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It is widely acknowledged that radar-based estimates of rainfall are affected by uncertainties
(e.g., mis-calibration, beam blockage, anomalous propagation, and ground clutter) which are
both systematic and random in nature. Improving the characterization of these errors
would yield better understanding and interpretations of results from studies in which these
estimates are used as inputs (e.g., hydrologic modeling) or initial conditions (e.g., rainfall
forecasting).
Building on earlier efforts, the authors apply a data-driven multiplicative model in which the
relationship between true rainfall and radar rainfall can be described in terms of the product of a
systematic and random component. The systematic component accounts for conditional biases.
The conditional bias is approximated by a power-law function. The random component, which
represents the random fluctuations remaining after correcting for systematic uncertainties, is
characterized in terms of its probability distribution as well as its spatial and temporal
dependencies. The space–time dependencies are computed using the non-parametric Kendall's τ
measure. For the first time, the authors present a methodology based on conditional copulas to
generate ensembles of random error fields with the prescribed marginal probability distribution
and spatio-temporal dependencies.
The methodology is illustrated using data from Clear Creek, which is a densely instrumented
experimental watershed in eastern Iowa. Results are based on three years of radar data from
the Davenport Weather Surveillance Radar 88 Doppler (WSR-88D) radar that were processed
through the Hydro-NEXRAD system. The spatial and temporal resolutions are 0.5 km
and hourly, respectively, and the radar data are complemented by rainfall measurements
from 11 rain gages, located within the catchment, which are used to approximate true ground
rainfall.

© 2013 Elsevier B.V. All rights reserved.
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1. Introduction

Studies examining uncertainties in radar rainfall esti-
mates span over three decades, with the first studies being
completed by Harrold et al. (1974), Wilson and Brandes
(1979), and Austin (1987), just to cite a few. Over this time
period, radar rainfall estimation has improved significantly:
compared to Wilson and Brandes (1979), Krajewski et al.

(2010) found a reduction on the order of 33% in the average
differences between radar and rain gages. These comparisons
are promising and reveal that we are on the right path
towards reducing uncertainties in radar rainfall estimation.
Further reductions will result from the increasing availability
of polarimetric measurements of rainfall (e.g., Zrnić and
Ryzhkov, 1999; Bringi and Chandrasekar, 2001; Ryzhkov et
al., 2005). These measurements will provide more accurate
rainfall estimates by improving hydrometeor classification,
attenuation correction, melting layer identification, and
rainfall estimation in the presence of beam blockage and
returns from non-hydrometeorological targets.
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Despite this progress, we will still have to account for
uncertainties in rainfall estimates by weather radars for the
foreseeable future (consult Villarini and Krajewski (2010b)
for a recent review of the topic). Over the past few years,
different modeling approaches have been proposed and
developed to accomplish this task, and Mandapaka and
Germann (2010) provide an extensive overview on the
topic. There are two main ways to describe the uncertainties
in radar rainfall estimates: in the first approach, the dis-
crepancies between radar and ground “truth” data (generally
based on rain gage measurements) represent the total
uncertainties and reflect the overall contribution of different
sources of uncertainties; in the second approach, the main
sources of uncertainties are characterized separately and
then combined to provide a description of the overall radar
rainfall uncertainties. Both of these approaches have advan-
tages and disadvantages, as discussed in Berne and Krajewski
(2013). Due to the complications of parsing out the relative
contribution of each of the sources of uncertainties and their
inter-relationship, the direct description of the total rainfall
uncertainties, albeit simpler, has been the selected approach
in most of the recent studies. Therefore, this is the approach
we will focus on in this study.

