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CONCERNING PERIODIC POINTS
IN MAPPINGS OF CONTINUA

W. T. INGRAM

(Communicated by Dennis Burke)

ABSTRACT. In this paper we present some conditions which are sufficient for

a mapping to have periodic points.

THEOREM. If fis a mapping of the space X into X and there exist subcontinua

H and K of X such that (1) every subcontinuum of K has the fixed point property,

(2) f[K] and every subcontinuum of f[H] are in class W, (3) f[K] contains H,

(4) f[H] contains HUK, and (5) if'n is a positive integer such that (f\H)~n(K)

intersects K, then n = 2, then K contains periodic points of f of every period

greater than 1.

Also included is a fixed point lemma:

LEMMA. Suppose f is a mapping of the space X into X and K is a subcontinuum

of X such that f[K] contains K. If (1) every subcontinuum of K has the fixed point

property, and (2) every subcontinuum of f[K] is in class W, then there is a point

x of K such that f(x) = x.

Further we show that: If / is a mapping of [0, lj into [0,1] and / has

a periodic point which is not a power of 2, then lim{[0, 1],/} contains an

indecomposable continuum. Moreover, for each positive integer i, there is a

mapping of [0,1] into [0,1] with a periodic point of period 2' and having a

hereditarily decomposable inverse limit.

1. Introduction. In his book, An Introduction to Chaotic Dynamical Systems

[3, Theorem 10.2, p. 62], Robert L. Devaney includes a proof of Sarkovskii s' The-

orem. Consider the following order on the natural numbers: 3>5>7>->2-3>

2-5>->22-3>22-5>-->23-3f>23-5>->23>22r>2i>l. Suppose f:R^ R

is continuous. If k > m and / has a periodic point of prime period k, then / has a

periodic point of period m. In working through a proof of this theorem for k = 3,

the author discovered the main result of this paper—Theorem 2. For an alternate

proof of Sarkovskii's Theorem for k = 3, see also [7]. For a further look at this

theorem for ordered spaces see [13].

By a continuum we mean a compact connected metric space and by a mapping

we mean a continuous function. By a periodic point of period n for a mapping / of a

continuum M into M is meant a point x such that fn(x) — x. The statement that

x has prime period n means that n is the least integer k such that fk(x) — x. A

continuum M is said to have the fixed point property provided if / is a mapping of M

into M there is a point x such that f(x) — x. A mapping / of a continuum A onto

a continuum M is said to be weakly confluent provided for each subcontinuum K of
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644 W. T. INGRAM

M some component of f~x(K) is thrown by / onto K. A continuum is said to be in

Class W provided every mapping of a continuum onto it is weakly confluent. The

continuum T is a triod provided there is a subcontinuum K of T such that T—K has

at least three components. A continuum is atriodic provided it does not contain a

triod. A continuum M is unicoherent provided if M is the union of two subcontinua

H and K, then the common part of H and K is connected. A continuum is

hereditarily unicoherent provided each of its subcontinua is unicoherent. If / is

a mapping of a space X into X, the inverse limit of the inverse limit sequence

{Xi,fi} where, for each i, A¿ is A and /¿ is / will be denoted lim{A,/}. For

the inverse sequence {A¿, /¿}, the inverse limit is the subset of the product of the

sequence of spaces Ai, X2,... to which the point (xi,x2,...) belongs if and only

il fi(xi+i) = x%.

There has been considerable interest in periodic homeomorphisms of continua

where a homeomorphism h is called periodic provided there is an integer n such that

hn is the identity. Wayne Lewis has shown [8] that for each n there is a chainable

continuum with a periodic homeomorphism of period n. A theorem of Michel Smith

and Sam Young [14] should be compared with Theorem 3 of this paper. Smith and

Young show that if a chainable continuum M has a periodic homeomorphism of

period greater than 2, then M contains an indecomposable continuum. In this

paper we consider the question of the existence of periodic points in mappings of

continua.

2. A fixed point theorem. The problem of finding a periodic point of period

n for a mapping / is, of course, the same as the problem of finding a fixed point

for /". Not surprisingly, we need a fixed point theorem as a lemma to the main

theorem of this paper. The following theorem, which the author finds interesting

in its own right, should be compared with an example of Sam Nadler [11] of a

mapping with no fixed point of a disk to a containing disk. A corollary to Theorem

1 is the well-known corresponding result for mappings of intervals.

