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OSCILLATION OF SECOND-ORDER
HALF-LINEAR NEUTRAL NONCANONICAL

DYNAMIC EQUATIONS

Martin Bohner1,†, Hassan El-Morshedy2,
Said Grace3 and Irena Jadlovská4

Abstract In this paper, we shall establish some new criteria for the oscilla-
tion of certain second-order noncanonical dynamic equations with a sublinear
neutral term. This task is accomplished by reducing the involved nonlinear
dynamic equation to a second-order linear dynamic inequality. We also estab-
lish some new oscillation theorems involving certain integral conditions. Three
examples, illustrating our results, are presented. Our results generalize results
for corresponding differential and difference equations.

Keywords Half-linear dynamic equation, delay, second-order, noncanonical,
oscillation.

MSC(2010) 34C10, 34K11.

1. Introduction
The usual notation and terminology for time scales as can be found in Bohner and
Peterson [10] will be used throughout. Here, we are concerned with obtaining some
new criteria for the oscillation of second-order half-linear dynamic equations with
a sublinear neutral term of the form(

a
(
y∆
)α)∆

(t) + q(t)f(x(g(t))) = 0, t ≥ t0, (E)

where y(t) = x(t) + p(t)xβ(δ(t)). For an arbitrary time scale T (i.e., a nonempty
closed subset of the real numbers) with supT = ∞, we set [t0,∞)T = [t0,∞) ∩ T,
and we assume throughout that

(H1) a, p, q ∈ Crd([t0,∞)T, (0,∞));
†The corresponding author.
1Department of Mathematics and Statistics, Missouri S&T, Rolla, MO 65409-
0020, USA

2Department of Mathematics, Faculty of Science, Damietta University, New
Damietta 34517, Egypt

3Department of Engineering Mathematics, Faculty of Engineering, Cairo Uni-
versity, Orman, Giza 12000, Egypt

4Mathematical Institute, Slovak Academy of Sciences, Grešákova 6, 040 01
Košice, Slovakia
Email: bohner@mst.edu (M. Bohner), elmorshedy@yahoo.com (H. El-
Morshedy), saidgrace@yahoo.com (S. Grace), jadlovska@saske.sk (I.
Jadlovská)

http://www.jaac-online.com
http://dx.doi.org/10.11948/20220484


Second-order dynamic equations 2647

(H2) g, δ ∈ Crd([t0,∞)T,T) are nondecreasing with δ(t) ≤ t, g(t) ≤ t, and

lim
t→∞

δ(t) = lim
t→∞

g(t) = ∞;

(H3) α ≥ 1 and 0 < β ≤ 1 are ratios of positive odd integers;

(H4) f ∈ C(R,R) and f(x)/xα ≥ M > 0 for x ̸= 0.

Our presented results will also employ the hypotheses

A(t) :=

∫ ∞

t

∆s

a1/α(s)
< ∞ for all t ≥ t0; (H5)∫ ∞

t0

q(s)∆s = ∞; (H6)

lim
t→∞

p(t)Aβ(δ(t))

A(t)
= 0; (H7)

lim
t→∞

p(t) = 0. (H8)

Recall that a solution of (E) is a nontrivial real-valued function x satisfying (E) for
sufficiently large t. Solutions vanishing identically in some neighborhood of infinity
will be excluded from our consideration. A solution x of (E) is said to be oscillatory
if it is neither eventually positive nor eventually negative; otherwise, it is called
nonoscillatory. An equation itself is said to be oscillatory if all its solutions are
oscillatory.

The problem of investigating oscillation criteria for various types of dynamic
equations has been a very active research area over the past two decades, see [2,
5, 11, 30]. A large number of papers and monographs has been devoted to this
problem; for some recent contributions, we refer to [1, 3, 6, 13, 14, 16–18, 25–29, 31]
and the references contained therein. In particular, oscillatory behavior of solutions
to half-linear equations has been the subject of numerous studies; see, e.g., the
papers [7–9, 20–23] for more details. We point out that analysis of qualitative
behavior of half-linear equations is important not only for the further development
of oscillation theory, but for practical reasons too since half-linear equations have
numerous applications in the study of p-Laplace equations, and so forth; see, e.g.,
the papers [7,8,19,24] (we also refer to [19,24] for models from mathematical biology,
where oscillation and/or delay actions may be formulated by means of cross-diffusion
terms).

