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Abstract—A Low Earth orbit (LEO) satellite constellation
consists of a large number of small satellites traveling in space
with high mobility and collecting vast amounts of mobility
data such as cloud movement for weather forecast, large herds
of animals migrating across geo-regions, spreading of forest
fires, and aircraft tracking. Machine learning can be utilized to
analyze these mobility data to address global challenges, and
Federated Learning (FL) is a promising approach because it
eliminates the need for transmitting raw data and hence is
both bandwidth and privacy-friendly. However, FL requires
many communication rounds between clients (satellites) and
the parameter server (PS), leading to substantial delays of
up to several days in LEO constellations. In this paper, we
propose a novel one-shot FL approach for LEO satellites, called
LEOShot, that needs only a single communication round to
complete the entire learning process. LEOShot comprises three
processes: (i) synthetic data generation, (ii) knowledge distillation,
and (iii) virtual model retraining. We evaluate and benchmark
LEOShot against the state of the art and the results show that
it drastically expedites FL convergence by more than an order
of magnitude. Also surprisingly, despite the one-shot nature, its
model accuracy is on par with or even outperforms regular
iterative FL schemes by a large margin.

Index Terms—Satellite communications, low Earth orbit
(LEO), federated learning, knowledge distillation, ensemble
model, synthetic data generation, teacher-student framework.

I. INTRODUCTION

Low Earth orbit (LEO) satellite constellations have re-

cently been burgeoning due to the rapid advances in satel-

lite communications (SatCom) technology. Positioned at

an altitude of 160–2,000 km above the Earth’s surface,

LEO satellites are often equipped with sensors and high-

resolution cameras to collect a vast amount of mobility-

related data, such as tracking and monitoring cloud move-

ments for weather forecast [1], hurricane and forest fire

movements [2], flooding situations, migration of large herds

of animals across geographic regions, and aircraft tracking.

Large-scale machine learning (ML) models can be utilized

∗Corresponding author. This work is supported by the National Science
Foundation under Grant No. 2008878.

to analyze these mobility data to address global challenges

such as climate change, natural disasters, and abnormal

wildlife conditions. However, traditional ML methods require

downloading raw data such as satellite images to a ground

station (GS) or gateway for centralized model training, which

is not practical for SatCom because of its limited bandwidth,

large propagation delay, and privacy concerns (e.g., satellite

data and images may contain sensitive information such as

military activities or critical infrastructure locations).

Introducing federated learning (FL) [3] to SatCom appears

to be a viable solution because FL eliminates the need for

transmitting raw data by allowing satellites to train ML mod-

els locally (i.e., on-board) using their own data respectively

and only send the resulting model parameters to the GS

which acts as the PS to aggregate those local models into a

global model. However, FL requires many communication

rounds between clients (satellites) and the PS to re-train

and re-aggregate the models until it converges into a well-

functioning global model. As a result, this iterative process

can take several days or even weeks in the context of SatCom

[4], [5], because of the long propagation delay and, most

importantly, the highly sporadic and irregular connectivity
between LEO satellites and the GS. The latter is attributed

to the distinct trajectories of satellites and the GS,1 which

leads to very intermittent and non-cyclic visits of satellites

to the GS (successively).

In this paper, we propose LEOShot, a novel one-shot FL

approach for LEO satellite constellations that accomplishes

the FL training process in a single communication round, yet

still obtaining a global model with competitive performance.

One-shot FL is an emerging paradigm [6] but its existing

methods cannot be directly applied to SatCom because they

(i) require the PS to have a publicly shareable dataset

that represents the client data distribution [7], [8], which

is hardly available, (ii) require clients to upload raw or

1A satellite orbits at an inclination angle between 0o and 90o (typically
50-80o), whereas a GS constantly rotates on the 0o plane. These degrees
are in reference to the Equator of the Earth.
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synthetic data [9], [10], which contradicts the FL principle,

or (iii) still needs extra communication rounds to achieve

a satisfactory accuracy [11]. In contrast, LEOShot does not

share or transmit data in any form (e.g., raw or synthetic)

yet still attains a high-performing model in just a single

communication round. In summary, this paper makes the

following contributions:

• To the best of our knowledge, LEOShot is the first one-

shot FL approach proposed for SatCom. It drastically

reduces the adverse effect of highly sporadic and irregular

connectivity between satellites and GS by instating only

one communication round. Not only this, but it also oper-

ates without relying on any auxiliary datasets or raw-data

sharing, yet attaining competitive model performance.

