
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Engineering Management and Systems
Engineering Faculty Research & Creative Works

Engineering Management and Systems
Engineering

01 Jan 2023

Deep Reinforcement Learning for Approximate Policy Iteration: Deep Reinforcement Learning for Approximate Policy Iteration:

Convergence Analysis and a Post-Earthquake Disaster Response Convergence Analysis and a Post-Earthquake Disaster Response

Case Study Case Study

Abhijit Gosavi
Missouri University of Science and Technology, gosavia@mst.edu

L. (Lesley) H. Sneed
Missouri University of Science and Technology, sneedlh@mst.edu

L. A. Spearing

Follow this and additional works at: https://scholarsmine.mst.edu/engman_syseng_facwork

 Part of the Operations Research, Systems Engineering and Industrial Engineering Commons,

Structural Engineering Commons, and the Structural Materials Commons

Recommended Citation Recommended Citation
A. Gosavi et al., "Deep Reinforcement Learning for Approximate Policy Iteration: Convergence Analysis
and a Post-Earthquake Disaster Response Case Study," Optimization Letters, Springer, Jan 2023.
The definitive version is available at https://doi.org/10.1007/s11590-023-02062-0

This Article - Journal is brought to you for free and open access by Scholars' Mine. It has been accepted for
inclusion in Engineering Management and Systems Engineering Faculty Research & Creative Works by an
authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use
including reproduction for redistribution requires the permission of the copyright holder. For more information,
please contact scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/engman_syseng_facwork
https://scholarsmine.mst.edu/engman_syseng_facwork
https://scholarsmine.mst.edu/engman_syseng
https://scholarsmine.mst.edu/engman_syseng
https://scholarsmine.mst.edu/engman_syseng_facwork?utm_source=scholarsmine.mst.edu%2Fengman_syseng_facwork%2F963&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/305?utm_source=scholarsmine.mst.edu%2Fengman_syseng_facwork%2F963&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/256?utm_source=scholarsmine.mst.edu%2Fengman_syseng_facwork%2F963&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/291?utm_source=scholarsmine.mst.edu%2Fengman_syseng_facwork%2F963&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1007/s11590-023-02062-0
mailto:scholarsmine@mst.edu

Vol.:(0123456789)

Optimization Letters
https://doi.org/10.1007/s11590-023-02062-0

1 3

ORIGINAL PAPER

Deep reinforcement learning for approximate policy
iteration: convergence analysis and a post‑earthquake
disaster response case study

A. Gosavi1 · L. H. Sneed2 · L. A. Spearing3

Received: 30 May 2022 / Accepted: 21 July 2023
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract
Approximate policy iteration (API) is a class of reinforcement learning (RL) algo-
rithms that seek to solve the long-run discounted reward Markov decision process
(MDP), via the policy iteration paradigm, without learning the transition model
in the underlying Bellman equation. Unfortunately, these algorithms suffer from a
defect known as chattering in which the solution (policy) delivered in each itera-
tion of the algorithm oscillates between improved and worsened policies, leading
to sub-optimal behavior. Two causes for this that have been traced to the crucial
policy improvement step are: (i) the inaccuracies in the policy improvement function
and (ii) the exploration/exploitation tradeoff integral to this step, which generates
variability in performance. Both of these defects are amplified by simulation noise.
Deep RL belongs to a newer class of algorithms in which the resolution of the learn-
ing process is refined via mechanisms such as experience replay and/or deep neural
networks for improved performance. In this paper, a new deep learning approach is
developed for API which employs a more accurate policy improvement function, via
an enhanced resolution Bellman equation, thereby reducing chattering and eliminat-
ing the need for exploration in the policy improvement step. Versions of the new
algorithm for both the long-run discounted MDP and semi-MDP are presented. Con-
vergence properties of the new algorithm are studied mathematically, and a post-
earthquake disaster response case study is employed to demonstrate numerically the
algorithm’s efficacy.

Keywords Deep reinforcement learning · Model building · Noise reduction ·
Approximate policy iteration · Disaster response

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s11590-023-02062-0&domain=pdf
http://orcid.org/0000-0002-9703-4076

 A. Gosavi et al.

1 3

1 Introduction

Markov decision processes (MDPs) [26] are sequential decision-making problems
frequently used to make key decisions within discrete-event systems that maximize
net revenues (usually called rewards in operations research) or equivalently mini-
mize net costs. Semi-MDPs (SMDPs) [22, 26] are a variant of this class of problems
in which time is an integral part of the performance metric or objective function by
which the system’s performance is evaluated. Dynamic programming (DP) methods,
which primarily use the so-called value function (or cost-to-go function), are used
to solve these problems exactly. In recent times, there has been significant interest
in reinforcement learning or RL [6, 30], which can solve these problems with less
exactitude when the so-called transition model underlying the MDP or SMDP is not
available because of complex system dynamics, but a simulator of the system can
be constructed with less effort. RL is derived from DP and has two major branches
based on the two DP methodologies: value iteration and policy iteration [1]. RL
methods derived from value iteration are rooted in the Q-Learning algorithm that
employs the so-called Q-function, while those derived from policy iteration belong
to a class called Approximate Policy Iteration or API (see [2] for a comprehensive
survey). RL methods belonging to the value and policy iteration classes are now
studied in many textbooks, a subset of which are [3, 8–10, 20].

