
Missouri University of Science and Technology Missouri University of Science and Technology 

Scholars' Mine Scholars' Mine 

Civil, Architectural and Environmental 
Engineering Faculty Research & Creative Works 

Civil, Architectural and Environmental 
Engineering 

01 Oct 2010 

Scale Dependence Of Radar Rainfall Uncertainty: Initial Evaluation Scale Dependence Of Radar Rainfall Uncertainty: Initial Evaluation 

Of NEXRAD's New Super-resolution Data For Hydrologic Of NEXRAD's New Super-resolution Data For Hydrologic 

Applications Applications 

Bong Chul Seo 
Missouri University of Science and Technology, bongchul.seo@mst.edu 

Witold F. Krajewski 

Follow this and additional works at: https://scholarsmine.mst.edu/civarc_enveng_facwork 

 Part of the Civil and Environmental Engineering Commons 

Recommended Citation Recommended Citation 
B. C. Seo and W. F. Krajewski, "Scale Dependence Of Radar Rainfall Uncertainty: Initial Evaluation Of 
NEXRAD's New Super-resolution Data For Hydrologic Applications," Journal of Hydrometeorology, vol. 11, 
no. 5, pp. 1191 - 1198, American Meteorological Society, Oct 2010. 
The definitive version is available at https://doi.org/10.1175/2010JHM1265.1 

This Article - Journal is brought to you for free and open access by Scholars' Mine. It has been accepted for 
inclusion in Civil, Architectural and Environmental Engineering Faculty Research & Creative Works by an authorized 
administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including 
reproduction for redistribution requires the permission of the copyright holder. For more information, please 
contact scholarsmine@mst.edu. 

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/civarc_enveng_facwork
https://scholarsmine.mst.edu/civarc_enveng_facwork
https://scholarsmine.mst.edu/civarc_enveng
https://scholarsmine.mst.edu/civarc_enveng
https://scholarsmine.mst.edu/civarc_enveng_facwork?utm_source=scholarsmine.mst.edu%2Fcivarc_enveng_facwork%2F2663&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/251?utm_source=scholarsmine.mst.edu%2Fcivarc_enveng_facwork%2F2663&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1175/2010JHM1265.1
mailto:scholarsmine@mst.edu


NOTES AND CORRESPONDENCE

Scale Dependence of Radar Rainfall Uncertainty: Initial Evaluation of NEXRAD’s
New Super-Resolution Data for Hydrologic Applications

BONG-CHUL SEO AND WITOLD F. KRAJEWSKI

IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, Iowa

(Manuscript received 5 January 2010, in final form 22 April 2010)

ABSTRACT

This study explores the scale effects of radar rainfall accumulation fields generated using the new super-

resolution level II radar reflectivity data acquired by the Next Generation Weather Radar (NEXRAD)

network of the Weather Surveillance Radar-1988 Doppler (WSR-88D) weather radars. Eleven months (May

2008–August 2009, exclusive of winter months) of high-density rain gauge network data are used to describe

the uncertainty structure of radar rainfall and rain gauge representativeness with respect to five spatial scales

(0.5, 1, 2, 4, and 8 km). While both uncertainties of gauge representativeness and radar rainfall show simple

scaling behavior, the uncertainty of radar rainfall is characterized by an almost 3 times greater standard error

at higher temporal and spatial resolutions (15 min and 0.5 km) than at lower resolutions (1 h and 8 km).

These results may have implications for error propagation through distributed hydrologic models that require

high-resolution rainfall input. Another interesting result of the study is that uncertainty obtained by averaging

rainfall products produced from the super-resolution reflectivity data is slightly lower at smaller scales than the

uncertainty of the corresponding resolution products produced using averaged (recombined) reflectivity data.

1. Introduction

In summer of 2008, the Weather Surveillance Radar-

1988 Doppler (WSR-88D) weather radars of the na-

tional Next Generation Weather Radar (NEXRAD)

network began providing enhanced-resolution radar re-

flectivity observations. These new level II data are re-

ferred to as super resolution (Torres and Curtis 2007).