THEOREM 1. Suppose X is a space, f is a mapping of X into X, and K is a

subcontinuum of X such that f[K] contains K. If (1) every subcontinuum of K has

the fixed point property, and (2) every subcontinuum of f\K\ is in Class W, then

there is a point x of K such that f(x) = x.

PROOF. Since f[K] is in Class W and A is a subset of f[K], there is a subcon-

tinuum Ai of K such that f[Ki] = K. Then f\Ki'.Ki —> K is weakly confluent

since every subcontinuum of f[K) is in Class W; thus there is a subcontinuum K2

of Ai such that f[K2] = Ki. Since A"i is in Class W, f\K2:K2 —> Ki is weakly
confluent; therefore there is a subcontinuum A3 of K2 such that /[A3] = K2. Con-

tinuing this process there exists a monotonie decreasing sequence Ai,K2, A3,...

of subcontinua of K such that /[A,+i] = A¿ for i = 1,2,3,... . Let H denote

the common part of all the terms of this sequence and note that f[H] = H, since

f\H] = f\rU>oKi\ = ni>0/[^] = n,>o^ = ¡*. Since f\H throws H onto H
and H has the fixed point property, there exists a point x of H (and therefore of

K) such that f(x) = x.

REMARK. Note that (1) and (2) of the hypothesis of Theorem 1 are met if f[K]

is chainable ([12, Theorem 4, p. 236 and 4], respectively), while (2) is met if f[K\ is
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atriodic and acyclic [1] and (1) is met by planar, tree-like continua such that each

two points of a subcontinuum L lie in a weakly chainable subcontinuum of L [10].

3. Periodic points.  In this section we prove the main result of the paper.

THEOREM 2. If f is a mapping of the space X into X and there exist subcon-

tinua H and K of X such that (1) every subcontinuum of K has the fixed point

property, (2) f[K] and every subcontinuum of f[H] are in class W, (3) f[K] con-

tains H, (4) f[H] contains H U K, and (5) if n is a positive integer such that

(f\H)~n(K) intersects K, then n = 2, then K contains periodic points of f of

every period greater than 1.

PROOF. Suppose n > 2. There is a sequence Hi, H2,..., Hn~i of subcontinua

of H such that f[Hi] = K (note that f\H is weakly confluent) and f[Hi+i] = Hi

for i = 1,2,... ,n — 2 (in case n > 2). There is a subcontinuum Kn of K so that

f[Kn] = H„-i. Thus, fn[Kn] = K and so fn[Kn] contains Kn, so, by Theorem

1, there is a point x of Kn such that fn(x) = x. We must show that if j < n

then P(x) is not x. If j < n and P(x) = x, then j = n — 2 and x is in H2.

Since fn(x) = x and fn~2(x) = x, f2(x) = x. Since x is in (f\H)~2(K), x is in

(f\H)~4(K) and in K contrary to (5) of the hypothesis. Therefore, x is periodic

of prime period n.

REMARK. If / is a mapping of the continuum M into itself and / has a periodic

point of period k, then the mapping of lim{M, /} induced by / has periodic points

of period k, e.g. (x, fk~1(x),..., f(x), x,... ). Thus, although Theorem 2 does not

directly apply to homeomorphisms, it may be used to conclude the existence of

homeomorphisms with periodic points.

COROLLARY. If M is a chainable continuum, f is a mapping of M into M, and

there are subcontinua H and K of M such that f[K] = H, f[H] contains HöK, and

if (f\H)~n(K) intersects K then n = 2 then f has periodic points of every period.

N

A/2

B/2

B/3

Figure l



646 W. T. INGRAM

EXAMPLE. Let / be the mapping of the simple triod T to itself given in [5].

The mapping / is represented in Figure 1 above. Letting H — [0, A/2] and K =

[5/3, B/2] it follows from Theorem 2 that / has periodic points of every period.

EXAMPLE. Let / be the mapping of the simple triod T to itself given in [2].

The mapping / is represented in Figure 2 below. Letting H = [0,3ß/8] and

K = [C/32,C/8], it follows from Theorem 2 that / has periodic points of every

period.

B/2 C/2

Figure 2

EXAMPLE. Let / be the mapping of the unit circle S1 to itself given by f(z) = z2.