The underlying mechanism in API is illustrated in Fig. 1. Starting with any arbi-
trary policy (generally a sub-optimal solution of the problem), the policy’s perfor-
mance is evaluated via the so-called policy evaluation step, an improved policy is
generated via the policy improvement step, and the process returns to the policy
evaluation step to evaluate the improved policy’s performance. This process contin-
ues until no further improvement is possible in the policy’s performance, when the
algorithm is terminated. This mechanism works elegantly when the transition prob-
abilities are known [23, 27, 33], which is referred to as a model-based setting. This
is in contrast to the model-free setting in which RL operates. The policy evaluation
step can be performed in a satisfactory manner using a version of temporal differ-
ence learning [30]. However, the policy improvement step is just as crucial for the
algorithm’s satisfactory behavior, and ideally requires the transition model, which,
as stated above, is not available in the model-free setting of RL. Therefore, several
schemes have been derived to circumvent this difficulty.

Fig. 1 The scheme underlying approximate policy iteration algorithms: the algorithm’s cycle involves
one policy evaluation step and one policy improvement step

1 3

Deep reinforcement learning for approximate policy iteration:…

An early approach for average reward MDPs and SMDPs employs a Q-function-
based technique, bypassing the value function of classical DP, in which a separate
function is used to perform policy improvement [17]. Another early approach for
discounted MDPs employs the value function in combination with a genetic search
for policy improvement [11]. Other works based on approximate policy improve-
ment for discounted reward MDPs include the rollout algorithm [5], where only one
step of policy improvement is performed, the so-called relational space technique
[14], and the �-policy iteration algorithm [28]. For discounted reward MDPs, the
book [6] presents a class of methods called conservative approximate policy itera-
tion (CAP), along with a phenomenon called chattering, associated with the imper-
fect policy improvement step in API. This phenomenon is defined as the oscillation
between improved and worsened policies. For instance, during chattering, after an
improved policy is generated (see Fig. 1), the policy evaluation and the subsequent
policy iteration lead to a worse policy in the next cycle. This phenomenon does not
occur when the transition model is available, as the transition probabilities allow for
generating a perfect policy improvement function; however, chattering is a charac-
teristic feature of almost all API algorithms, as the policy improvement function is
inaccurate in current API methods. Research interest in API surged recently after
superhuman performance was reported with a computer program playing AlphaGo
and other computer games at Google via API based on policy gradients and stochas-
tic policies [4, 29]. An additional notable feature of API is that it is faster than the
older class of algorithms based on value iteration, e.g., Q-Learning [30], although
the latter does not chatter.

Another strand of active research in RL is that of deep RL, where the word deep
is associated with delivering high-resolution features in images and functions (see
[25, 32] and references therein). The overarching goal of deep RL is to ameliorate
a key drawback of model-free RL by delivering a high-fidelity Q-function or value
function that closely approximates the ideal function produced by DP. One version
of deep RL uses experience replays, which require the simulated transitions to occur
repeatedly on a trajectory within the simulator, thereby minimizing the impact of the
lack of the transition model on the Q-function. Another version of deep RL employs
deep neural networks to generate a more accurate Q-function from the samples from
a simulator.

This paper proposes a new algorithm for discounted reward SMDPs, based on
a deep learning approach, that indirectly constructs the transition model, thereby
minimizing the impact of noise and thus the chattering, while sidestepping the issue
of heuristic exploration in the policy improvement. The algorithm is henceforth
called Model-building Approximate Policy iteration or MAP. Building the transi-
tion model, especially the transition probabilities, through counting transitions in a
simulator or the real-world system is computationally intensive; yet researchers have

 A. Gosavi et al.

1 3

successfully built such models, albeit without any deep learning [31, 34, 35]. The
novelty of MAP lies in its ability to build via deep learning the transition model
required for policy improvement, while bypassing the approach of direct estimation
of transition probabilities, and still delivering a high-fidelity version of the policy
improvement function. The more accurate policy improvement function produced
helps reduce the intensity of the phenomenon of chattering, as MAP makes progress
and becomes stable, thereby enhancing the algorithm’s efficacy. To the authors’ best
knowledge, this is the first API algorithm that seeks to reduce chattering and the
need for exploration in the policy improvement step. How MAP can be particularly
useful in the disaster response context, where the speed and efficiency of such an
algorithm is imperative, is demonstrated via a post-earthquake disaster response
case study from St. Louis, MO. It is hypothesized that the MAP algorithm will pro-
vide decision-support for emergency response quicker than current methods (e.g.,
CAP and Q-Learning).

2 Background

Notation, definitions, and assumptions needed in this paper are defined below:

• i, j, and l: Index for states
• S : The finite set of decision-making states
• A(i) : The finite set of actions available in state i
• A : The union of sets A(i) for all i ∈ S

• � : A stationary, deterministic policy
• �(i) : The action chosen in state i under policy �
• p(i, a, j): The probability of one transition from state i to state j when action

a ∈ A(i) is chosen in state i
• r(i, a, j): The immediate reward accrued in one transition from state i to state j

under action a ∈ A(i) in state i
• t(i, a, j): The mean value of the immediate time spent in one transition from state

i to state j under action a ∈ A(i) in state i
• r̄(i, a) =

∑
j∈S p(i, a, j)r(i, a, j) : The mean reward earned in one transition from

state i under action a ∈ A(i)

• t̄(i, a) =
∑

j∈S p(i, a, j)t(i, a, j) : The mean time spent in one transition from state i
under action a ∈ A(i)

• q ≡ (i, a) : Short for the state-action pair (i, a)
• � : The time rate of discounting
• J�(i) : Value function at state i of policy �
• Jk(i) : Estimate of the value function of state i in kth iteration
• �, �, � , and � : Learning rates in reinforcement learning