The purpose of this paper is to provide some new oscillation criteria for (E) in
noncanonical form, i.e., satisfying (H5), via a comparison with second-order linear
dynamic inequalities. We also establish new theorems involving integral conditions
that ensure the oscillation of (E). For related results in the case of corresponding
differential equations, i.e., T = R, we refer to [12, 20, 21]. For related results in the
case of corresponding difference equations, i.e., T = Z, we refer to [4]. For related
results in the time scales case, we also refer to [7–9,15,23].

After this introduction, Section 2 gives three auxiliary results that are needed in
the proofs of our five main theorems in Section 3. We conclude the paper in Section
4 with three examples, illustrating our theoretical findings.
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2. Auxiliary Results
In this section, we give some auxiliary results that are used in the remainder of this
paper.

Lemma 2.1. If (H1)–(H6) and (H8) hold, then any eventually positive solution of
(E) is eventually decreasing.

Proof. Let x be an eventually positive solution of (E), say

x(t) > 0, x(δ(t)) > 0, x(g(t)) > 0 for t ∈ [t1,∞)T (2.1)

for some t1 ≥ t0. Then (E) implies
(
a
(
y∆
)α)∆

< 0 on [t1,∞)T, so that

a
(
y∆
)α is decreasing on [t1,∞)T. (2.2)

By (2.2), we either have

a
(
y∆
)α

> 0, i.e., y∆ > 0 on [t1,∞)T, (2.3)

or otherwise there exists t2 > t1 such that

a
(
y∆
)α

< 0, i.e., y∆ < 0 on [t2,∞)T. (2.4)

Assume now that (2.3) holds. By (2.2), we have

a(t)
(
y∆(t)

)α ≤ a(t1)
(
y∆(t1)

)α for all t ≥ t1.

Rearranging, we have

y∆(t) ≤

(
a(t1)

(
y∆(t1)

)α
a(t)

)1/α

for all t ≥ t1.

Integrating this inequality from t1 to t ≥ t1, we get

y(t) ≤ y(t1) + a1/α(t1)y
∆(t1)

∫ t

t1

∆s

a1/α(s)

(2.3)
≤ y(t1) + a1/α(t1)y

∆(t1)A(t1) for all t ≥ t1.

Thus, due to (H5), y is bounded above, and together with (2.3), y has a finite
positive limit, say ℓ ∈ (0,∞), at infinity. This implies that x is bounded and

lim
t→∞

x(t) = lim
t→∞

y(t) = ℓ.

Hence, there exist ε > 0 and t∗ ≥ t1 such that x(g(t)) > ℓ − ε > 0 for all t ≥ t∗.
Therefore, (E) and (H4) imply that(

a
(
y∆
)α)∆

(t) ≤ −(ℓ− ε)αMq(t) for all t ≥ t∗.

Integrating from t∗ to t ≥ t∗, we find

a(t)
(
y∆(t)

)α ≤ a(t∗)
(
y∆(t∗)

)α − (ℓ− ε)αM

∫ t

t∗
q(s)∆s
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for all t ≥ t∗. Letting t → ∞ implies, in view of (H6), that

lim
t→∞

a(t)
(
y∆(t)

)α
) = −∞,

contradicting (2.3). Hence, (2.4) holds, completing the proof.

Lemma 2.2. Assume (H1)–(H6) and (H8). Let x be an eventually positive solution
of (E). Then w = a1/αy∆ satisfies eventually w ≤ 0, w∆ ≤ 0, and

αw∆ (wσ)
α−1 ≤ (wα)

∆ ≤ αw∆wα−1. (2.5)

Proof. Suppose x satisfies (2.1). Lemma 2.1 yields w ≤ 0 on [t2,∞)T. By
Pötzsche’s chain rule [10, Theorem 1.90], we have

0
(E)
≥ (wα)

∆
= αw∆

∫ 1

0

((1− h)w + hwσ)
α−1

dh. (2.6)

Note that the integral on the right-hand side of (2.6) is nonnegative as α− 1 is an
even nonnegative integer divided by an odd positive integer. Thus, from (2.6), we
obtain w∆ ≤ 0. This implies wσ ≤ w eventually. Hence,

wσ ≤ (1− h)w + hwσ ≤ w for all h ∈ [0, 1].

Therefore, we obtain

wα−1 ≤ ((1− h)w + hwσ)
α−1 ≤ (wσ)

α−1 for all h ∈ [0, 1],

and thus,

wα−1 ≤
∫ 1

0

((1− h)w + hwσ)
α−1

dh ≤ (wσ)
α−1

.

