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Direct numerical simulation of hypersonic
turbulent boundary layers. Part 2. Effect of

wall temperature

L. DUAN, I. BEEKMAN AND M. P. MART ÍN†
Aerospace Engineering Department, University of Maryland, College Park, MD 20742, USA

(Received 28 May 2009; revised 18 February 2010; accepted 18 February 2010;

first published online 13 May 2010)

In this paper, we perform direct numerical simulation (DNS) of turbulent boundary
layers at Mach 5 with the ratio of wall-to-edge temperature Tw/Tδ from 1.0 to 5.4
(Cases M5T1 to M5T5). The influence of wall cooling on Morkovin’s scaling, Walz’s
equation, the standard and modified strong Reynolds analogies, turbulent kinetic
energy budgets, compressibility effects and near-wall coherent structures is assessed.
We find that many of the scaling relations used to express adiabatic compressible
boundary-layer statistics in terms of incompressible boundary layers also hold for
non-adiabatic cases. Compressibility effects are enhanced by wall cooling but remain
insignificant, and the turbulence dissipation remains primarily solenoidal. Moreover,
the variation of near-wall streaks, iso-surface of the swirl strength and hairpin packets
with wall temperature demonstrates that cooling the wall increases the coherency of
turbulent structures. We present the mechanism by which wall cooling enhances
the coherence of turbulence structures, and we provide an explanation of why this
mechanism does not represent an exception to the weakly compressible hypothesis.

1. Introduction
Boundary layers on both supersonic and hypersonic vehicles are compressible and

mostly turbulent. One of the big differences between them is the wall-temperature
condition. When a vehicle flies at supersonic speeds, the surface temperature is
essentially adiabatic, while at hypersonic speeds, due to considerable radiative cooling
and internal heat transfer, the external surface temperatures are significantly lower
than the adiabatic wall temperature. As a result, the heat transfer between the
boundary-layer flow and the surface of hypersonic vehicles is enormous. An accurate
prediction of surface heat flux and the design of thermal protection system for
hypersonic vehicles require a detailed understanding of non-adiabatic turbulent
boundary layers.

An essential part of the study for compressible turbulent boundary layers is to check
the validity of Morkovin’s hypothesis. The hypothesis, first proposed by Morkovin
(1962), is that, at moderate free-stream Mach numbers (M � 5), dilatation is small
and any differences from incompressible turbulence can be accounted for by mean
variations of fluid properties. This is the basis for the van Driest transformation, a
velocity scaling that accounts for the fluid-property variations to collapse compressible
flow data onto the ‘universal’ incompressible distribution. To date, the validity of

† Email address for correspondence: pmartin@princeton.edu
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Morkovin’s hypothesis has been checked primarily using experimental investigations
(see data compilation given by Fernholz & Finley 1980), and most of the experimental
measurements are limited to basic turbulence quantities, such as mean and root mean
square (r.m.s.) velocity and temperature and skin friction. There are only a limited
number of numerical simulations which provide detailed turbulence statistics. For
example, Guarini et al. (2000) and Pirozzoli, Grasso & Gatski (2004) performed
direct numerical simulations (DNS) of supersonic turbulent boundary layers at
Mach 2.5 and 2.25, respectively and found that the essential dynamics of the
investigated supersonic turbulent boundary layers closely resemble the incompressible
pattern under analogous conditions. Direct numerical simulations of compressible
boundary layers at higher Mach numbers have also been performed by Martin
(2004) and Maeder, Adams & Kleiser (2001) to check the possible breakdown of
Morkovin’s hypothesis, and Maeder (2000) investigated Morkovin’s scaling under two
surface conditions at Mach 4.5. Still, more work on the systematic investigation of
compressibility effects and the validity of Morkovin’s scaling under a wide range of
non-adiabatic surface conditions is necessary.

Another important factor in compressible turbulent boundary-layer analysis is
the strong Reynolds analogy (SRA), which relates the temperature fluctuations to
the streamwise velocity fluctuations and is widely used to extend incompressible
turbulence models to compressible flows. The SRA predicts that the velocity and
temperature fluctuations are perfectly anticorrelated with the correlation coefficient
Ru′T ′ = − 1 (Morkovin 1962). As is shown by Lele (1994), this is only true for
negligible pressure and total temperature fluctuations; the effects of non-negligible
total temperature fluctuation on Ru′T ′ and SRA can be extended given a known
variation in mean total temperature (Gaviglio 1987). Guarini et al. (2000) presented a
further derivation and analysis of the classic SRA equations and some extensions, and
compared them with an adiabatic boundary-layer simulation at Mach number 2.5.
The check of the validity of classic and modified SRA for supersonic boundary layers
under adiabatic conditions has also been performed by Maeder et al. (2001) and
Pirozzoli et al. (2004). As far as surface heat transfer is concerned, several modified
forms of SRA have been proposed to take into account surface heat flux (Gaviglio
1987; Rubesin 1990; Huang, Coleman & Bradshaw 1995). Maeder (2000) checked the
validity of the SRA for boundary layers at Mach 4.5 with two surface conditions and
found that Huang’s version of the modified SRA (Huang et al. 1995) demonstrated a
considerable improvement of (4.1) of the SRA under cold wall conditions.

A major purpose of the current direct numerical simulations is to provide
detailed statistics to evaluate theories such as Morkovin’s hypothesis, the van Driest
transformation, and the SRA under non-adiabatic conditions with a wide range of
wall temperatures in more detail than has been previously possible.