1 3

Deep reinforcement learning for approximate policy iteration:…

• s, k, m, and n: Iteration indices in reinforcement learning
• Rm(i, a) and Tm(i, a) : Estimate of r̄(i, a) and t̄(i, a) , respectively, in the mth itera-

tion
• Fn

�
(i, a) : Estimate of future state-action value in nth iteration for the (i, a)th state-

action pair under policy �
• F̄𝜇(i, a) =

∑
j∈S p(i, a, j)J𝜇(j) : Expected future state-action value for the (i, a)th

state-action pair under policy �
• w.p.1: With probability 1

An SMDP is defined as a 5-tuple, < S,A,P,R, T > , where S and A are defined
above, while P , R , T denote the set of transition probability, reward, and time
matrices, respectively, for every action. The MDP is a special case of the SMDP in
which the transition time, t(., ., .) equals one everywhere. The SMDP will be studied
in this paper under the following assumptions [26]:

A1 The Markov chain associated with every stationary, deterministic policy �
is regular, i.e., the transition probability matrix associated to the policy converges
when raised to a sufficiently high power.

A2 The functions, r(., ., .) and t(., ., .), are both bounded.
A3 The reward is earned at the start of the state transition.
The objective function in this work is the long-run (i.e., infinite-horizon) dis-

counted reward. For each state i ∈ S , under a given policy � , it equals:

where xc denotes the state in the cth transition of the Markov chain driven by pol-
icy � , and �[.] denotes the expectation operator over all trajectories under policy � .
The goal of the SMDP is to maximize the function defined above for every i ∈ S .
The Bellman equation for a given policy, which is employed in policy iteration and
MAP, is now presented via a fundamental result [1, 26]:

Theorem 1 Under Assumptions A1: A3, for any stationary deterministic policy, � ,
there exists a value function J� ∶ S → ℜ satisfying the following system of equa-
tions for all i ∈ S,

The following two conditions will also be needed for the RL algorithm.
A4 If �s denotes the learning rate in the sth iteration, then:

lim
C→∞

𝖤

[
C∑
c=0

exp
(
−c�t(xc,�(xc), xc+1)

)
r(xc,�(xc), xc+1)

||||||
x0 = i

]
,

(1)J𝜇(i) = r̄(i,𝜇(i)) +
∑
j∈S

p(i,𝜇(i), j) exp(−𝛾t(i,𝜇(i), j))J𝜇(j).

 A. Gosavi et al.

1 3

The learning rates, � , � , and � , in the RL algorithms are assumed to follow the above
condition, which is standard in stochastic approximation [6].

A5 (i.i.d) Random samples generated in the simulator for any given random vari-
able are mutually independent and belong to an identical distribution.

Next, the root-finding version of the Robbins-Monro theorem is presented (see
Prop 4.1, along with Example 4.2, from [6]):

Theorem 2 Under Assumptions A4 and A5, consider the stochastic gradient algo-
rithm for minimizing a cost function, g ∶ ℜN

→ ℜ , which satisfies the conditions:
(i) g(.) is positive everywhere, (ii) g(.) is continuously differentiable, and (iii) g(.)’s
derivative is Lipschitz continuous:

in which vs(.) denotes the noise in the derivative’s estimate in the sth iteration, where
the noise has a zero mean and its second moment is bounded by a function of the
derivative of g(.). Then, w.p.1:

3 Steps in the MAP algorithm

Steps in the proposed MAP algorithm for a discounted reward SMDP are presented
via Algorithm 1. Note that Step A in the algorithm is performed only once, while
the algorithm iterates through Step B (policy evaluation, i.e., Eqs. (2) and (3) and
Step C (policy improvement, i.e., Eq. (4) for K cycles. Further, note that the final
policy delivered by the algorithm after K iterations is �′ . The expression to the right
within square brackets in Eq. (4) is the policy improvement function discussed in
Sect. 1. Finally, note that MAP’s MDP version can be obtained by setting t(., ., .) = 1
everywhere in the algorithm.

𝛿s ∈ (0, 1);

∞∑
s=1

𝛿s = ∞;

∞∑
s=1

(𝛿s)
2
< ∞.

ys+1(q) = ys(q) − �s
[
∇g(ys(q)) + vs(q)

]
for q = 1, 2,… ,N

lim
s→∞

∇g(ys(q)) = 0 for q = 1, 2,… ,N.

1 3

Deep reinforcement learning for approximate policy iteration:…

 A. Gosavi et al.

1 3

4 Convergence analysis

Many RL algorithms can be analyzed for convergence by showing that they belong
to the following asynchronous update [6]:

where G(.) denotes a transformation on the vector X , wk(i) is a noise term in the kth
iteration, and �k = 0 if X(i) is not updated in the kth iteration of the asynchronous
algorithm. The value function J(.) in Eq. (2) (Step B1) is represented in this analysis
by a vector, J . The transformation G and the noise vector w for the update in Eq. (2)
are defined as follows:

where �k is the random state reached when action �(i) is chosen in state i in the kth
iteration. The following two lemmas are needed to show convergence.

Lemma 1 The transformation G(.) is contractive in the infinity norm.

The proof of the above is closely related to that for G(.)’s counterpart used in
MDPs and is hence provided in the Appendix.

Lemma 2 The sequence {Jk}∞
k=1

 remains bounded.

The proof of the above has similarities to an analogous result for Q-Learning
[18], but since this is a different algorithm, a proof is necessary and presented in the
Appendix.

