
Missouri University of Science and Technology Missouri University of Science and Technology 

Scholars' Mine Scholars' Mine 

Computer Science Faculty Research & Creative 
Works Computer Science 

01 Jan 2023 

Q-Learning for Sum-Throughput Optimization in Wireless Visible-Q-Learning for Sum-Throughput Optimization in Wireless Visible-

Light UAV Networks Light UAV Networks 

Yuwei Long 

Nan Cen 
Missouri University of Science and Technology, nancen@mst.edu 

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_facwork 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Y. Long and N. Cen, "Q-Learning for Sum-Throughput Optimization in Wireless Visible-Light UAV 
Networks," IEEE INFOCOM 2023 - Conference on Computer Communications Workshops, INFOCOM 
WKSHPS 2023, Institute of Electrical and Electronics Engineers, Jan 2023. 
The definitive version is available at https://doi.org/10.1109/INFOCOMWKSHPS57453.2023.10225783 

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been 
accepted for inclusion in Computer Science Faculty Research & Creative Works by an authorized administrator of 
Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for 
redistribution requires the permission of the copyright holder. For more information, please contact 
scholarsmine@mst.edu. 

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_facwork?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F1362&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F1362&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/INFOCOMWKSHPS57453.2023.10225783
mailto:scholarsmine@mst.edu


Q-Learning for Sum-Throughput Optimization in
Wireless Visible-Light UAV Networks

Yuwei Long, Nan Cen
Department of Computer Science, Missouri University of Science and Technology, Rolla, MO

Email:{ylw22, nancen}@mst.edu

Abstract—Unmanned aerial vehicles (UAVs) have been adopted
as aerial base stations (ABSs) to provide wireless connectivity to
ground users in events of increased network demand, and points-
of-failure infrastructure (such as in disasters). However, with
the existing crowded radio frequency (RF) spectrum, UAV ABSs
cannot provide high-data-rate communication required in 5G and
beyond. To address this challenge, visible light communication
(VLC) is proposed to be equipped on UAVs to take advantage of
the flexible and on-demand deployment feature of the UAV, and
the high-data-rate communication of the VLC. However, VLC has
strong alignment requirements between transceivers, therefore,
how to determine the position and orientation of the UAV is
critically important for sum-throughput improvement. In this
paper, we propose two Q-learning based methods to maximize
the sum throughput of the wireless visible-light UAV network by
jointly controlling the position and orientation of the UAV. The
results show that the proposed approaches can achieve a network-
wide data rate very close to the optimal solution obtained by
exhaustive search and outperform up to 18% compared with
the intuitive centroid-based method. Computation complexity is
also evaluated, where results showing that the proposed two Q-
learning based methods can both consume less computational
time, i.e., approximately 9 times and 210 times less on average
than that of the exhaustive search approach.

Index Terms—Visible Light Networking, Unmanned Aerial
Vehicles, Throughput Optimization, Q-learning.

I. INTRODUCTION

Wireless Unmanned aerial vehicle (UAV) networks have
been envisioned as a key technology in 5G and beyond, be-
cause of their mobility, flexibility, and on-demand deployment
nature, which enables a diverse set of applications, including
military, surveillance and monitoring, wireless communication
enhancement, medical goods delivery, and post-disaster oper-
ations [1] [2] [3]. Figure 1 illustrates a number of scenarios
of UAVs acting as aerial base stations (ABSs) to provide
temporary emergency network services. Taking the example
of an extreme event (e.g., festival and sports events), UAV can
be deployed to alleviate data traffic congestion, thus assisting
the ground base stations in improving connectivity, coverage,
and capacity. However, the increased altitude and favorable
propagation conditions of wireless UAV networks along with
overcrowded radio frequency (RF) spectrum will result in
stronger interference among the neighboring cells.

