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QC_SANE: Robust Control in DRL Using Quantile Critic With Spiking
Actor and Normalized Ensemble

Surbhi Gupta , Gaurav Singal , Senior Member, IEEE, Deepak Garg, Senior Member, IEEE,
and Sarangapani Jagannathan , Fellow, IEEE

Abstract— Recently introduced deep reinforcement learning (DRL)
techniques in discrete-time have resulted in significant advances in online
games, robotics, and so on. Inspired from recent developments, we have
proposed an approach referred to as Quantile Critic with Spiking Actor
and Normalized Ensemble (QC_SANE) for continuous control problems,
which uses quantile loss to train critic and a spiking neural network (NN)
to train an ensemble of actors. The NN does an internal normalization
using a scaled exponential linear unit (SELU) activation function and
ensures robustness. The empirical study on multijoint dynamics with
contact (MuJoCo)-based environments shows improved training and test
results than the state-of-the-art approach: population coded spiking actor
network (PopSAN).

Index Terms— Actor critic, deep reinforcement learning (DRL),
ensemble, reinforcement learning (RL), robust control, spiking
neural network (SNN).

I. INTRODUCTION

Reinforcement learning (RL) has been extended to deep RL (DRL)
for approximation of high-dimensional state or action space prob-
lems [1]. In this regard, researchers had proposed many approaches to
cope up with the problem encountered in the DRL version of the RL
approach [2]–[6] that serves as the baseline for further advances [7],
[8]. These approaches jump-started the research in various directions
from the core aspect to the application domain. The ongoing research
enhances the impact of DRL approaches by incorporating scalability,
energy efficiency, generalization, and robustness.

Recently, Patel et al. [9] have shown the robustness of the spiking
neural network (SNN) to input perturbation by converting a deep
Q-network (DQN) to SNN that enables energy-efficient implemen-
tation on neuromorphic processors. Tang et al. [10] have increased
the representation capacity of the SNN using a population coding
scheme for continuous control tasks. Klambauer et al. [11] incor-
porated self-normalizing property in neural networks (NNs) using
scaled exponential linear unit (SELU) activation function that shows
robustness to perturbations.

On the other side, Tagasovska and Lopez-Paz [12] used quantile
regression to estimate aleatoric uncertainty. Kuznetsov et al. [13]
had considered quantile critics to avoid overestimation bias.
Chung et al. [14] have considered the quantile method for robustness
by uncertainty quantification. Since the optimization of a single
quantile level may be accurate, it will result in a miscalibrated model.
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Hence, instead of considering a single quantile value, they have
learned quantile simultaneously with conditional density estimates.

Another way of making the learning process robust is by using
the ensemble approach as explored in [15]–[17]. Variants of DQN
tackled in past research were combined in Rainbow [18] for discrete
action settings. Inspired from [18], we propose a robust approach for
continuous control tasks that are common in robotics. Due to contin-
uous state-action space, an agent must explore many possible actions
and need more samples. The direct translation of DRL approaches
from discrete to continuous control setting is not viable as the output
layer of the considered NN needs to be designed accordingly [19].
For discrete output, we can estimate the best, but, for continuous
output, it is not possible to take the best value among all actions to
estimate the target for the critic [2]. We have inherited the ideas to
deal with continuous control from the previous approaches [20] that
design the output layer to predict the parameters, such as mean and
log standard deviation. We use the predicted values for estimating the
action with the Gaussian function. Actor updates itself by moving in
the direction of gradient of Critic’s evaluated value [21].

We aim to predict the critic’s quantile values for the policy
evaluation as it will quantify the uncertainty in predicting state
and action values. Instead of taking either a single or all quantile
levels, the proposed work considers three levels of quantile values
that allow multiple pinball values and generalizes across them. This
brief incorporates the quantile and ensemble of actors with SNN in
continuous control setting since SNN is more energy-efficient than
feedforward NN. Second, we have shown the theoretical convergence
of the policy evaluation for multiple quantile value assessments. The
theoretical analysis confirms that the proposed approach will maintain
the convergence property.