Proposition 1 The sequence {Jk}∞
k=1

 in the policy evaluation step (Step B1) con-
verges to a solution of Eq. (1) w.p.1 under Assumptions A1: A5.

Proof The noise term defined in Eq. (7) has a conditional mean of zero. Since the
sequence {Jk}∞

k=1
 remains bounded from Lemma 2, the conditional second moment

of the noise term is also bounded. The result then follows from Prop 4.4 of [6] after
noting that G(.) is contractive (from Lemma 1). ◻

The following result establishes the convergence of MAP.

(5)Xk+1(i) ← (1 − �k)Xk(i) + �k
[
G(Xk)(i) + wk(i)

]
,

(6)G(Jk)(i) =
∑
j∈S

p(i,�(i), j)
[
r(i,�(i), j) + exp(−�t(i,�(i), j))Jk(j)

]
∀i;

(7)
wk(i) = r

(
i,�(i), �k

)
+ exp

(
−�t

(
i,�(i), �k

))
Jk(�k)

−
∑
j∈S

p(i,�(i), j)
[
r(i,�(i), j) + exp(−�t(i,�(i), j))Jk(j)

]
∀i,

1 3

Deep reinforcement learning for approximate policy iteration:…

Proposition 2 The MAP algorithm converges to an optimal solution of the SMDP
w.p.1 under Assumptions A1:A5.

Proof Herein the Robbins-Monro theorem (Theorem 2) is used to show convergence
of iterates in Steps A and B2. For the iterate, Rm(., .) in Step A, g(.) in the Robbin-
Monro theorem is defined, noting q ≡ (i, a) and ys(q) ≡ Rm(i, a) , as:

Then, ∇g(Rm(i, a)) = Rm(i, a) − r̄(i, a). Also, the noise term here is defined as:
vm(i, a) = r̄(i, a) − r(i, a, 𝜉m), where �m denotes the random state reached when
action a is chosen in state i. Then, Step A can be written in the form of the Robbins-
Monro update as:

Since the function g(.) defined in Eq. (8) is always positive and continuously differ-
entiable, and since its derivative, (Rm(i, a) − r̄(i, a)) , is linear in Rm(., .) , the deriva-
tive is Lipschitz continuous; the derivative is also bounded from Assumption A2.
That the noise term vm(i, a) = r(i, a, 𝜉m) − r̄(i, a) has a zero mean follows from the
definition of r̄(., .) (see Sect. 2) and from the i.i.d nature of the samples (Assumption
A5). From Assumption A2, the variance of the noise is also bounded as a function
of g(.)’s derivative, which is itself bounded. Then, Theorem 2 applies and the deriv-
ative of g(.) converges to zero, i.e.,

Via very similar arguments and using the definition of t̄(i, a) from Sect. 2, it follows
that:

From Prop. 1, J∞(i) = J�(i) ∀i , which is bounded and a constant for any given value
of i. Then, using arguments analogous to those above, it follows from the update of
Step B2 in Eq. (3) and the definition of F̄𝜇(i, a) from Sect. 2 that

The above together with Eqs. (9) and (10) implies that the policy iteration step (i.e.,
Step C) in MAP is equivalent to:

(8)g(Rm(i, a)) =
1

2
(Rm(i, a) − r̄(i, a))2.

Rm+1(i, a) = Rm(i, a) − 𝛼m[Rm(i, a) − r(i, a, 𝜉m)]

= Rm(i, a) − 𝛼m[Rm(i, a) − r̄(i, a) + r̄(i, a) − r(i, a, 𝜉m)]

= Rm(i, a) − 𝛼m∇g(Rm(i, a)) − 𝛼mvm(i, a).

(9)lim
m→∞

Rm(i, a) = r̄(i, a) ∀(i, a) w.p.1.

(10)lim
m→∞

Tm(i, a) = t̄(i, a) ∀(i, a) w.p.1.

lim
n→∞

Fn
𝜇
(i, a) = F̄𝜇(i, a) ≡

∑
j∈S

p(i, a, j)J𝜇(j) ∀(i, a) w.p.1.

 A. Gosavi et al.

1 3

which mimics the policy improvement step in the classical policy iteration algorithm
for SMDPs (see Chap 11. of [26]). This ensures the algorithm’s convergence to an
optimal solution of the SMDP w.p.1. ◻

5 Numerical results and case study

The first example for numerical testing is a discounted SMDP for which the tran-
sition model is known, allowing the computation of the optimal policy via DP.
The problem has four states and two actions in each state, whose transition model
data are provided in the Appendix. The optimal policy derived from the policy

𝜇�(i) ∈ argmaxa∈A(i)

[
r̄(i, a) + exp(−𝛾 t̄(i, a))

∑
j∈S

p(i, a, j)J𝜇(j)

]
,

Fig. 2 Plot of MAP’s value function for state 1, i.e., J(1), against the number of iterations in the first
numerical example: The flat line shows the optimal value, J∗(1) , obtained from policy iteration

Table 1 Comparison of value
functions from policy iteration,
MAP, CAP, and Q-Learning

State Policy Iteration MAP CAP Q-learning

1 56.10 56.20 56.58 60.54
2 38.76 39.64 38.78 30.22
3 26.07 24.94 25.76 26.54
4 24.97 25.82 26.02 30.36

1 3

Deep reinforcement learning for approximate policy iteration:…

iteration algorithm is: action 2 in states 1 and 3 and action 1 in states 2 and 4.
MAP, CAP (see Appendix for details), and Q-Learning (for SMDPs [7]) return
the same policy. The log rate, i.e., log(k)/k, from [19] was used for all learning
rates, as it delivered the best results. Table 1 compares the optimal value function
obtained from policy iteration of dynamic programming and that obtained from
MAP, CAP, and Q-Learning. Figure 2 shows the behavior of MAP in generating
the value function for a sample state.