• LEOShot comprises (i) synthetic data generation that gen-

erates images mimicking real satellite images instead of

downloading them; (ii) knowledge distillation that trains

(instead of aggregates) a global model using a teacher-

student framework; iii) virtual model retraining that refines

the global model iteratively toward high performance but

without any extra communication rounds.

• Unlike conventional FL which assumes an identical ML

model architecture for all clients, LEOShot allows clients

to use different model architectures to cater to their own

preferences and resource constraints. This is much more

flexible and helps solve the data heterogeneity and system
heterogeneity among LEO satellites.

• We demonstrate via extensive simulations that LEOShot

dramatically accelerates FL convergence by more than an
order of magnitude as compared to the state-of-the-art FL-

SatCom approaches. In the meantime, the accuracy of its

trained models outperforms existing methods by a large

margin despite its one-shot nature.

Paper Organization. Section II provides an overview of

recent work that utilizes the FL in SatCom. Section III

describes the FL-SatCom network model as well as commu-

nication links among satellites and GS. Section IV explains

the proposed LEOShot framework and its component in

detail. The performance evaluation of LEOShot is provided

in Section V. Finally, Section VI concludes this paper.

II. RELATED WORK

A. FL for SatCom

While FL-SatCom is still in its infancy, a few studies

have attempted to apply FL to SatCom. Chen et al. [12]

directly applied FedAvg [13] to SatCom to demonstrate FL’s

advantages in avoiding the need to download raw data to

a GS. FedISL [14] leverages intra-plane inter-satellite-link

(ISL) to reduce the long waiting time for satellites to become

visible to the PS , but only performs well under an ideal setup

where the PS is either a GS located at the North Pole (NP)

or a medium Earth orbit (MEO) satellite positioned directly

above the Equator. In addition, FedISL overlooks the Doppler
shift resulting from the high relative speed between LEO

satellites (clients) and MEO-satellite (PS). Another approach

called FedHAP [15] was proposed which introduces one or

multiple high altitude platforms (HAPs) floating at 18-25km

above the Earth’s surface as PS . As a result of using HAPs,

the convergence speed of FL is improved by having more

visible satellites, but more hardware is required. Another

most recent approach, FedLEO [16], has been proposed

to enhance the convergence process of FL in the LEO

constellation. FedLEO achieved this through the use of intra-

plane model propagation and scheduling of sink satellites. It

is however necessary for each satellite to run a scheduler to

determine which satellite will be the sink to send its model,

resulting in a delay for models to be exchanged with the GS.

The above are all synchronous FL approaches. There are

also asynchronous FL approaches proposed for SatCom that

allow the PS to proceed to the next training rounds without

waiting for the model updates from all the clients. Razmi

et al. [17] proposed FedSat, which assumes that the GS is

located at NP to simplify the problem so that every satellite

visits the GS at regular intervals (once every orbital period).

To overcome this limitation, they proposed another approach

FedSatSchedule [5], which uses a scheduler to reduce model

staleness by predicting satellites’ visiting patterns to the

GS. However, several days are required to reach a model

convergence. Another recent approach called FedSpace [4]

formulated an optimization problem to dynamically schedule

model aggregation based on predicting connectivity between

LEO satellites and the GS, but it requires each satellite

to upload a small portion of its data so that the GS can

schedule model aggregation, which contradicts FL’s principle

of avoiding raw data sharing. Another recently proposed FL-

SatCom approach, AsyncFLEO [18], is proposed to offer a

drastic solution to the staleness challenge that requires several

days for asynchronous FL-SatCom approaches to converge.

It is capable of achieving convergence within a few hours,

but is still subject to a high number of communication rounds

and hence there is still large room for improvement.