Unlike the common practice of using a single actor in actor–critic
settings, we consider an ensemble of actors in the form of agents
through SNN to generate distinct policies. The most common NN
used for DRL nonvisionary tasks is a fully connected NN (FNN),
and it is used commonly with the batch normalization (deep deter-
ministic policy gradient (DDPG) [2]) technique. FNN trained with
normalization is perturbed by several parameters, such as stochastic
gradient descent, stochastic regularization, and high variance. The
SELU activation function, on the other hand, implicitly does batch
normalization, shows robustness to perturbation, and reduces variance
in error during training FNN. Hence, finally, our approach performs
normalization using SELU nonlinearity.

For the robustness analysis, we have estimated the results on
the noisy state as noise can create perturbations, and SNN must
be insensitive to it. To corrupt the state, we injected noise in the
dimension of the vector forming the state as it resembles sensor
value perturbation. As per the author’s best knowledge, we are not
aware of any effort that integrates quantile critic with the ensemble of
SNN-based actors and does internal normalization of NN to manage
aleatory uncertainty. The following points illustrate the contributions
of the brief.

1) For the first time, we have incorporated the uncertainty esti-
mates by predicting quantile values at the critic and employed
an ensemble of actors to serve as agents in order to generate
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distinct policies with SNN-based actor and make soft-actor–
critic (SAC), which considers continuous actions, energy-
efficient, and robust.

2) The critic network predicts Q-values, and the actor network
undergoes internal normalization using SELU activation to aid
in stabilizing the variance and robust learning.

3) Theoretical convergence of the quantile critic-based policy eval-
uation confirms that our method will maintain the convergence
of the baseline approach.

4) We have conducted experiments by adding noise in the dimen-
sion of the state, which may happen in the realistic setting while
deploying the agent. The empirical results of the proposed
Quantile Critic with Spiking Actor and Normalized Ensemble
(QC_SANE) show stable learning and robust selection in the
noisy scenario.

The brief is divided into five sections, where Section I introduces the
idea and Section II provides the detail of the concepts that served
as the ingredients for the proposed QC_SANE approach. Section III
gives the details of the proposed work and illustrates the detail on how
the ingredients are integrated. Section IV provides the experimental
details with results and discussion, and Section V concludes the
findings with the future direction.

II. BACKGROUND

This section introduces the well-known terminology and architec-
tures that help readers increase their understanding of the proposed
work.

A. Spiking NN

Low-dimensional control using artificial NN (ANN) does not
provide energy-efficient and robust control as these networks lack
internal temporal coding [22]. The first generation ANN (such as
perceptron network, Boltzmann machine, and hop-field network)
produces digital output based on the threshold as these neurons
consider linear activation, and the neurons of second-generation ANN
[such as convolution NN (CNN) and recurrent NN (RNN)] can
generate continuous output by applying nonlinear activation. The
neurons of the next (third) generation ANN aka SNN are known as
spiking neurons as these neurons more closely model the functionality
of the biological neurons.

In these neurons, spikes are fired only when the membrane poten-
tial increases a threshold. Among various types of spiking neurons,
such as integrate-and-fire (IF), subtractive IF (SubIF), leaky IF (LIF)
neuron, and stochastic LIF neuron, we have used LIF neuron in
SNN. The capabilities of SNN had been explored in supervised
learning tasks [22] and RL task of Atari games [9], continuous control
manipulation [23], and locomotion [10] task. Population coding
technique is used in [10] to increase the representation capacity of
SNNs as the conversion of deep NN (DNN) to SNN results in inferior
performance [24] and SNN with rate coding representation technique
still suffers in the high-dimensional complex task and requires
more precise encoding. Population coding used with SNN encodes
each dimension of the observation and action space to increase the
representation capability of spiking neurons. The advanced hardware
chips, such as Intel’s Loihi and IBM’s TrueNorth, support machine
learning with energy-efficient implementation by employing SNN [9].
Though the concept of spiking neuron is not new, it gains acceleration
as the research progress [25].

