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Optimal Adaptive Tracking Control of Partially
Uncertain Nonlinear Discrete-Time Systems

Using Lifelong Hybrid Learning
Behzad Farzanegan , Graduate Student Member, IEEE, Rohollah Moghadam , Senior Member, IEEE,

Sarangapani Jagannathan , Fellow, IEEE, and Pappa Natarajan

Abstract— This article addresses a multilayer neural network
(MNN)-based optimal adaptive tracking of partially uncertain
nonlinear discrete-time (DT) systems in affine form. By employing
an actor–critic neural network (NN) to approximate the value
function and optimal control policy, the critic NN is updated via a
novel hybrid learning scheme, where its weights are adjusted once
at a sampling instant and also in a finite iterative manner within
the instants to enhance the convergence rate. Moreover, to deal
with the persistency of excitation (PE) condition, a replay buffer
is incorporated into the critic update law through concurrent
learning. To address the vanishing gradient issue, the actor
and critic MNN weights are tuned using control input and
temporal difference errors (TDEs), respectively. In addition,
a weight consolidation scheme is incorporated into the critic
MNN update law to attain lifelong learning and overcome
catastrophic forgetting, thus lowering the cumulative cost. The
tracking error, and the actor and critic weight estimation
errors are shown to be bounded using the Lyapunov analysis.
Simulation results using the proposed approach on a two-link
robot manipulator show a significant reduction in tracking error
by 44% and cumulative cost by 31% in a multitask environment.

Index Terms— Discrete-time (DT) concurrent learning, expe-
rience replay, hybrid learning, lifelong learning (LL), multilayer
neural networks (MNNs), optimal tracking control (OTC).

I. INTRODUCTION

THE application of optimal control for nonlinear discrete-
time (DT) systems has drawn significant interest in

various practical engineering systems, including unmanned
surface vehicles and robotic manipulators [1], [2], [3], [4] and
others. The Hamiltonian–Jacobi–Bellman (HJB) equation is
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normally used to find an optimal control strategy for a non-
linear system. However, solving the HJB equation to find the
optimal solution in closed form is still challenging [5]. Thus,
iterative techniques utilizing adaptive dynamic programming
(ADP) have been formulated to find the optimal control
input [6].

The application of neural networks (NNs) within the
ADP framework offers a robust approach to determining the
optimal control policies for unknown nonlinear systems in a
forward-in-time fashion. Numerous iterative techniques based
on ADP have been developed for optimal adaptive control
(OAC), primarily focused on regulation tasks [7], [8], [9],
[10]. It has been demonstrated that these iterative techniques
converge to an optimal solution as the number of iterations
approaches infinity [11]. However, this long convergence
process can be a limitation when implementing the control
scheme in real-time scenarios. Despite this disadvantage,
the traditional ADP framework utilizing NNs generates an
online approximate optimal input for the regulation [12].
On the other hand, approximate OAC schemes for trajectory
tracking require an additional feedforward term to be
designed optimally, which appears to be difficult for uncertain
systems.

Several studies [7], [8], [13], [14], [15], [16], [17], [18] have
explored the use of NNs for approximate optimal trajectory
tracking of DT systems in affine form. For instance, in [16],
[17], and [18], the nonlinear optimal tracking scheme uses the
concept of dynamics inversion to determine the feedforward
term and solves the HJB equation to find the feedback one.
The feedforward term of the optimal tracking control (OTC)
strategy requires full system dynamic knowledge, while the
feedback term is based on the optimal value function gradient.
Moreover, ADP has been used to develop a time-driven OTC
of nonlinear DT systems with uncertain dynamics in the input-
affine form using the state vector history in [14], [18], and [19].
In [18], single-layer NN weights are adjusted based on
Bellman and control input errors at sampling instants, resulting
in a relaxed iterative method, although the feedforward term
is not optimal.

Recently, approximate OAC schemes for tracking in
continuous [20] and DT [2], [21] have been reported. By using
an augmented system approach, which includes the tracking
error and the desired trajectory dynamics, the feedforward
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term in an optimal manner has been generated in [2], [21],
and [22]. To deal with the feedforward term, the steady-state
control strategy associated with the desired trajectory has been
employed in [22]. However, the actor and critic NN weight
convergence requires to fulfill the persistency of excitation
(PE) condition.

Since checking the PE condition in an online manner
is complicated, concurrent learning has been adopted for
adaptive control and parameter estimation [23], [24], [25],
and optimal control of continuous-time (CT) systems [26].
This approach utilizes both current and recorded data stored
in a stack, instead of relying on external noise, to satisfy
the PE condition. Although OAC techniques using concurrent
learning were presented in [25], [26], [27], and [28] for
nonlinear CT and [29] DT systems without convergence and
stability proof, no concurrent learning-based tracking schemes
were introduced for nonlinear DT systems.

In addition, the controller must maintain robustness in the
face of changes in the operating conditions when performing
a variety of tasks. To accomplish this, the learning scheme
should be lifelong, allowing the acquisition of new information
without causing forgetting or interference. Lifelong learning
(LL) has been widely studied in machine learning and NN
literature [30], [31], [32], [33], [34], [35] using offline
training. For instance, the elastic weight consolidation (EWC)
approach [35] is a method for addressing the problem of
catastrophic forgetting, a common issue when training NNs
on tasks changing sequentially. The EWC solves catastrophic
forgetting by introducing a penalty term function of the
difference between the current task parameters and those
learned for previous tasks.

The LL feature is necessary for NN-based trajectory
tracking of dynamical systems since NN weights can differ
significantly with tasks and the cost must be minimized
with already executed ones during learning of new tasks.
Recently, the EWC-based technique was utilized for the
optimal regulation of nonlinear DT systems without stability
proof [29]. To the best of our knowledge, the EWC technique
has not beet attempted for the optimal adaptive tracking (OAT)
of nonlinear DT systems.

This article presents a method for lifelong hybrid learning
(LHL)- based OAT for nonlinear DT systems in affine form
with unknown internal dynamics. The optimal value function
is defined as a cost-to-go function of both the augmented state
variable and control input. The proposed scheme obtains the
optimal control input by using the recursive Bellman equation
and the stationarity condition, which is defined in terms of the
value function. In addition, the proposed OAT control scheme
requires only the control coefficient matrix.