B. One-Shot FL

To the best of our knowledge, one-shot FL has not been

introduced into SatCom before. The studies [7], [8] employ

knowledge distillation [19] in which client-side models are

used as teacher models to train a server-side student model

(global model). However, the server is required to have

access to a public dataset in order to provide pseudo samples

for training purposes, which conflicts with FL’s privacy

principles. As an alternative to knowledge distillation, data

distillation [20] is used in [9], [10]. These studies, however,

show a notable underperformance; moreover, they require

uploading distilled/synthetic data generated by clients to a

46

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 22,2023 at 15:50:05 UTC from IEEE Xplore.  Restrictions apply. 



PS , which is incompatible with FL principles. Lastly, a

theoretical analysis of one-shot FL is presented in [21],

focusing on independently and identically distributed (IID)

data only.

Given the above challenges, none of the existing one-

shot frameworks can be practically applied without issues or

drawbacks. In addition, to develop a one-shot FL approach

for SatCom, it is necessary to take into account the SatCom

challenges such as long propagation delays, intermittent and

irregular visibility of LEO satellites, and bandwidth limita-

tions.

III. NETWORK MODEL

Fig. 1 illustrates an LEO constellation M consists of

N satellites equally distributed on O orbits. Each orbit

o ∈ O = {o1, o2, ..., oO} is located at an altitude ho

above the Earth with an inclination angle αo and has a

set of satellites Mo. Satellites in an orbit o travel with the

same velocity vo and has the same orbital period To. Here,

vo =
√

GME

(RE+ho)
and To = 2π√

GME
(RE + ho)

3/2, where G

is the gravitational constant, ME is the Earth’s mass, and

RE = 6, 371 km is the Earth’s radius.

In SatCom, satellite m can communicate with a GS g if the

Earth does not obstruct their line-of-sight (LoS) link. Mathe-

matically, this means ϑm,g(t) � ∠(rg(t), (rm(t)− rg(t))) ≤
π
2 − ϑmin, where rm(t) and rg(t) are the trajectories of m
and g, respectively, and ϑmin is the minimum elevation angle

that depends on the GS location.

A. FL-SatCom System

Consider an FL-SatCom system, in which each satellite

m ∈ M collects a set of Earth images Dm of size

dm = |Dm|. In addition, we assume that these images

are non-IID among satellites since they orbit the Earth at

irregular intervals and scan different areas. In a synchronous

FL system such as FedAvg [13], the PS (i.e., a GS) and

satellites train an ML model collaboratively to solve the

following problem

arg min
w∈Rd

F (w) =
∑

m∈M

dm
d

Fm(w), (1)

where F (w) indicates the overall loss function (e.g., SSE) of

the target model; w is the model weights; d =
∑

m∈M dm
is the total data size; Fm(w) is the loss function of satellite

m, which can be expressed as

Fm(w) =
1

dm

dm∑
j=1

fm(w;xm,j), (2)

where fm(·) is the training loss on a sample point xm,j .

During the training process, there are multiple communi-

cation rounds β = {0, 1, 2, . . . }. In each round, the GS first

Fig. 1: FL-LEO network architecture, comprised of multiple

orbits each having multiple satellites.

transmits the latest global model weights wβ to all satellites,

and each satellite m employs a local optimization scheme

such as gradient descent to update its model for I epochs as

wβ,i+1
m = wβ,i

m −η∇Fm(wβ,i
m ;xi

m), i = 0, 1, 2, ..., I−1 (3)

where η is the learning rate. Following that, each satellite

uploads its locally updated model to the GS for assembling

as

wβ+1 =
∑

m∈M

dm
d

wβ,I
m , (4)

which completes a communication round. The above pro-

cedure iterates with an incremental β until the FL model

converges (e.g., a target accuracy, target loss, or the maximum

number of training rounds is reached).

A key challenge of this learning process arises from the

fact that the convergence of FL requires several communi-

cation rounds between LEO satellites and the GS, and each

communication can only happen when a satellite transiently

comes into the GS’s visible zone. As a result, FL would

take several days or even longer to reach convergence. This

motivated us to develop LEOShot, which requires only a

single communication round between satellites and the GS.