While the legacy resolution of the level II data is 18 in

azimuth and 1 km in range, the super-resolution data

have grid spacing that is reduced to 0.58 in azimuth and

to 250 m in range. However, the current algorithm used

by the National Weather Service to produce nationwide

radar rainfall maps (Fulton et al. 1998) does not exploit

this new capability, largely because of the anticipated

arrival of dual polarization (dual-polarization rain-rate

products will be provided on a 250 m 3 18 polar grid;

Istok et al. 2009).

This resolution upgrade was motivated by the needs

of severe weather detection and monitoring, and its

effects have not yet been incorporated into hydrologic

(rainfall) products. Although the super-resolution data

may capture small-scale features of rainfall processes,

NEXRAD’s Precipitation Processing System (PPS) still

operates based on the so-called recombined (legacy

resolution) data. In this study, we explore the use of

super-resolution data in rainfall estimation that is moti-

vated by hydrologic applications. There are many physi-

cally based distributed hydrologic models that operate on

grid sizes of 1 km2 or smaller, but the readily available

NEXRAD radar rainfall maps are only hourly accumula-

tions provided on an approximately 4 3 4 km2 grid (Fulton

et al. 1998). The availability of increased resolution also

offers an opportunity to systematically explore radar rain-

fall uncertainty over an extended range of smaller scales.

We use 11-month-long datasets from two research-

grade rain gauge networks in Iowa to estimate the error

variance of the super-resolution-based rainfall maps

and report the results at five spatial and two temporal

scales. We use the error variance separation method of

Ciach and Krajewski (1999) as the main analysis tool. In

section 2, we briefly describe the rain gauge and radar

datasets used and the error variance estimation meth-

odology. In section 3, we provide the results and discuss
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them in the context of earlier studies of radar rainfall

uncertainty (Ciach et al. 2007). Lastly, section 4 con-

cludes and summarizes our study’s main findings and

limitations.

2. Data and methodology

Our research group operates two high-quality, high-

density rain gauge networks in Iowa. The larger net-

work, centered on the Iowa City Municipal Airport

(Fig. 1), comprises more than 30 sites. Last year, only 19

sites were operational. The network is located between

80 and 120 km from the Davenport, Iowa, WSR-88D

(KDVN). At each site, there are two tipping-bucket

gauges, a datalogger, and a cell phone, all powered by

a battery that is charged by a solar panel (Fig. 1). The

average intergauge spacing of the network is about

5 km. Time-of-tip data (see Ciach 2003) are recorded

on-site and transmitted to a database server every 15 min.

This automatic process performs data quality control by

comparing data from the two rain gauges and makes

rainfall products (accumulations) at multiple time scales

from 5 min to daily. These rainfall products are stored in

a relational database and made available to researchers

over the Internet using a browser-based interface.

The second network is located just south of Ames,

Iowa, in support of a National Aeronautics and Space

Administration (NASA)-funded study of remote sens-

ing of soil moisture. That network is a cluster of seven

sites (Fig. 1) that are equipped identically to the Iowa

City network. The cluster is about 30 km north of the

Des Moines, Iowa, WSR-88D (KDMX). Both networks

collect rainfall data only and are not deployed during the

winter months.

For our radar datasets, we used the super-resolution

level II reflectivity data of the KDMX and KDVN ra-

dars. The radars have started collecting reflectivity data

in super resolution from May and June 2008, respec-

tively. The data included in our study extend from the

dates the radars switched to the new mode through

August 2009, thus including the rainfall events that

led to extreme flooding in eastern Iowa but excluding

winter months from November 2008 through March

2009.

Since the PPS does not support super-resolution data,

we used another community-based algorithm to study

the scale effect of radar rainfall uncertainty. To convert

the reflectivity data to rainfall accumulation maps, we

used the Hydro-NEXRAD system developed to support

hydrologic research (Vasiloff et al. 2007; Krajewski et al.