The output and hidden layer NN weights of the actor NN
are adjusted at the sampling instants through control input
errors obtained via the known input dynamics. The critic NN
weights are adjusted not only once a sampling instant but also
by a finite number of times in an iterative manner within the
sampling instants through temporal difference error (TDE).
This method of updating the critic NN weights, which includes
both time-driven updates at sampling instants and additional
iterative updates within sampling instants, is referred to as

hybrid learning. The addition of iterative weight tuning within
the sampling interval can result in faster convergence of the
value functional to its optimal solution. The proposed method
ensures closed-loop stability and significantly improves the
rate of tuning the controller toward optimality.

To enable the LL controller capabilities, an online version
of EWC term is integrated into the critic NN update law, and
the overall stability is established. Next, the developed method
is extended to include NNs with more than two-hidden layers.
The control input and TDE errors are directly utilized to adjust
the actor and critic NN weights, respectively, thus eliminating
the common problem of vanishing gradients in gradient-based
weight updates. In addition, the method relaxes the need for a
PE condition by using a concurrent learning approach that
utilizes data from both past and current sampling instants
online in DT. The effectiveness of the proposed approach is
illustrated through the provided simulation results.

This article presents the following contributions.
1) development of a novel OAT control scheme based

on multilayer NN (MNN) hybrid learning that is a
combination of traditional adaptive control and iterative
technique to enhance the convergence rate of the
approximated solution of the HJB equation to its optimal
value, and enabling faster convergence of tracking
error and NN weights, unlike policy/value iteration
methods [6], [22], [36];

2) relaxation of the PE condition using replay buffer by
storing the history, the addition of concurrent learning
term in the critic MNN weight tuning, and verification
of PE in an online manner as opposed to [27] and [28];

3) development of a novel online EWC approach using the
Jacobian matrix of TDE for the critic MNN to attain LL
unlike offline method with targets [35];

4) relaxation of basis function selection by using MNN
with N hidden layers and addressing the vanishing
gradient problem to enable efficient learning and
convergence, in contrast to [2];

5) demonstration of closed-loop stability of nonlinear DT
systems using actor–critic MNN control framework with
concurrent LHL through the Lyapunov analysis.

II. PROBLEM FORMULATION

In this section, the OAT control problem is formulated for
an uncertain affine nonlinear DT system described by

x(k + 1) = f (x(k)) + g(x(k))u(k) (1)

where x(k) ∈ ℜ
n is the state vector at the sampling instant k,

u(k) ∈ ℜ
m is the control input vector, f (x(k)) ∈ ℜ

n represents
the uncertain internal dynamics, and g(x(k)) ∈ ℜ

n×m denotes
the known bounded smooth function, i.e., ∥g(x(k))∥F ⩽ gM .
Define the desired trajectory as

xd(k + 1) = h(xd(k)) (2)

where xd(k) ∈ ℜ
n is the state trajectory that is bounded

and h(xd(k)) ∈ ℜ
n is an unknown nonlinear function of the

reference trajectory. Utilizing (1) and (2), the tracking error is
defined as

e(k) = x(k) − xd(k). (3)
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The primary aim of the OAT is to determine the
optimal control policy u∗(k) minimizing the infinite horizon
discounted value function J (e(k)) as

J (e(k)) =

∞∑
j=k

γ j−k L(e( j), u( j)) (4)

with γ as the discount factor. The cost-to-go function is
defined as L(e(k), u(k)) = e(k)T Qe(k) + u(k)T Ru(k), where
Q and R are, respectively, positive semidefinite and positive
definite matrices.

The tracking error dynamics by using (3) is derived as

e(k+1) = f (e(k)+xd(k))+g(e(k)+xd(k))u(k)−h(xd(k)).

(5)

Define the new state vector composed of the reference tra-
jectory and tracking error as Xa(k) = [e(k)T , xd(k)T

]
T

∈ ℜ
2n .

By utilizing the tracking error dynamics (5) and the reference
trajectory (2), the augmented system dynamics become

Xa(k + 1) =

[
f (e(k) + xd(k)) − h(xd(k))

h(xd(k))

]
+

[
g(e(k) + xd(k))

0

]
u(k) (6)

which conveniently can be expressed in the affine form as
Xa(k + 1) = F(Xa(k)) + G(Xa(k))u(k) with F(Xa(k)) =[

f (e(k)+xd (k))−h(xd (k))
h(xd (k))

]
and G(Xa(k)) =

[ g(e(k)+xd (k))
0

]
. Then,

the discounted cost function (4) can be formulated in terms of
the augmented state vector Xa as

J (Xa(k)) =

∞∑
j=k

γ j−k L(Xa( j), u( j)) (7)

where L(Xa(k), u(k)) = Xa(k)T Q̄ Xa(k) + u(k)T Ru(k) is
the utility function using the augmented state vector, with
Q̄ ∈ ℜ

2n×2n defined as Q̄ =

[
Q 0n×n

0n×n 0n×n

]
a positive semidefinite

matrix. Using (7), a recursive Bellman equation can be
obtained as

J (Xa(k)) = L(Xa(k), u(k)) + γ J (Xa(k + 1)). (8)

Invoking (8) and Bellman’s optimality principle give
J ∗(Xa(k)) = minu(k)(L(Xa(k))) + γ J ∗(F(Xa(k)) +

G(Xa(k))u(k)), the HJB equation is defined as

H(Xa, J, u) = γ J (Xa(k + 1))− J (Xa(k))+L(Xa(k), u(k)).

(9)

Solving the HJB equation gives the optimal value function,
J ∗(Xa(k)). Therefore, the optimal control policy u∗(Xa(k))

can be achieved by employing the stationary condition as
∂ H/∂u(k) = 0, which leads to

u∗(k) = −
γ

2
R−1G(Xa(k))T ∂ J ∗(Xa(k + 1))

∂(Xa(k + 1))
. (10)

The feedforward and feedback terms are generated
by the optimal control input in (10). Nevertheless, computing
the optimal control input is impossible because of the need
for the future value of the augmented state variable [15].
Moreover, it is essential to use a discount factor in the value

functional to prevent the value functional leading to infinity
when the reference trajectory does not go to zero. Note that
the feedforward term in the control policy depends on the
reference trajectory. This implies that the quadratic term with
respect to the control input does not converge to zero over
time.

Moreover, since it is challenging to find an analytical
solution to the DT HJB equation, this article introduces a
novel hybrid learning approach by using a combination of
time-driven update at the sampling instants and a fixed number
of iterations within the sampling instants to approximate
the value function employed to forge the optimal control
input. Due to a finite sampling duration, a fixed number of
iterations are used. As a consequence, the value function
approximation is not as accurate as that of the case of using
iterative technique, wherein an infinite number of iterations
at each sampling instant is used. It will be shown that this
hybrid learning approach is practical and appears to generate
an enhanced approximated value function over time and
converges faster over the time-driven approach.