A more complex problem from the domain of post-earthquake disaster
response was chosen for testing MAP and benchmarking it against CAP and
Q-Learning for SMDPs. The details of this case study are derived from [21].

A specific area prone to a major earthquake with a large number of seismically
deficient buildings is modeled. An example of this is the downtown area of St.
Louis, MO, which is about 240 km from the New Madrid Seismic Zone [15]. Three
major incidents that could spur from an earthquake, Gas Leakage (G), Fire (F), and
Building Collapse (BC), are used in the model. The state of the system is defined by
the various incidents present. There are 8 states in the specific system studied here:
{Stable} (pre-earthquake), {G} , {F},{BC} , {G,F} , {G,BC} , {F,BC} , and {G,F,BC} ,
numbered respectively 0 through 7. When an earthquake occurs, the system transi-
tions to any of the so-called primary states, numbered 1 through 4, with probability
PP (provided in the Appendix); these are the decision-making states. While only 4
decision-making states are included in the model, deriving the transition model is
tedious, as there are numerous non-decision-making states driven by complex tran-
sition mechanisms. On the other hand, the system can be simulated easily using RL
algorithms. When one of these 4 states is reached, a decision is made in regards
to which of two agencies is asked to respond: A local agency or a federal agency.
This corresponds to the two actions allowed in each decision-making state. After the
agency is called, it takes time, called travel time, for the respondents to arrive on the
scene. During this time, the system can transition into one of the significantly worse,
so-called secondary states, numbered 5 through 7, or it can remain in the same state.
The probabilities of these transitions, SP, are modeled from [21], which are also pro-
vided in the Appendix. After the respondents arrive on the scene, the time spent to
neutralize the hazards and shift any injured persons to hospitals, eventually bringing
the situation under control, is called the response time.

A local agency typically arrives sooner on the scene, i.e., has a shorter travel
time, but is likely to have a lower volume of resources available and limited capabil-
ity, i.e., has a longer response time. On the other hand, a federal agency typically
takes longer to arrive, i.e., has a longer travel time, but is likely to have additional
resources, i.e., has a shorter response time. There is thus a tradeoff in choosing the
agency. A suitable decision needs to be made by the disaster managers depending on
the level of hazard indicated in the primary state. A cost is assumed in the model for
being in each of the 7 primary and secondary states. The cost incurred in a state, s,
equals HS(s)�(s) , where HS(.) is a hazard score associated to state s, and �(s) equals
the time for which the incident poses hazardous conditions for the persons affected
[16]. Cost data used in the experiments are provided in the Appendix.

The solution delivered by MAP, as well as by CAP and Q-Learning, is to call
the local agency for states 1, 2, and 4 and the federal agency for state 3. This is a

 A. Gosavi et al.

1 3

reasonable solution, as 1, 2, and 4 are lower hazard states (fire, gas leakage, or a
combination of the two), while 3 (building collapse) is a higher hazard state. The
algorithm thus demonstrates satisfactory behavior without requiring any explicit
knowledge of the underlying system’s dynamics, but numerical tests on instances of
larger dimensions are beyond the scope of this paper. The computer programs were
written in MATLAB and executed on a personal computer in a university setting
using an Intel processor Intel(R)-Core(TM) equipped with 3.30 GHz within a 64-bit
operating system. The log-rule learning rates were used again for all algorithms.
Table 2 shows that MAP compares favorably against CAP and Q-Learning in runt-
ime and against CAP in number of iterations needed for convergence; as Q-Learning
is based on value iteration, which has a different nature, it cannot be compared on
the basis of number of iterations. Further, to demonstrate the reduced chattering in
MAP, Fig. 3 contrasts the runtime behavior of MAP and CAP.

Table 2 Comparison of MAP,
CAP, and Q-Learning in which
K denotes the number of
iterations needed in MAP and
CAP

Metric MAP CAP Q-Learning

K 10 81 –
Runtime (s) 3.8398 5.9403 4.2132

Fig. 3 Plot of J(1), the value function of state 1, against the number of iterations for MAP and CAP: The
diamonds represent MAP’s values, and the stars represent CAP’s values. The plot shows more significant
chatter in CAP than in MAP in the zone of oscillation (shown within dotted lines) and a larger number of
iterations needed by CAP for convergence

1 3

Deep reinforcement learning for approximate policy iteration:…

6 Conclusions and future research

This paper presented a new RL algorithm called Model-building Approximate
Policy iteration, or MAP, based on a deep learning approach for approximate pol-
icy iteration (API). The novelty of MAP lies in its ability to build elements of the
transition model required for policy improvement, while bypassing the approach
of direct estimation of the transition probabilities, but delivering a high fidel-
ity version of the policy improvement function. To the authors’ best knowledge,
this is the first API algorithm that reduces chattering associated with API and
the need to explore via the policy improvement step. The algorithm was studied
with a discounted SMDP, which applies more frequently in real-world problems
than the more commonly studied MDP. Numerical testing showed MAP was able
to return the optimal policy in the case of a problem with a known transition
model. For a more complex problem without a known transition model, MAP was
shown to return a satisfactory solution, delivering the solution faster than CAP
and Q-Learning and with less chattering than CAP.