B. Communication Model

In a symmetric radio frequency channel with additive white

Gaussian noise (AWGN), the signal-to-noise ratio (SNR)

between a satellite m and a GS g can be expressed as [22]:

SNR(m, g) =
PGmGg

KTBLm,g
, (5)

where P is the transmitter power, Gm and Gg are the total

antenna gains of satellite m and an GS g, respectively, K is

the Boltzmann constant (1.38× 10−23J/K), T is the noise

temperature at the receiver, B is the channel bandwidth, and

Lm,g is the free-space pass-loss between satellite m and a
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(a) Phase 1: Synthetic data generation.

(b) Phase 2: Knowledge distillation. (c) Phase 3: Virtual model retraining.

Fig. 2: Overview of the proposed LEOShot framework.

GS g. As long as the LoS link between a satellite m and

a GS g is not obstructed by the Earth, then Lm,g can be

expressed as

Lm,g =

(
4π‖m, g‖2f

c

)2

(6)

where ‖m, g‖2 is the Euclidean distance between a satellite

m and a GS g when they are visible to each other, f is the

carrier frequency, and c is the light speed. For exchanging

local or global model weights (wm or w) between a satellite

m and a GS g, the total required time tt can be calculated

as

tt =
z|P|
R︸ ︷︷ ︸

Transmission delay

+
‖m, g‖2

c︸ ︷︷ ︸
Propagation delay

+ tm + ts (7)

where tm and ts are the processing delay at m-th satellite and

a GS g, respectively, |P| is the number of sample points, z
is the number of bits in each sample, and R is the maximal

achievable data rate, which can be computed by the Shannon
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formula as

R ≈ B log2(1 + SNR(m, g)) (8)

IV. THE LEOSHOT FRAMEWORK

LEOShot is operated at the server end. Fig. 2 provides an

overview of the LEOShot framework, which is comprised of

three phases: (a) synthetic data generation, which synthesizes

a representative dataset as a proxy of all the satellites’ local

data, (b) knowledge distillation, for distilling information

from the satellite models (teacher models) to train a server

model (student model), and (c) virtual model retraining,

for training virtual local models iteratively until the server

model converges. Algorithm 1 outlines the entire process of

LEOShot.

Algorithm 1: LEOShot’s 3-phase process

Input: Satellites’ models, L, ηg, ηs, x, y, J ,I ,γ1, γ2
Output: Server model parameters

� Phase 1: Synthetic data generation
1 Generate batches of random noises x and labels y
2 Initialize server model (student) and generator G
3 foreach epoch j of training G do
4 Calculate losses RCE ,RBN , RKLGen

(x̂) using

eqns. (10), (11), and (12)

5 Calculate the generator loss R′
Gen via (14)

6 Generate/Update x̂
7 Retrain the weights of G on generated x̂ via (14)

8 end
� Phase 2: Knowledge distillation

9 foreach epoch j of training server model do
10 Calculate loss RKLS

of the server model via (16)

11 Retrain the weights of the server model via (17)

12 end
13 return ws

� Phase 3: Virtual Model Retraining
14 Generate L virtual models

15 Cluster x̂ into L Partitions

16 foreach epoch j of updating server model do
17 foreach virtual model wl do

� All models train in parallel

18 Initialize wl ← ws

19 Train wl using its assigned partition of x̂
20 end
21 Update ws ← 1

L

∑L
l=1 wl

22 end
23 return ws

As a background, the server begins its operation once it

receives all the client models from all the orbits via sink
satellites. A sink satellite [15] is a satellite on each orbit

who (1) collects all the models from other satellites on the

same orbit (via intra-orbit model relay), (2) assembles them

together into a partial global model [15] and (3) sends it to

the server.