In recent years, visible light communication (VLC) has been
proposed as a promising alternative technology to address
RF spectrum scrunch because of its massive amounts of the
unregulated spectrum ranging from 400 THz – 800 THz
[4]. Besides, compared with conventional RF communication

ABS Backhaul
Node Malfunction BS

Disasters or Terrestrial BS FailureTemporary Excessive Demand

ABS

Backhaul
Link

Backhaul
Link

Fig. 1: UAV based aerial base station application scenarios.

technologies, VLC has some unique advantages, such as
inherent security due to low penetration, no interference to the
RF channel, dual illumination and communication capability,
and high-data-rate potential. VLC also has some drawbacks,
including limited coverage due to high attenuation, and in-
flexible deployment due to strong alignment requirement 1.
Thus, the combination of VLC and wireless UAV networks
will not only meet the high-speed communication requirement
in 5G and 6G, but also improve the flexibility of visible light
communication [5], i.e., the dynamic mobility of the UAVs
can help maintain a clear line of sight (LoS) requirement of
visible light communication.

In the past few years, wireless visible-light UAV networks
have attracted more and more attention from researchers,
where how to deploy the UAVs in an optimal way to achieve
different network control objectives is challenging. A number
of works have been conducted to determine the optimal UAV
deployment in terms of UAV positions [6]–[13], aiming at
improving power efficiency [12] or spectral efficiency [8] [13].
However, to the best of our knowledge, none of these existing
works consider controlling the orientations along with the
positions of the UAV, which is also significantly important for
alignment among transmitters and receivers communicating
via VLC. In this paper, we design a new UAV deployment
approach for wireless visible-light UAV networks to maximize
the sum-throughput by controlling the position and orientation
of the UAV. We claim the following three main contributions:

• We formulate mathematically the deployment control
problem with the objective of maximizing the network-
wide throughput of all ground users by jointly determin-
ing the position and orientation of the VLC-based UAV

1In VLC, the field of view of the transmitter (e.g., light emitting diode) and
receiver (e.g., photodiode) are both limited, therefore, alignment is required
to maintain continuous communication.
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in the drone hot-spot networks. The resulting problem is
a mixed integer nonlinear nonconvex programming prob-
lem (MINLP), which cannot be solved within polynomial
time.

• We propose two Q-learning based solution algorithms
to solve the formulated MINLP problem, where two
different approaches are designed to construct the action
space to control the movement and rotation of the UAV.

• We conduct extensive simulations to evaluate the pro-
posed solution algorithms in terms of optimality and
computation time complexity by comparing them with
the other two methods, i.e., exhaustive search-based and
intuitive centroid-based methods. Results show that the
proposed solution algorithms can achieve sum throughput
up to about 99.9% optimality obtained by the exhaustive
search method but with significantly reduced computation
time up to approximately 303 times as shown in Sec. V.

The organization of this article is as follows. In Section II,
the related works are reviewed. The system model and problem
formulation are then presented in Section III. In Section IV,
two solution algorithms are designed and discussed in detail.
Simulation results are presented and discussed in Section V.
Finally, we draw the main conclusions in Section VI.

II. RELATED WORKS

In recent years, VLC-enabled UAV networking has drawn
increasing research attention [6]–[11], where how to deploy
the UAVs to improve the system performance is one of the
hot research topics [6]–[11] [14]. In [6], the authors propose
an iterative algorithm to optimize the deployment of VLC-
enabled UAVs, aiming at minimizing power consumption by
considering the interference caused by the signal transmission
as well as the illumination of UAVs. [7] presents a deep
learning-based approach to dynamically deploy visible-light
UAVs, thus optimizing energy-efficiency, where a learning
framework of gated recurrent units (GRUs) with convolu-
tional neural networks (CNNs) is adopted. The work in [8]
considers a UAV-assisted wireless visible light network using
nonorthogonal multiple access (NOMA), where a joint prob-
lem of UAV power allocation and placement is formulated
to maximize the sum data rate by jointly considering the
maximum power consumption constraint, quality of services
of users, and UAV position. The authors also propose a Harris
hawks optimization-based algorithm to obtain the sub-optimal
solutions. The authors in [10] propose a federated learning
framework based on convolutional auto-encoder to predict
the illumination distribution in VLC-enabled UAV networks,
based on which the optimal UAV deployment and user asso-
ciation policy are then determined to minimize the total trans-
mission power of the UAVs. The work in [11] studies optimal
deployment of UAVs over reconfigurable intelligent surfaces
(RISs) assisted VLC system, where UAVs are designed to
provide data transfer and illumination simultaneously. The
authors formulate a power minimization problem by jointly
controlling the UAV positions, the phase shift of RISs, and user
and RIS association, and then design two solution algorithms.