As a result, the approximated control policy will converge
faster to the optimal value. Increasing the number of iterations
within the fixed sampling instants further improves the
accuracy of the value functional approximation, whereas there
is a tradeoff between practicality and optimality. The hybrid
learning scheme development for generating the estimated
control policy is given in Section III for enhanced value
function estimation. The PE condition is relaxed by using a
replay buffer that is normally utilized in concurrent learning.
The following fact and the assumption are required to proceed.

Assumption 1: The state and desired trajectory vectors are
measurable for all tasks. In other words, the augmented state
vector, Xa(k), is available [2], [22].

Fact 1: When the optimal control input is applied
to the augmented system in (6), the resulting closed-
loop system is bounded. Specifically, it ensures that
∥F(Xa(k)) + G(Xa(k))u∗(Xa(k))∥ ⩽ k∥Xa(k)∥ holds, where
k is a known constant [15].

The aforementioned fact is not limiting because the
admissible control policy u∗ guarantees the closed-loop
stability for the DT system in (6) [15]. Typically, k̄ is
found in the stability proof during the demonstration of
boundedness.

III. LIFELONG HYBRID OAT

The OAT of a nonlinear DT system (1) by employing
MNN is presented in this section. The optimal control input
and the value function are estimated using two MNNs in an
actor–critic framework. A novel hybrid updating law combined
with concurrent learning for the critic NNs is presented to
accelerate the convergence rate of the value function and
optimal control policy and to relax the need for the PE
condition. The hidden layers of the actor and critic NNs
generate estimation errors observed in the optimal control
policy and must be explicitly taken care of in the design and
analysis. Next, the LL aspect is introduced, and the proposed
work is extended to N layers.
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The value functional represented by (7) is estimated via the
critic MNN as

J (Xa(k)) = wT
c φc

(
vT

c φ(Xa(k))
)
+ ε jk (11)

where vc and wc denote the critic NN weights, ε jk presents the
bounded function approximation error, and φc and φ denote
the output and hidden layer activation functions, respectively.
Besides, the optimal control input achieved in (10) can be
approximated using a two-layer actor NN as

u(Xa(k)) = wT
a φa

(
vT

a φ(Xa(k))
)
+ εuk (12)

where va denotes the first and wa represents the second-layer
actor NN weights with εuk as the NN approximation error.
The output and hidden activation functions are φa and φ,
respectively.

Assumption 2: Assume that there exist positive constants
wcM , vcM , waM , vaM , ε j M , εuk , and ε′

j M such that ∥wc∥ ⩽
wcM , ∥vc∥ ⩽ vcM , ∥wa∥ ⩽ waM , ∥va∥ ⩽ vaM , |ε jk | ⩽
ε j M , |εuk | ⩽ εuM , and ∥∂ε j K /∂ Xa(k + 1)∥F ⩽ ε′

j M [2].
In Section III-A, the optimal control input and function

value approximations utilizing two-layer NN with the
augmented state vector as input are presented.

A. Value Function Approximation via Concurrent Hybrid
Learning

One can approximate the value function in (11) as

Ĵ (Xa(k)) = ŵT
c φc

(
v̂T

c φ(Xa(k))
)

(13)

where Ĵ (Xa(k)) denotes the estimated value function and
ŵT

c and v̂T
c are the actual critic MNN weights. Employing

Ĵ (Xa(k)) in (8) gives the TDE as

ETD(k) = L(Xa(k − 1), u(Xa(k − 1)))

+ ŵT
c 1φc(Xa(k − 1)) (14)

where ETD ∈ ℜ and 1φc(Xa(k − 1)) = γφc(v̂
T
c φ(Xa(k))) −

φc(v̂
T
c φ(Xa(k−1))). The TDE (14) depends on the augmented

state vector, which requires the tracking error and reference
trajectory, unlike in the case of regulation, where the TDE
depends on the system state alone.

Using (11) in (8) gives L(Xa(k − 1), u(Xa(k − 1))) =

wT
c φc(v

T
c φ(Xa(k − 1)))− γwT

c φc(v
T
c φ(Xa(k)))−1ε jk where

1ε jk = γ ε jk − ε jk−1. Replacing L(Xa(k − 1), u(Xa(k − 1)))

in (14) yields

ETD(k) = wT
c φc

(
vT

c φ(Xa(k − 1))
)

− γwT
c φc

(
vT

c φ(Xa(k))
)
− 1ε jk

+ γ ŵT
c φc

(
v̂T

c φ(Xa(k))
)
− ŵT

c φc
(
v̂T

c φ(Xa(k − 1))
)
.

(15)

Adding and subtracting γwT
c φc(v̂

T
c (k)φ(Xa(k))) and

wT
c φc(v̂

T
c (k)φ(Xa(k − 1))), and doing a few manipulations,

the TDE (14) becomes

ETD(k) = −w̃T
c (k)1φc(Xa(k − 1))

+ wT
c

[
γ φ̃c(k) + φ̃c(k − 1)

]
− 1ε jk (16)

where w̃c = wc−ŵc denotes the critic weight estimation error.
φ̃c(k) = φc(v̂

T
c (k)φ(Xa(k))) − φc(v

T
c φ(Xa(k))). Substituting

5(k) = φ̃c(k) + φ̃c(k − 1) in (16) results in

ETD(k) = −w̃T
c (k)1φc(k − 1) + wT

c 5(k) − 1ε jk . (17)

We can rewrite (17) as

ETD(k) = −w̃T
c (k)1φc(k − 1) + εB(t) (18)

where εB(t) = wT
c 5(k) − 1ε jk . Since 1φ̂ck−1 ⩽ φM ,

∥1ε jk∥ ⩽ εJ M , wc ⩽ wcM , and ∥5(k)∥ ⩽ 5M , we have
∥εB(t)∥ < εB max on the compact set. It is imperative to fulfill
the PE condition to ensure the weight convergence in the critic
NN toward their target values. To check the PE condition, the
samples are recorded in the memory. The terms L(x(k), u(k))

and φc(k) are evaluated at k j as L(x(k j ), u(k j )) and φc(k j ) to
store in the experience replay buffer. Therefore, we have

1φcj = γφc
(
k j
)
− φc

(
k j − 1

)
(19)

and L j = L(x(k j ), u(k j )). We also define a new performance
index, including the recent TDE and the stored TDE to tune
the update law. Thus, the TDE at k j is defined as

ETD j
(
k j
)