B. Quantile Regression

Unlike mean absolute error (MAE) and mean square error (MSE),
quantile loss considers the general case. MAE loss can well manage

outliers than MSE loss that further increases the error by taking
square. Despite robust estimation of MAE, the commonly chosen loss
in DRL is the MSE loss as its gradient is variable and proportional
to the error, while MAE loss has a constant gradient everywhere
except at the zero error point. The quantile loss penalizes positive
and negative errors based on the chosen quantile. Hence, quantile
regression penalizes underestimation and overestimation. The quan-
tile regression considers the prediction at specified quantile. Instead
of predicting a single value, it is based on the prediction interval that
is well-calibrated. It considers uncertainty in the predicted value by
capturing aleatoric uncertainty that arises due to the measurement
error or latent variables and helps in noisy structure analysis [12].

Quantile regression leads to robust estimation depending on the
level of quantile considered. For example, 0.75 level of quantile
penalizes more on under prediction, while 0.25 level of quantile
penalizes more on overestimation. However, considering multiquan-
tile, the prediction may suffer from crossing quantile problems that
occur when all quantiles are estimated independently [26]. The
problem was alleviated using a joint model that considers prediction
over multiple quantiles. Also, reducing quantile loss leads to the
reduction in the 1-Wasserstein distance between the target and the
prediction [27].

C. Scaled Exponential Linear Unit

The rectified linear unit (ReLU) is the most commonly used
activation function in DRL to avoid vanishing gradient problems.
Though ReLU reduces the computation complexity and training time,
it can sparse the NN due to the dead neuron problem. Leaky ReLU
solves this problem but has exploding gradient problem, needs an
alpha value, and becomes linear after differentiation. The SELU
activation function solves all the problems and does a kind of internal
normalization by converting the NN into a self-organizing NN [11].
Hence, it leads to robust learning

SELU(x) = λ

{
x, if x > 0

αex − α, if x ≤ 0
(1)

where x is the input to the function, and α and λ are predetermined
constants having values ≈1.67326 and ≈1.0507, respectively.

D. Ensemble Policies

The concept of learning ensemble policies was used in different
ways to get a more generalized and robust policy. The ensemble
policies were learned with ensemble critics, and the best policy was
selected using majority voting [28]. The actor and critic ensembles
were also used to avoid dooming actions [17]. The actor ensemble
was used in actor ensemble algorithm (ACE) to find the global
maxima for the state, action value function in option-critic frame-
work [16]. Another actor–critic approach, ac-Teach, considers an
ensemble of teachers where the actor takes advice from multiple
teachers [29] and uses Thompson sampling to choose a policy. The
ensemble policies were also learned by learning diverse policies
through parameter perturbation at regular intervals [15].

III. PROPOSED APPROACH

This section highlights how the aforementioned components are
integrated with the actor–critic approach SAC to increase the robust-
ness and generalization capabilities of the actor. We call the proposed
approach QC_SANE as it uses quantile regression to train the critic,
and the spikes of SNN govern the actor’s actions.

QC_SANE: The proposed approach (QC_SANE)1 is based on the
“follow the winner” idea where the actor is trained indirectly through

1https:/github.com/surbhi1944/QC_SANE.git
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Fig. 1. Quantile critic with three quantiles κ1, κ2, and κ3.

Fig. 2. Population coded spiking actor.

the agents. The actor interacts with the environment, collects the data,
and sends the experienced data to all the agents (ensemble of actors)
for training. After a certain amount of training, the actor assesses all
the agents and decides to copy the winner of that round of training
(strategy to select from the ensemble). The further interaction of the
actor with the environment is with those fully adapted parameters of
the best performer. In QC_SANE, the actor does not bond itself with
the best agent of the initial round. Instead, it switches itself with the
best performing agent in every round.

A. Preliminary

Our formulation of the Markov decision process (MDP) for con-
tinuous control task considers the finite horizon setting, where the
actor explores a state space S by performing actions from action
space A. Actor’s action a ∈ A on a state s ∈ S arrives him in another
state s′ ∈ S based on the environment dynamics p : S × A → R

x

(where x: dimension of the state vector), with a reward feedback
r : S × A → R

1 that is utilized by actor for learning using the
off-policy DRL approach and an indicator d to show the episode
termination.