Recent laboratory and numerical experiments indicate that, in addition to
turbulence statistics, large-scale coherent structures play a key role in wall-bounded
turbulent flows at incompressible and compressible conditions (Kim & Adrian 1999;
Adrian, Meinhart & Tomkins 2000; Ganapathisubramani, Clemens & Dolling 2006;
Hutchins & Marusic 2007; Ringuette, Wu & Martin 2008, amongst others). In the
study of channel flow with isothermal walls, Coleman, Kim & Moser (1995) found
that near-wall structures become more coherent with increasing Mach number and
argued that the modified near-wall structures do not create an exception to the weekly
compressible hypothesis. Morinishi, Tamano & Nakabayashi (2004) performed DNS
of compressible turbulent channel flows between adiabatic and isothermal walls
and showed that the near-wall velocity streaks are independent of the thermal wall
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Case Mδ ρδ (kg m−3) Tδ (K) Tw/Tδ Tw/Tr Reθ Reτ Reδ2 θ (mm) H δ (mm)

M5T1 4.97 0.0890 228.1 1.00 0.18 1279.1 798.1 1538.4 0.175 5.55 2.44
M5T2 4.97 0.0890 228.1 1.90 0.35 2300.2 624.7 1521.5 0.298 6.30 5.07
M5T3 4.97 0.0908 224.1 2.89 0.53 3011.6 522.2 1524.7 0.422 7.60 7.65
M5T4 4.97 0.0889 231.7 3.74 0.68 3819.3 433.8 1526.4 0.508 8.92 9.86
M5T5 4.97 0.0937 221.0 5.40 1.00 4840.5 385.9 1536.8 0.655 11.1 14.2

Table 1. Boundary-layer edge and wall parameters for the DNS database.

boundary conditions in semilocal units. Similar investigations of wall-temperature
effects on turbulent structures have not yet been investigated in boundary layers.
Therefore, another purpose of the current paper is to investigate the effects of heat
transfer on large-scale coherent structures, as well as the possible influence of these
large-scale structures on turbulence statistics in turbulent boundary layers using DNS
data.

The paper is structured as follows. Flow conditions and simulation details are
given in § 2. Turbulence statistics are given in § 3. SRA, turbulent kinetic energy
(TKE) are given in §§ 4 and 5, respectively. Finally, the influence of wall temperature
on compressibility effects is analysed in § 6 and the relationship between wall heat
transfer and coherent structures is examined in § 7. Conclusions are presented in § 8.

2. Simulation details
2.1. Flow conditions

To study heat-transfer effects, we use a DNS database of turbulent boundary layers
from Martin (2004, 2007) with nominal free stream Mach number 5 and wall-to-
boundary-layer-edge temperature ratio Tw/Tδ ranging from 1.0 to 5.4. The boundary-
layer edge conditions and wall parameters for the DNS database are given in table 1,
which provides free stream Mach number, density and temperature (Mδ , ρδ and Tδ ,
respectively). The table also gives the following boundary-layer properties: momentum
thickness θ , shape factor, H = δ∗/θ (δ∗ is the displacement thickness), boundary-layer
thickness δ (defined as the location where the flow velocity is 99 % of that of the
free stream) and Reynolds numbers, where Reθ ≡ ρδuδθ/µδ , Reτ ≡ ρwuτ δ/µw and
Reδ2

≡ ρδuδθ/µw . Reδ2
was proposed by Fernholz & Finley (1980) and is defined by

the ratio of the highest momentum ( = ρδu
2
δ) to the wall shear stress ( = τw).

For all cases, the wall condition is isothermal. The wall temperature for case
M5T5 is prescribed to be nearly the adiabatic (recovery) temperature Tr , where
Tr ≡ Tδ(1 + r((γ − 1)/2)Mδ

2) with recovery factor r =0.9. The prescribed wall
temperatures decrease from M5T5 to M5T1.

The change in wall temperature inevitably changes the Reynolds number, since
the flow density, viscosity, as well as the boundary-layer thickness vary as the wall
temperature changes from one case to another. The simultaneous change in wall
temperature and Reynolds number complicates the analysis. To study how turbulent
boundary layers scale with wall temperature, it is desirable to match the Reynolds
number for different wall-temperature cases in order to keep wall temperature as
the only scaling parameter. Given the different definitions of Reynolds number and
the large variation of fluid properties, a single Reynolds number is not sufficient to
characterize the flow (Smits 1991; Lele 1994). Here, we report on the data analysis
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Case Lx/δ Ly/δ Lz/δ �x+ �y+ z+
2 α Nx Ny Nz

M5T1 10.3 2.6 21.9 7.7 2.9 0.33 1.069 384 256 110
M5T2 7.9 2.0 15.8 7.8 3.0 0.32 1.069 384 256 110
M5T3 7.5 1.9 16.7 7.7 2.9 0.33 1.069 384 256 110
M5T4 7.8 1.9 16.4 7.5 2.8 0.33 1.069 384 256 110
M5T5 7.4 1.8 14.0 7.4 2.8 0.30 1.069 384 256 110

Table 2. Grid resolution and domain size for the direct numerical simulations.

following the approach of Fernholz & Finley (1980), matching Reδ2 for the different
wall-temperature cases. The same conclusions are drawn by matching Reθ or Reτ .

2.2. Simulation method

The governing equations, numerical methods and initialization procedure are given
in Martin (2007). The working fluid is air. For computational efficiency, we use
periodic boundary conditions in the streamwise and spanwise directions. Although
the periodic boundary condition neglects streamwise inhomogeneity of the boundary
layer and thus results in evolving mean flow and decaying turbulence, the usage is
valid provided the turbulence is quasi-steady and sustains for sufficient time to gather
statistics without apparent boundary-layer growth (see Xu & Martin 2004; Martin
2007). In particular, in the study of the inflow condition of compressible boundary
layers, Xu & Martin (2004) showed that the data from the simulations with periodic
boundary conditions are in good agreement with those obtained from the extended
temporal simulations (Maeder et al. 2001), which shows the validity of the use of
periodic boundary conditions.