Letting H = {eí9|0 < 6 < 3tt/4} and K = {eie\ir < Ô < 3tt/2}, it follows from

Theorem 2 that / has periodic points of every period. Similarly, if / is a mapping

of S1 onto itself which is homotopic to zn for some n > 1, then / has periodic

points of every period.

z

Figure 3

K

COROLLARY.   // / is a mapping of an interval to itself with a periodic point of

period 3, then f has periodic points of every period.
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PROOF. To see this it is a matter of noting that the hypothesis of Theorem 2 is

met. We indicate the proof for one of two cases and leave the second similar case

to the reader. Suppose a, b and c are points of the interval with a < b < c and

f(a) = b, f(b) = c and /(c) = a [the other case is f(a) = c, f(b) = a and /(c) = 6].

If /_1(c) is nondegenerate, then there exist mutually exclusive intervals H and

K lying in [b,c] and [a, b], respectively, so that f[H] is [a,c] and f[K] is [b, c] and

Theorem 2 applies.

Suppose /_1(c) = {b}. Choose K lying in [a,b] and H lying in [b, c] so that

f[K] = [b,c] and f[H] = [a,c\. For each i, denote by Hi the set (/|i/)_1(A). Note

that a is not in H¡ for i = 1,2,3,... so c is not in Hi for i = 2,3,4,... and thus 6

is not in Hi for i — 3,4,_ Further, 6 is not in Hi since c is not in K. Thus, if

Hi intersects K, then i = 2. Consequently, the hypothesis of Theorem 2 is met.

REMARK. Condition (5) of Theorem 2 seems a bit artificial. A more natural

condition the author experimented with in its place is a requirement that H and

K be mutually exclusive. In fact, in each of the examples, the H and K given

are mutually exclusive. However, replacing condition (5) with this proved to be

undesirable in that the Sarkovskii Theorem for k = 3 is not a corollary to Theorem

2 if the alternate condition is used. That condition (5) may not be replaced by

the assumption that H and K are mutually exclusive can be seen by the following.

For the function /: [0,1] —► [0,1], which is piecewise linear and contains the points

(0,^), (\,1) and (1,0), there do not exist mutually exclusive intervals H and K

such that f[H\ contains HuK and f\K] contains H. To see this suppose H and K

are such mutually exclusive intervals. By Theorem 2, K contains a periodic point

of / of period 3. Note that /3 has only four fixed points: 0, |, |, and 1. Since |

is a fixed point for /, K must contain one of 0, \, and 1. We complete the proof

by showing that each of these possibilities leads to a contradiction.

(1) Suppose 0 is in K. Then 1 is in H since /_1(0) = {1} and f[H] contains K.

But since /-1(1) = {f}s \ is in both H and K.

(2) Suppose 1 is in K. Since /_1(1) = {§}, § is in H. Since f~l(\) = {0,f}

and H and K do not intersect 0 is in H and | is in K. But, /_1(0) = {1} so 1 is

inH.

(3) Suppose | is in K. As before, one of 0 and | is in H. Since /_1(0) = {1},

if 0 is in H then 1 is in both H and K. Thus | is in H. Then /-1(|) contains

two points, | and one less than |, so Pi = | is in H. Since f~1(Pi) contains two

points, | and one between | and |, | is in A. Thus, /_1(|) = {§ is in H. Since

/_1(y|) contains two points, || and one less than ^, P2 = || is in H. Continuing

this process, we get a sequence Pi,P2,... of points of H which converges to |.

Thus I is in H.

4. Periodic points and indecomposability. In this section we show that

under certain conditions the existence of a periodic point of period three in a map-

ping of a continuum M to itself implies that lim{M, /} contains an indecomposable

continuum. Of course the result is not true in general since a rotation of S1 by 120

degrees yields a homeomorphism of Sl and a copy of S1 for the inverse limit.

THEOREM 3. Suppose f is a mapping of the continuum M into itself and x is

a point of M which is a periodic point of f of period three. If M is atriodic and

hereditarily unicoherent,  then lim{M, /}  contains an indecomposable continuum.
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Moreover, the inverse limit is indecomposable í/cl(|J¿>0 /'[Mi]) = M, where Mi

is the subcontinuum of M irreducible from x to f(x).