2010; Kruger et al. 2010; Seo et al. 2010). We modified

the Hydro-NEXRAD algorithms for the new super-

resolution data processing and used them offline (i.e.,

super-resolution-based products are currently not avail-

able via Hydro-NEXRAD). The algorithms process

super-resolution reflectivity data and produce rainfall

accumulations using the NEXRAD reflectivity-to-

rainfall-rate (Z–R) relationship (Z 5 300R1.4; see Fulton

et al. 1998) at 15-min and 1-h scales on fixed polar grid

spacing (0.58 in azimuth and 250 m in range). The polar

grid products are then transformed to various spatial

scales using the Hydrologic Rainfall Analysis Project

(HRAP) grid projection (Reed and Maidment 1999) with

spacing of approximately 0.5-, 1-, 2-, 4-, and 8-km grids.

We then applied the nearest neighbor and weighted-

averaging grid transformation (interpolation) schemes

and attempted to mimic the recombination algorithm

that transforms super-resolution reflectivity data into

legacy resolution before feeding such data into the

Hydro-NEXRAD rainfall algorithms. This is to show

how the averaging in the volume scan data affects the

uncertainty of the final products.

To assess the super-resolution products, we performed

a rain gauge comparison with the super-resolution rain-

fall estimates as well as with other products, that is,

recombined digital precipitation array (DPA) provided

by the National Oceanic and Atmospheric Administra-

tion (NOAA)’s National Climatic Data Center (NCDC)

and commonly used by hydrologic users. The grid system

of the DPA radar-rainfall products is the 4 3 4 km2

HRAP. To compare the DPA with the super-resolution

products averaged to the HRAP scale, we used the cor-

responding rain gauge data for gauges located in the re-

spective HRAP grid.

The time span of this hourly comparison is also from

the commencement of super resolution through the end

of August 2009. As described in Table 1, the statistical

properties of the radar rainfall products were charac-

terized by the correlation coefficient, the multiplicative

bias, and the root-mean-square error (RMSE). On the

basis of these three statistics, the scatterplots of Fig. 2,

and the two-sample t test (Moore 2003), the super res-

olution tends to be consistent with the DPA. The null

hypothesis for the test (two sided) is that the mean dif-

ferences between both radar rainfall and rain gauge

rainfall are the same. The p value (0.18) demonstrates

that both products are statistically consistent with a 95%

confidence interval. However, statistics values in Table 1

show little difference (especially bias), which may be

caused by the discrepancy of polar grids between super

resolution and legacy resolution or that of rainfall algo-

rithms, that is, the hybrid scan structure at near range from

the radar between PPS and Hydro-NEXRAD [for more

detail, see Fulton et al. (1998); Seo et al. (2010)]. Overall,

the hourly comparison results illustrate that the super-

resolution estimates computed by the Hydro-NEXRAD
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algorithm are compatible with the DPA, which gives cre-

dence to the remaining part of this study.

The error variance separation method (Ciach and

Krajewski 1999) requires the use of the spatial correla-

tion function of rainfall at the appropriate temporal

scale—in our case, at the 15-min and hourly scales. The

spatial correlation function describes the spatial de-

pendence of rainfall processes, which significantly af-

fects the variance reduction (Morrissey et al. 1995) of

point-to-area estimation error. Its estimation is difficult

because of the bias that arises from the high skewness

of rainfall variables. Because of the bias problem of the

traditional estimator—that is, Pearson’s product-moment

correlation coefficient (see, e.g., Stedinger 1981)—Habib

et al. (2001) proposed a transformation procedure for

log-normally distributed rainfall data. In addition, the

sample correlation might be considerably affected by

abnormal values beyond the overall pattern of a sample

distribution (e.g., outliers); thus, the use of another esti-

mator to represent spatial processes, a variogram (or

semivariogram), is usually preferred (Cressie 1993).

We did not apply the procedure of Habib et al. (2001)

since the empirical distribution of the rainfall data showed

no significant thick tail in the range of extreme rainfall

values, implying that our rainfall data are not log-normally

distributed (see also Ciach and Krajewski 2006). Thus,

we estimated the spatial correlation structure of rain fields

using a covariance function derived from the variogram

(Schabenberger and Gotway 2005), assuming the intrinsic

hypothesis and second-order stationary process. Because

FIG. 1. Two rain gauge networks used in Iowa and the structure of tipping-bucket gauges. The grid cells seen in both

networks represent 1-km spacing.