For the current simulations, averages are computed over streamwise and spanwise
directions of each field; then an ensemble average is calculated over fields spanning
around one non-dimensional time unit. The time is non-dimensionalized by δ/uτ ,
which corresponds to around 20δ∗/ue. During this time period, the change in (δ, uτ ,
Cf ) is less than 5 % and thus the flow is a good approximation to a static station of
a boundary layer (see Xu & Martin 2004).

2.3. Simulation parameters

Following Martin (2007), the computational domain size and grid resolution are
determined based on the characteristic large length scale δ, and the characteristic
small near-wall length scale zτ , respectively. The computational domain must be large
enough to contain a good sample of the large scales, while the grid resolution must
be fine enough to resolve the near-wall structures. The domain size (Lx × Ly × Lz),
the grid size (�x × �y × �z) and the number of grid points (Nx × Ny × Nz) are given
in table 2. We take the streamwise, spanwise and wall-normal directions to be x, y

and z, respectively. Uniform grid spacings are used in the streamwise and spanwise
directions with constant �x+ and �y+, where the superscript ‘+’ indicates scaling
with inner, or wall values. Geometric stretching is used in the wall-normal direction,
with zk = z2(α

k−1 − 1)/(α − 1).
In the results that follow, both Reynolds and Favre averaging are used depending

on simplicity of presentation and conventions previously used in the literature. The
Reynolds average f over the x and y directions will be denoted by f̄ , or 〈f 〉, and
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Figure 1. (a) Streamwise, and (b) spanwise two-point correlation for streamwise velocity
component for M5T5; (c) streamwise, and (d ) spanwise two-point correlation for streamwise
velocity component for M5T1.

fluctuations about this mean will be denoted by f ′. The Favre average over the x and
y directions, f̃ , is a density-weighted average:

f̃ =
ρf

ρ
.

Fluctuations about the Favre average will be denoted by f ′′.
To assess the adequacy of the domain size, streamwise and spanwise two-point

correlations for the streamwise velocity component, Ru′u′ , are plotted. Figure 1(a–d )
shows that the streamwise and spanwise two-point correlations drop to zero for large
separations. Similar results can be shown for all the other cases.

The grid resolution can be assessed by conducting grid convergence studies and
examining the energy spectra. Figure 2(a–d ) plots the density-weighted r.m.s. squared
streamwise velocity normalized by the wall shear stress and r.m.s. temperature
normalized by the mean temperature, respectively, for M5T5 and M5T1 with different
number of grid points. All the curves collapse indistinguishably, indicating the grid
is fine enough to converge the results. Grid convergence has been checked for all
cases.
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Figure 2. Grid convergence study for M5T5 (a, b) and M5T1 (c, d ) varying grid size,
Nx × Ny × Nz.

Figure 3 plots the energy spectrum at several wall normal locations for case M5T5.
The energy distribution cascades down at least 8 orders of magnitude, indicating a
good resolution of small scales. Similar results of energy spectrum can be obtained
for other wall-temperature cases.

Another indication of the adequacy of the resolution is the value of kmaxη, where
kmax is the maximum wavenumber in x and η is the local Kolmogorov scale. The
maximum and minimum of this value in the current DNS are 2.8 and 0.6, respectively,
which is adequate. For comparison, the DNS of a supersonic boundary layer at Mach
2.5 conducted by Guarini et al. (2000) had values of 1.6 and 0.5 for the maximum
and minimum of kmaxη, respectively.

Further assessment of grid resolution near the wall can be conducted by
comparing DNS calculated skin friction Cf and Reynolds analogy factor 2Ch/Cf

with semi-empirical or experimental data. Here, Ch is the Stanton number defined as
q̄w/ρ̄δūδCp(T̄w − T̄r ), where q̄w ≡ κ̄(∂T̄ /∂z)|w .

Table 3 gives the DNS calculated skin friction, Stanton number and Reynolds
analogy factor as well as the skin friction predicted by van Driest II theory (van
Driest 1956). It is shown that DNS calculated skin frictions are within 5 % of the van
Driest II prediction for all cases. In addition, the Reynolds analogy factors are about
1.1, which are within the predictions of experimental heat-transfer data (Hopkins &
Inouye 1971).
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Case Cf (Cf )vandriestΠ Ch 2Ch/Cf

M5T1 2.46 × 10−3 2.47 × 10−3 1.39 × 10−3 1.13
M5T2 2.05 × 10−3 1.97 × 10−3 1.14 × 10−3 1.11
M5T3 1.81 × 10−3 1.72 × 10−3 9.77 × 10−4 1.08
M5T4 1.50 × 10−3 1.47 × 10−3 8.39 × 10−4 1.12
M5T5 1.28 × 10−3 1.26 × 10−3 NA NA

Table 3. Skin friction and heat transfer of a hypersonic turbulent boundary layer with
varying wall temperature.

kδ

E
u′ u′

10–10

10–1 100 101 102 103

10–8

10–6

10–4

10–2

100

102

104

z+ = 4
z/δ = 0.1
z/δ = 0.5
z/δ = 1.0

Figure 3. Two-dimensional energy spectra Eu′u′ at different wall normal locations for M5T5,
where k is the wavenumber in the streamwise–spanwise plane.

3. Turbulence statistics
3.1. Mean flow

Figure 4(a, b) plots mean streamwise velocity and mean temperature, respectively,
across the boundary layers for different wall-temperature cases. It is shown that the
temperature gradient at the wall increases with decreasing wall temperature; at the
same time, the maximum mean temperature location moves away from the wall. In
addition, as the wall temperature decreases, the gradient of mean streamwise velocity
near the wall decreases.