The methodology of this study is to directly compare rain
gage measurements with corresponding radar rainfall esti-
mates and develop models that can describe their discrep-
ancies. We focus on error models that were developed to
characterize the full statistical properties of the radar rainfall
errors as opposed to just their first and second moments
(consult Mandapaka and Germann (2010)). Ciach et al.
(2007) described the radar rainfall uncertainties using a
multiplicative error model which accounted for both system-
atic and random errors. This model was also used in other
studies, including Habib et al. (2008), Villarini and Krajewski
(2009b), and Villarini and Krajewski (2010a). Villarini and
Krajewski (2010a) extended the model proposed by Ciach et
al. (2007) to the additive form (see also Habib and Qin
(2013) and Kirstetter et al. (2010)). Germann et al. (2009)
developed a model in which the radar rainfall errors were
proportional to the logarithm of the ratio between rain gage
measurements and radar rainfall estimates. AghaKouchak et
al. (2010b) described the errors as the sum of two random
components: a purely random one and one that is a function
of the radar rainfall values (consult AghaKouchak et al.
(2010a) for an overview of other models by the same
authors).

Each of these models has strengths and weaknesses. The
main weaknesses of these models are related to their use of a
Gaussian distribution for a multiplicative error model (e.g.,
Ciach et al., 2007; Villarini et al., 2009a) and their difficulties in
generating random error fields with the prescribed spatial and
temporal dependencies. This latter problem is one of the most
significant impediments to the development of generators that
are able to reproduce all of the error characteristics. Villarini et
al. (2009a) discussed why it is not possible to simulate
temporal dependencies in the model proposed by Ciach et al.
(2007). Habib et al. (2008) considered the temporal correla-
tion of the radar rainfall random errors to be low, and assumed
that the random errors were independent in time (see also
AghaKouchak et al. (2010a,b) for a similar assumption).
Germann et al. (2009) accounted for temporal dependencies

not at the pixel level but rather for basin-averaged lag-1 and
lag-2 temporal correlations.

In this study, we will build on the error model described
in Ciach et al. (2007) and show that it is possible to move
away from the Gaussian distribution in favor of the more
flexible mixture of gamma distributions. Moreover, both
spatial and temporal dependencies computed with respect to
the reference data can be preserved at the pixel scale. Our
approach is general enough to be applicable for a wide range
of probability distributions and spatio-temporal structures.
Our improved capacity to generate ensembles which can
reproduce the error characteristics computed with respect to
the observational records will lead to improved understand-
ing and interpretation of the results from those studies in
which radar rainfall estimates are used as input, initial
conditions, or reference datasets (e.g., Habib et al., 2008;
Germann et al., 2009; Villarini and Krajewski, 2009a; Villarini
et al., 2009b, 2010; Schröter et al., 2011; Liguori and Rico-
Ramirez, 2012; Cunha et al., 2012).

The paper is organized as follows. In Section 2, we provide
an overview of the error model and describe the data.
Section 3 describes the results of our analysis. In Section 4,
we summarize the main points and conclusions of this study.

2. Data and methodology

2.1. Radar rainfall error model

The radar rainfall error model we use takes its lead from
Ciach et al. (2007). We will consider a multiplicative error
model formulation, in which the relationship between true
rainfall Rtrue and radar rainfall Rr can be described as the
product of a systematic function h(·) and a random
component ε(·):

Rtrue ¼ h Rrð Þ � ε Rrð Þ: ð1Þ

The systematic component accounts for conditional biases,
whereas the random component for the residual fluctuations
remains after correcting for systematic uncertainties. The true
rainfall Rtrue is approximated by rain gage measurements. Tian
et al. (2013) showed that this formulation is a better choice
with respect to an additive error model in terms of separating
random and systematic errors, large variability in rainfall
estimates, and predictive skill. Consult Villarini and Krajewski
(2010a) for a comparison between multiplicative and additive
model formulations in the context of radar rainfall error
modeling.

Prior to estimating the model's components, we compute
the unconditional bias B0 and correct the radar rainfall
estimates for it. It is computed as the ratio between rain
gage measurements Rg and concurrent and co-located radar
rainfall estimates over the domain of interest:

B0 ¼

X
i

Rg;i

X
i

R�
r;i

; ð2Þ

where Rg,i is the rainfall accumulated by the ith rain gage
over a given accumulation time and Rr,i⁎ is the corresponding
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concurrent and co-located uncorrected radar rainfall estimate.
We remove the unconditional bias with the following
formula:

Rr ¼ B0R
�
r ; ð3Þ

where Rr represents the radar rainfall estimate corrected for
the unconditional bias.