A. Synthetic Data Generation
The objective of this phase is to build a generator G to

generate high-quality unlabeled synthetic data (i.e., having

sufficient features for correct classification) without having to

download any real data from satellites to a GS or requiring

any auxiliary (i.e., publicly available) datasets. To achieve

this objective, we use the ensemble of the client (satel-

lite) models uploaded by various sink satellites to generate

synthetic data (see Fig. 2a). Note that a salient feature of

LEOShot is that it allows heterogeneous model architectures
of these client models. That is, each client can decide and

use its own preferred neural network rather than a common

architecture used by all the satellites (as dictated by the

standard FL). We achieve this by using an ensemble of all the

client models and train the target global model via knowledge
distillation (instead of by averaging model weights).

Our generator G was inspired by the generative adversarial

network (GAN) [23], but is distinct from it as we do not

require public datasets. Given a randomly generated input

x (e.g., Gaussian white noise) and a random label y, our

generator attempts to generate synthesized data x̂ with similar

features to the data collected by satellites, by solving the

following optimization problem:

min
x̂

RGen � RCE(D(x̂), y) +R(x̂), (9)

where RGen denotes the overall loss of the generator,

RCE(·) is a cross-entropy loss (e.g., classification loss), and

R(x̂) is a regularization term used to steer x̂ towards more

realistic data (e.g., images). Here, D(x̂) is the average logits

of the ensemble model given an input x̂ (where logits are

the output of usually the last fully connected layer), and is

defined by

D(x̂) =
1

|M|
∑
l∈L

fl(x̂, wKl
), (10)

where fl(x̂, wKl
) is an estimation function of the ensemble

model received from orbit l, that returns the logits of x̂ when

the model parameter wKl
is given. Eq. (10) allows us to

(indirectly) measure how well the generated synthetic data

x̂ mimics both the distribution and the particular instances

of the original satellite data, without accessing the original

data. In fact, attempting to access satellites’ training data

contradicts the FL principles. Moreover, unlike traditional

FL algorithms (e.g., FedAvg), our design of generator (9)

uses logits (as in D(·)) instead of client model weights,

which enables our approach to deal with heterogeneous client

models.
The regularizer R(x̂) serves the purpose of improving the

stability of the generator. The need comes from the fact
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that the ensemble of satellite models is trained on non-IID

datasets, and therefore tend to make the generator unstable

and get stuck in suboptimal local minima. Additionally, there

is a risk of overfitting the synthetic data, which ultimately

hinders the generator from achieving high levels of accuracy

[24]. Therefore, we use a BatchNorm (BN) layer during

training to normalize the feature maps to reduce the impact

of covariate shifts [25] and overcome the gradient vanishing

problem (so that the distance between synthetic images and

original satellite images can be continuously reduced). In

addition, this BN layer also implicitly stores the average

logits as channel-wise means and variances. Thus finally, the

R(x̂) realized by this BN layer can be expressed by

RBN (x̂) = 1
L

∑
l∈L

∑
b

(
‖μb(x̂)− μl,b‖2 + ‖σ2

b (x̂)− σ2
l,b‖2

)
(11)

where μb(x̂) and σ2
b (x̂) are the batch-wise estimation of the

mean and variance, respectively, associated with the b-th BN

layer of the generator, and μl,b and σ2
l,b are the mean and

variance of the b-th BN layer of fl(x̂, wKl
). As a result

of adding this regularization term, our designed generator

outputs synthetic images with high quality that are close to

the original satellite images.

B. Knowledge Distillation
In this phase, we strive to distill the knowledge from the

ensemble of all the client models to train a server (i.e., global)

model. Although the generated synthetic data has high qual-

ity, it is not useful for knowledge distillation because of the

large gap between the ensemble model’s decision boundaries

and the server model’s decision boundary [26]. To address

this issue, we force the generator to generate more synthetic

data with different distributions and then employ Kullback-

Leibler (KL) divergence to minimize the distance between

the predictions (proxy of decision boundary) of the ensemble

model and the server model during synthetic data generation

(bottom of Fig. 2a). The new regularizer term that represents

the KL divergence is

RKLGen
(x̂) = 1− 1

2

{
KL(DG(x̂), Q) +KL(DE(x̂), Q))

}
(12)