Hence

αw∆ (wσ)
α−1 ≤ αw∆

∫ 1

0

((1− h)w + hwσ)
α−1

dh ≤ αw∆wα−1,

proving (2.5).

Remark 2.1. Assuming (H1)–(H5), (H7) implies (H8). To see that, in view of
(H1)–(H5), we have limt→∞ A(t) = 0 and

Aβ(δ(t))

A(t)
≥ Aβ(t)

A(t)
=

1

A1−β(t)
.

Then, (H7) implies (H8). Thus, in this situation, we may apply Lemmas 2.1 and
2.2.

Lemma 2.3. Assume (H1)–(H7). Let x be an eventually positive solution of (E).
Let w = a1/αy∆. Let P ∈ (0, 1). Then, eventually,

y + wA ≥ 0, (2.7)
x ≥ Py, (2.8)
y/A is nondecreasing, (2.9)

and there exists γ > 0 such that
y/A ≥ γ. (2.10)
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Proof. Suppose x satisfies (2.1). Lemma 2.2 yields w ≤ 0 and w∆ ≤ 0 on [t2,∞)T.
Hence, w(s) ≤ w(t) for all s ≥ t ≥ t2, so

y∆(s) ≤ w(t)

a1/α(s)
for all s ≥ t ≥ t2.

Integrating this inequality from t to u ≥ t ≥ t2, we find

−y(t) ≤ y(u)− y(t) ≤ w(t)

∫ u

t

∆s

a1/α(s)
for all u ≥ t ≥ t2,

and letting u → ∞ yields

−y(t) ≤ w(t)A(t) for all t ≥ t2,

which proves (2.7). Next, on [t2,∞)T, we have

( y

A

)∆
=

y∆A− yA∆

AAσ
=

y∆A+ a−1/αy

AAσ
=

wA+ y

a1/αAAσ

(2.7)
≥ 0,

and so (2.9) holds, while

y(t)

A(t)

(2.9)
≥ y(t2)

A(t2)
=: γ > 0 for all t ≥ t2

proves (2.10). Now, since y(t) = x(t) + p(t)xβ(δ(t)) ≥ x(t), we get

x(t) = y(t)− p(t)xβ(δ(t)) ≥ y(t)− p(t)yβ(δ(t))

(2.9)
≥ y(t)− p(t)

(
A(δ(t))y(t)

A(t)

)β

= y(t)

[
1− p(t)

Aβ(δ(t))

A(t)

( y

A

)β−1

(t)

]
(2.10)
≥ y(t)

[
1− γβ−1p(t)

Aβ(δ(t))

A(t)

]
for all t ≥ t2. From (H7), there exists t3 ≥ t2 such that

p(t)
Aβ(δ(t))

A(t)
≤ (1− P )γ1−β for all t ≥ t3,

and thus (2.8) holds on [t3,∞)T.

3. Main Results
Now, we present our five main oscillation results for (E). Throughout this section,
we use the notation

Q(t) := Mq(t), t ≥ t0.

The first two results give new criteria by comparing with second-order inequalities.
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Theorem 3.1. Assume (H1)–(H7). Let P ∈ (0, 1). If(
a1/αy∆

)∆
(t) +

Pα

α
Aα−1(σ(t))Q(t)y(g(t)) ≤ 0 (3.1)

has no eventually positive decreasing solution, then (E) is oscillatory.

Proof. Assume x is a nonoscillatory solution of (E), satisfying (2.1). Let w =
a1/αy∆. Observe that Lemmas 2.1, 2.2, and 2.3 hold. On [t3,∞)T, we thus have

0
(E)
=
[
(wα)

∆
+ q(f ◦ x ◦ g)

] (wσ)
1−α

α
(2.5)
≥
[
αw∆ (wσ)

α−1
+ q(f ◦ x ◦ g)

] (wσ)
1−α

α

= w∆ + q
(wσ)

1−α

α
(f ◦ x ◦ g)

(H4)
≥ w∆ + q

(wσ)
1−α

α
M(x ◦ g)α

= w∆ +Q
(wσ)

1−α

α
(x ◦ g)α

(2.8)
≥ w∆ +Q

(wσ)
1−α

α
Pα(y ◦ g)α

= w∆ +Q

(
wσ

y ◦ g

)1−α
Pα

α
(y ◦ g)

(H2)
≥ w∆ +Q

((
w

y

)σ)1−α
Pα

α
(y ◦ g)

(2.7)
≥ w∆ +Q (Aσ)

α−1 Pα

α
(y ◦ g),

so that (3.1) indeed has an eventually positive decreasing solution. This contra-
diction shows that no nonoscillatory solution of (E) can exist, and thus (E) is
oscillatory.