Figure 5 plots the van Driest transformed velocity, ū+
V D , which is the density

weighted mean velocity defined as

ū+
V D =

∫ u+

0

(ρ/ρw)1/2du+.

It is shown that the van Driest transformation collapses the profiles for different
wall-temperature cases to the incompressible log law,

u+
V D =

1

κ
ln z+ + C

with k and C similar to the incompressible values, κ ≈ 0.41 and C ≈ 5.2 (Bradshaw
1977), and there is a clear logrithmic region at 30 � z+ � 150 for all the temperature
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Figure 4. (a) Mean streamwise velocity, and (b) mean static temperature across the
boundary layer for different wall-temperature cases.

z+

〈u V
D
〉

10–1 100 101 102 103

10

20

30

M5T1
M5T2
M5T3
M5T4
M5T5
z+

(1/κ)log z+ + C

Figure 5. van Driest transformed velocity for different wall-temperature cases.

cases. In the simulation of compressible boundary layers with adiabatic and cold
walls, Maeder (2000) found that the additive constant changes significantly with wall
temperature, although the slope of u+

V D is still given by 1/κ; our results show that
the additive constant is relatively insensitive to wall-temperature conditions.

In addition, it is shown in figure 5 that the region of linear viscous sublayer where
u+

V D = z+ shrinks significantly with decreasing wall temperature. For M5T1, u+
V D = z+

is only satified until z+ ≈ 2 while for M5T5 it is satisfied until z+ ≈ 8. This is caused
by the large gradient of mean fluid property at the wall for the cold wall case, where
the rapid change in µ and ρ prevents the relation µ∂u/∂z = τw from being integrated
to get u+

V D = z+ except very close to the wall.
One of the commonly used temperature–velocity relationships for zero-pressure-

gradient boundary layers is Walz’s equation (Walz 1969):

T̄

T̄δ

=
T̄w

T̄δ

+
T̄r − T̄w

T̄δ

(
ū

ūδ

)
+

T̄δ − T̄r

T̄δ

(
ū

ūδ

)2

. (3.1)
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Figure 6. Test of Walz’s equation, as expressed by (3.1) for different wall-temperature
cases.

Voisinet & Lee (1972) evaluated the validity of (3.1) against experimental heat-transfer
data at Mach 4.9 for Tw/Tr = 1.0, 0.8 and 0.25. They showed that the experimental
data follow (3.1) fairly well except in the outer part of the boundary layer for all the
wall conditions they considered.

Here we assess Walz’s relation under a wider range of wall conditions. Figure 6
shows the comparison between (3.1) and the DNS results. For M5T5, the DNS
results agree with (3.1). These results are consistent with the results by Pirozzoli
et al. (2004), who performed DNS of a supersonic turbulent boundary layer at Mach
2.25 under adiabatic wall condition. As the wall temperature decreases, the mismatch
between (3.1) and DNS results increases. For M5T1, the maximum mismatch is about
10 %.

3.2. Turbulence quantities

Figure 7(a, b) plots the normalized streamwise component of turbulence intensity
with and without Morkovin’s scaling, respectively. For comparison, the incompressible
results by Spalart (1988) and the compressible adiabatic boundary layer results at
Mach 4.5 by Maeder et al. (2001) have also been plotted. It is shown that when
the density variation is taken into account, the profiles collapse much better for
all temperature cases; the density scaling brings the magnitude of the compressible
extrema closer to the incompressible ones of Spalart (1988), but the compressible
peak values are higher than the incompressible ones, as also observed by Gatski &
Erlebacher (2002) and Pirozzoli et al. (2004).

Figure 8(a–e) plots Reynolds stress −ρu′w′, mean viscous shear stress µ(∂u/∂z) and
total shear stress for different wall-temperature cases. It is shown that there is a region
of constant total shear stress, consistent with the wall condition ∂τ/∂z = ∂p/∂x(= 0).
Similar results were reported by Guarini et al. (2000) and Pirozzoli et al. (2004)
in the simulation of supersonic turbulent boundary layers at Mach 2.5 and 2.25,
respectively.
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Figure 7. (a) u′2
rms/ū

2
τ and (b) ρ̄u′2

rms/τ̄w across the boundary layer for different
wall-temperature cases.

4. Reynolds analogies
4.1. The strong Reynolds analogy

Morkovin (1962) proposed five SRA relations. Three of them are as follows:

T ′′
rms/T̃

(γ − 1)Ma
2(u′′

rms/ũ)
≈ 1, (4.1)

−Ru′′T ′′ ≈ 1, (4.2)

Prt =
ρu′′w′′(∂T̃ /∂z)

ρw′′T ′′(∂ũ/∂z)
≈ 1 (4.3)

with M2
a ≡ ũ2/γRT̃ .

Figure 9 plots the relationship between r.m.s. temperature and streamwise velocity
fluctuations. We see that the left-hand side of (4.1) is a strong function of wall
temperature, decreasing as wall temperature decreases. Equation (4.1) is only satisfied
over z/δ < 0.6 for case M5T5, consistent with the DNS of adiabatic turbulent
boundary layers given by Guarini et al. (2000) and Martin (2007).