= L j + ŵT
c 1φcj . (20)

Now, to update the critic NN, a novel gradient descent-based
concurrent learning weight tuning law is given as

ŵc(k + 1)

= ŵc(k)

−
αJ 1φc

(
v̂T

c (k)φ(Xa(k))
)
ET

TD(k)

1φT
C

(
v̂T

c (k)φ(Xa(k))
)
1φc

(
v̂T

c (k)φ(Xa(k))
)
+ 1

− αJ

l∑
j=1

1φcj

1φT
cj1φcj + 1

ET
TD j

v̂c(k + 1)

= v̂c(k) − φ(Xa(k))
(
v̂T

c (k)φ(Xa(k))

+ B1kvETD(k))T
−

l∑
j=1

φ
(
Xa
(
k j
))(

B1kvETD j
)T

(21)

where B1 and kv are constant matrices of proper dimension.
The learning rate is denoted as αJ , which is a constant value.
The experience replay buffer comprises sample data where
subscript j indicates the sample index in the buffer, with
j ∈ {1, . . . , l}. The experience replay buffer is constructed
as

9 =
[
1φ̄c1, . . . ,1φ̄cl

]
(22)

where 1φ̄cj = (1φcj/(1φT
cj1φcj + 1)). Hence, the data

recorded in 9 comprise linearly independent elements, which
are equal to the number of neurons in (13). Thus, the rank of
matrix 9 is equal to m. The experience replay buffer contains
a fixed and known number of samples, denoted as l, such that
l > m.

The following theorem presents the convergence of the
estimated critic NN weights to the actual weights using the
concurrent learning-based update law for two-layer NN and
without requiring the PE condition.
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Theorem 1: Given the augmented system (6) with the cost
function (7), let the update law for critic NN weights with the
concurrent learning be given by (21). Under the assumption
that Xa(k) is bounded, if 9 is full rank, then, w̃c = wc −

ŵc and ṽc = vc − v̂c converge to the residual set Rsw =

{w̃c|||w̃c|| ≤ cw} and Rsv = {ṽc|||ṽc|| ≤ cv}, respectively,
where cw > 0 and cv > 0 are constants, without requiring PE.

Proof: Refer to the Supplementary Materials.
It is worth noting that the critic NN output and hidden

layer weights are adjusted at specific intervals using TDE.
To enhance the convergence rate, the weights of the critic NN
are adjusted not only at the sample instants but also multiple
times within the intervals through an iterative process called
hybrid learning. Only the critic weights are adjusted during
the sampling intervals, while other system variables, such as
TDE, remain unchanged. Thus, by invoking (21), the critic
weights can be tuned iteratively within sampling intervals as

ŵi+1
c (k + 1)

= ŵi
c(k)

−
αJ 1φc

(
v̂iT

c (k)φ(Xa(k))
)
ET

TD(k)

1φT
C

(
v̂iT

c (l)φ(Xa(k))
)
1φc

(
v̂iT

c (k)φ(Xa(k))
)
+ 1

− αJ

l∑
j=1

1φcj

1φT
cj1φcj + 1

ET
TD j

v̂i+1
c (k + 1)

= v̂i
c(k)

− φ(Xa(k))
(
v̂iT

c (k)φ(Xa(k)) + B1kvETD(k)
)T

−

l∑
j=1

φ
(
Xa
(
k j
))(

B1kvETD j
)T

(23)

with i = 1, . . . ,L being the iteration number and L as
the total number of iterations during sampling intervals. It is
assumed that the critic NN weight update law at the sampling
instants k is the initial value for the sampling intervals, i.e.,
ŵ1

c(k) = ŵc(k) and v̂1
c(k) = v̂c(k). The subsequent theorem

demonstrates that the estimated value functional is bounded
by utilizing the initial admissible control policy, u0(k), and
the novel hybrid weight tuning law in (23).

Theorem 2: Consider the augmented nonlinear DT sys-
tem (6) and the value function (7) expressed in terms of
cost-to-go function. Consider the critic NN weights tuning
in (21) at the sampling instants and (23) within sampling
intervals. Then, under the assumption that Xa(k) is bounded,
the approximated value functional (13) is uniformly ultimately
bounded (UUB).

Proof: Refer to the Supplementary Materials.
Remark 1: The assumption that the augmented state vector,

Xa(k), is bounded will be relaxed in Theorem 3. Also, here,
a fixed number of iterations are employed due to the finite
sampling interval. However, a varying number of iterations can
also be utilized as long as the iterations can be executed within
the duration. These finite iterative weight tuning updates result
in faster convergence of the approximated value functional
toward the optimal solution, as shown through the Lyapunov
analysis. An increase in the number of iterative updates

improves the convergence rate of the approximated control
policy to its optimal solution. The proposed hybrid learning
method ensures the closed-loop stability and significantly
improves the optimal control performance.

B. Optimal Control Policy Approximation

To derive the optimal control scheme, a two-layer
feedforward NN is utilized as the actor NN. Thus, the
estimated control input is formulated as

û(Xa(k)) = ŵT
a φa

(
v̂T

a φ(Xa(k))
)

(24)

where ŵa an v̂a are the weights and φa and φ are the activation
functions of the actor NN. Next, define the control input error
as the difference between the estimated (24) and actual control
inputs as

ũ(k) = ŵT
aφa

(
v̂T

a φ(Xa(k))
)

+
γ

2
R−1G(Xa(k))T ∂φc

(
v̂T

c φ(Xa(k + 1))
)T

∂ Xa(k + 1)
ŵc. (25)

Using (11) and (12) in (10) yields

wT
a φa

(
vT

a φ(Xa(k))
)
+ εuk

= −
γ

2
R−1G(Xa(k))T ∂φc

(
vT

c φ(Xa(k + 1))
)T

∂ Xa(k + 1)
wc

−
γ

2
R−1G(Xa(k))T ∂ε jk+1

∂ Xa(k + 1)
. (26)

Employing (26) in (25) renders

ũ(k) = ŵT
aφa

(
v̂T

a φ(Xa(k))
)

+
γ

2
R−1G(Xa(k))T ∂φc

(
v̂T

c φ(Xa(k + 1))
)T

∂ Xa(k + 1)
ŵc

− wT
aφa

(
vT

a φ(Xa(k))
)
+ εuk

−
γ

2
R−1G(Xa(k))T ∂φc

(
vT

c φ(Xa(k + 1))
)T

∂ Xa(k + 1)
wc

−
γ

2
R−1G(Xa(k))T ∂ε jk+1

∂ Xa(k + 1)
. (27)