LED of UAV

PD

Fig. 2: Geometry LoS propagation model in VLC.

These papers are mainly focused on the UAV position
determination problem to improve the system performance,
with respect to either the total power consumption of UAVs
or the sum data rate. In our paper, instead, besides the UAV
location information, we also consider the orientation of the
UAVs, which plays a significant role in maintaining the line
of sight communication link between the UAV and users.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. Model Description

We consider an infrastructureless wireless VLC-enabled
UAV downlink access network, where a set of ground users
K = {1, . . . ,K} are served by the UAV within the predefined
geographical area. We assume that the location and orientation
information of the ground users can be obtained by the devices
themselves [15] and shared with the drones. The information
of the location and orientation of the UAV and the k-th user are
expressed as p = (x, y, z, ✓p) and Nk = (xk, yk, zk, ✓k), k 2
K,Nk 2 R4⇥1, respectively. Our objective is to maximize
the network-wide sum throughput by jointly controlling the
movement of the aerial drones with respect to location and
orientation.

B. Transmission Model

We consider the Lambertian radiation pattern [16] in the
visible light UAV networking system. Without loss of gener-
ality, we do not consider the diffusion of visible light (i.e.,
multipath propagation) in outdoor environments. Therefore,
the only considered LoS channel impulse response of the VLC
link for user k is given as [16]:

hLoS
k =

(A(m+1)

2⇡d2
k

Ptcos
m(�k)Ts(�k)g(�k) cos(�k) 0  �k  �c,

0 otherwise,
(1)

where m = ln 2
ln(cos�1/2)

represents the Lambertian emis-
sion order with �1/2 being the half illuminance power of
a transmitter. A denotes the physical area of the photo-
diode (PD) at the receiver side. dk denotes the distance
between the light emitting diode (LED) transmitter of UAV
and the PD receiver of ground user k, calculated as dk =q

(x� xk)
2 + (y � yk)

2 + (z � zk)
2. Pt is the transmitted

power of UAV. �k and �k represent the irradiance angle
and the incidence angle between UAV and ground user k,
respectively. �c denotes the field of view (FoV) of the PD.
Ts(�k) represents the optical filter gain. g(�k) is the optical
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concentrator gain, given as:

g(�k) =

(
n2

sin2 �c
, 0  �k  �c,

0 otherwise.
(2)

We denote �
ori
k being the irradiance angle to user k when

UAV is facing directly downwards, calculated as �
ori
k =

arccos ( z�zkdk
). Given �

ori
k , the incidence angle �k from UAV

to ground user k can be obtained as:
�k = �

ori
k � (90� � ✓k). (3)

As shown in Fig. 2, the geometric relationship among UAV
rotation angle ✓p, the original irradiance angle �

ori
k , and the

instantaneous irradiance angle �k is given as below:
✓p + q=q + �

ori
k � �k = 90�, (4)

where q is the included angle between the perpendicular line
to the ground and the extension line of the rotation angle of
the UAV. Finally, we can obtain the instantaneous irradiance
angle �k with respect to ✓ and �

ori
k as:

�k = |(✓p � �
ori
k )|. (5)

The channel capacity Ck of user k is then calculated as:

Ck(p)=Blog2

 
1 +

e

2⇡

✓
⇠Pth

LoS
k

nw
k

◆2
!
, (6)

where B is the bandwidth, e is the Euler’s number, ⇠ is the
illumination target, and n

w
k is the standard deviation of the

additive white Gaussian noise for user k.
Problem Statement. The network control objective can then
be stated as maximizing the sum data rate of all ground users
in K by jointly determining the position and orientation of the
UAV. The problem is formulated as:

Problem 1: Given: Nk, Pt,�c,⌃c

Maximize
p

f =
X

k2K
Ck(p)

Subject to: �k  �c

2
, (7)

|(✓p � �
ori
k )|  ⌃c

2
,

0  xk  xb, k 2 K,

0  yk  yb, k 2 K,

where xb and yb represent the predefined area boundaries,
⌃c denotes the field of view of the LED transmitter of the
UAV. The problem is a mixed integer nonlinear nonconvex
programming problem because of the nonlinear nonconcave
function Ck(p) with respect to p in (1) [13]. Given an arbitrary
such problem, how to design a solution algorithm to achieve
the global optimum is still an open problem.

IV. Q-LEARNING BASED SOLUTION ALGORITHMS

To solve the resulting MINLP problem in Sec. III, a
heuristic solution algorithm is required to find the near-optimal
solutions. Traditional widely adopted heuristic methods, such
as genetic algorithms, may get stuck at some local minima. In
recent years, learning-based methods have gained increasing
attention to solve MINLP problems. In this paper, we propose
solution algorithms based on Q-learning. This is motivated
by that Q-learning is model-free and can learn from trial and
error to obtain optimal and nearly-optimal solutions without

knowing the environment in advance compared to model-based
methods [17].

In Q-learning models, the goal of the agent is to learn
the best policy from the Q-values in the Q-table. At each
iteration time step, we update the Q-table values using Bellman
optimality equation [18] after completing every transition and
observing the current state-action pair (st, at) at time t, given
as:
Q

new(st, at) = (1� ↵)Q(st, at) + ↵rt + �Q(st+1, a
⇤), (8)

where ↵ is the learning rate. � is the discount factor within
the range [0, 1], representing how important a future action
would be. st+1 is the next state after taking action at at state
st and a

⇤ is the action that results in the maximum Q-value
of all state-action pairs in state st+1 [19].

The generalized solution algorithm framework is shown in
Algorithm 1, where we assume that the visible-light UAV is
equipped with an autonomous agent which takes an action and
in turn, receives a reward and then makes a transition to a new
state. Next, we explicitly define the States, Actions, and the
reward function of the agent.

A. States
We consider a combination of the three-dimensional (3D)

position and the orientation of the UAV as States. The agent
discretizes the continuous state space with respect to the
predefined serving area as well as the feasible rotation angles.
The state space is expressed as a tuple, i.e., S := (X :
{0, 0+⌘, 0+2⇥⌘, . . . , xb}, Y : {0, 0+⌘, 0+2⇥⌘, . . . , yb}, Z :
h,⇥p : {�r

�
b ,�r

�
b + �

�
, . . . , 0�, . . . , r�b � �

�
, r
�
b}), where

(X,Y, Z) and ⇥p represent the state in terms of the agent’s
location and orientation, respectively. In X and Y , ⌘ reflects
on how small we discretize our environment, i.e., the grid size.
In the current environment, we consider the agent to be set at
a certain altitude h, resulting in only one state for Z. For ⇥p,
�r
�
b and r

�
b define the maximum rotation angle to the left or

Algorithm 1 Solution Algorithm
Data:
Predefine Nk , Pt, �c, ⌃c.
Initialize Q(s, a), 8s = (x, y, z, ✓) 2 S, 8a 2 A, {�}, {✏}.
Result: Obtain {f} and {p} when stopping criterion is met.
Initialize all Q(s, a) table to zero
for each Episode i do

Initialize s0  (0, 0, h, 0); t = 1.
while true do

Observe state st, and choose action at:
Generate random number ⇢ in (0, 1)
if ⇢ > ✏ then

at = argmaxaQ(st, a);

else
at = Random(A);

end
Take action at;
st  st+1

Update UAV’s location to (xt, yt), and orientation to ✓t.
Calculate rt with the new location and orientation of the agent using (7)
Qnew(st, at) (1� ↵)Q(st, at) + ↵(r(st, at) + �Q(st+1, a

