pS,BR

l = [xBR
l , yBR

l ]T and
pS,UR
l = [xUR

l , yUR
l ]T . We assume that the LoS between the BS

and the UE is blocked by an obstacle. The BS is also equipped
with a LiDAR sensor located exactly at the BS location pB

with a horizontal field of view angle ψ and number of layers
N layers. Our model considers an uplink positioning where the
BS retrieves the location of the UE from its uplink signal
arrived through the RIS.1 Fig. 1 illustrates the system scenario.
The received signal at the BS is expressed as

Y = H X + Z, (1)

where X ∈ CNU×M o
represents the OFDM positioning ref-

erence signal (PRS) transmitted over M o narrowband sub-
channels that are orthogonal with with power P , i.e, XXH =
P
NU INU , and Z ∈ CNB×M o

represents the additive white
Gaussian noise (AWGN) where zi,j ∼ CN(0, σ2

z). The overall
channel matrix between the UE and the BS can be modeled
as a narrowband channel model as [10], [11]

H = HBRdiag(Θ)HUR, (2)

where diag(Θ) ∈ CNR×NR
is a matrix that rep-

resents the phase control of the RIS where Θ ≜[
ζ1e

jθ1 , ζ2e
jθ2 , · · · , ζNRejθNR

]T
and ζr = 1 as we consider

ideal RIS, and HBR ∈ CNB×NR
represents the channel

between the RIS and the BS while HUR ∈ CNR×NU
is the

channel between the UE and the RIS. We have

HBR = A(θBR,dBR) diag
(
ρBR) AH(ϕBR, rBR), (3)

where A(θBR,dBR) ∈ CNB×LBR
and A(ϕBR, rBR) ∈ CNR×LBR

represents the steering matrices at the BS and the RIS, re-
spectively. The angles ϕBR and θBR are the angle of departure
(AoD) and the angle of arrival (AoA). On the other hand, both
rBR and dBR represents the distances between the (RIS and
scatterers) and (BS and scatterers), respectively. We can use

1The received power is proportional to the square of the number of RIS
elements [10].
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Fig. 2: Simulated scenario using Webots.

the Fresnel approximation to model the spherical wavefront in
the near-field model as

ab,l(θ
BR
l , dBR

l ) = exp
(
j [b ωBR

l + b2 γBR
l ]

)
, (4)

where ωBR
l ≜ f(θBR

l ) and γBR
l ≜ g(θBR

l , dBR
l ) with

f(ϕ) = −2πδ

λ
sin (ϕ), g(ϕ, r) =

πδ2

λ r
cos2 (ϕ), (5)

where λ is the wavelength as λ = c/fc, fc is the carrier
frequency and c is the speed of light, δ is a fixed distance
between each of adjacent elements in the ULA. We assume
that the reference antenna element to be at the center such that
the distance from the reference at the center to the element of
index b is δ b where b ∈ B and B ≜ (NB − 1)/2.2 The vector
diag

(
ρBR

)
∈ CLBR×LBR

represents the propagation gains
between the RIS and BS which can be expressed as

ρBR
l =

(
c

4π(rBR
l + dBR

l )fc

)µ
2

F, (6)

where F is a random variable representing the fading to
account for NLoS propagation with and without the RIS and
modeled as a standard complex Gaussian, µ is the path loss
exponent. The channel model between the UE and the RIS
HUR is modeled in a similar way. The channel model in (2)
considers all paths to pass through the RIS, while the other
NLoS propagation are compensated using the probabilistic
gain model in (6).

III. SENSING AND LOCALIZATION BASED ON
LIDAR-ASSISTED RIS NETWORK

The goal is to estimate the UE location using a LiDAR-
assisted RIS network. The proposed solution includes two
phases: (1) We utilize Webots: an open-source computer 3D
robot simulator to simulate a scenario of interest and extract
LiDAR data. The LiDAR data is processed to extract the
scatterers’ locations which will be fed to the CS algorithm
as partial support. (2) The CS-based localization algorithm
will take the partial support in addition to the received signal
as an input and extract the UE location as an output. Fig. 2
shows a screenshot of the utilized simulated scenario.