TABLE 1. Values of statistics for hourly gauge data comparison

with super-resolution and DPA estimates based on the HRAP

scale. The statistics values were computed using 14 radar–gauge

pairs for KDVN-Iowa City network and only 1 radar-gauge pair for

KDMX-Ames network. The gauge mean and standard deviation

values are 0.18 and 1.26 for Iowa City network and 0.16 and 1.19 for

Ames network.

Statistics

KDVN-Iowa City network KDMX-Ames network

Super resolution DPA Super resolution DPA

Correlation 0.87 0.88 0.95 0.96

Bias 0.78 0.67 1.20 1.07

RMSE 0.64 0.61 0.39 0.37
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our smaller rain gauge network cannot provide the nec-

essary correlation information for the scales (i.e., 2, 4, and

8 km) larger than its domain, a three-parameter ex-

ponential function represented by nugget, correlation

distance, and shape factors [for more information on

these parameters, see Journel and Huijbregts (1978);

Krajewski et al. (2000)] was estimated using the larger

network some 150 km due east in Iowa City.

On the other hand, we use rain gauge data from the

smaller network and radar rainfall estimates from the

KDMX radar for the error variance analysis. Using

this pair of radar–gauge data can prevent one of the

significant radar rainfall error sources—namely, the range-

dependent error—reported by Smith et al. (1996). Since

anomalous propagation (AP) might be a major error

source in the warm and cold seasons at near range around

the radar, we also removed it using an adaptation of the

algorithm by Steiner and Smith (2002).

Given the spatial correlation structure and radar–

gauge differences, the error variances are separated

based on (i) two temporal (15 min and hourly) and five

spatial (0.5, 1, 2, 4, and 8 km) scales, (ii) super resolution

and recombination to legacy resolution, and (iii) the

nearest neighbor and the averaging schemes for the spatial

transformation of rainfall fields.

3. Results

In this section, we present the results related to the

spatial correlation functions and the uncertainty structure

FIG. 2. Scatterplots of hourly gauge comparison with (left) super-resolution and (right) DPA estimates for (top)

KDVN-Iowa City network and (bottom) KDMX-Ames network radar–gauge pairs. For rain gauges within the same

HRAP grid, involved rain gauge data were averaged.

1194 J O U R N A L O F H Y D R O M E T E O R O L O G Y VOLUME 11

Unauthenticated | Downloaded 08/31/23 06:35 PM UTC



of gauge representativeness and super-resolution rain-

fall estimates with respect to scale.

For respective temporal accumulation scales (15 min

and hourly), spatial correlation functions are charac-

terized by the nugget effect (0.97 and 1.00), correlation

distance (21 and 36 km), and the shape factor (1.05 and

1.11). While hourly data show relatively stronger spatial

dependence based on all three parameters, as expected,

15-min data represent higher variability of the spatial

process. This implies that a longer time span of data

integration reduces the spatial variability of the rainfall

process. In addition, spatial dependence described by

the aforementioned correlation distances seems stron-

ger than in other areas [Florida (Habib et al. 2001) and

Oklahoma (Ciach and Krajewski 2006)] in the United

States where hurricane and more convective systems are

major sources of the rainfall process. To compute the

variance reduction of point-to-area estimation error, the

distance range of interest in the estimated functions is

about 11 km, considering the largest grid of 8 km.

Table 2 presents the error variance with respect to

scale, represented by relative error standard deviation

that is normalized by the mean of the rain gauge mea-

surements. No rain events, determined based on rain

gauge observations, were excluded from the analysis.