Several ‘modified’ forms of the SRA have been proposed to take the heat flux at
the wall into account and remove wall-temperature dependence. For example, Cebeci
& Smith (1974) derived an extended form of the strong Reynolds analogy (ESRA):

T ′′
rms/T̃

(γ − 1)Ma
2(u′′

rms/ũ)
≈ −

[
1 + Cp

T̃w − T̃tδ

T̃

ũ

ũδ

]
. (4.4)

Gaviglio (1987), Rubesin (1990) and Huang et al. (1995) presented modified
Reynolds analogies (GSRA, RSRA and HSRA, respectively) which have the form

T ′′
rms/T̃

(γ − 1)Ma
2(u′′

rms/ũ)
≈ 1

c(1 − (∂T̃t/∂T̃ ))
(4.5)

with c = 1.0, c = 1.34 and c = Prt , respectively.
To provide an assessment of the modified Reynolds analogies, figure 10(a–e) plots

the ratio of the left-hand side of (4.4) and (4.5) to their right-hand side under different
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Figure 8. Simulation results of Reynolds stress, −ρu′w′, mean viscous shear stress, µ̄(∂ū/∂z̄)
and total shear stress, −ρu′w′ + µ̄(∂ū/∂z̄) normalized by wall shear stress for (a) M5T1, (b)
M5T2, (c) M5T3, (d ) M5T4 and (e) M5T5.

wall temperature conditions. The DNS data show that HSRA is the most accurate
scaling which removes wall-temperature dependence of (4.1).

Figure 11 plots the correlation between temperature and velocity fluctuations across
the boundary layer. We have chosen to take the correlation using centred Reynolds
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Figure 9. Test of the SRA, as expressed by (4.1) for different wall-temperature cases.

fluctuations, but the correlation using Favre fluctuations is nearly identical. It is shown
that u′ and T ′ are not perfectly anticorrelated for all wall-temperature cases. This
is expected, since (4.1) was derived by assuming zero total temperature fluctuation,
which is not true in the current simulation, as shown in figure 12. In addition, −Ru′T ′

is nearly independent of wall temperature except close to the wall. Through most of
the boundary layer, −Ru′T ′ is approximately 0.6, similar to the results reported by
Guarini et al. (2000), Maeder et al. (2001) and Martin (2007).

The major wall-temperature dependence of the correlation coefficient happens
in a region close to the wall, where u′ and T ′ have positive correlation when
the wall is cooled. Also, we have noticed that for all cases, the crossover
location, where −Ru′T ′ = 0, nearly coincides with the location of maximum mean
temperature.

This phenomenon can be explained as follows. The maximum temperature location
moves away from the wall as the wall is cooled, and the sign of −Ru′T ′ depends
on that of the local mean temperature gradient. Ejection and sweep events will
give a negative and positive value of u′, respectively, but the sign of T ′ will
be influenced by the sign of the mean temperature gradient. For ejections and
sweeps, T ′ will be negative and positive, respectively, if the gradient of mean
temperature is positive. As a result, −Ru′T ′ will be negative if the gradient of mean
temperature is positive, positive if the gradient of mean temperature is negative,
and zero if the gradient of mean temperature is zero, which is the location
of maximum mean temperature. This also partially explains why the crossover
location of −Ru′T ′ shifts farther away from the wall as the wall temperature
decreases, because the maximum mean temperature location is also farther, as it
is shown in figure 4(b). Similar phenomena of positive near-wall correlation have
also been found in the DNS of strongly cooled channel flow (Coleman et al.
1995).

Figure 13 plots the turbulent Prandtl number across the boundary layer. Similar to
−Ru′T ′ , Prt is insensitive to the wall temperature, and Prt is of order 1.
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Figure 10. SRA, extended Reynolds analogy and modified Reynolds analogies of Gaviglio
(1987), Rubesin (1990) and Huang et al. (1995) for (a) M5T1, (b) M5T2, (c) M5T3, (d ) M5T4
and (e) M5T5.

5. Turbulent kinetic energy budget
The TKE is defined as

k̃ =
1

2

ρu′′
i u

′′
i

ρ
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Figure 11. −Ru′T ′ for different wall-temperature cases.
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Figure 12. Root mean square of total temperature fluctuation normalized by local mean
total temperature for different wall-temperature cases.

and the budget equation for TKE is given by

∂

∂t
(ρk̃) + w̃

∂

∂z
(ρk̃) = P + T + Π + φdif + φdis + ST , (5.1)

where

P = −ρu′′
i w

′′ ∂ũi

∂z
,

T = −1

2

∂

∂z
ρu′′

i u
′′
i w

′′,

Π = Πt + Πd = − ∂

∂z
w′′p′ + p′ ∂u′′

i

∂xi

,

φdif =
∂

∂z
u′′

i τ
′
iz,

φdis = −τ ′
ij

∂u′′
i

∂xj

,

ST = −w′′ ∂p

∂z
+ u′′

i

∂τij

∂xj

− ρk̃
∂w̃

∂z
.
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Figure 13. Prt for different wall-temperature cases.

The terms in (5.1) can be interpreted as follows: the left-hand side is the
substantial derivative of the TKE along a mean streamline; P is the rate of
production of TKE due to mean velocity gradient; T is turbulent transport;
Π is the pressure terms (pressure diffusion and pressure dilatation, respectively);
φdif is the viscous diffusion; φdis is the viscous dissipation; and ST represents
terms that arise when the density is not constant. The first two terms of ST

appear due to the difference between the Favre and Reynolds averaging and
the third term is the production term due to dilatation. Besides terms in ST ,
pressure dilatation as well as dilatational dissipation are also due to non-constant
density.

Figure 14(a–f ) plots the terms in the budget of TKE normalized by conventional
wall variables (defined in terms of the mean density, viscosity and shear stress at
the wall). ST is small and has not been included on the plot. It is shown that the
profiles for different wall-temperature cases do not collapse; the magnitude of TKE
budget terms decreases with decreasing wall temperature, and the maximum values
shift farther away from the wall.

In the study of compressible channel flows with isothermal walls, Coleman et al.
(1995) demonstrated the importance of properly accounting for the mean property
variations in the near-wall scaling and found that a much better collapse of data
can be achieved if ‘semilocal’ scaling (Huang et al. 1995) is used instead (replacing
ρw with ρ(z), uτ with u∗

τ ≡
√

τw/ρ(z), and z∗
τ ≡ µ(z)/(ρ(z)u∗

τ )). The effectiveness of
semilocal scaling has also been demonstrated by Maeder (2000) and Morinishi et al.
(2004).