⇤)
t + +;
if meet the stopping criterion then

Output {f} and {p}
break;

end
end

end

IEEE INFOCOM WKSHPS: DroneCom 2023: 6th International Workshop on Drone-Assisted Wireless Communications for 5G and Beyond

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on October 06,2023 at 20:52:47 UTC from IEEE Xplore.  Restrictions apply. 



the right of the agent, while �
� represents the rotation step

size. In summary, the total number of states for our scenario
is |S| = |X|⇥ |Y |⇥ |Z|⇥ |⇥p|.
B. Actions

At each time-step t, the UAV takes action at 2 A, where
A is divided into two subspaces, i.e., UAV movement space
AM and UAV rotation space AR.
Movement Space: We discretize the UAV agent’s moving
action space [19] as: AM := {up, right, down, left, stay},
with |AM| = AM . Our motivation for discretizing the action
space is to ensure quick convergence of the agent to quickly
deploy high-quality service to the ground users.
Rotation Space: We design two methods to conduct the
rotation of the UAV: (i) Q-learning discrete continuous rotation
action space, i.e., Q-DCA, denoted as AR; and (ii) Q-learning
discrete reduced rotation action space, i.e., Q-DRA, denoted
as AR

R. The details are discussed in the following.
• Q-DCA: In Q-DCA, we discretize the feasible

rotation space by splitting it into a set of
bins with step size �

�, denoted as AR :=
{�r

�
b ,�r

�
b + �

�
, . . . , 0�, . . . , r�b � �

�
, r
�
b}. The total

number of the rotation actions in Q-DCA is
|AR| = (r�b � (�r

�
b ))/�

� + 1) = 2r�b/�
� + 1. We

can see that the smaller �
� is, the larger the rotation

action space is and thus the slower the convergence of
the Q-learning model is as proven in [20].

• Q-DRA: Motivated by the fact that reducing the num-
ber of actions can help with exploration, as there are
fewer actions to try, which will help improve the sample
efficiency of Q-learning model training. Therefore, we
further reduce the discretized continuous rotation action
space by just defining three discrete rotation choices:
negative, zero, and positive 2, denoted as AR

R := {art , art±
�
�
r}
T
⇥p, where a

r
t represents the rotation state at time

t. In each time-step, the UAV agent can only turn left or
right respectively by �

�, or stay at the current orientation.
The total number of the rotation action space is |AR

R| = 3.
In summary, the numbers of the whole action space for

Q-DCA and Q-DRA are |AM| + |AR| and |AM| + |AR
R|,

respectively.

C. Reward
The goal of the learning agent is to learn a policy that

maximizes the sum throughput of the visible-light enabled
UAV network by controlling the position and orientation of
the UAV in a real-time fashion. The reward obtained by the
UAV agent at time t is given as:

R(st, at, st+1) =

(P
k2K

Ck(p) if constraints in (7) met,

0 otherwise,
(9)

where
P
k2K

Ck(p) is the objective function in (7). If the learned

position and orientation satisfy the constraints in (7), the sum

2This is commonly used in camera rotation, where the agent can only select
to turn the camera left or right or not at a fixed rate per step [21], which is
also suitable for the UAV agent in the proposed scenario.

Fig. 3: Sum throughput and individual throughput comparison
for the 3-user scenario.

throughput of the network is set as the reward, otherwise, the
reward is 0, which will help force the agent to avoid learning
unfeasible solutions.