We define the actor weight estimation error as w̃a =

wa − ŵa . Adding and subtracting wT
a φa(v̂

T
a φ(Xa(k))) and

(γ /2)R−1GT (Xa(k))(∂φc(v̂
T
c φ(Xa(k + 1)))

T
/∂ Xa(k + 1))wc

in (27) and after some simplifications, one has

ũ(k) = −w̃T
a (k)φa(k) − wT

a (k)φ̃a(k)

−
γ

2
R−1GT (Xa(k))

∂φc
(
v̂T

c (k)Xa(k + 1)
)T

∂φ(Xa(k))
w̃c(k)

−
γ

2
R−1GT (Xa(k))

∂φ̃c(k + 1)

∂ Xa(k + 1)
wc(k) − ε̃uk (28)

where φ̃a(k) = φa(v
T
a (k)φ(Xa(k))) − φa(v̂

T
a (k)φ(Xa(k))),

φa(k) = φa(v̂
T
a (k)φ(Xa(k))) and ε̃uk = εuk + (γ /2)

R−1GT (Xa(k))(∂ε jk+1/∂ Xa(k + 1)).
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Since ũ(Xa(k)) can be measured, the actor NN weight
updating laws are established as

ŵa(k + 1)

= ŵa(k)−
αuφa

(
v̂T

a (k)φ(Xa(k))
)
ũT (k)(

φa
T (v̂T

a (k)φ(Xa(k))
)
φa
(
v̂T

a (k)φ(Xa(k))
)
+1
)

[15pt]v̂a(k + 1)

= v̂a(k) + φ(Xa(k))
(
v̂T

a(k)φ(Xa(k)) + B2kv ũ(k)
)T

(29)

where 0 < αu < 1. B2 and kv are a positive learning rate
parameter and matrix of suitable dimensions, respectively.
Using (29), the weight estimation error dynamics for the actor
NN is obtained as

w̃a(k + 1)

= w̃a(k)−
αuφa

(
v̂T

a (k)φ(Xa(k))
)
ũT (k)(

φa
T (v̂T

a (k)φ(Xa(k))
)
φa
(
v̂T

a (k)φ(Xa(k))
)
+1
)

[5pt]ṽa(k + 1)

= ṽa(k) + φ(Xa(k))
(
v̂T

a(k)φ(Xa(k)) + B2kv ũ(k)
)T

.

(30)

Remark 2: Note that the control input error can be
measured, provided that the control coefficient matrix
G(Xa(k)) is known. To relax this requirement for the actor
NN weight update law (30), an additional identifier NN can
be used [29].

Note the actor NN weights are only adjusted at the sampling
instant, unlike the critic NN. This implies that the control
policy is updated once per sampling instant and applied to
the nonlinear system. Next, the following theorem ensures
that the actual control input remains close to the optimal
solution.

Theorem 3: Given the augmented system (6) with the cost
function (7), consider the critic NN weights tuning in (21)
at the sampling instants and (23) within sampling intervals,
whereas the actor NN weights are adjusted using (29) with PE
condition that holds for the actor NN. Under initial admissible
control input, u0(k), there exist constants αu > 0 and
αJ > 0 such that the augmented state Xa(k), the critic
NN estimation weight errors (w̃c and ṽc), and the actor
estimation weight errors (ṽa and w̃a) are all UUB. The upper
bounds for these estimation errors are given by ∥w̃c∥ ≤ b′

wc
,

∥ṽc∥ ≤ b′
vc

, ∥w̃a∥ ≤ b′
wa

, and ∥ṽa∥ ≤ b′
va

, where b′
wc

, b′
vc

,
b′

wa
, and b′

va
are positive constants. This assurance guarantees

that the estimated control policy remains close to its optimal
value.

Proof: Refer to the Supplementary Materials.
Remark 3: For critic NN weight convergence, the PE

condition is essential and it is ensured by using concurrent
learning. The actor NN also needs PE, which is satis-
fied by adding random noise with the estimated control
input.

While the approach presented so far has merit, catastrophic
forgetting of knowledge occurs when different tasks are
executed causing a significant change in the system dynamics

resulting in a change in NN weights. Since for an online
adaptive NN control, the NN weights change incrementally,
this assumption is not satisfied in the presence of changing
tasks/operating conditions leading to a degradation in tracking
performance unless it is mitigated. This happens with
all online NN learning methods. In the following, the
LL method, which has the capability of learning from a
continuous stream of information, is presented to address this
issue.

C. LHL -Based Tracking

In this section, the LHL-based OAT control approach is
proposed. The block diagram of the proposed method is shown
in Fig. 1. Sharing information across tasks is one way to avoid
forgetting previous knowledge. Since the critic NN evaluates
the approximated cost function, which is then utilized to
generate the optimal control input, the LL is exclusively
applied to the critic NN. In this context, the output and hidden
layer weights in the critic NN are adjusted to minimize the
subsequent performance index

P =
1
2
ETD(k)2

+
λw

2
||ŵc − ŵ⋆

c||
2
Fw

+
λv

2
||v̂c − v̂⋆

c||
2
Fv

(31)

where ŵ⋆
c and v̂⋆

c are the constant weight matrices obtained at
the end of the prior tasks, λw and λv determine the importance
of the previous task to the recent one, and Fw and Fv are the
Fisher information matrix (FIM) [32]. The regularizer terms
||ŵc − ŵ⋆

c||
2
Fw

and ||v̂c − v̂⋆
c||

2
Fv

are defined as

||ŵc − ŵ⋆
c||

2
Fw

=
(
ŵc − ŵ⋆

c

)⊤
Fw

(
ŵc − ŵ⋆

c

)
||v̂c − v̂⋆

c||
2
Fv

=

∑
i

∑
j

Fv,i jv
2
i j

where vi j = v̂c,i j − v̂⋆
c,i j , and Fv,i j , v̂c,i j , and v̂⋆

c,i j are,
respectively, the i th and j th element of Fv , v̂c, and v̂⋆

c. The
FIM acts as a valuable metric to assess the informational value
of a specific set of sample data, denoted as D, in terms of
certain parameters. Consider p(ϑ |D) as the probability density
function and L(ϑ |D) = log(p(ϑ |D)) as the log-likelihood
function, with ϑ representing the relevance of the parameter
in relation to the training data D of a given task. Thus, the
FIM can be computed as [37]

Fθ = E

[
∂L(θ | D)

∂θ

(
∂L(θ | D)

∂θ

)⊤
]
.