The reduced chattering, and ultimately the reduced runtime offered by MAP, as
compared to CAP, paves the way for many different applications including future
extensions to large scale-disaster response problems. Examples of such problems
include equitable disaster response, rescue, and sheltering in the field [12], where
disaster managers must balance multiple competing pressures and make decisions
quickly. Future research can use MAP to help mitigate the disproportionate disas-
ter impacts experienced by vulnerable populations [13].

Appendix

Proof (Lemma 1) Note that since 𝛾 > 0 and t(., ., .) > 0 , there exists a � ∈ (0, 1) such
that:

From G(.)’s definition in Eq. (6), for any two vectors, Jk and �
k
:

(11)max
i,j∈S;a∈A(i)

exp(−�t(i, a, j)) ≤ �.

G(Jk)(i) − G(J
k
)(i) =

∑
j∈S

p(i,𝜇(i), j) exp(− ̄𝛾t(i,𝜇(i), j)
[
Jk(j) − J

k
(j)
]

∀i.

 A. Gosavi et al.

1 3

Then, maxi∈S
||||G(J

k)(i) − G(J
k
)(i)

|||| = ||G(Jk) − G(�
k
)||∞ ≤ �||Jk − �

k||∞ . ◻

Proof (Lemma 2) It is claimed that for every i ∈ S:

and � is defined via Eq. (11). Then, the result follows from the fact that:

The claim in (12) is proved via induction. In asynchronous updating, two cases can
occur:

Case 1 The value for a state visited in the kth iteration is updated:
Jk+1(i) = (1 − �k)Jk(i) + �k

[
r(i, a, j) + exp(−�t(i, a, j))Jk(j)

]
.

Case 2 The value for a state not visited in the kth iteration is not updated:
Jk+1(i) = Jk(i).

When the update is carried out as in Case 1:

When the update is carried out as in Case 2: |J2(i)| = |J1(i)| ≤ M ≤ M(1 + �). The
claim thus holds for k = 1 . When the claim holds for k = m , one has that:

Under Case 1: ∀i:

Then, ∀i ∶
||||G(J

k)(i) − G(J
k
)(i)

|||| ≤
∑
j∈S

p(i,𝜇(i), j) exp(− ̄𝛾t(i,𝜇(i), j)max
j∈S

||||J
k(j) − J

k
(j)
||||

≤

∑
j∈S

p(i,𝜇(i), j)𝜆max
j∈S

||||J
k(j) − J

k
(j)
|||| from Eq.(11)

=
∑
j∈S

p(i,𝜇(i), j)𝜆||Jk − �
k||∞

= 𝜆||Jk − �
k||∞

∑
j∈S

p(i,𝜇(i), j) = 𝜆||Jk − �
k||∞.

(12)|Jk(i)| ≤ M(1 + � + �2 +⋯ + �k),

where M = max

{
max

i,j∈S,a∈A(i)
|r(i, a, j)|, max

i∈S
|J1(i)|

}

lim sup
k→∞

|Jk(i)| ≤ M
1

1 − �
for all i ∈ S.

|J2(i)| ≤ (1 − 𝜂1)|J1(i)| + 𝜂1|r(i, a, j) + exp(−𝛾t(i, a, j)J1(j)|
≤ (1 − 𝜂1)|J1(i)| + 𝜂1|r(i, a, j) + 𝜆J1(j)| from (11)

≤ (1 − 𝜂1)M + 𝜂1M + 𝜂1𝜆M from M�s definition

< (1 − 𝜂1)M + 𝜂1M + 𝜆M = M(1 + 𝜆) since 𝜂1 < 1

|Jm(i)| ≤ M(1 + � + �2 +⋯ + �m) ∀i.

1 3

Deep reinforcement learning for approximate policy iteration:…

Under Case 2: ∀i:

 ◻

Data for discounted SMDP with known transition model Pa , Ra , and Ta , the transi-
tion probability, reward, and time matrices for action a, respectively, used are:

Other constants in MAP were set to the following values: � = 0.1 ,
mmax = kmax = nmax = 100 , and K = 5.

Data for post-earthquake disaster response SMDP
PP = [0.375, 0.2, 0.35, 0.075] , where PP(s) denotes the probability of going from
the stable state to a primary state s. The following values were used for SP matrix:

where SP(s1, s2) denotes the probability of transition from a state, s1 , in the set
of primary states to a state,s2 , in the union of the sets of the primary and second-
ary states. The following values were used for the hazard scores: HS(1) = log(2) ,
HS(2) = log(4) , HS(3) = log(8) , HS(4) = log(6) , HS(5) = log(10) , HS(6) = log(12) ,
and HS(7) = log(14) . Natural logarithms were used here for costs, as RL algorithms
can suffer from computer overflow with large absolute values for costs, especially in
discounted problems [24]. The response time for a state s is defined following [21]:

|Jm+1(i)| ≤ (1 − �m)|Jm(i)| + �m|r(i, a, j) + exp(−�t(i, a, j))Jm(j)|
≤ (1 − �m)|Jm(i)| + �m|r(i, a, j) + �Jm(j)|
≤ (1 − �m)M(1 + � + �2 +⋯ + �m) + �mM + �m�M(1 + � + �2 +⋯ + �m)

= M(1 + � + �2 +⋯ + �m) + �mM�m+1

≤ M(1 + � + �2 +⋯ + �m) +M�m+1 = M(1 + � + �2 +⋯ + �m + �m+1).

|Jm+1(i)| =|Jm(i)| ≤ M(1 + � + �2 +⋯ + �m) ≤ M(1 + � + �2 +⋯ + �m + �m+1).