Figure 15(a–f ) plots the TKE budget using semilocal scaling. It is shown that a
much better collapse of the data is achieved. The minor difference in the peak value
of the production term and the transport term might be due to Reynolds number
effects. The success of semilocal scaling indicates that the major difference between
budgets of an adiabatic wall and a cooled isothermal wall is mainly due to variations
in mean fluid properties.
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Figure 14. (a) Production, (b) turbulent transport, (c) pressure diffusion, (d ) pressure
dilatation, (e) viscous diffusion and (f ) viscous dissipation plotted versus z+. The variables are
non-dimensionalized with uτ τw/zτ .

6. Compressibility effects
6.1. Turbulent Mach number

An indicator for the significance of compressibility effects is the turbulent Mach
number, defined by

Mt =
(u′

iu
′
i)

1/2

a
.
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Figure 15. (a) Production, (b) turbulent transport, (c) pressure diffusion, (d ) pressure
dilatation, (e) viscous diffusion and (f ) viscous dissipation in semilocal wall units. The variables
are non-dimensionalized with ρu∗3

τ /z∗
τ and z∗ = z/z∗

τ .

As wall cooling reduces a, it is shown in figure 16(a) that the magnitude of Mt

increases significantly with decreasing wall temperature. The peak value of Mt

increases from about 0.35 for M5T5 to 0.5 for M5T1. The increase in Mt indicates
stronger compressibility effects with wall cooling. A similar trend is observed for the
fluctuating Mach number, M ′

rms , which is the r.m.s. fluctuation of the Mach number
and thereby includes temperature fluctuations, as shown in figure 16(b).
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Figure 16. Simulation results of (a) turbulence Mach number, and (b) fluctuating Mach
number for different wall-temperature cases.
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Figure 17. Πd for different wall-temperature cases normalized by P .

It is commonly believed that 0.3 is the threshold of Mt above which compressibility
effects become important for turbulence behaviour (Smits & Dussauge 2006).
However, in the study of flat-plate boundary layers with Mach numbers 3, 4.5,
6, Maeder et al. (2001) showed that the intrinsic compressibility effects remain small
for boundary layers with Mt significantly greater than the threshold. The success of
Morkovin’s scaling as well as the small values of dilation terms relative to production
in the TKE budget support the argument by Maeder et al. (2001).

6.2. Pressure dilatation and dilatational dissipation

Compressibility effects can be further analysed by investigating terms that arise from
the non-vanishing velocity divergence in TKE budgets. Figure 17 plots the pressure
dilatation term Πd = p′(∂u′′

i /∂xi) for different wall-temperature cases. To illustrate
the relative importance of Πd compared to relevant terms in the TKE budget, Πd

is normalized by the corresponding production term P = − ρu′′
i w

′′(∂ũi/∂z) in each
case. It is shown that the pressure dilatation term is small relative to the production
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Figure 18. φd/φs versus (a) distance away from the wall, and (b) M2
t for different

wall-temperature cases.

term, with maximum ratio less than 5 %. In addition, the relative importance of Πd

increases when the wall temperature decreases, indicating stronger compressibility
effects with wall cooling. However, the compressibility effects remain insignificant.

Another term arising from the non-vanishing velocity divergence is the dilatational
dissipation

φd =
4

3
µ

∂u′
i

∂xi

∂u′
k

∂xk

. (6.1)

The solenoidal dissipation is defined as

φs = µω′
iω

′
i , (6.2)

where ω is the vorticity.
Figure 18(a) plots the ratio of φd to φs for different wall condition cases. It is

shown that the ratio is very small, with maximum value less than 5 %; in most of
the boundary layer, the ratio increases significantly with decreasing wall temperature,
indicating stronger compressibility effects when the wall temperature is lowered.

Present approaches for modelling dilational dissipation can generally be cast into
the form (Gatski 1997)

φd/φs = αF(Mt ). (6.3)

One of the simplest forms is F = M2
t derived from homogeneous turbulence data by

Gatski (1997). When the ratio φd/φs is plotted against M2
t (figure 18b), it is shown

that this simple form fails, similar to the results reported by Huang et al. (1995),
Maeder (2000) and Maeder et al. (2001).

7. Structure analysis
7.1. Near-wall streaks

In this section, we investigate the effects of wall temperature on near-wall streaks.
Figure 19(a, b) plots the instantaneous streamwise velocity fluctuations at z+ = 15 for
M5T1 and M5T5, respectively. Several occurrences of very long regions of negative
u fluctuation are identified as streaks and are visible in the plots as elongated dark
regions. It is also shown that there is a decrease in spanwise meandering and increase
in the streamwise coherency for M5T1 compared with M5T5, as also observed by
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Figure 19. Instantaneous flow field at z+ = 15 to visualize near-wall streaks for (a) M5T1
and (b) M5T5. Shading shows u fluctuations.
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Figure 20. S∗ for different wall-temperature cases.

Coleman et al. (1995) and Morinishi et al. (2004) in their simulations of compressible
channel flows with isothermal walls.

Coleman et al. (1995) explained that the modification of near-wall streaks is caused
by the change of turbulence-to-mean time scale ratio; however, Morinishi et al. (2004)
found that there was no connection between the near-wall streak structures and the
time-scale ratio. Our results confirmed the finding by Morinishi et al. (2004), as shown
by figure 20, where the turbulence-to-mean time scale ratio S∗, where S∗ ≡ ρSk/φdis

with S = (du/dz)−1, is plotted for all temperature cases and there is no significant
change in the time scale ratio.