D. Exploration and Exploitation Strategy
In Q-learning, the exploration-exploitation dilemma is sig-

nificantly important. For moderately realistic problems, prob-
lem sizes are vast and computations are expensive. Thus, we
want to learn accurate values for good states, rather than
wasting precious (computational) budget on low-quality ones.
In our Q-learning model, we adopt ✏-greedy strategy that has
been shown to be able to achieve better performance [22].
At the beginning of learning, ✏-greedy strategy will force the
agent to operate in exploration mode since the agent has no
idea of the environment. As the algorithm runs, the ✏ value is
decreasing and the chance of being in exploration mode is also
decreasing, which allows the agent to be in the exploitation
mode to exploit what it has learned. The detailed rules of the
✏-greedy method is given below:

⇡at2A(st 2 S) =

(
argmaxa2AQ(st, a) probability 1� ✏,

random a 2 A probability ✏,
(10)

where ✏ is the time-variant parameter used for updating the
✏-greedy strategy, and a represents any feasible action. The
adopted ✏-greedy scheme can help balance the exploration and
exploitation in the learning process, thus improving learning
efficiency [22].
E. Computational Complexity

Based on the theorem in [20], the time complexity of the
proposed Q-DCA and Q-DRA are O(|S|⇥ (|AM|+ |AR|))
and O(|S|⇥ (|AM|+ |AR

R|)), respectively.

V. PERFORMANCE EVALUATION

We evaluate the performance of the proposed solution
algorithms by considering a network area of 7⇥7⇥10 m3, with
K = {1, 2, . . . , 10} users served by one UAV. The altitude

TABLE I: Summary of Parameters
Parameter Value

Bandwidth (B) B = 20 MHZ
Transmitted electrical power (Pt ) Pt = 1 W

Optical filter gain (Ts(�k)) Ts(�k) = 1
Field of view of the PD (�c ) �c = ⇡

Field of view of the LED (⌃c ) ⌃c = 2⇡/3
Optical concentrator gain (g(�k)) g(�k) = 2.25, 0  �k  ⇡; g(�k) = 0,�k � ⇡

Area of PD (A) A = 1 cm2

Learning rate (↵) ↵ = 0.8
Discount factor (�) � = 0.1
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Fig. 4: Sum throughput and individual throughput comparison for the 5-user scenario.

Fig. 5: Sum throughput comparison for the 3-user scenario.

of the UAV is set to z = h = 10 meters. Without loss of
generality, ✓k is set to 90�, denoting that all the ground users
are facing directly upwards. Table I includes the networking-
related parameters for performance evaluation and the learning
parameters used in the proposed Q-learning models.
A. Compared Methods

To comprehensively validate the proposed two solution
algorithms, i.e., Q-DCA and Q-DRA, we also implement two
other methods to compare: (i) exhaustive search and (ii)
intuitive centroid-based method, denoted as Benchmark and
Centroid, respectively.
Exhaustive search: Due to the limited computation capability
of the computer, it is difficult to obtain the global optimal
solution in the continuous state space. Therefore, we divide
the state space with much smaller step sizes than that in Q-
DCA and Q-DRA, i.e., 0.01 m and 1

�
for moving and rotating,

respectively. The exhaustive search method will enumerate all
the combinations within the state space to find the optimal
solution, which will be considered as the benchmark in the
following performance comparisons.
Centroid-based method: The location of the UAV is deter-
mined by the geometric center of the topology of the ground
users. In this method, the rotation of the UAV is not considered
and the UAV is set to face directly downwards.

B. Performance Comparison
Figures 3 and 4 report the sum throughput and individ-

ual throughput for each user achieved by the proposed two
methods and the other two compared methods for the 3-user

Fig. 6: Sum throughput comparison for the 5-user scenario.

Fig. 7: Sum throughput comparison for scenarios with different
user numbers.