�1 =

⎡

⎢

⎢

⎢

⎣

0.6, 0.2, 0.1, 0.1
0.2, 0.3, 0.1, 0.4
0.1, 0.6, 0.2, 0.1
0.2, 0.4, 0.2, 0.2

⎤

⎥

⎥

⎥

⎦

; �2 =

⎡

⎢

⎢

⎢

⎣

0.5, 0.1, 0.2, 0.2
0.2, 0.4, 0, 0.4
0.2, 0.5, 0.1, 0.2
0.6, 0.2, 0.1, 0.1

⎤

⎥

⎥

⎥

⎦

; �1 =

⎡

⎢

⎢

⎢

⎣

6,−5, 0, 12
7, 120, 3, 1
5, 4, 12, 3
7, 48, 10, 10

⎤

⎥

⎥

⎥

⎦

;

�2 =

⎡

⎢

⎢

⎢

⎣

100, 17, 0, 10
−14, 13, 0, 1
9, 40, 7, 12
12, 12, 10, 14

⎤

⎥

⎥

⎥

⎦

; �1 =

⎡

⎢

⎢

⎢

⎣

1, 5, 2, 5
120, 60, 30, 30
2, 7, 12, 14
135, 55, 45, 30

⎤

⎥

⎥

⎥

⎦

; �2 =

⎡

⎢

⎢

⎢

⎣

50, 75, 20, 12
7, 2, 7, 2
35, 65, 30, 20
50, 30, 50, 70

⎤

⎥

⎥

⎥

⎦

�� =

⎡⎢⎢⎢⎣

0.1, 0.3, 0, 0.5, 0, 0, 0.1

0, 0.1, 0, 0.35, 0, 0.35, 0.2

0, 0, 0.1, 0, 0.5, 0.2, 0.2

0, 0, 0, 0.1, 0, 0, 0.9

⎤⎥⎥⎥⎦
,

 A. Gosavi et al.

1 3

RTc(s) =
∑

d∈I(s) RT(d)� , where I(s) denotes the incidents present in state s, RT(d)
denotes the response time for an incident, d, and � is a correction factor that equals 1
for a state that contains one incident, 1.2 for a state that contains two incidents, and
1.3 for a state that contains three incidents. The following values were used (all in
hours): RT(G) = 7 +

5

X
 , RT(F) = 21 +

15

X
 , and RT(BC) = 35 +

25

X
 , where X = 1 for

the local agency and X = 2 for the federal agency. Finally, for the local and federal
agencies, the travel time were TRIA(0.5, 1, 1.5) and TRIA(4, 5, 6), respectively, in
hrs, where TRIA denotes the triangular distribution. Other constants in MAP were
set as follows: � = 0.1 , mmax = kmax = nmax = 10, 000 , and K = 10.

Steps in conservative approximate policy iteration (CAP) CAP uses Q-values
instead of the future state-action values and bypasses model building. It has the
same structure as MAP (see Algorithm 1 in main text) with the following excep-
tions: Step A (model-building) is skipped; Step B2 is replaced by evaluation of
the Q-values, i.e., Eqn. (3) is replaced by: Update the Q-value for (i, a) as follows:

Step C, policy is improved, i.e., for each i ∈ S , select ��(i) ∈ argmaxa∈A(i)Q
∞(i, a),

where Q∞(., .) denotes the final Q-value obtained in Step B2.

Acknowledgements The paper has benefitted significantly from responding to suggestions from the
Associate Editor and the reviewers. The authors thank the first reviewer for revisions leading to per-
formance comparisons with CAP, the second reviewer for the Robbins-Monro analysis, and the third
reviewer for the added numerical details in the first computational test.

References

 1. Bertsekas, D.P.: Dynamic Programming and Optimal Control, 4th edn. Athena, Belmont (2012)
 2. Bertsekas, D.P.: Feature-based aggregation and deep reinforcement learning: a survey and some

new implementations. IEEE/CAA J Autom Sin 6(1), 1–31 (2018)
 3. Bertsekas, D.P.: Reinforcement Learning and Optimal Control. Athena, Belmont (2019)
 4. Bertsekas, D.P.: Rollout, Policy Iteration, and Distributed Reinforcement Learning. Athena, Bel-

mont (2021)
 5. Bertsekas, D.P., Castanon, D.A.: Rollout algorithms for stochastic scheduling problems. J Heu-

ristics 5(1), 89–108 (1999)
 6. Bertsekas, D.P., Tsitsiklis, J.N.: Neuro-Dynamic Programming. Athena, Belmont (1996)
 7. Bradtke, S.J., Duff. M.: Reinforcement learning methods for continuous-time Markov decision

problems. In Advances in Neural Information Processing Systems 7, MIT Press, Cambridge
(1995)

 8. Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Pro-
gramming Using Function Approximators. CRC Press, Boca Raton (2010)

 9. Cao, X.R.: Stochastic Learning and Optimization: A Sensitivity-Based View. Springer, Berlin
(2007)

 10. Chang, H.S., Fu, M.C., Hu, J., Marcus, S.I.: Simulation-Based Algorithms for Markov Decision
Processes, 2nd edn. Springer, NY (2013)

 11. Chang, H.S., Lee, H.-G., Fu, M.C., Marcus, S.: Evolutionary policy iteration for solving Markov
decision processes. IEEE Trans. Autom. Control 50(11), 1804–1808 (2005)

 12. de la Torre, L.E., Dolinskaya, I.S., Smilowitz, K.R.: Disaster relief routing: integrating research
and practice. Socioecon. Plann. Sci. 46(1), 88–97 (2012)