In contrast, this article presents an innovative online
technique to compute the FIM for a new task by utilizing
input samples D from previous tasks. The estimation of FIM
involves the computation of the Jacobian matrix, which is
based on the input samples obtained from the previous tasks.
More precisely, the FIM for the upcoming task is computed
as Fw = E(J J⊤), where J is the Jacobian matrix that is equal
to the derivative of TDE in (14) with respect to the critic NN
weight ŵc obtained as J = 1φc(Xa(k − 1)). Therefore, the
FIM can be calculated as

Fw = E
(
1φc(Xa(k − 1))1φc(Xa(k − 1))⊤

)
.
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Similarly, for the hidden layer, we have

Fv,i j

= E


γ

(
ŵc,iφ

(
Xa,i (k)

))
φc

∑
j

[
v̂c, j iφ

(
Xa, j (k)

)]

−
(
ŵc,iφ

(
Xa,i (k−1)

))
φc

∑
j

[
v̂c, j iφ

(
Xa, j (k−1)

)]2


where ŵc,i and Xa,i (k) are the i th element of ŵc and Xa(k),
respectively. This technique enables the efficient calculation
of the FIM for a new task by utilizing input samples from
previous tasks, resulting in improved computational efficiency.

The second and third terms in (31) are combined with
the performance index to mitigate significant fluctuations
in the estimated critic NN weights during the tuning process
of the next task. Thus, the modified tuning law is written as

ŵc(k + 1)

= ŵc(k)

−
αJ 1φc

(
v̂T

c (k)φ(Xa(k))
)

1φT
C

(
v̂T

c (k)φ(Xa(k))
)
1φc

(
v̂T

c (k)φ(Xa(k))
)
+ 1

ET
TD(k)

− αJ

l∑
j=1

1φcj

1φT
cj1φcj + 1

ET
TD j − αJ λw Fw

(
ŵc(k) − ŵ⋆

c

)
v̂c(k + 1)

= v̂c(k) − φ(Xa(k))
(
v̂T

c (k)φ(Xa(k)) + B1kvETD(k)
)T

−

l∑
j=1

φ
(
Xa
(
k j
))(

B1kvETD j
)T

− λv Fv

(
v̂c(k) − v̂⋆

c

)
(32)

and within sampling instants i = 1, . . . ,L as

ŵi+1
c (k + 1)

= ŵi
c(k)

−
αJ 1φc

(
v̂iT

c (k)φ(Xa(k))
)
ET

TD(k)

1φT
C

(
v̂iT

c (l)φ(Xa(k))
)
1φc

(
v̂iT

c (k)φ(Xa(k))
)
+ 1

− αJ

l∑
j=1

1φcj

1φT
cj1φcj + 1

ET
TD j − αJ λw Fw

(
ŵi

c(k) − ŵ⋆
c

)
v̂i+1

c (k + 1)

= v̂i
c(k)

− φ(Xa(k))
(
v̂iT

c (k)φ(Xa(k)) + B1kvETD(k)
)T

−

l∑
j=1

φ
(
Xa
(
k j
))(

B1kvETD j
)T

− λv Fv

(
v̂i

c(k) − v̂⋆
c

)
.

(33)

Theorem 4: Consider the augmented nonlinear DT sys-
tem (6) and the value function (7) expressed in terms of
cost-to-go function. Let u0(k) be any initial admissible control
input and the modified critic NN with the concurrent weight
update law and the LL terms in (32) and (33) be used to
generate the actual control input. If the rank of the history

stack matrix m is equal to the number of neurons in (13), then
w̃c = wc − ŵc and ṽc = vc − v̂c exponentially converge to the
residual set Rsw = {w̃c|||w̃c|| ≤ cw} and Rsv = {ṽc|||ṽc|| ≤

cv}, respectively, where cw > 0 and cv > 0 are constants.
Then, there exist constants αu > 0 and αJ > 0 such that all
signals, including the augmented state Xa(k), the estimation
errors of the critic NN weights (w̃c and ṽc), and the estimation
errors of the actor weights (ṽa and w̃a), are UUB. This
assurance guarantees that the estimated control policy remains
close to its optimal value.

Proof: Refer to the Supplementary Materials.
Remark 4: The LL improves the performance of an

adaptive NN control in the presence of changing tasks or
trajectories, which requires significant NN weight changes,
by using a penalty term at each layer. The proposed LL
approach is not limited to two or three tasks and can be
utilized for any number of tasks. The first part of the critic NN
weight update law is the same as the one from Section III-B,
whereas the additional term has been included for LL. Though
the bounds increase due to LL, simulation results verify the
effectiveness of LL.

The extension of the proposed method to NN with more
than two layers is provided next.

D. Extension to Multilayer NN

Consider a critic MNN as

Ĵ k(Xa(k)) = ŵT
c φc

(
N−1∑
i=1

v̂T
ciφci (Xa(k))

)
(34)

where v̂ci represents the weights of the i th layer of the critic
NN. The critic MNN weight update law is defined as

ŵ j+1
c (k + 1)

= ŵ j
c (k)

−

αJ 1φc

(∑N−1
i=1 v̂

jT
ci (k)φci (k)

)
ET

TD(k)

1φT
c

(∑N−1
i=1 v̂

jT
ci (k)φci (k)

)
1φc

(∑N−1
i=1 v̂

jT
ci (k)φci (k)

)
+1

− αJ

l∑
k=1

1φck

1φT
ck1φck + 1

ET
TDk − αJ λw Fw

(
ŵ j

c (k) − ŵ⋆
c

)
v̂

j+1
ci (k + 1)

= v̂
j
ci (k) − φci (k)

(
v̂ jT

ci (k)φci (k)

+ Bci kvETD(k)
)T

−

l∑
k=1

φ(Xa(tk))(B1kvETDk)
T

− λv Fv

(
v̂ci

j
(k) − v̂⋆

ci

)
(35)

where i = 1, . . . , N −1 and j = 1, . . . ,L. φci denotes the NN
activation functions, Bci is an appropriate dimensional matrix,
and vci represents the critic NN weights of the i th layer. Using
MNNs, the estimated control strategy can be formulated as

û(k) = ŵT
a φa

(
N−1∑
i=1

v̂T
aiφai (Xa(k))

)
(36)
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Fig. 1. Overall LHL-based OAT.

where v̂ai is the weights of the i th layer of the actor NN.
Similarly, select the actor NN update law as

ŵa(k + 1)

= ŵa(k)

−

αuφa

(∑N−1
i=1 v̂T

ai (k)φai (k)
)

ũT

φT
a

(∑N−1
i=1 v̂T

ai (k)φai (k)
)
φa

(∑N−1
i=1 v̂T

ai (k)φai (k)
)
+1

v̂ai (k + 1) = v̂ai (k) + φai (k)
(
v̂T

ai (k)φai (k) + Bai kv ũ
)T

(37)

where φai are the actor NN activation functions, Bai are
design matrices with appropriate dimensions, and vai are the
i th layer NN weights with i = 1, . . . , N − 1. Unlike any
gradient-based weight tuning where the errors at the output
layer are propagated backward through the NN, from the
above MNN critic and actor NN weight tuning laws (35)
and (37), respectively, it is clear that TDE and control input
errors are directly utilized. As a consequence, we can still use
sigmoid activation functions, and basis function selection is
not needed. Also, the TDE that is computed using tracking
error is employed to tune the critic and actor NN weights for
the OAT control technique.