Fig. 8: Time complexity comparison for scenarios with differ-
ent user numbers (A base-10 log scale is used for the Y axis).
scenario and 5-user scenario, respectively. It can be seen that
the proposed Q-DCA and Q-DRA can nearly reach the results
obtained by Benchmark within 60 episodes and outperform
Centroid by up to 18%. To further evaluate the effectiveness
of Q-DCA and Q-DRA, we also compare the achievable sum-
throughput by testing 10 different network topology instances
for both 3-user and 5-user scenarios. The results are shown
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in Figs. 5 and 6, where we can observe that Q-DCA and Q-
DRA both achieve performance very close to the optimum
obtained by Benchmark and outperform Centroid in all tested
instances. For some network instances, big differences are not
shown in the results because users are densely deployed within
a small area, thus the solutions obtained by all four methods
are very close. We can also observe the fluctuations of the
sum throughput among all the test instances. This is caused
by the deployment of users, i.e., if users are sparsely deployed
(e.g., further from each other) within the predefined area, the
achieved sum data rate is smaller due to the larger attenuation,
otherwise, the sum-throughput is larger.

We further validate the feasibility of our proposed Q-DRA
and Q-DCA algorithms with different numbers of users, rang-
ing from 1 to 10 as shown in Fig. 7. We can see that Q-DCA
and Q-DRA achieve better results compared with Centroid and
achieves a performance very close to the optimum obtained by
Benchmark in all tested scenarios besides the 1-user setting
(where UAV is directly located on top of the user for all
methods).

We finally evaluate the computation complexity for Q-DCA,
Q-DRA, and exhaustive search based Benchmark method.
Centroid is not included because its computation complexity
is constant. Results are shown in Fig. 8, where we can clearly
see that the proposed Q-DRA has the lowest computation
time complexity compared with Q-DCA and Benchmark in all
tested scenarios with user number ranging from 1 to 10. The
computation complexity of Q-DCA takes about 23 more times
on average than that of Q-DRA, which help further validate
that reducing the action space can accordingly help decrease
the computation complexity. It also clearly shows that the
exhaustive search based Benchmark will result in significant
computation complexity compared with Q-DCA and Q-DRA,
especially as the scenarios become more complex, such as in
terms of user number.

VI. CONCLUSION

In this paper, we have investigated the problem of optimal
deployment of VLC-enabled UAVs, by jointly considering the
position and orientation of the UAV to maximize the sum-
throughput. We have proposed two Q-learning based solution
algorithms: Q-DCA and Q-DRA. Extensive simulations are
conducted to validate the performance of the proposed algo-
rithms in terms of optimality and computation time complex-
ity by comparing them with exhaustive search and intuitive
centroid-based methods. Numerical results show that both
proposed Q-DRA and Q-DCA can increase sum throughput
by up to 18% compared with intuitive centroid-based methods,
and achieve up to 99.9% optimality of the benchmark. Results
also show that Q-DCA and Q-DRA can obtain the solutions
about 9 times and 210 times faster on average than that of the
exhaustive search method, respectively.

REFERENCES

[1] A. Fotouhi, H. Qiang, M. Ding, M. Hassan, L. G. Giordano, A. Garcia-
Rodriguez, and J. Yuan, “Survey on UAV Cellular Communications:

Practical Aspects, Standardization Advancements, Regulation, and Se-
curity Challenges,” IEEE Communications Surveys Tutorials, vol. 21,
no. 4, pp. 3417–3442, Fourth Quarter 2019.

[2] M. Mozaffari, W. Saad, M. Bennis, Y. Nam, and M. Debbah, “A Tutorial
on UAVs for Wireless Networks: Applications, Challenges, and Open
Problems,” IEEE Communications Surveys Tutorials, vol. 21, no. 3, pp.
2334–2360, Third Quarter 2019.

[3] I. Bor-Yaliniz, M. Salem, G. Senerath, and H. Yanikomeroglu, “Is
5G Ready for Drones: A Look into Contemporary and Prospective
Wireless Networks from a Standardization Perspective,” IEEE Wireless
Communications, vol. 26, no. 1, pp. 18–27, February 2019.

[4] N. Cen, J. Jagannath, S. Moretti, Z. Guan, and T. Melodia, “LANET:
Visible-light ad hoc networks,” Ad Hoc Networks, vol. 84, pp. 107–123,
2019.

[5] N. Cen, “FLight: Toward Programmable Visible-Light-Band Wireless
UAV Networking,” in Proc. of the Workshop on Light Up the IoT,
London, United Kingdom, September 2020.