B. Training QC_SANE

The training of QC_SANE involves the minimization of agent’s
Kullback–Leibler (KL) divergence loss and critics loss. QC_SANE
uses an entropy-based SAC algorithm as the core, which considers
the mean square loss at the critic. The proposed approach considers
quantile loss. SELU nonlinearity is used at all layers except at the
output layer as it resembles robust training. The q-value predictions
of j th critic with parameters w j are multiple quantiles κ1, κ2, and κ3,
where each quantile prediction focuses on each feature of the state “s”
and action “a” vector, as shown in Fig. 1. For all quantiles, we used
the same NN, as approached in [30]. Since each quantile is estimated
from the same NN, it avoids the crossing quantile problem. Critic

estimates its prediction loss L Q(w j ) using the following equations:

δQ

(
w j

) = E(s,a)∼D

[
Es′∼p,a′∼πθ

[
r+γ

{
min
w̄ j

1

c

c∑
k=1

Qκk
w̄ j

(
s′, πθ

(
a′

∣∣s′))

− αe log
(
πθ

(
a′

∣∣s′))
}]

− 1

c

c∑
k=1

Qκk
w j

(s, a)

]
(2)

L Q

(
w j

) = c∑
k=1

max
(
κk ∗ δQ

(
w j

)
, (κk − 1) ∗ δQ

(
w j

))
(3)

where w̄ j shows the critic’s target network parameters and j shows
the index of the considered critic who evaluates the quality of the
action selected by the actor on the state. Our experiments focus on
three quantiles (c = 3) and two critics.

Actor’s actions are based on the learning of their ensemble agents
that learn different policies. In some of the regions of state space,
one agent’s policy may outperform, while, in other regions, its policy
underperforms other agent’s policies. The learning at these ensemble
agents happens by minimizing the loss

Lπ(θi) = Es∼D

[
Ea∼πθi

[
αe ∗ log

(
πθi (a|s)

)−min
j

1

c

c∑
k=1

× Qκk
w j

(
s, πθi (a|s)

)]]
(4)

where πθi represents the policy of the i th agent and θi shows its
parameters. Each agent’s policy network is a SNN with the population
encoded states, actions, a decoder (Fig. 2), and an LIF model. The
procedure of spike generation, encoding, and decoding is followed
from [10] where each dimension of the state vector is encoded into
the activity of neuron populations. Based on these populations, SNN
(linear model) produces a population of action that is decoded for
mean (μ) estimation of actual action using a 1-D convolution layer.
The standard deviation (σ ) is measured from a normal nonlinear
NN with SELU activation. These μ and σ are used in the Gaussian
distribution for the prediction of action

N (μ, σ ) = μ+N (0, 1) ∗ σ. (5)

Fig. 3 shows the block diagram of the training of QC_SANE that
uses three agents, one actor, and two critic networks. The target
network of the critic that is used for the target estimation is updated
from the critic’s networks.

C. Searching Robust Policy Using Ensemble of Population

The proposed ensemble approach idea is different from that is used
in evolutionary RL research where the population of agents evolves,
reproduced, and is abolished over time based on their performance.
The proposed approach lets the agents of the ensemble seek out
the better policy till the end, which lets them become robust by
considering most of the explored regions of the state space, learn
catastrophic scenario, and find all the trajectories leading to a better
endpoint.

D. Theoretical Convergence of Quantile-Based Evaluation Under
Soft Policy Iteration

The proposed approach is based on SAC that is a practical approach
derived from the theoretical convergence property of entropy aug-
mented soft policy iteration (SPI) approach. The policy evaluation

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on October 06,2023 at 20:58:26 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 3. Block diagram of QC_SANE where black and blue lines show
forward and backward propagations, respectively. Dashed lines show forward
pass with another input.

step of SPI uses the following operator:
T π Q(s, a) � r(s, a)+ γ Es′∼p

[
Ea′∼π

[
Q

(
s′, a′

)− log
(
π

(
a′

∣∣s′))]]
(6)

and has shown the convergence of this Bellman operator. The critic
considered in QC_SANE predicts the quantile values. Hence, for the
evaluation of policy π , the Bellman operator of (6) is updated

T π Q(s, a) � r(s, a)+ γ Es′∼p

[
Ea′∼π

[
Eκk∼κ Qκk

(
s′, a′

)
− log

(
π

(
a′

∣∣s′))]]. (7)

Lemma 1: Consider the updated Bellman operator of (7) with Q0 :
S × A → R

|κ |, |A| < ∞, and Qi+1 = T π Qi . Then, T π is still a
contraction map, and the sequence Qi will converge as i → ∞.