Theorem 5 (Estimated Optimal Control Using N Layer
NN): Suppose that u0(k) is an initial admissible control input
for (6), and the value functional is described by (7). Let the
critic and actor NN weights be given by (35) and (37). Then,
the augmented state vector Xa(k), and critic and action MNN
weight estimation errors are all UUB under the PE condition
of the actor NN. In addition, the estimated control input is
bounded close to its optimal value.

Proof: The proof follows steps similar to Theorem 3.
Remark 5: Note that the control input and TDE errors

depend on all the NN-layered outputs and augmented state

Fig. 2. Two-link robot manipulator.

vector. As a consequence, the performance of the overall
system improves as demonstrated in the simulation.

Remark 6: Although the proposed LHL OAT approach
requires the state vector, however, it can be extended to the
output feedback by using an NN observer and by replacing
the state vector with its estimated value from the observer as
shown in [29].

In the following theorem, it is shown that the vanishing
gradient issue, which is common with gradient-based methods,
does not occur in the proposed approach.

Theorem 6: For the OAT scheme, let the critic NN weights
be tuned by using (35), whereas the actor NN weights are
updated using (37). Then, the vanishing gradient problem is
not observed with the OAT scheme as we increase the number
of hidden layers.

Proof: The proof follows as in the case of optimal
adaptive regulation in [12] except, in this article, we use
augmented state vector for the purpose of tracking. In the
case of backpropagation, in the backward recursion for tuning
the weights, the activation functions multiply together. Since
the derivative of an NN activation function is less than one,
multiplying the derivatives less than one over the number of
layers becomes quite small.

In contrast, in this article, TDE, which depends on both
tracking error and desired trajectory, is directly used for tuning
the critic NN weights. As a result, the critic NN weights will
not vanish or become small despite the addition of concurrent
and LL terms. The derivative of the value function estimate
with respect to the augmented vector determines the error in
the control policy utilized to tune the actor NN weights. Since
the critic NN weights are tuned by TDE, which do not become
small or zero, they prevent the derivative of the activation
functions of the action NN weights to be small. Thus, the
vanishing gradient does not occur with our method.

IV. SIMULATION RESULTS

In this section, a simulation example of a robot manipulator,
as shown in Fig. 2, is presented to show the effectiveness of
the proposed approaches.

Consider a two-link robot manipulator [38] defined by

Ẋ1 = X2

Ẋ2 = F(X1, X2) + M(X1)
−1U (38)

where X1 = [x1, x2]
T represents the joint position,

X2 = [x3, x4]
T denotes the joint velocities, and U = [u1, u2]

T
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are the torque inputs for the joints. The nonlinear function is
expressed as F(X1, X2) = −[M(X1)]

−1 N (X1, X2) with

M(X1) =

[
3 + 2 cos(x2) 1 + cos(x2)

1 + cos(x2) 1

]
(39)

and

N (X1, X2)

=

[
−
(
2x3x4+x2

4

)
sin(x2)+19.6 cos(x1)+9.8 cos(x1+x2)

x2
1 sin(x2) + 9.8 cos(x1 + x2)

]
.

(40)

Note that the system in (38) is a CT nonlinear system that is
discretized. The time increment is set at 10 ms. The reference
trajectory is defined as


xd1(k)

xd2(k)

xd3(k)

xd4(k)

 = e(−k/4)


sin(k)

cos(k)

cos(k) −
1
4

sin(k)

−sin(k) −
1
4

cos(k)

. (41)

Next, define the quadratic value function
as (4) L(Xa(k), u(Xa(k))) = Xa(k)T Q̄ Xa(k) +

u(Xa(k))T Ru(Xa(k)) with Q̄ ∈ ℜ
4×4 as Q̄ =

[ Q 04×4; 04×4 04×4 ], with the selected value of Q = I4 and
R = 0.01. The initial state variables set as x0 = [ 0 1 1 0 ]

T ,
and the initial control policy is set to u0 = −

[
100 0 20 0
0 100 0 20

]
e0.

A four-layer NN with 11, 11, and 11 neurons in the
output, hidden, and input layers is used for the critic NN,
respectively. Similarly, the actor NN is a four-layer NN with
20, 20, and 20 neurons in the input, hidden, and output layers,
respectively. The design parameters are chosen as γ = 0.5,
αu = 0.02, and αJ = 0.08. The value of Bi is chosen as a
constant vector of 0.01 with Bci ∈ ℜ

11 for critic NN with
11 hidden layer neurons and Bai ∈ ℜ

20 for actor NN with
20 hidden layer neurons.

The parameter selection in every NN-based controller
depends on the system dynamics and the conditions derived
in the theorems. Even though it has been considered that the
system dynamics are uncertain, limited a priori information
of the system helps in the reasonable selection of controller
parameters and initial NN weights, thus satisfying the bounds
required in the theorems. This process has been employed
for selecting design parameters in this work. The hidden
and output layer activation functions are selected as the
sigmoid activation functions. The critic and actor weights are
initialized at random within the interval [0, 1] and [−0.1, 0.1],
respectively.

A. Proposed MNN Hybrid Learning

To show the effect of variation in intersampling instants
L on the OAT control, L is varied as 1, 3, and 10 for the
nonlinear case. The case without the hybrid learning scheme,
i.e., actor–critic-based OTC (AOTC) [2], is also included.
While PE is relaxed by concurrent learning in critic NN,
random noise with mean zero and variance 0.8 is used for
200-time instants with the estimated control policy of the actor

Fig. 3. Controller performance for the two-link robot with L = 1, L = 3,
L = 10 and the AOTC method [2].

Fig. 4. Tracking errors for the two-link robot with L = 1, L = 3,
L = 10 and the AOTC method [2].