A. Data Processing

In the following, we describe the proposed LiDAR data
processing steps:

2Without loss of generality, we assume NB to be an odd number.
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1) Data filtering: the first step is to remove any unwanted
data outside the desired region of interest (ROI). In our
scenario, the data that represent the ground, as well as the data
that represents the building, will be removed using a modified
simple morphological filter (SMRF) and density-based spatial
clustering of applications with noise (DBSCAN) algorithms
[12], [13], respectively. The ground data is considered as
an unwanted noise while the building data is an unwanted
disturbance that blocks the LoS signals.3

2) Downsampling:: We select η random points uniformly
to reduce the number of measured points to η, thereby min-
imizing the computational efforts required for processing the
LiDAR data.

3) DBSCAN clustering: we identify the scatterers in the
environment by dividing the points cloud into multiple clus-
ters, each representing a scatterer. The DBSCAN has been
chosen as a clustering technique due to the fact that DBSCAN
doesn’t require the number of clusters. The DBSCAN labels
the clusters by measuring the portions in the cloud with high
spatial density given the shortest distance between the points
ϵ and the minimum number of points per cluster Nmin.

4) scatterers localization: the final step is to extract the
scatterers’ locations as a set of distances and angles T. For
each identified scatterer, the centroid of the scatterer is firstly
calculated by measuring the geometric mean along the portion
of data that belongs to each scatterer

xCl =

∑
x̃l

Nl
, yCl =

∑
ỹl

Nl
, zCl =

∑
z̃l

Nl
, (7)

where xCl , yCl , and zCl is the centroid of the l-th scatterer with
number of points Nl. By calculating the distances between
these centroids and the BS, and the RIS known locations, it
is possible to recover a subset of scatterers locations T.

B. Compressive Sensing With Partial Support

The standard CS may suffer from errors due to insufficient
measurements. The set of the recovered scatterers locations T

will be used to enhance the CS accuracy. Similar to [6], the
goal is to estimate the UE location by recovering the AoAs,
AoDs, and their co-responding distances from the received
signal. However, applying the CS directly on the received
signal in (1) is a complex task as the utilized near-field model
in (4) requires the construction of a two dimensional (2D)
dictionary matrix over all possible angles and distances [11].
To solve this problem, we consider exploiting the spatial
correlation in the channel model, more specifically, consider
multiplying the steering response in (4) with its conjugate

ab,l(ϕ
BR
l , rBR

l )ak,p(ϕ
BR
k , rBR

k )∗

= exp
(
j [b ωBR

l + b2 γBR
l ]

)
exp

(
j [pωBR

k + p2 γBR
k ]

)∗
= exp

(
j b ωBR

l + jb2 γBR
l − j p ωBR

k − jp2 γBR
k

)
. (8)

For selected antenna elements p = −b with the same propa-
gation path l = k, (8) can be simplified to

al,b(ϕ
BR
l , rBR

l )al,−b(ϕ
BR
k , rBR

k )∗ = exp
(
2j b ωBR

l

)
. (9)

3We consider the building and ground in the NLoS propagation; however,
without loss of generality, it might be considered as a non-given support.

Using this methodology, we removed the term b2 γBR
l

from (4) which is a function of two variables, i.e., γBR
l ≜

g(θBR
l , dBR

l ). The remaining term 2j b ωBR
l in (9) is a function

of only one variable, i.e., ωBR
l ≜ f(θBR

l ). We generalize this
idea by constructing V that includes properly selected elements
of the covariance matrix of the actual channel, such that the
vb,u element can be represented as

vb,u≜E
{
hb,uhp,n

∗},∀u ∈U, b ∈B, p =−b, n =−u. (10)

The matrix V can be estimated using T snapshots as

ṽb,u = T−1
T∑

t=1

ĥb,u[t]ĥ
∗
−b,−u[t] + ν, ∀u ∈ U, b ∈ B, (11)

where ĥb,u correspond to the least square (LS) estimation of
the channel, i.e., Ĥ = YX†, while ν corresponds to the errors
due to the limited number of snapshots, imperfect LS channel
estimation, and the noise on the received signal. We can re-
formulate (11) as