PROOF. Suppose a: is a periodic point of / of period three. Denote by Mr, M2

and M3 subcontinua of M irreducible from x to f(x), f(x) to f2(x) and f2(x) to

x, respectively. Note that since M is hereditarily unicoherent, Mi n (M2 U M3) =

(Mi n M2) U (Mi n M3) is a continuum, so there is a point p common to all three

continua.

The three continua Mi f~l M2, M2 fl M3 and Mi n M3 all contain the point p

so, since M is atriodic, one of them is a subset of the union of the other two [15].

Suppose MinM2 is a subset of (M2nM3)u(MinM3) = M3n(MiUM2) = M3. (The

last equality follows since M3 fl (Mi U M2 ) is a subcontinuum of M3 containing x

and f2(x) and M3 is irreducible between x and f2(x)). Then, Mi UM2 is a subset

of M3 for if not there is a point t of Mi U M2 such that t is not in M3. Since

Mi n M2 is a subset of M3, t is in Mi or in M2 but not in Mi n M2. Suppose t is

in Mi - (Mi n M2). Since t is not in M3, t is in Mi - (Mi n M3) and thus t is in

Mi - [(Mi n M2) U (Mi n M3)] = Mi - [Mi n (M2 U M3)].

But, Mi n (M2 UM3) is a subcontinuum of Mi containing x and f(x), so it contains

Mi since Mi is irreducible between x and f(x). Thus, Mi = Mi n (M2 UM3) and

so Mi U M2 is a subset of M3.

Note that /[Mi] is a continuum containing f(x) and f2(x), so /[Mi] n M2

is a subcontinuum of M2 containing these two points. Since M2 is irreducible

from f(x) to f2(x), /[Mi] n M2 = M2. Therefore, M2 is a subset of /[Mi].

Similarly, /[M2] contains M3 and /[M3] contains Mi. However, since M3 contains

Mi UM2, M3 contains x, f(x) and f2(x), so /[M3] contains Mi UM2 UM3. Thus,

/n+2[Mi] contains /n+1[M2] which contains /™[M3] which contains Mi UM2UM3

for n = 1,2,3,... and so cl((jl>0 P[Mi}) = cl(\Jt>0 f[M2}) = c\(Ui>0f[M3]).
Then, H = cl(U„>o fn[Mi]) is a continuum such that f\H: H —> H. Denote by K

the inverse limit, \im{H, f\H). We show that K is indecomposable by showing the

conditions of [6, Theorem 2, p. 267] are satisfied. Suppose n is a positive integer

and e is a positive number. There is a positive integer k such that if t is in H then

d(t, fk[Mz\) < e. Suppose C is a subcontinuum of H containing two of the three

points, x, f(x) and f2(x). Then C contains one of Mi, M2 and M3. In any case

f2[C] contains M3, and thus, if m = k + 2, d(t, fm[C\) < e for each t in H. By

Kuykendall's Theorem, K is indecomposable.

THEOREM 4. If f is a mapping of [0,1] to [0,1] and f has a periodic point

whose period is not a power of 2, then lim{([0,1],/)} contains an indecomposable

continuum. Moreover, for each positive integer i, there exists a mapping which has

a periodic point of period 2l and hereditarily decomposable inverse limit.1

PROOF. Suppose / has a periodic point which has period n and n is not a

power of 2. Then, n = 2J (2k +1) for some j, k>0, and f2' has a periodic point of

period 2k + 1. By the Sarkovskii Theorem, f2' has a periodic point of period 6, so

1 Added in proof. Theorem 4 first appeared, with a slightly different proof, as Theorem 1 of

Chaos, periodicity, and snakelike continua by Marcy Barge and Joe Martin in a publication (MSRI

014-84) of the Mathematical Sciences Research Institute, Berkeley, California in January, 1984.
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g = (f21)2 has a periodic point of period 3. Since lim{[0,1], /} is homeomorphic to

lim{[0,1], g}, by Theorem 3 lim{[0,1], /} contains an indecomposable continuum.

In the family of maps fu(x) = px(l — x), for 2 < p < pc ~ 3.5699456... all the

inverse limits for p in this range are hereditarily decomposable and for each power

of 2, there is a map in this collection with a periodic point of period that power of

2. In fact for 2 < p < 3 the inverse limit is an arc, for 3 < p < pc the inverse limit

becomes, as p increases, first a sinusoid, then a sinusoid to a double sinusoid, etc.

For more details on this, see [9].
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