Also, the 0.5-km rainfall maps for recombined data were

not produced because of the larger grid spacing of legacy

resolution. Overall, both rain gauge representativeness

error and radar rainfall error seem to change systemat-

ically with respect to spatial scale. As grid spacing is

smaller, the uncertainty of gauge representativeness

decreases and that of radar rainfall increases. Also,

a shorter sampling scale over time results in higher un-

certainties at all spatial scales. In terms of the spatial

transformation, the averaging shows lower variance at

all scales. This property tends to be more significant at

shorter time and larger spatial scales (i.e., 15 min and

8 km), where more polar pixel values are averaged over

a corresponding projected grid. However, improvement

due to the use of an averaging scheme over a computa-

tionally faster nearest neighbor scheme seems to matter

little at the smallest scale (i.e., 3% reduction at 0.5-km

and 1-h scales). For the comparison between super res-

olution and recombination, the uncertainty of super res-

olution is slightly lower at smaller scales (1 and 2 km).

Figure 3 clearly illustrates the structure of both un-

certainties for the averaging scheme. Both uncertainties

show an interesting aspect of scaling behavior with re-

spect to spatial scale. Linear behavior in log-log units

implies power-law dependence on scale. In addition, the

super-resolution estimates at the smallest scale (0.5 km)

are approximately 3 times (at the 15-min scale) and 2 times

(at the hourly scale) more uncertain than at the largest

scale (8 km). These uncertainty differences between scales

may have implications for error propagation through dis-

tributed hydrologic models that require high-resolution

rainfall input. Considering the most common hydrologic

radar rainfall resolution (4 km and hourly accumulations),

the super-resolution estimates are characterized by 70%

uncertainty of the hourly mean value of rainfall.

In addition to the analysis of additive error presented

earlier, we also quantify the super-resolution uncertainty

represented by multiplicative errors conditioned on

rainfall magnitude (at 4-km and hourly scale) similarly

to Ciach et al. (2007). For this analysis, we used the

hourly 4-km products derived from super-resolution

data and assumed no ‘‘deterministic distortion’’ (see

Ciach et al. 2007) for our data because the rain gauge

locations for the Ames network are sufficiently close to

the radar (implying that the distortion should not be

significant), and it is hard to estimate the distortion

function with the relatively small sample size of our data.

The uncertainty described by conditional error standard

deviation for the warm (April, May, and October) and

hot (June–September) seasons is presented in Fig. 4. The

functional structure of super-resolution uncertainty is

TABLE 2. Relative error standard deviation (mm mm21) normalized by the mean value of ground measurements with respect to scale.

Temporal scale Spatial scale (km)

Radar rainfall

Rain gauge

representativeness

Super resolution Recombination

Nearest Averaging Nearest Averaging

15 min 0.5 1.78 1.70 — — 0.24

1.0 1.75 1.59 1.71 1.60 0.36

2.0 1.66 1.45 1.61 1.44 0.44

4.0 1.41 1.00 1.40 0.99 0.65

8.0 1.37 0.63 1.31 0.56 1.07

1 h 0.5 1.16 1.13 — — 0.12

1.0 1.14 1.06 1.12 1.07 0.18

2.0 1.09 0.98 1.07 1.00 0.23

4.0 0.91 0.71 0.91 0.70 0.35

8.0 0.91 0.52 0.88 0.48 0.61
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similar to that reported by Ciach et al. (2007), but super

resolution shows lower radar rainfall uncertainty. The

lower uncertainty could either be due to using super

resolution or our smaller sample size [1 yr versus 6 yr

used by Ciach et al. (2007)] and/or sampling locations

closer to the radar in this study.

4. Conclusions and discussion

We report scale effects for the uncertainties of the

radar rainfall estimates obtained using the new super-

resolution data from the NEXRAD radars. Since the

super-resolution-based rainfall maps are not opera-

tionally available from federal agencies, this early effort

provides unique information on the potential advan-

tages of the new data. Our findings are summarized as

follows.

1) The hourly comparison between the super resolution

and the DPA data demonstrates statistical consis-

tency.

2) Super resolution shows slightly lower uncertainty

at smaller scales. This indicates that using super-

resolution data for hydrologic applications that require

FIG. 3. Relative error standard deviation (normalized by the mean of rain gauge measurements) of super-resolution

estimates and gauge representativeness with respect to spatial scale.