Theorem 3.2. Assume (H1)–(H7). Let P ∈ (0, 1). If, for all γ > 0,(
a
(
y∆
)α)∆

(t) + γα−1PαAα−1(g(t))Q(t)y(g(t)) ≤ 0 (3.2)

has no eventually positive decreasing solution, then (E) is oscillatory.

Proof. Assume x is a nonoscillatory solution of (E), satisfying (2.1). Let w =
a1/αy∆. Observe that Lemmas 2.1, 2.2, and 2.3 hold. On [t3,∞)T, we thus have

(wα)
∆ (E)

= −q(f ◦ x ◦ g)
(H4)
≤ −qM(x ◦ g)α

(2.8)
≤ −qMPα(y ◦ g)α

= −PαQ
( y

A
◦ g
)α−1

(A ◦ g)α−1(y ◦ g)
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(2.10)
≤ −γα−1PαQ(A ◦ g)α−1(y ◦ g),

so that (3.2) indeed has an eventually positive decreasing solution. This contra-
diction shows that no nonoscillatory solution of (E) can exist, and thus (E) is
oscillatory.

The next three results deal with sufficient integral conditions to ensure oscillation
of (E).

Theorem 3.3. Assume (H1)–(H5) and (H7). If

lim sup
t→∞

[
A(t)

∫ t

t1

Aα−1(σ(s))Q(s)∆s+
1

A(g(t))

∫ ∞

t

Aα(σ(s))A(g(s))Q(s)∆s

]
> α,

(3.3)
then (E) is oscillatory.

Proof. First note that it follows from (3.3) that there exists P ∈ (0, 1) such that

lim sup
t→∞

[
A(t)

∫ t

t1

Aα−1(σ(s))Q(s)∆s+
1

A(g(t))

∫ ∞

t

Aα(σ(s))A(g(s))Q(s)∆s

]
>

α

Pα
.

(3.4)
Assume x is a nonoscillatory solution of (E), satisfying (2.1). Let w = a1/αy∆.
Observe that Lemmas 2.1, 2.2, and 2.3 hold. Notice that (3.4) implies that (H6)
holds. If not, i.e., if

∫ t

t0
q(s)∆s is bounded, then

A(t)

∫ t

t1

Aα−1(σ(s))Q(s)∆s ≤ A(t)

∫ t

t1

Q(s)∆s → 0 as t → ∞

and
1

A(g(t))

∫ ∞

t

Aα(σ(s))A(g(s))Q(s)∆s ≤
∫ ∞

t

Aα(σ(s))Q(s)∆s

≤ Aα(σ(t))

∫ ∞

t

Q(s)∆s → 0 as t → ∞,

where we used (H5) and the decreasing nature of A. However, this contradicts (3.4)
and hence we proved our claim. Note also that we now reach (3.1) as in the proof
of Theorem 3.1. On [t3,∞)T, we thus have

(wA+ y)∆ = w∆Aσ + wA∆ + y∆ = w∆Aσ
(3.1)
≤ −Pα

α
(Aσ)

α
Q(y ◦ g),

and integrating this inequality from t to u ≥ t ≥ t3 yields

−(wA+ y)(t)
(2.7)
≤ (wA+ y)(u)− (wA+ y)(t) =

∫ u

t

(wA+ y)∆(s)∆s

≤ −Pα

α

∫ u

t

Aα(σ(s))Q(s)y(g(s))∆s

= −Pα

α

∫ u

t

Aα(σ(s))Q(s)
y(g(s))

A(g(s))
A(g(s))∆s

(2.9)
≤ −Pα

α

∫ u

t

Aα(σ(s))Q(s)
y(g(t))

A(g(t))
A(g(s))∆s
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(H2)
≤ −Pα

α

∫ u

t

Aα(σ(s))Q(s)
y(t)

A(g(t))
A(g(s))∆s,

which upon letting u → ∞ becomes

(wA+ y)(t) ≥ Pαy(t)

αA(g(t))