Ṽ = S1(ϕBR)C1 +Υ, (12)

where C1 ∈ CLBR×M is the support matrix, Υ accounts for
the errors, and S1(ϕBR) ∈ CB×LBR

is defined as

S1(ϕBR) =
[
e2jbω(ϕBR

1 ), e2jbω(ϕ2)
BR
, . . . , e2jbω(ϕBR

LBR )
]
. (13)

In order to solve the above problem using CS, we re-represent
(12) by exploiting the spatial sparsity in the angles as

Ṽ = S̄1
(ϕBR)C̄1

+Υ, (14)

where S̄1
(ϕBR) ∈ CB×N is the dictionary matrix such that

its n-th column s̄1n(ϕ
BR) corresponds to the specific angle

(2πn− π(N + 1))/(N − 1) in the grid of N possible angles.
The problem in (14) can be solved using conventional CS

sparse recovery techniques [14]; however, such techniques do
not account for the partial known support. The knowledge of
the known support can be exploited as in [15]; however, this
work is limited to single measurement vector (SMV) models.
A more general multiple measurement vector (MMV)-based
CS is proposed in [16] where (14) can be re-formulated as

minimize
C̄1

N∑
n

wn ||c̄1n∗||2,1

subject to ||S̄1
(ϕBR)C̄1 − Ṽ||F ≤ κ, (15)

where κ is a threshold that is related to the noise variance, and
wn represents a given weight over all the possible columns of
C̄1 such that

wn =

{
0 if n ∈ T,

1 if n /∈ T.
(16)

After solving (15), it is possible to extract the recovered
angles ϕ̂

BR
by locating the index of the non-zero rows of Ĉ

1
.

To estimate the distances rBR that correspond to the esti-
mated angles ϕ̂

BR
, we substitute in the received signal model

(1) which can be re-written as

Y = A(ϕ̂
BR
, rBR)C2 + Z, (17)
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TABLE I: The simulation parameters.
Description Parameter Value
frequency fc 28 GHz
Number of antennas (elements) NB/NU/NR 51/21/100
path loss exponent µ 3
Number of PRSs streams Mo 60
BS location pB [0 0]
RIS location pR [5 5]
UE location pU [15 0]
Bandwidth Bt 10 MHz
Power P 1 Watt
LiDAR horizontal field of view ψ 15°
LiDAR number of layers N layers 64
Number of Downsampling points η 1500
Number of scatterers LBR/LUE 4/4

where C2 is the support matrix. We use the methodology
in (14) and (15) to recover r̂BR. We can estimate the other
parameters in the RIS-UE side of the channel by computing
the Hermitian transpose of Ṽ

H
and YH in (14) and (17).

Finally, we utilize the off-grid estimation and the RIS phase
design proposed in [6]. The RISs design begins with a random
phase and iteratively refines the location estimate. After each
iteration, the RIS is re-adjusted until error saturation. Simul-
taneously, we account for the off-grid errors by minimizing
the squared Frobenius norm of the difference between the
estimated covariance matrix and the bias mismatch error
caused by off-grid discrepancies.

IV. NUMERICAL RESULTS

In order to analyze the performance of our scheme, we
propose using computer-programmed 3D simulators to create
virtual LiDAR 3D cloud data. This approach addresses limita-
tions in generating actual 3D cloud data for LiDARs, such as
cost, effort, time consumption, and complexity. Utilizing actual
data remains possible and may be considered in different
contexts or future works. Within these constraints, we used
Webots [17], a computer-programmed 3D simulator, to model
a realistic localization scenario, see Fig. 2. Other works in
literature have shown that simulator-based LiDAR virtual data
can maintain high validity. For instance, [18] used a computer
3D simulator (e.g., Unreal Engine 4) to generate a scenario
and data of LiDAR working against weather conditions. As
shown in Fig.2, the user is in a city environment with multiple
static and dynamic scatterers such as trees, street lamps and
signs, and movable vehicles. A building blocks the direct
LoS between the BS and the UE. The white lines in Fig. 2
correspond to the LiDAR horizontal field of view. The LiDAR

scans the street portion of our scenario, and some scatterers
can be scanned by the LiDAR while others are outside its field
of view. The LiDAR scans the environment in the simulation
and extracts measurements as 3D cloud data, represented by
the vectors x̂, ŷ, and ẑ, which will be the input of our proposed
LiDAR data processor.