NN to ensure the PE condition. It is seen from Figs. 3 and 4
that the proposed hybrid OAT helps in generating optimal
control input over the existing AOTC approach [2] and enables
both faster convergence of tracking error to near zero and NN
weights after the removal of the PE signal.

Simulations are carried out by varying the critic NN weight
update within sampling instants by a factor represented as an
intersampling instant rate L varied as one, three, and ten in
the present work. Past feedback values are used to evaluate the
value function and the control policy. The approximation error
of the optimal value function is dependent on how frequently
the critic NN weight matrix is updated within the sampling
instants. However, although the existing method, without
hybrid learning, shows an acceptable result for stability, its
convergence rate is slow.

Hence, from Fig. 5, it is observed that with an increase in
value function updates in the iterative fashion from one to ten,
the approximation error and the convergence time for the state
vector decrease, indicating that the value function and the state
vector converge faster over recent literature AOTC in [2]. The
performance of the proposed OAT approach using concurrent
hybrid learning is better than AOTC by comparing TDE and
cumulative cost.

B. Lifelong Hybrid Learning

In this section, the novel update law (32) has been used
in the simulation, first to relax the need for PE and then to
improve the performance of the controller by utilizing the
LL demonstrated via knowledge of the learned weights and
acceleration of the convergence with lower cost. For this
purpose, various desired trajectories are selected at distinct
time points as xd(k) = e(−0.25k)

[sin(k), cos(k), cos(k) −

0.25 sin(k), −sin(k) − 0.25 cos(k)]T , k ∈ (0, 3000];
xd(k) = e(−0.25k)

[sin(2k), cos(2k), 2 cos(2k) −
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Fig. 5. Performance of the hybrid learning: (a) TDE, ETD, (b) cumulative
value function, (c) ũ1, and (d) ũ2.

Fig. 6. System state and reference trajectories with the LHL.

0.25 sin(2k), −2 sin(2k) − 0.25 cos(2k)]T , k ∈ (3000, 6000];
and xd(k) = e(−0.25k)

[sin(k), cos(k), cos(k) −

0.25 sin(k), −sin(k) − 0.25 cos(k)]T , k ∈ (6000, 10 000].
As can be seen in Fig. 6, the desired trajectory, xd(k),
consists of three tasks where the first and third tasks are
identical.

To show the effectiveness of the experience replay method
and LL, we respectively choose a two-layer NN with 11, 36,
and one neurons in the hidden, input, and output layers for the
critic NN. The hidden layer with tangent hyperbolic activation
functions and the output layer with polynomial activation
functions are chosen. We select L = 10 for the hybrid factor.
The design parameters are chosen as γ = 0.5, αu = 0.02,
αJ = 0.01, and λi = 0.05. The value of Bi is chosen as
constant vector of 0.01, with Bci ∈ ℜ

36 for critic NN with
36 hidden layer neurons and Bai ∈ ℜ

20 for actor NN with
20 hidden layer neurons.

Probing noise is added to the actor output to generate the PE
signal, whereas concurrent learning ensures PE for the critic
NN. The state and reference trajectories are shown in Fig. 6.
As can be seen, the proposed LHL-based OAT control strategy
achieves a high level of tracking performance. It is clear that all
states under the LHL control input follow the desired reference
signals. Also, the results confirm that the proposed method can
ensure stability. In Figs. 7–9, the simulation results are shown
for two distinct cases. In the first case, the LL term in (32)

Fig. 7. Performance of the proposed LHL approach, without LHL [21], and
AOTC [2].

Fig. 8. Estimated control input with and without LHL term [21].

Fig. 9. Total cost and critic NN weight norm comparison with LHL and
without LHL term [21].

and the hybrid learning term in (23) are not considered [21].
On the other hand, the second case incorporates the LHL term,
and the corresponding results are presented.

The convergence of tracking errors is observed in Fig. 7.
Without the LHL approach, there is a noticeable increase in
error and significant fluctuations during the task transitions
from task 1 to task 2 and back to task 1. These fluctuations
occur due to the presence of the catastrophic forgetting
issue. However, by integrating LHL techniques, the impact
of catastrophic forgetting during task transitions is mitigated.
In particular, when comparing the results to those without
the LHL method, the proposed LHL strategy demonstrates
a remarkable reduction in the root-mean-square (rms) error,
specifically by 44% for the third task. These findings
indicate that the LHL approach effectively addresses the
issue of catastrophic forgetting, leading to improved tracking
performance and reduced error, particularly during task
transitions.

In Fig. 8, the estimated control actions are depicted.
Realizing that the presented hybrid controller technique for
the critic NN does not necessitate the PE condition, however,
external noise is introduced as part of the approach for the
actor NN. Fig. 9 clearly shows that the proposed LHL control
strategy not only achieves superior tracking performance but
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also significantly reduces costs and control effort. When
compared to the scenario without the LHL method [21], the
results indicate a remarkable reduction in total cost, amounting
to 68% across all three tasks. Particularly for the third task, the
proposed strategy showcases a notable cost reduction of 31%.
These findings highlight the effectiveness and efficiency of the
LHL control strategy in minimizing costs and control efforts
while achieving the desired tracking objectives. In Fig. 9, the
norm of the critic NN weights is also illustrated. It is clear
that by using the LL method, the NN controller overcomes
forgetting the previously accumulated knowledge from the
former tasks when executing the newer ones.

V. CONCLUSION

In this article, a novel LHL-based OAT control strategy was
presented for nonlinear DT systems with uncertain internal
dynamics. Applying TDE to adjust the weights of the critic
and employing the control input errors to tune the weights
of the actor led to a desirable performance outcome. The
hybrid learning approach proposed for tuning the critic NN
weights helped improve the value function convergence toward
its optimal value. Thus, the control input error decreased, and
the actual control input approached its optimal solution faster.
Moreover, the experience replay method was utilized to assure
the convergence of the critic NN weights. This was done by
using a simple condition that can be verified online, unlike
traditional PE conditions.

In addition, additional layers in the critic NN reduced
NN functional approximation errors and resulted in better
tracking performance. The vanishing gradient problem was
not observed as the TDE and control policy errors were
directly utilized for weight tuning. Despite the strong control
performance, the multilayer NN-based controller was unable
to effectively perform well in the presence of accumulated
knowledge resulting from multiple tasks and its associated
changes in dynamics. The EWC term, which was included
in the critic NN weight tuning, mitigated the problem and led
to LL. The ultimate boundedness of the overall closed-loop
system was proven via Lyapunov stability analysis.
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