[6] Z. Z, Y. Yang, C. Guo, M. Chen, S. Cui, and H. V. Poor, “Power
Efficient Deployment of VLC-enabled UAVs,” in Proc. of IEEE An-
nual International Symposium on Personal, Indoor and Mobile Radio
Communications, London, UK, August 2020.

[7] Y. Wang, M. Chen, Z. Yang, T. Luo, and W. Saad, “Deep Learning for
Optimal Deployment of UAVs With Visible Light Communications,”
IEEE Transactions on Wireless Communications, vol. 19, no. 11, pp.
7049–7063, 2020.

[8] Q.-V. Pham, T. Huynh-The, M. Alazab, J. Zhao, and W.-J. Hwang,
“Sum-Rate Maximization for UAV-Assisted Visible Light Communi-
cations Using NOMA: Swarm Intelligence Meets Machine Learning,”
IEEE Internet of Things Journal, vol. 7, no. 10, pp. 10 375–10 387, 2020.

[9] A. Amantayeva, M. Yerzhanova, and R. C. Kizilirmak, “UAV Location
Optimization for UAV-to-Vehicle Multiple Access Channel with Visible
Light Communication,” in Proc. of Wireless Days (WD), Manchester,
UK, April 2019.

[10] Y. Wang, Y. Yang, and T. Luo, “Federated Convolutional Auto-Encoder
for Optimal Deployment of UAVs with Visible Light Communications,”
in Proc. of IEEE International Conference on Communications Work-
shops (ICC Workshops), Dublin, Ireland, June 2020.

[11] Y. Cang, M. Chen, Z. Yang, M. Chen, and C. Huang, “Optimal Resource
Allocation for Multi-UAV Assisted Visible Light Communication,”
arXiv preprint arXiv:2012.13200, 2020.

[12] S. Khairy, P. Balaprakash, L. Cai, and Y. Cheng, “Constrained Deep
Reinforcement Learning for Energy Sustainable Multi-UAV Based Ran-
dom Access IoT Networks With NOMA,” IEEE Journal on Selected
Areas in Communications, vol. 39, no. 4, pp. 1101–1115, 2021.

[13] Y. Long and N. Cen, “Sum-Rate Optimization for Visible-Light-Band
UAV Networks Based on Particle Swarm Optimization,” in Proc. of the
Annual Consumer Communications Networking Conference (CCNC),
Virtual, January 2022.

[14] X. Liu, Y. Liu, and Y. Chen, “Reinforcement Learning in Multiple-UAV
Networks: Deployment and Movement Design,” IEEE Transactions on
Vehicular Technology, vol. 68, no. 8, pp. 8036–8049, 2019.

[15] M. Hazas, C. Kray, H. Gellersen, H. Agbota, G. Kortuem, and A. Krohn,
“A Relative Positioning System for Co-Located Mobile Devices,” in
Proc. of the International Conference on Mobile Systems, Applications,
and Services, Seattle, USA, June 2005.

[16] Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical Wireless
Communications: System and Channel Modelling with MATLAB. Boca
Raton, FL, USA: CRC Press, Inc., 2012.

[17] V. Feinberg, A. Wan, I. Stoica, M. I. Jordan, J. E. Gonzalez, and
S. Levine, “Model-based value estimation for efficient model-free re-
inforcement learning,” arXiv, vol. abs/1803.00101, 2018.

[18] R. Bellman, “Dynamic Programming,” Science, vol. 153, no. 3731, pp.
34–37, 1966.

[19] C. Watkins and P. Dayan, “Q-Learning,” Machine learning, vol. 8, no. 3,
pp. 279–292, 1992.

[20] S. Koenig and R. G. Simmons, “Complexity Analysis of Real-Time
Reinforcement Learning,” in AAAI, vol. 93, Washington, D.C., USA,
July 1993.

[21] A. Kanervisto, C. Scheller, and V. Hautamäki, “Action Space Shaping in
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