Q =
1

2
· (DG(x̂) +DE(x̂)), (13)

where KL(·) denotes the KL divergence loss, DG(x̂) is the

server model’s logits, and DE(x̂) is the ensemble model’s

average logits.
Thus, with our BN and KL regularization terms, we

reformulate our generator optimization problem (9) as

R′
Gen = minx̂

[
RCE(D(x̂), y) + γ1RBN (x̂) + γ2RKLGen

(x̂)
]

(14)

where γ1 and γ2 are hyper-parameters to trade-off between

the two losses. In addition, we optimize the weights of our

generator G for J epochs using SGD as follows:

wj
Gen = wj−1

Gen − ηg∇RGen(w
j−1
Gen; (x̂, y)

j−1), j = 1, 2, . . . , J (15)

where wj
Gen is the generator’s model at iteration j, and ηg

is the G’s learning rate.

After these optimization procedures, our generator can

generate synthetic images not only of high quality but also

of a distribution that resembles the original satellite data to

enable effective knowledge distillation.

Referring to Fig. 2b, the next step after generating the

synthetic data x̂ is to commence the updating and retraining

of the server model until it attains an acceptable accuracy.

To this end, the synthetic data x̂ is fed to both the ensemble

of satellite models which acts as the teacher, and the server

model which acts as the student. Subsequently, the average

logits are computed as the outcome of training the teacher

model using (10), which can be used for both homogeneous

and heterogeneous ensemble models. The average logits are

then applied to distill the knowledge from the ensemble

(teacher) model to the server (student) model by minimizing

the prediction error between the two models, through the KL

divergence as follows:

RKLS
(x̂) = KL(D(x̂), Ds(x̂)) (16)

where Ds(x̂) is the logits of the server model after being

trained on the generated synthetic data x̂. Since the satellite

models are trained on non-IID data, we aim to improve the

accuracy of the server model and address the issue of poor

performance or divergence problem encountered in [24]. To

achieve this, we further optimize the server model parameters

by employing SGD as

wj
s = wj−1

s − ηs∇RKLS
(wj−1

s ; x̂j−1), j = 1, 2, . . . , J (17)

where wj
s is the server model at iteration j, and ηs denotes

the learning rate of the server model. Note that our method is

different from [24] which uses local batch normalization at

each client to harmonize local data distributions but requires

several rounds of communication between server and clients.

Instead, we use generated synthetic data to resemble the

original satellite data and it allows us to directly train a server

model locally using SGD, without the need for communica-

tion or averaging satellite models which are influenced by

non-IID data distributions. On the downside, synthetic data

may not be as good as real data; to address this, in Phase 3

we retrain our server model to improve model accuracy.

As a result of this phase, we have successfully trained a

server model that leverages the knowledge from the ensemble

satellite models and the generated synthetic data, and we have

taken into account the possible heterogeneity of both the data

and models involved. Fig. 2b illustrates the entire knowledge

distillation process.

C. Virtual Model Retraining

Although the knowledge distillation phase outputs a func-

tional server model, the model performance still has notable
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room for improvement (e.g., the classification accuracy was

merely 70% on the MNIST dataset). Certainly, allowing for

extra communication rounds (and aggregation) between the

GS and the LEO satellites will improve model accuracy, but

this clearly contradicts our goal of one-shot learning and

will also negatively impact the convergence speed. Thus, we

propose a novel method that transforms the distributed FL

into a localized version, by creating virtual local models
on the server and trains those models locally until the

server model converges. Specifically, our method consists

of four steps: (i) clone L copies of the server model to

serve as the initial virtual local models, (ii) partition the

generated synthetic data (after labeling them using a K-means

clustering algorithm) into L groups, each with the same class

distribution as one of the L orbits (distributions were received

at the end of model dissemination), (iii) train each virtual

model on one of the L data groups, (iv) aggregate the weights

of these trained virtual models to obtain an updated server

model. The above repeats until the server model converges,

which is the final global model. Fig. 2c illustrates the entire

retraining process for virtual models.