FIG. 4. Multiplicative error standard deviation conditioned on rainfall magnitude empirically estimated from 4-km

and hourly super-resolution estimates. Solid lines were presented from Table 4 of Ciach et al. (2007).
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higher-resolution input may mitigate the uncertainty

of rainfall input. However, it is likely that the im-

provement is relatively small for the magnitude of

uncertainty itself.

3) Using the averaging scheme for spatial grid transfor-

mation reduces radar rainfall uncertainty regardless

of scale. As the scale becomes larger, the uncertainty

decreases more significantly. However, the nearest

neighbor scheme may be an alternative to higher-

resolution data since uncertainty differences between

the two schemes severely decrease as the spatial scale

becomes smaller.

4) There is a systematic uncertainty behavior of the radar

rainfall and the gauge representativeness with respect

to scale. They all show a simple scaling law. The radar

rainfall uncertainty is characterized by an almost 3

times greater standard error at higher resolutions

(15 min and 0.5 km) than at lower resolutions (1 h

and 8 km). This result may imply that the error of

radar rainfall propagates through distributed hy-

drologic models that require high-resolution rainfall

input.

Since super-resolution data have only been collected

in the past year, the results and conclusions are valid for

this limited period of data. In the future, extending

datasets will be necessary to comprehensively evaluate

super-resolution data and to fully understand the benefit

of using super-resolution data and the statistical structure

of the uncertainty. In addition, addressing the uncertainty

of spatial correlation estimation and its propagation to

the variance reduction for point-to-area estimation error

may enhance comprehension of the uncertainty structure

of involved rainfall data. Lastly, in the present study we

ignored the possibility of radar and rain gauge error being

correlated (see, e.g., Ciach and Krajewski 1999; Ciach

et al. 2003); however, in the absence of well-documented

evidence to the contrary, this seems justifiable in this

preliminary study.

Acknowledgments. We are grateful to all our col-

leagues who contributed to the operation of the rain

gauge networks in Iowa City and Ames (available online

at http://weather.iihr.uiowa.edu), and in particular to

Dan Ceynar, Anton Kruger, Radoslaw Goska, Kara

Prior, Luciana Cunha, Nick Woike, and Charles Gunyon.

The Ames network was established and supported with

funding from NASA Grant NNG06GC63G, ‘‘A Prototype

Remote Sensing Validation Site: Towards a Multi-variable

Approach to Validating and Scaling Remotely-sensed

Observations of the Water Cycle,’’ with Brian Hornbuckle

of Iowa State University serving as the principal in-

vestigator. We also thank Steve Ansari of the National

Climatic Data Center and Jeff Weber of Unidata for

discussing the super-resolution data decoding. We grate-

fully acknowledge David Kitzmiller and two anonymous

reviewers for their valuable comments and suggestions for

improving the paper. Partial support for this study was

provided by the National Science Foundation Grant

EAR-0839576.

REFERENCES

Ciach, G. J., 2003: Local random errors in tipping-bucket rain gauge

measurements. J. Atmos. Oceanic Technol., 20, 752–759.

——, and W. F. Krajewski, 1999: On the estimation of radar rainfall

error variance. Adv. Water Resour., 22, 585–595.

——, and ——, 2006: Analysis and modeling of spatial correlation

structure of small-scale rainfall in Central Oklahoma. Adv.

Water Resour., 29, 1450–1463.

——, E. Habib, and W. F. Krajewski, 2003: Zero-covariance hy-

pothesis in the Error Variance Separation method of radar

rainfall verification. Adv. Water Resour., 26, 673–680.

——, W. F. Krajewski, and G. Villarini, 2007: Product-error-

driven uncertainty model for probabilistic quantitative pre-

cipitation estimation with NEXRAD data. J. Hydrometeor.,

8, 1325–1347.

Cressie, N. A. C., 1993: Statistics for Spatial Data. John Wiley and

Sons, 900 pp.

Fulton, R. A., J. P. Breidenbach, D.-J. Seo, D. A. Miller, and

T. O’Bannon, 1998: The WSR-88D rainfall algorithm. Wea.

Forecasting, 13, 377–395.