We then estimate the systematic component of the error
model as a conditional expectation function:

h rrð Þ ¼ E RtruejRr ¼ rr½ �; ð4Þ

where rr represents the specific value of the random variable
Rr. The benefit of conditioning on the Rr is that we can correct
for conditional biases everywhere within the radar umbrella.
Had we conditioned on the rain gage measurements, we
would have been able to correct for the conditional biases only
at those locations in which we had rain gages. Villarini et al.
(2008b) compared both parametric and non-parametric
methods to estimate the systematic function and found only
minor differences between the two. In this study, we estimate
the systematic function using a cubic spline (e.g., Hastie and
Tibshirani, 1990) with five degrees of freedom.

After correcting the radar rainfall estimates for uncondi-
tional and conditional biases, we can estimate the random
component:

ε Rrð Þ ¼ Rtrue

h Rrð Þ ð5Þ

The random component is completely characterized once
we have information about its probability distribution and
spatial and temporal dependencies. Previous studies (e.g.,
Ciach et al., 2007; Villarini and Krajewski, 2009b, 2010a)
described the random component with a Gaussian distribu-
tion. Moreover, ε(·) exhibited significant spatial and tempo-
ral correlations. The modeling of the error component in
these previous studies was subject to a series of limitations.
First of all, by using a Gaussian distribution in a multiplicative
error model, it is likely that some of the generated variates
would be negative, resulting in negative rainfall values which
are not physically possible. As discussed in Villarini et al.
(2009a), these values were automatically set to zero in
generating ensembles of error fields, which impacts the error
dependence structure. Moreover, because the error variance
was a function of Rr, it was not possible to generate ensembles
of random error fields that were correlated in both space and
time; only the spatial component was preserved (Villarini et
al., 2009a). As discussed in Section 1 and summarized by
Mandapaka and Germann (2010), the error models developed
so far cannot reproduce all the characteristics of the random
errors.

The methodology we introduce in this study addresses all
of these limitations building on the modular framework
proposed by Serinaldi and Kilsby (2012) to simulate monthly
rainfall series at multiple sites. Instead of using a Gaussian
distribution to describe marginal distribution of the random
component, we focus on a mixture of gamma distributions.
The advantages of using the gamma distribution are its
flexibility (it can be highly skewed or symmetric) and the fact

that values are defined only over the positive axis; this
addresses the problem of potential negative rainfall. The use
of a mixture of gamma distributions allows a high degree of
flexibility in describing the random component. We can
formally write the probability density function of a mixture
distribution as:

f εð Þ ¼
Xn

j¼1

wjpj εð Þ; ð6Þ

wherewj are the weights such thatwj ≥ 0 (for j = 1, 2,…, n)

and ∑
n

j¼1
wj ¼ 1. Here, pj refers to the jth probability density

function and is represented by a gamma distribution:

pj εjμ j;σ j

� �
¼ 1

σ2
j μ j

� �1=σ2
j

ε
1
σ2
j

−1
e−ε= σ2

j μ jð Þ
Γ σ2

j

� � ; ð7Þ

where μj N 0 and σj N 0. Because of the multiplicative nature
of this error model, we focus on the modeling of the random
component for radar rainfall values larger than 0.3 mm.

The selection of the appropriate value of n will be based
on the Akaike Information Criterion (AIC; Akaike, 1974).
Values of the AIC will be computed for mixtures with
different number of terms. We will select the value of n for
which AIC is the smallest. This methodology is in agreement
with the principle of parsimony, and results in a trade-off
between model complexity and goodness of fit, with final
models with few parameters, simple structures and reason-
able accuracy. The goodness-of-fit of this mixture distribu-
tion is assessed through comparison of the empirical and
fitted survival functions, and examination of the residuals,
which should be white noise if the selected model is able to
describe the systematic behavior in the data. We will
accomplish this by computing the first four moments of the
residuals, together with their Filliben correlation coefficient
(Filliben, 1975), and by visual examination of their worm plot
(van Buuren and Fredriks, 2001), which are detrended
versions of quantile–quantile plots.