 13. FEMA. 2022-2016 Strategic plan. https:// www. fema. gov/ about/ strat egic- plan, (2023)

Qn+1(i, a) ← (1 − �n)Qn(i, a) + �n
[
r(i, a, j) + exp (−�t(i, a, j))J∞(j)

]
;

https://www.fema.gov/about/strategic-plan

1 3

Deep reinforcement learning for approximate policy iteration:…

 14. Fern, A., Yoon, S., Givan, R.: Approximate policy iteration with a policy language bias: solving
relational Markov decision processes. J Artif Intell Res 25, 75–118 (2006)

 15. Fraioli, G., Gosavi, A., Sneed, L.H.: Strategic implications for civil infrastructure and logistical
support systems in postearthquake disaster management: the case of St. Louis. IEEE Eng Manag
Rev 49(1), 165–173 (2020)

 16. Ghosh, S., Gosavi, A.: A semi-Markov model for post-earthquake emergency response in a smart
city. Control Theory Technol 15(1), 13–25 (2017)

 17. Gosavi, A.: A reinforcement learning algorithm based on policy iteration for average reward:
empirical results with yield management and convergence analysis. Mach. Learn. 55, 5–29
(2004)

 18. Gosavi, A.: Boundedness of iterates in Q-learning. Syst. Control Lett. 55, 347–349 (2006)
 19. Gosavi, A.: On step-sizes, stochastic paths, and survival probabilities in reinforcement learning. In

Proceedings of the winter simulation conference. IEEE, (2008)
 20. Gosavi, A.: Simulation-Based Optimization: Parametric Optimization Techniques and Reinforce-

ment Learning, 2nd edn. Springer, NY (2015)
 21. Gosavi, A., Fraioli, G., Sneed, L.H., Tasker, N.: Discrete-event-based simulation model for perfor-

mance evaluation of post-earthquake restoration in a smart city. IEEE Trans. Eng. Manag. 67(3),
582–592 (2019)

 22. Hoffman, M., de Freitas, N.: Inference Strategies for Solving Semi-Markov Decision Processes. In
Decision Theory Models for Applications in Artificial Intelligence: Concepts and Solutions, pp.
82–96. IGI Global, Pennsylvania (2012)

 23. Howard, R.: Dynamic Programming and Markov Processes. MIT Press, Cambridge (1960)
 24. Matsui, T., Goto, T., Izumi, K., Chen, Y.: Compound reinforcement learning: theory and an applica-

tion to finance. In European workshop on reinforcement learning, pp. 321–332. Springer (2011)
 25. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.C., Graves, A., Ried-

miller, M., Fidjeland, A.K., Ostrovski, G.: Human-level control through deep reinforcement learn-
ing. Nature 518(7540), 529–533 (2015)

 26. Puterman, M.L.: Markov Decision Processes. Wiley, NY (1994)
 27. Puterman, M.L., Shin, M.C.: Modified policy iteration for discounted Markov decision problems.

Manage. Sci. 24, 1127–1137 (1978)
 28. Scherrer, B.: Performance bounds for � policy iteration and application to the game of tetris. J.

Mach. Learn. Res. 14(4), (2013)
 29. Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L.,

Kumaran, D., Graepel, T.: A general reinforcement learning algorithm that masters chess, shogi, and
go through self-play. Science 362(6419), 1140–1144 (2018)

 30. Sutton, R., Barto, A.G.: Reinforcement Learning: An Introduction, 2nd edn. The MIT Press, Cam-
bridge (2018)

 31. Tadepalli, P., Ok, D.: Model-based average reward reinforcement learning algorithms. Artif. Intell.
100, 177–224 (1998)

 32. Van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double Q-learning. In Pro-
ceedings of AAAI conference on Art. Intel., vol. 30, No. (1) (2016)

 33. van Nunen, J.A.E.E.: A set of successive approximation methods for discounted Markovian decision
problems. Z. Operat. Res. 20, 203–208 (1976)

 34. van Seijen, H., Whiteson, S., van Hasselt, H., Wiering, M.: Exploiting best-match equations for effi-
cient reinforcement learning. J. Mach. Learn. Res. 12, 2045–2094 (2011)

 35. Yoshida, W., Ishii, S.: Model-based reinforcement learning: a computational model and an fMRI
study. Neurocomputing 63, 253–269 (2005)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

 A. Gosavi et al.

1 3

Authors and Affiliations

A. Gosavi1 · L. H. Sneed2 · L. A. Spearing3

 * A. Gosavi
 gosavia@mst.edu

 L. H. Sneed
 lhsneed@uic.edu

 L. A. Spearing
 spearing@uic.edu

1 Missouri University of Science and Technology, 210 EMAN Bldg, Rolla, MO 65409, USA
2 University of Illinois, Chicago, EIB 218, 929 West Taylor Street, Chicago, IL 60607, USA
3 University of Illinois, Chicago, ERF 3069, 842 West Taylor Street, Chicago, IL 60607, USA

http://orcid.org/0000-0002-9703-4076

	Deep Reinforcement Learning for Approximate Policy Iteration: Convergence Analysis and a Post-Earthquake Disaster Response Case Study
	Recommended Citation

	Deep reinforcement learning for approximate policy iteration: convergence analysis and a post-earthquake disaster response case study
	Abstract
	1 Introduction
	2 Background
	3 Steps in the MAP algorithm
	4 Convergence analysis
	5 Numerical results and case study
	6 Conclusions and future research
	Appendix
	Acknowledgements
	References