∫ ∞

t

Aα(σ(s))Q(s)A(g(s))∆s (3.5)

for all t ≥ t3. On the other hand, for t ≥ t3, we get

w(t) ≤ w(t)− w(t3) =

∫ t

t3

w∆(s)∆s

(3.1)
≤ −Pα

α

∫ t

t3

Aα−1(σ(s))Q(s)y(g(s))∆s

(H2)
≤ −Pα

α

∫ t

t3

Aα−1(σ(s))Q(s)y(t)∆s,

i.e.,

− (wA)(t) ≥ Pα

α
A(t)y(t)

∫ t

t3

Aα−1(σ(s))Q(s)∆s (3.6)

for all t ≥ t3. Combining now (3.5) and (3.6) yields

y(t) =(wA+ y)(t)− (wA)(t)

≥ Pαy(t)

αA(g(t))

∫ ∞

t

Aα(σ(s))Q(s)A(g(s))∆s

+
Pα

α
A(t)y(t)

∫ t

t3

Aα−1(σ(s))Q(s)∆s,

which upon division by y(t) results in

α

Pα
≥ 1

A(g(t))

∫ ∞

t

Aα(σ(s))Q(s)A(g(s))∆s

+A(t)

∫ t

t3

Aα−1(σ(s))Q(s)∆s

for all t ≥ t3. Taking lim sup as t → ∞ contradicts (3.4) and completes the proof.

Theorem 3.4. Assume (H1)–(H5) and (H7). Let P ∈ (0, 1). If for any ℓ1 ∈
[t1,∞)T, there exists ℓ ∈ [ℓ1,∞)T such that

lim sup
t→∞

∫ t

ℓ

[
Pα

α
Aα(σ(s))Q(s)− a−1/α(s)

4A(σ(s))

]
∆s > 1, (3.7)

then (E) is oscillatory.

Proof. Assume x is a nonoscillatory solution of (E), satisfying (2.1). Let w =
a1/αy∆. Observe that Lemmas 2.1, 2.2, and 2.3 hold. Notice that (3.7) implies that
(H6) holds. For if

∫ t

ℓ
q(s)∆s is bounded, then

∫ t

ℓ
Aα(σ(s))Q(s)∆s is also bounded,

which, given that ℓ1 is arbitrarily large, contradicts (3.7). Note also that we now
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reach (3.1) as in the proof of Theorem 3.1. For this proof, we also introduce v = w/y.
On [t3,∞)T, we have

v∆ =
w∆y − wy∆

yyσ
=

w∆

yσ
− wa1/αy∆a−1/α

yyσ

=
w∆

yσ
− w2a−1/α

yyσ
=

w∆

yσ
− v2a−1/α y

yσ

(3.1)
≤ −Pα

α
(Aσ)

α−1
Q
y ◦ g
yσ

− v2a−1/α y

yσ

(H2)
≤ −Pα

α
(Aσ)

α−1
Q− v2a−1/α,

so that

(Av)∆ = A∆v +Aσv∆ = −va−1/α +Aσv∆

≤ −va−1/α − Pα

α
(Aσ)

α
Q−Aσv2a−1/α

= −Pα

α
(Aσ)

α
Q− a−1/α

4Aσ
(1 + 2Aσv)

2
+

a−1/α

4Aσ

≤ −Pα

α
(Aσ)

α
Q+

a−1/α

4Aσ
.

Integrating this last inequality from ℓ to t ≥ ℓ ≥ t3, we get∫ t

ℓ

[
Pα

α
Aα(σ(s))Q(s)− a−1/α(s)

4A(σ(s))

]
∆s ≤A(ℓ)v(ℓ)−A(t)v(t)

≤−A(t)v(t)
(2.7)
≤ 1,

which contradicts (3.7) and completes the proof.

Theorem 3.5. Assume (H1)–(H5) and (H7). If∫ ∞

t1

[
1

a(s)

∫ s

t1

Aα(g(u))q(u)∆u

]1/α
∆s = ∞, (3.8)

then (E) is oscillatory.

Proof. Assume x is a nonoscillatory solution of (E), satisfying (2.1). Let w =
a1/αy∆. Observe that Lemmas 2.1, 2.2, and 2.3 hold. Notice that (3.8) implies that
(H6) holds. Note therefore that we reach (3.2) as in the proof of Theorem 3.2. On
[t3,∞)T, we have

(wα)
∆

(3.2)
≤ −γα−1Pα(A ◦ g)α−1Q(y ◦ g)

= −γα−1Pα(A ◦ g)αQ
( y

A
◦ g
)

(2.10)
≤ −γαPα(A ◦ g)αQ,

which upon integrating from t3 to t ≥ t3 yields

wα(t) ≤wα(t)− wα(t3) =

∫ t

t3

(wα)
∆
(s)∆s
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≤− γαPα

∫ t

t3

Aα(g(s))Q(s)∆s

=− γαPαM

∫ t

t3

Aα(g(s))q(s)∆s.