The spatial and temporal dependences in previous studies
were generally estimated using Pearson's correlation coeffi-
cient ρ due to the assumption of a Gaussian distribution of
the residuals. In our study, we use an estimator that is not
affected by departures of the data from the Gaussian
distribution (e.g., Habib et al., 2001; Serinaldi, 2008). We
use the Kendall's τmeasure of association (e.g., Nelsen, 2006)
which is non-parametric (no distributional assumptions are
required).

Modeling and generating random fields that are distributed
according to a mixture of gamma distribution with a given
spatio-temporal dependence structure is performed using the
concept of conditional copulas (Patton, 2006). This approach is
well known in econometrics (e.g., Fantazzini, 2008; Patton,
2009, and references therein) but is uncommon in hydrome-
teorology (e.g., Laux et al., 2011; Vogl et al., 2012). Copulas are
multivariate distributions that allow for construction of joint
distributions with arbitrary marginals using Sklar's theorem
(Sklar, 1959). Focusing on a generic d-dimensional case, we
can write FX x1;…; xdð Þ ¼ C FX1 x1ð Þ;…; FXd

xdð Þ� �
, where X =
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{X1, …, Xd}, is a vector of d generic random variables with
marginal distributions FXi

, for i = 1,…, d, and C is their copula.
Referring to Nelsen (2006), Genest and Favre (2007), De
Michele and Salvadori (2007) and Salvadori et al. (2007) for
thorough introductions to copula theory and applications, we
recall that the copula theory involves (time) independent and
identically distributed (iid) multivariate random variables.
However, in many real-world problems such as radar error
field modeling, this hypothesis is not realistic. Fortunately, the
copula approach can be applied in this case by resorting to the
concept of conditional copulas introduced by Patton (2006). In
particular, time dependence can be modeled by conditioning
Xt on the previous observations Xt, …, Xt − k. The conditioning
variables can also be generic exogenous variables Y. In the
time series context, Sklar's theorem may be extended as
follows (Patton, 2006; Fantazzini, 2008; de Melo Mendes and
Costa Lopes, 2011):

FX;t x1;…; xdjAtð Þ ¼ Ct FX1 ;t
x1ð jAtÞ;…; FXd ;t

xdð jAtÞjAt

� �
; ð8Þ

where Ct is the copula at times t, and

At ¼ σ xt−1;…; xt−k; yf g; ð9Þ

is the σ-algebra generated by all past joint information up to
time t provided by the sample xt − 1 = {x1,t − 1,…, xd,t − 1},…,
xt − k = {x1,t − k, …, xd,t − k} and eventual covariates y = {y1,
…, yn}. Sklar's theorem for conditional distributions implies
that the conditioning variable At must be the same for both
marginal distributions and the copula. Failure to use the same
information set for all components on the right-hand side of
Eq. (8) generally implies that FX,t is not a valid conditional joint
distribution function. Fermanian and Wegkamp (2012) con-
sider the implications of a failure to use the same information
set and define a so-called conditional pseudo copula. However,
when each variable depends on its own previous lags but not
on the lags of any other variable, Eq. (8) describes a valid
conditional distribution. In this study, we assume that this
hypothesis is a reasonable assumption. Since in the present
case study the random variables X are the radar errors
computed at d different sites and At denotes the at-site
information related to the past error values, the previous
hypothesis corresponds to assuming that the cross-correlation
(spatial correlation) can be studied independently of the auto-
correlation (temporal correlation), namely, that the spatio-
temporal correlation function is separable. The conditional
copula method is also denoted as the dynamic copula method
when it implies the modeling of the time varying marginals
and dependence structures.

From an operational point of view, the conditional copula
method allows for splitting the analysis and modeling of
marginals and dependence structure as follows (e.g., Grégoire
et al., 2008; Reboredo, 2011). First, the d radar error time
series are modeled by suitable time series models such as the
auto regressive integrated moving average (ARIMA) models.
Under the separability hypothesis, the residuals of the
univariate time series models at different locations and times
t are temporally independent copies of d spatially dependent
random variables suitable to be modeled by a multivariate
distribution. Since the proposed framework is devised for
arbitrary dimensions d, for describing pairwise correlations,

and simulating radar error maps over regular spaced grids, we
adopt a meta-Gaussian copula, whose dependence structure,
for high dimensions, corresponds to that of meta-Gaussian
random fields with an appropriate covariance function. Of
course, other dependence structures can be used; however, for
high-dimensional problems the set of available models
dramatically decreases and preliminary analyses showed that
some competitors such as Student t-copulas do not improve
the final output.