Habib, E., W. F. Krajewski, and G. J. Ciach, 2001: Estimation

of rainfall interstation correlation. J. Hydrometeor., 2, 621–629.

Istok, M., and Coauthors, 2009: WSR-88D dual polarization initial

operational capabilities. Preprints, 25th Conf. on International

Interactive Information and Processing Systems (IIPS) for

Meteorology, Oceanography, and Hydrology, Phoenix, AZ,

Amer. Meteor. Soc., 15.5. [Available online at http://ams.

confex.com/ams/pdfpapers/148927.pdf.]

Journel, A. G., and Ch. J. Huijbregts, 1978: Mining Geostatistics.

Academic Press, 600 pp.

Krajewski, W. F., G. J. Ciach, J. R. McCollum, and C. Bacotiu, 2000:

Initial validation of the Global Precipitatioin Climatology

Project over the United States. J. Appl. Meteor., 39, 1071–1086.

——, and Coauthors, 2010: Towards better utilization of NEXRAD

data in hydrology: An overview of Hydro-NEXRAD.

J. Hydroinf., doi:10.2166/hydro.2010.056, in press.

Kruger, A., W. F. Krajewski, and P. Domaszczynski, 2010: Hydro-

NEXRAD: Metadata computation and use. J. Hydroinf.,

doi:10.2166/hydro.2010.057, in press.

Moore, S. D., 2003: The Basic Practice of Statistics. 3rd ed. W. H.

Freeman and Company, 440–444 pp.

Morrissey, M. L., J. A. Maliekal, J. S. Greene, and J. Wang, 1995:

The uncertainty of simple spatial averages using rain gauge

networks. Water Resour. Res., 31, 2011–2017.

Reed, S. M., and D. R. Maidment, 1999: Coordinate trans-

formations for using NEXRAD data in GIS-based hydrologic

modeling. J. Hydrol. Eng., 4, 174–182.

Schabenberger, O., and C. A. Gotway, 2005: Statistical Methods for

Spatial Data Analysis. Statistical Science Series, Chapman &

Hall/CRC, 488 pp.

Seo, B.-C., W. F. Krajewski, A. Kruger, P. Domaszczynski, J. A. Smith,

and M. Steiner, 2010: Radar-rainfall estimation algorithms of

Hydro-NEXRAD. J. Hydroinf., in press.

OCTOBER 2010 N O T E S A N D C O R R E S P O N D E N C E 1197

Unauthenticated | Downloaded 08/31/23 06:35 PM UTC



Smith, J. A., D.-J. Seo, M. L. Baeck, and M. D. Hudlow, 1996: An

intercomparison study of NEXRAD precipitation estimates.

Water Resour. Res., 32, 2035–2045.

Stedinger, J. R., 1981: Estimating correlations in multivariate

streamflow models. Water Resour. Res., 17, 200–208.

Steiner, M., and J. A. Smith, 2002: Use of three-dimensional re-

flectivity structure for automated detection and removal of

nonprecipitating echoes in radar data. J. Atmos. Oceanic

Technol., 19, 673–686.

Torres, S. M., and C. D. Curtis, 2007: Initial implementation of super-

resolution data on the NEXRAD network. Preprints, 23rd Conf. on

International Interactive Information and Processing Systems (IIPS)

for Meteorology, Oceanography, and Hydrology, San Antonio,

TX, Amer. Meteor. Soc., 5B.10. [Available online at http://ams.

confex.com/ams/87ANNUAL/techprogram/paper_116240.htm.]

Vasiloff, S. V., and Coauthors, 2007: Improving QPE and very

short-term QPF: An initiative for a community-wide in-

tegrated approach. Bull. Amer. Meteor. Soc., 88, 1899–1911.

1198 J O U R N A L O F H Y D R O M E T E O R O L O G Y VOLUME 11

Unauthenticated | Downloaded 08/31/23 06:35 PM UTC


	Scale Dependence Of Radar Rainfall Uncertainty: Initial Evaluation Of NEXRAD's New Super-resolution Data For Hydrologic Applications
	Recommended Citation

	jhm1265 1191..1198