Proof: Redefine the operator by augmenting the entropy function
H in the reward

rπ (s, a) � r(s, a)+ Es′∼p[H(π(�|s))].
Hence, after rewriting the operator

T π Q(s, a) � rπ (s, a)+ γ Es′∼p

[
Ea′∼π

[
Eκk∼κ Qκk

(
s′, a′

)]]
.

To prove that T π is a contraction map, let Q1(s, a) and Q2(s, a)

be two state action value functions, and the norm on the Q-value is
defined as ‖Q1− Q2‖ � |Q1 − Q2|∞ . Let Q1(s, a) > Q2(s, a)

‖T π Q1(s, a)− T π Q2(s, a)‖
= ∣∣rπ + γ Es′∼p,a′∼πEκk∼κ Q1κk

(
s′, a′

)
− rπ − γ Es′∼p,a′∼π Eκk∼κ Q2κk

(
s′, a′

)∣∣
∞

= γ
∣∣Es′∼p,a′∼πEκk∼κ Q1κk

(
s′, a′

)−Es′∼p,a′∼πEκk∼κ Q2κk
(
s′, a′

)∣∣
∞

≤ γ
∣∣Es′∼p,a′∼πEκk∼κ

[
Q1κk

(
s′, a′

)− Q2κk
(
s′, a′

)]∣∣
∞

≤ γ
∥∥(

Q1κk
(
s′, a′

)− Q2κk
(
s′, a′

))∥∥
‖T π Q1− T π Q2‖
≤ γ ‖Q1− Q2‖.

Algorithm 1 QC_SANE

Input: Initialize:
SNN based ensemble actor parameters θi :

Set encoder μ, σ for I/P population
SNN parameters
Decoder parameters

Quantile levels κ = {κ1, κ2, . . . , κc}, where κk shows the
chosen quantile
Quantile Critic parameters w j

where i ∈ [1, n], j ∈ [1, m], k ∈ [1, c]
1 s ← s0

2 for t = 0, 1, 2, . . . , T do
3 if (t > Tss ) then
4 a ← πθ(a|s)
5 else
6 a ← randomly sample action
7 end
8 r, s′, d ← Perform a in s
9 D← D ∪ (s, a, r, s′, d)

10 s = s′

11 if d then
12 reset state s
13 end
14 if t ≥ ua and t%ue == 0 then
15 for u = 0, 1, 2, . . . , ue do
16 Sample a batch (s, a, r, s′, d) from D
17 w j ← w j − λQ∇w j L Q(w j )

// Update critic parameters w j

18 θi ← θi − λπ∇θi Lπ (θi)

// Update agents (ensemble actor) parameters θi

19 w̄ j = τw j + (1− τ)w̄ j

// Update target parameters
20 end
21 end
22 if (t + 1)%ttest == 0 then
23 θ = arg maxθi

R(πθi ) // Update actor parameters θ

using agent getting high test return
24 end
25 end

TABLE I

VALUES OF EXPERIMENTAL PARAMETERS

Similarly, we can prove by considering Q1(s, a) < Q2(s, a) that

‖T π Q2(s, a)− T π Q1(s, a)‖ ≤ γ ‖Q2 − Q1‖.

Hence, T π is a contraction map, and we can apply the standard
convergence results for policy evaluation using [5].

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on October 06,2023 at 20:58:26 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 4. Training time performance graph of population coded spiking actor
network (SNN) and the proposed robust approach QC_SANE derived in
ablation manner.