Table I presents the simulation parameters. We utilized
MATLAB to simulate the channel model and to conduct
all the processing. The noise as a thermal noise such that
σ2
z = Bt Tk K where Bt represents the bandwidth, K is

Boltzmann constant, and Tk = 290 is the room temperature
measured in Kelvin. We consider the JointBP YALL1 group
solver [16] to solve the CS problems. The simulations are
conducted using Monte Carlo technique with 10000 iterations.

In Fig. 3, we compute the localization error against the
number of phase design iterations for different RIS phase
design schemes: random, max. SNR cont., max. SNR quan-
tized. We simulated the proposed LiDAR-assisted RIS network
against the standard CS. The results reveal a 65% reduction
in localization error using SNR maximization phase design.
This error reduction is attributed to the given partial support
that lessened the recovery error of the CS. Utilizing LiDAR
ensures minimal error in estimating the scanned scatterers’ lo-
cation and significant reduction in estimating the non-scanned
(non-visible) scatterers. Additionally, minimizing the error of
estimating both scanned and non-scanned scatterers improves
the RIS phase design. On the other hand, the proposed scheme
needs two iterations of RIS phase design to saturate, while the
standard CS takes three on average.

In Fig. 4, we compare the localization performance of the
proposed LiDAR-assisted RIS network against the standard
CS for different simulation parameters. We vary the number
of RIS elements NR from 0 to 100 and repeat the simulation
for different numbers of BS elements NB. The results show
the superior performance of the proposed LiDAR-assisted RIS
network in comparison to the standard CS. The figure shows
that we can achieve better performance using an RIS with a
large number of elements.

In Fig. 5, we investigate the effect of the LiDAR horizontal
field of view angle ψ on the localization error. With a higher
field of view, the LiDAR will be able to detect more scatterers’
locations, achieving higher localization accuracy. We used the
same number of downsampling points η over all the field of
view angles. In other words, when ψ is small, all the η points
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TABLE II: Computational time.

Number of
RIS elements NR

Number of
BS elements NB

Algorithm
proposed standard CS

Time in [s]

64 51 1.1285 2.0003
75 6.15195 10.9214

128 51 1.4341 2.5154
75 6.6874 11.7765

will be distributed on a small number of objects, while with
wider ψ, the η points will be more sparse per object due
to the distribution over multiple objects. This fact has been
reflected in the curve as a flatter slope of error with objects of
higher angles. The curve also shows that with very small ψ
(i.e., the LiDAR didn’t detect any scatterer), the localization
error is almost similar to the case of the standard CS with no
LiDAR in Fig. 3.

We validate the effect of the geometrical layout on the
localization error using Fig. 6 which represents a heat map
of the localization error as a function of the RIS location in
the XY-plane. the figure shows that the localization error can
be decreased when we place the RIS in the proximity of the
scatters, BS, or the UE. More specifically, the results show that
the localization error decreases to less than 0.2(m) when we
place the RIS 1(m) away from the wireless system elements.
The achieved results are expected as placing the RIS near the
scatterer can improve the performance by enhancing the signal
strength or adjusting the signal’s direction of arrival.

In Table II, we computed the required simulation time
to localize the UE using both the proposed LiDAR-assisted
RIS network and the standard CS utilizing a workstation
with specifications as shown in Table III. The table shows
a significant improvement using the proposed LiDAR-assisted
RIS network.

V. CONCLUSION

In this paper, we proposed RIS localization using partial
compressed sensing support assisted with LiDAR sensors. The
LiDAR scans the environment to estimate the location of the
scatterers and fed these locations as partial support to CS-
based positioning algorithm. The numerical results show that
utilizing such a scheme can minimize the localization error
by 65% compared to standard CS, utilizing an RIS of 100
elements. These results can be used to extend this work in
the future to address the localization problem with dynamic
movable scatterers.

TABLE III: Workstation specifications.
Aspect Specification
CPU Intel(R) Core(TM) i5-10500 CPU @ 3.10GHz 3.10 GHz
GPU Intel(R) UHD Graphics 360

Memory 16.0 GB DDR4-SDRAM
OS Windows 10 Education 64-bit
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