Rearranging yields

y∆(t) ≤ −γPM1/α

[
1

a(t)

∫ t

t3

Aα(g(s))q(s)∆s

]1/α
for all t ≥ t3. Integrating this inequality again from t3 to t ≥ t3 gives

−y(t3) ≤y(t)− y(t3) =

∫ t

t3

y∆(s)∆s

≤− γPM1/α

∫ t

t3

[
1

a(s)

∫ s

t3

Aα(g(u))q(u)∆u

]1/α
∆s,

and so ∫ t

t3

[
1

a(s)

∫ s

t3

Aα(g(u))q(u)∆u

]1/α
∆s ≤ y(t3)

γPM1/γ

for all t ≥ t3, contradicting (3.8) and completing the proof.

4. Examples
We conclude this paper by giving three illustrating examples, one for T = R, then
for T = Z, then for a general time scale.

Example 4.1. Consider the second-order neutral differential equationt6

([
x(t) +

1

t
x1/3

(
t

2

)]′)3
′

+ tλx3

(
t

3

)
= 0 (4.1)

for t ∈ [3,∞)R. Here, α = 3, β = 1/3, p(t) = 1/t, δ = t/2, g(t) = t/3, M = 1,
Q(t) = q(t) = tλ for λ ∈ R. Moreover, A(t) = 1/t and (H4) is easily verified. Using
Theorem 3.5, we see that (4.1) is oscillatory for all λ ≥ 5.

Example 4.2. Consider the second-order neutral difference equation

∆

(
(t2 + t)5∆

([
x(t) +

1

t
xβ(t− 1)

])5
)

+ (t+ 1)6x5(t− 2)(2 + sinx(t− 2)) = 0, t ∈ N, (4.2)

where β ∈ (0, 1] is a ratio of positive odd integers. Here, α = 5, a(t) = (t2 + t)5,
p(t) = 1/t, δ(t) = t− 1, and g(t) = t− 2. We also have M = 1, Q(t) = (t+1)6, and
A(t) = 1

t . Therefore,

lim
t→∞

p(t)Aβ(δ(t))

A(t)
= lim

t→∞

1

(t− 1)β
= 0.
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Thus (H7) is satisfied. Note that

Pα

α
Aα(σ(s))Q(s)− a−1/α

4A(σ(s))
=

P 5

5
(s+ 1)− 1

4s
.

Then (3.7) is clearly satisfied, and hence (4.2) is oscillatory according to Theorem
3.4.

Example 4.3. Consider the second-order neutral dynamic equationσ3(t)t3

([
x(t) +

1

t
x1/3

(
t

2

)]∆)3
∆

+ q0σ
2(t)x3(λt) = 0 (4.3)

for t ∈ [1,∞)T, where λ ∈ (0, 1] and q0 > 0. Here, α = 3, β = 1/3, p(t) = 1/t,
δ(t) = t/2, g(t) = λt, M = 1, Q(t) = q(t) = q0σ

2(t), and

A(t) =

∫ ∞

t

1

σ(s)s
∆s =

1

t
.

Condition (H7) is clearly satisfied, since

lim
t→∞

p(t)Aβ(δ(t))

A(t)
= lim

t→∞

(
2

t

)1/3

= 0.

Now, since

A(t)

∫ t

t1

Aα−1(σ(s))Q(s)∆s =
1

t

∫ t

t1

q0
σ3−1(s)

σ2(s)∆s = q0
t− t1

t

and
1

A(g(t))

∫ ∞

t

Aα(σ(s))A(g(s))Q(s)∆s = λt

∫ ∞

t

q0σ
2(s)

λsσ3(s)
∆s = q0,

(3.3) takes the form
q0 >

3

2
. (4.4)

Hence, by Theorem 3.3, (4.3) is oscillatory if (4.4) holds. Similarly, condition (3.7)
takes the form

lim sup
t→∞

∫ t

t1

[
P 3q0
3

s

σ(s)
− 1

4

]
1

s
∆s > 1,

and so Theorem 3.4 requires, for the oscillation of (4.3), that there exist P ∈ (0, 1)
and ε > 0 such that

P 3q0
3

t

σ(t)
>

1

4
+ ε.
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