One possible explanation for the increased streamwise coherency of near-wall
streaks is the change in ‘anisotropy ratio’. Figure 21(a, b) plots the anisotropy ratios
v′

rms/u
′
rms and w′

rms/u
′
rms for different wall-temperature cases. It is shown that the

value of v′
rms/u

′
rms decreases significantly as the wall is cooled. The anisotropy of

fluctuations in the streamwise and wall-normal directions (w′
rms/u

′
rms) also decreases

with decreasing wall temperature; however, the relative differences between wall-
temperature cases, especially very near the wall, are less significant. The increased
deviation of anisotropy ratios from unity indicates reduced intensity of spanwise or
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Figure 21. Anisotropy ratio (a) v′
rms/u

′
rms , and (b) w′

rms/u
′
rms for different wall-temperature

cases.
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Figure 22. Ratio of streamwise pressure–strain term to production for all wall-temperature
cases.

wall-normal fluctuations compared with those in the streamwise direction. As a result,
less meandering and mixing happens in the spanwise and wall-normal directions and
the streaks maintain their identity for longer streamwise extents.

The change in anisotropy ratio with wall cooling can also be understood from
the energy point of view. Wall cooling is a sink of energy, which redistributes the
energy between velocity components by influencing energy production and pressure–
strain terms. We look at the kinetic energy budget for each velocity component of
the turbulence. For boundary layers, energy is transferred from the mean flow to
only the streamwise component of the fluctuating motion by −ρu′′w′′(∂ũ/∂z), and
the pressure–strain rate term p′(∂u′′/∂x) acts to exchange energy from streamwise
to spanwise and wall-normal components of turbulent fluctuations. The relative
importance of the energy exchange between components of the turbulence can be
demonstrated by the ratio R ≡ (p′(∂u′′/∂x))/(ρu′′w′′(∂ũ/∂z)), which gives a measure of
the percentage of energy produced in the streamwise direction transferred to the other
directions. Figure 22 plots the ratio R for cases M5T1 to M5T5. It is shown that
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Case z+ = 5 z+ = 15

M5T1 194.4 198.8
M5T2 126.5 136.9
M5T3 102.8 109.3
M5T4 87.8 96.0
M5T5 76.9 85.1

Table 4. Average spanwise streak spacing in wall units at z+ = 5 and z+ = 15 for different
wall-temperature cases.

R decreases significantly as the wall temperature decreases, indicating significant
reduction in energy exchange for the cold wall case. As a result, the kinetic energy
gets accumulated in the streamwise direction and the streamwise turbulence motion
becomes dominant over spanwise and wall-normal directions for the cold wall case.

As far as the spanwise spacing of near-wall streaks is concerned, it is widely
believed that the average spanwise spacing is about 100 viscous wall units for
subsonic turbulent boundary layers (Runstadler, Kline & Reynolds 1963; Bakewell
& Lumley 1967; Kline et al. 1967). For supersonic boundary layers, Ringuette et al.
(2006) showed that the average spanwise spacing is also about 100 viscous wall units,
although it decreases when Mach number increases from 3 to 5. Morinishi et al.
(2004) reported that the average spanwise spacing is about 100 semilocal wall units,
as introduced in § 5, for compressible channel flows with isothermal walls. Table 4
gives the average spanwise spacing of near-wall streaks at both z+ = 5 and 15 in
viscous wall units for different wall-temperature cases. The velocity threshold used to
determine spanwise streak spacing is −0.1 u(z). It is shown that the average spanwise
spacing increases significantly in viscous wall units with decreasing wall temperature
for both locations. For the cold wall case, the average spacing is not ∼100 wall units,
as it is for the adiabatic case.

In the study of isothermal-wall channel flow, Coleman et al. (1995) argued that the
modified turbulence structure with wall temperature does not represent an exception
to the weakly compressible hypothesis. The validity of Morkovin’s scaling in the
current study supports this hypothesis.

7.2. Hairpin vortices

In this section, we investigate the influence of wall temperature on large-scale coherent
structures or hairpin vortices and packets. The vortical structures of boundary layers
are demonstrated by using both iso-surfaces of swirl strength (Zhou et al. 1999) and
a correlation method after Brown & Thomas (1977).

Figure 23(a, b) plots iso-surfaces of the swirl strength for M5T1 and M5T5. It is
shown that large-scale hairpin vortices are observed for different wall-temperature
cases, and the vortical structures become fatter and less chaotic with decreasing Tw .

Next, hairpin vortices, packets and the corresponding low-momentum regions they
encapsulate are inferred following Brown & Thomas (1977) by correlating the wall
shear stress τw at a single reference location with streamwise mass flux (ρu) at
locations surrounding the reference point. The correlation coefficient is defined by

Rτw(ρu) =
τ ′
w(x, y)(ρu)′(x + �x, y + �y, �z)

τ ′
w,rms(ρu)′

rms

. (7.1)
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Figure 23. Iso-surface of λci at 3.5λci to visualize vortical structure for (a) M5T1 and
(b) M5T5.
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Figure 24. Iso-surface of Rτw(ρu) to visualize vortical structure for (a) M5T1 and (b) M5T5.
The iso-surface value of 0.13 (light) and the contour values immediately above the wall that
are less than −0.02 (dark) are plotted.

Brown & Thomas (1977) inferred the existence of coherent structures based upon
experimentally obtained profiles of Rτw(ρu) versus �x at several wall normal locations;
here with the complete DNS flow fields, we compute the three-dimensional distribution
of Rτw(ρu) by simultaneously varying streamwise, spanwise and wall normal separations
of (ρu) and τw , thus a more direct visualization of structures can be obtained.