V. PERFORMANCE EVALUATION

A. Simulation setup

LEO Constellation. We consider a Walker-delta constella-

tion M, which consists of 40 LEO satellites distributed over

five orbits, each with eight satellites. Each orbit is located at

an altitude ho of 500km above the Earth’s surface with an

inclination angle of 80◦. A GS is located in Rolla, MO, USA

(can be anywhere) with a minimum elevation angle ϑmin of

10◦. For both LEOShot and baselines, Table I (upper part)

summarizes the parameters pertaining to the communication

links described in Section III-B. By using Systems Tool Kit

(STK), a software tool for analyzing satellite constellations,

we extract the visibility between satellites and the GS.

To obtain each set of results, we simulate communication

TABLE I: Simulation Parameters (upper: communication;

lower: training)

Parameters Values

Transmission power (satellite & GS) P 40 dBm

Antenna gain of (satellite & GS) Gm, Gs 6.98 dBi

Carrier frequency f 2.4 GHz

Noise temperature T 354.81 K

Transmission data rate R 16 Mb/sec

Number of local training epochs I 300

Learning rate η 0.001

Mini-batch size bk 32

Generator learning rate ηg 0.001

Weighting factors γ1&γ2 1 & 10

between satellites and the GS over a period of three days.

Baselines. We compare LEOShot with the state-of-the-art

approaches that were proposed most recently and are re-

viewed in Section II, including FedSpace [4], FedISL [14],

FedHAP [15], FedSat [17], and FedSatSchedule [5].

ML models and Dataset. An important implication of

LEOShot’s capability of allowing heterogeneous client mod-

els (cf. Section IV-A), is that the server no longer needs

to broadcast an initial model w0 to all the clients, which

in the context of SatCom will save a significant amount

of time. However, for comparison with existing methods,

we assume a standard (homogeneous) FL setting where the

neural network architecture is common and broadcasting w0

is still required. We highlight that this setup substantially
favors baseline approaches and not ours. In the experiment,

all satellites train a ResNet-50 model. For each baseline, the

GS aggregates the satellite models into a global ResNet-50

model. For LEOShot, however, since a key component of

knowledge distillation is to train a smaller global model, the

GS trains a ResNet-18 model.

For comparison purposes, we use the same datasets as all

the baseline approaches use: MNIST [27] and CIFAR-10

[28]. Additionally, we consider a non-IID setting for both

datasets, where satellites in two orbits are trained with 4

classes while satellites in the other three orbits are trained

with the remaining 6 classes. The lower part of Table I

summarizes the training hyperparameters.

B. Results

Comparison with Baselines. As shown in Fig. 3,

LEOShot achieves the fastest convergence (on both datasets)

in only 90 minutes with an accuracy of 85.64% on MNIST

attained in a single communication round (the convergence

time includes waiting for at least one satellite per orbit to

be visible to upload a partial model to the GS). The second

fastest approach is FedISL [14] with the ideal setup described

in Section II (GS at NP or MEO above the Equator), which

takes 3.5 hours for FL to converge with an accuracy of

82.67%. Without the ideal setup, its convergence time spikes

to 72 hours, and accuracy drops to 61.19%. FedSat [17]

and FedHAP [15] have marginally higher accuracy than

LEOShot but their convergence is significantly slower. Also

importantly, FedSat assumes an ideal setup (GS at NP)

similar to FedISL, and FedHAP requires extra hardware

(HAP) of substantial extra cost. FedSatSchedule [5] does not

have FedSat’s ideal assumption, and as a result, its accuracy

is only 76.32% and its convergence time doubles FedSat.

For all methods, accuracy on CIFAR-10 is lower than on

MNIST after the same amount of training time, which is

particularly prominent for FedSat [17]. On the other hand,

LEOShot maintains a very small difference, which demon-
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Fig. 3: Accuracy and Convergence Time comparison on non-IID data. For all approaches, convergence time was first measured

on MNIST and then fixed for CIFAR-10 to measure the accuracy.

strates certain robustness. Recall that LEOShot achieves high

accuracy in just a single communication round.
Effectiveness of using synthetic data in knowledge dis-

tillation. Pertaining to Section IV-A and IV-B, this subsection

(i) investigates whether using model logits or model param-
eters (weights or gradients) is more effective in producing a

server model, and (ii) assesses the test accuracy on multiple

deep learning (DL) models with the generated synthetic data.