Based on the theoretical convergence, we derived the practical
approximated version of quantile-based evaluation for critic following
SAC. Algorithm 1 details the training steps of QC_SANE. In that,
after every ttest, the policy of all the agents of actors πθi is assessed
by taking the mean of return of ne episodes as

R
(
πθi

) =∑
t

rt

(
st , πθi (st)

)
. (8)

Then, actor is updated using the best performing agent.

Fig. 5. Heatmap of the test time performance of the best model saved during
training.

IV. EXPERIMENTS WITH RESULT AND DISCUSSION

Our experiments are done in the DRL benchmark environment
OpenAI gym MuJoCo that models the dynamics of differently
structure robot bodies. The environment models high-dimensional
state and action spaces. Table I shows the values of the parameters
used in the experiments.

The graphs for each algorithm in Fig. 4 are drawn by taking the
mean of return of ten episodes at the end of every epoch. Due to the

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on October 06,2023 at 20:58:26 UTC from IEEE Xplore.  Restrictions apply. 
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TABLE II

SENSITIVITY ANALYSIS (μ AND σ ) OF QC_SANE
FOR QUANTILES IN WALKER2D

TABLE III

SENSITIVITY ANALYSIS (μ AND σ ) OF QC_SANE
FOR AGENTS OF ACTOR IN WALKER2D

high computation budget and more training time, we have considered
a single seed value of 100 for plotting those graphs, but the heatmap
results of Fig. 5 are drawn by running five episodes for ten different
seeds for each dimension, and their average is considered. The results
at the training time for QC_SANE are either showing better or
competitive performance than other experiments. The study is done
in an ablation manner. The performance of each add-on is compared
with the population coded spiking actor network (PopSAN) [10]
(named SNN in graphs).

The training graphs of the Walker2d environment for each approach
are showing more oscillating performance, while QC_SANE results
are more stable and show less variability. For the HalfCheetah
environment, though normalized networks using SELU have shown
degraded performance, the overall performance using QC_SANE
started outperforming other approaches from the middle of the
training. In the Reacher environment, all approaches are performing
similar and outperforming SNN.

Fig. 5 shows the heatmap of the performance under the Gaussian
noise in the corresponding dimension (For Walker2d: 17, HalfChee-
tah:17, and Reacher: 11) of the state vector. The color shades show
the robustness to noise. More darkness reflects more robustness, and
lightness shows less robustness. The heatmap of the Reacher environ-
ment shows the robustness of all approaches except SNN. For Walker
environment heatmap of QC_SANE shows more robust points. In the
HalfCheetah environment, QC_SANE is again outperforming others.

For the QC_SANE, the number of agents n of actor and the number
of quantiles c of critic are the two parameters. We have also done

sensitivity analysis (in Walker2d environment) to know the variance
in the results with the change in the values of these parameters.
To analyze the sensitivity for number of quantiles c, we kept the
number of agents fixed (n = 3) and vary the parameter c such that,
for c = 2, κ = {0.1, 0.9}; for c = 3, κ = {0.1, 0.5, 0.9}; and for
c = 4, κ = {0.1, 0.9, 0.2, 0.8}. Table II shows the mean and standard
deviation in the results for different quantile values. The results reflect
less variance for higher dimensional values, and results on lower
dimensional values show comparatively more variance.

Table III shows the sensitivity analysis for the agents. For this,
we kept the number of quantiles fixed c = 3 and κ = {0.1, 0.5, 0.9}
and varied the number of agents to 2, 3, and 4. Here also the same
trend is observed: lower dimensional values are having comparatively
more variance than the higher dimensional values. Hence, the lower
dimensions are more sensitive to the change in the number of
quantiles and agents.

V. CONCLUSION AND FUTURE WORK

This work proposes an approach using quantile loss function,
an ensemble of SNN-based actors with population-coded input–
output, and normalized NN. The proposed approach is robust. As it
uses an SNN, it is also friendly to advanced hardware that works in
an energy-efficient manner. The demonstrated results show improved
performance. The limitation of QC_SANE is the computation require-
ment that can be tackled in future work. Extending SNN-based
QC_SANE with a truncated mixture of continuous distributional
quantile critics to further increase the performance is relegated as
part of future work.
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