The modeling and simulation approach can be summa-
rized as follows:

1. A mixture of gamma distributions is used to model the
(at-site) radar error marginal distributions.

2. Therefore, the normal quantile transformation (NQT) is
used to obtain marginals that are approximately Gaussian.

3. These transformed time series are then modeled by an
autoregressive-moving average (ARMA) model, with both
the AR and MA components being of order 1 [ARMA(1,1)].
ARMA is used to model the at-site information At. In this
case, At = σ{xt − 1,ξt − 1}, where xt − 1 and ξt − 1 denote
the radar error values and the ARMA residuals at times
t − 1, respectively. The term ξt − 1 corresponds with y in
Eq. (9).

4. A power law covariance function is fitted to the empirical
values of the cross-correlation of the ARMA(1,1) residuals
computed at the rain gage sites (see Section 3). This step
allows smoothing the empirical correlation matrix and
exploiting the theory and tools developed for random
fields modeling and simulation.

5. To simulate space–time dependent radar error fields (over
a regular grid), this covariance function is used to simulate
suitable Gaussian random fields, whose realizations are
spatially correlated (according to the covariance function)
and temporally independent.

6. The temporally independent sequences resulting from
step (5) for each spatial location are used as (spatially
correlated) innovations to feed at-site ARMA(1,1) models.
This allows for the simulation of random fields that are
both spatially and temporally correlated.

7. Finally, the simulated values are transformed back by
using the inverse of the NQT which exploits the at-site
fitted mixture of gamma distributions. NQT provides the
link between the spatio-temporal meta-Gaussian depen-
dence structure and the at-site (locally varying) marginal
distribution.

Note that the described methodology is general enough to
be applicable for a wide range of spatial and temporal
dependence models. In this study, the spatial and temporal
dependencies are estimated by using Kendall's τ and are then
transformed into the corresponding Pearson correlation
coefficient ρ as follows (e.g., Fang et al., 2002):

τ ¼ 2
π
sin−1ρ: ð10Þ

This allows for a non-parametric estimation that is not
affected by the failure of the hypothesis of Gaussian
marginals and is effective if the spatial and/or temporal
dependence structures are meta-elliptical.
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We perform all the calculations in R (R Development Core
Team, 2012) using the freely available gamlss (Stasinopoulos
et al., 2007) and RandomFields (Schlather, 2012) packages.

2.2. Data

Our radar rainfall error model relies heavily on the
availability of radar and rain gage data. For this study, we
focus on Clear Creek, which is a densely instrumented ex-
perimental watershed in eastern Iowa (Fig. 1).We collected 19
(March 2010 to May 2012, excluding winter months) and five
(June to October 2012) months of rain gage and radar data for
model parameter estimation and validation, respectively.

Radar rainfall estimates used in this study were generated
using theHydro-NEXRADalgorithmsdocumented in Krajewski
et al. (2011). Clear Creek is between 100 km and 140 km from
the Davenport, Iowa, Weather Surveillance Radar 88 Doppler
(WSR-88D) radar (KDVN), with no significant orography
affecting the radar beam propagation. Level II volume data for
the KDVN radar were obtained from the National Climatic Data
Center. Due to the location of the basin with respect to the
radar site, we do not account for possible range effects. As a
data quality control step, non-precipitation radar echoes such
as ground clutters and anomalous propagation (AP) effects
(e.g., Battan, 1973) were eliminated using the method
proposed by Steiner and Smith (2002). The method identifies
non-precipitation echoes based on the horizontal and vertical
structure of measured radar reflectivity. We applied two
threshold values (10 dBZ and 53 dBZ) to define effective
minimum rainfall and hail contamination. We used multiple
elevation angle data to construct reflectivity maps, and a
non-parametric kernel function (e.g., Seo et al., 2011) was used
to avoid discontinuity in the map due to the elevation angle
transition. We then applied the NEXRAD default Z–R relation-
ship (Z = 300R1.4; Fulton et al., 1998) to transform radar
reflectivity fields to rainfall intensities. To generate hourly
rainfall accumulations, we integrated rainfall intensity maps
over time. The spherical coordinates of radar observationswere
transformed into geographic coordinates with a spatial resolu-
tion of 1/4 arc-minute (approximately 0.5 km for the study
area). Due to the fine spatial resolution and the hourly
temporal scale, the potential effects of spatial sampling errors