Figure 24(a, b) plots the three-dimensional distribution of Rτw(ρu) for M5T1 and
M5T5, respectively. For both cases, the streamwise, spanwise and wall normal width of
the viewing window are −2δ � �x � 3δ, −0.4δ � �y � 0.4δ and 0.05 � �z � 0.4δ,
respectively, which are sufficient for the correlation to fall below 0.2. These plots
show that for both cases, there is a positive region of Rτw(ρu) in the middle surrounded
by negative regions. This distribution of Rτw(ρu) is directly related to the existence
of hairpin vortices and packets. The positive region corresponds to low-momentum
regions encapsulated by hairpin vortices or packets. Note the similarity in shape of
this positive region with the region of induced low-speed fluid in the hairpin packet
model of Adrian et al. (2000). Between the legs of a hairpin vortex, the ejection of
fluid causes negative (ρu)′ and negative τ ′

w , thus positive Rτw(ρu). Outside the legs, the
sweep events cause positive (ρu)′, which correlates with the negative τ ′

w between the
legs to give negative Rτw(ρu).

While both of these plots are strikingly similar to the conceptual model of Adrian
et al. (2000), the stronger positive and negative values of the correlation coefficient for
M5T1 compared with M5T5 indicate stronger more coherent hairpin packets when
the wall is cooled. The increased signature of the older, upstream packet in the M5T1
case is evidence of greater alignment, organization and interaction between hairpin
packets.
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Figure 25. Ratio of average packet convection velocity to the mean flow velocity versus
distance from the wall with the packet convection velocity computed after O’Farrell & Martin
(2009).

The increased organization of hairpin packets with wall cooling can also be inferred
by the average convection velocity of hairpin packets. Figure 25 plots the ratio of
packet convection velocity to the mean flow velocity at different wall normal locations.
The packet convection velocity is computed after Brown & Thomas by taking the
conditional average of the streamwise velocity of points within each structure, as
identified by Rτw(ρu) exceeding a certain threshold (see O’Farrell & Martin 2009, for
further details). The plot shows that there is a lag of packet convection velocity behind
the mean, and the lag increases with decreasing wall temperature. The relatively slower
convection velocity of hairpin packets most likely indicates that the hairpin vortices
of the packets are more intense, more organized, or both, and therefore produce a
relatively stronger backflow that retards the overall packet velocity. Consistently, the
skin friction increases with decreased packet convection velocity.

8. Conclusion
We perform direct numerical simulations of Mach 5 turbulent boundary layers with

wall-to-edge temperature ratio from 1.0 to 5.4 to study the effects of surface heat
transfer on boundary-layer flow. It is shown that many of the scaling relations used
to express adiabatic compressible boundary-layer statistics in terms of incompressible
boundary layers also hold for non-adiabatic cases. In particular, we have shown that
the van Driest transformed velocity collapses different wall-temperature results with
the incompressible results. It is also shown that the r.m.s. velocity fluctuations of the
varying wall-temperature results better collapse with the adiabatic results by using
the mean density scaling suggested by Morkovin.

It is found that the mean static temperature field exhibits a quadratic dependence
upon the mean velocity, as predicted by Walz’s equation (3.1), for the adiabatic
case. However, the deviation from the predicted quadratic dependence increases with
decreased wall temperature, and the largest mismatch is up to 10 % for Tw/Tδ = 1.0
in the present study.
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We find that u′ and T ′ are not perfectly anticorrelated (as predicted by the SRA,
see (4.2)), and, in the presence of wall cooling, Ru′T ′ remains about the same between
the different wall-temperature cases, except near the wall. The left-hand side of
(4.1) strongly depends on wall temperature, and the assessment of extended forms
shows Huang’s version is a good scaling for wall temperature. Also, the turbulent
Prandtl number is nearly constant for most of the boundary layer and insensitive to
wall-temperature condition.

The TKE budget was calculated and compared for all wall-temperature cases. It
is shown that conventional inner scaling does not collapse the data. However, the
semilocal scaling that takes into account local variation of fluid properties better
collapses the data.

The profiles of Mt , M ′
rms show that compressibility effects increase with decreasing

wall temperature. However, terms arising from the non-vanishing velocity divergence
in TKE budgets, such as pressure dilatation and dilatational dissipation, remain
small and the wall temperature influences the TKE largely by affecting the terms
that appear in the incompressible case. In addition, our boundary-layer data show
that the modelling approach for dilatational terms, which was developed based on
homogeneous turbulence data, fails to predict compressibility effects in boundary
layers correctly, consistent with the study by Maeder et al. (2001).

Wall cooling has the effect of reducing the apparent chaos of the turbulent
structures. We have seen that the near-wall streaks become more coherent with
decreasing wall temperature, similar to the obervations of Coleman et al. (1995) and
Morinishi et al. (2004). In addition, with wall cooling vortical structures become
larger and less chaotic, as shown in figure 23. The strength of and organization
between hairpin packets, appears to increase with decreasing wall temperature. This
is observed in the iso-surface of Rτw(ρu), the average packet convection velocity, and
the skin friction coefficient.

We show that this modified turbulence structure is a result of the decreased
relative importance of the inter-component transfer of TKE with wall cooling, rather
than the transfer of energy between the kinetic and internal modes due to direct
compressibility effects. As the wall is cooled, the relative energy transfer to the wall-
normal and spanwise velocity components is decreased. As a result, the anisotropy
ratio near the wall deviates further from unity with wall cooling, and eddies travelling
in the spanwise or wall normal directions have less kinetic energy to disrupt the
coherent structures. This explanation further supports Coleman’s argument that the
modified turbulence structure with wall temperature does not represent an exception
to the weakly compressible hypothesis.

This work is supported by NASA under Cooperative Agreement NNX08ADO4A
directed by Peter Gnoffo. A portion of this work was done in Princeton University.
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