Fig. 4 shows a sample of the generated synthetic images

using logits from satellites trained on MNIST and CIFAR-

10 datasets. These images approximate the distribution and

mimic the content of the real images very well, enabling an

effective knowledge distillation.

TABLE II: Comparison of DL models trained on synthetic

images

DL model Accuracy (%)

MNIST CIFAR-10

CNN (2 layers) 62.26 60.88

VGG-11 69.15 62.72

Wide-ResNet-40-1 [29] 71.51 66.79

ResNet-18 73.64 70.67

For the first purpose, we conducted two experiments on

LEOShot. In the first experiment, satellite model parameters

are uploaded to the GS similarly to traditional FL. In the

second experiment, model logits are uploaded instead. All

the satellites train a ResNet-50 model on MNIST in the non-

IID setting. Fig. 5 shows the resulting test accuracy of each

partial global model derived from each orbit, as well as the

accuracy after averaging the weights or logits. The results

indicate that the test accuracy of each partial global model

varies depending on the data imbalance from each orbit. The

accuracy of the server model is only 31.74% when averaging

these partial models’ parameters, which underperforms the

individual partial models. In contrast, when averaging the

logits, the server model achieves an accuracy of 62.36%,

which outperforms all the individual partial models. This

interesting finding confirms that a single communication

round is far from sufficient for weight averaging (as in

traditional FL) to accommodate the discrepancy between

client models trained on non-IID data; but on the other hand,

averaging logits allows knowledge distillation through our

local training that minimizes the distance between logits of

our teacher and student models. In addition, using logits also

allows us to accommodate model heterogeneity.
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(a) Samples of generated synthetic images (MNIST dataset).

(b) Samples of generated synthetic images (CIFAR-10 dataset).

Fig. 4: Samples of synthetic images created by our generator

when satellites trained on various datasets.

For the second purpose, Table II reports the performance

of various DL models when trained using our synthesized

images. We can see that all the DL models achieve acceptable

accuracy, with ResNet-18 achieving the highest 73.64% on

MNIST. This set of results validates that the quality of our

synthesized images is reliable, which plays an important role

in transferring knowledge to the server model.

Impact of virtual model retraining. Pertaining to Sec-

tion IV-C, here we investigate how our use of virtual local

models affects the accuracy of the server model. As re-

ported in Table II, the server model achieves an accuracy

of 73.64% by using ResNet-18 as the target model and

MNIST as the training dataset. Note that this is achieved

without virtual model retraining. Now, with that, we clone

five virtual ResNet-18 models initialized with the initial

Fig. 5: Test accuracy of partial models from sink satellites on

different orbits (solid lines) and the best accuracy obtained

by averaging logits or weights (dotted lines).

server model weights and train each virtual model on one

of five partitions of synthetic images. The final server model

is obtained via weight averaging. Our result in Fig. 3 shows

that the server model accuracy increases to 85.64% which is

a significant 16% improvement without requiring any extra

communication round.

VI. CONCLUSION AND FUTURE WORK

This work makes the first effort to introduce one-shot FL

into SatCom. We propose a novel framework called LEOShot

to address the challenge of highly sporadic and irregular

visits of LEO satellites to a GS. Unlike prior work, LEOShot

does not require public datasets or client data uploads, thus

upholding important FL principles on data privacy protection

and communication efficiency. In addition, unlike standard

FL which dictates a common identical neural network ar-

chitecture for all the clients and the server, LEOShot allows

each client to choose its own preferred ML model based on its

computing resources and data properties. In our quantitative

study in comparison with the state-of-the-art benchmarks,

we find that LEOShot reduces FL training/convergence time

drastically up to 80 times (it converges in as short as

90 minutes); in the meantime, it achieves high accuracy

even under challenging non-IID settings and outperforms the

benchmarks by large margins.

In our future work, we aim to examine LEOShot on real

and diverse satellite datasets in different settings. This would

include exploring a variety of LEO constellations ranging

from sparse to dense constellations with GS located at differ-

ent geographical locations, as well as training heterogeneous

ML models across satellites and constellations.
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