are negligible (e.g., Kitchen and Blackall, 1992; Villarini et al.,
2008a; Villarini and Krajewski, 2008).

The research group at The University of Iowa operates
high-quality density rain gage networks in the vicinity of
Iowa City, Iowa. One of the networks in Clear Creek
comprises 11 rain gage sites, and all sites are equipped with
dual tipping-bucket gages, a data logger, and a cell phone.
The temporal resolution of the processed rainfall data varies
from 5-minute to daily. Detailed information on data quality
control, processing, and transmission to data storage is
documented in Ciach (2003) and Seo and Krajewski (2010).
The period of rain gage data collection is identical to that of
radar rainfall products.

3. Results

The first step in the development of the radar rainfall
error model is to calculate the unconditional bias which is
defined as the ratio between rain gage measurements and
the corresponding radar rainfall estimates. Over the study
period, the unconditional bias is equal to 0.7, which indicates
an over-estimation by the radar with respect to the rain
gages. This over-estimation is clear when we examine the
scatterplots between radar and rain gages (Fig. 2, top panel).
After correcting for the unconditional biases, we see that,
overall, the points are scattered around the 1:1 line (Fig. 2,
bottom panel) with a reduction of the root mean squared
error (from 0.73 mm before bias correction to 0.52 mm after
bias correction). After accounting for unconditional biases,
we can compute the conditional biases as a conditional
expectation function h(·). The radar tends to over-estimate
large rainfall values, with h(·) lying below the 1:1 line (red
line in Fig. 2, bottom panel). The conditional expectation
function can be parameterized by the power-law function
y = x0.963. This parameterization is able to successfully
reproduce the behavior of the conditional expectation function
computed using cubic splines. The tendency for over-
estimation of high rainfall values by the radar is consistent
with what was observed in previous studies (e.g., Ciach et al.,
2007; Villarini and Krajewski, 2009b, 2010a). The selected
parameterization also preserves the zero-rainfall areas due to
the multiplicative nature of our model.

Fig. 1. Map showing the location of Clear Creek and of the 11 rain gages (black circles) used as ground reference. The distance of the watershed from the
Davenport radar (KDVN) is also shown.
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Even though we estimated conditional and unconditional
biases, there is still considerable variability in the scatterplot
(Fig. 2, bottom panel). This variability is captured and
described by the random component. A complete description
of the random component requires characterizing their
probability distribution and spatial and temporal dependen-
cies. Once we have estimated all of these characteristics from
the data, we can use the methodology based on conditional
copulas (Section 2.1) to generate ensembles of radar rainfall
fields conditioned on the observed radar rainfall maps and
consistent with the observed error properties.

Let us start with the probability distribution. Instead of
resorting to a Gaussian distribution, we use a mixture of
gamma distributions because of its flexibility and because
it is defined only for positive values. In previous studies
(e.g., Ciach et al., 2007; Villarini and Krajewski, 2009b, 2010a;
Habib and Qin, 2013), the standard deviation of the random
component was considered a function of the radar rainfall
values; here, we use a distribution with constant parameters.
According to AIC, the random component can be described by
a mixture of three gamma distributions, for a total of eight

parameters to be fitted. The location μj (scale σj) parameters
of the gamma distributions are 1.21, 0.82, and 3.28 (0.73,
0.44, and 0.95). The corresponding weights wj are 0.623,
0.330, and 0.047, respectively. The visual examination of the
results in Fig. 3 supports the choice of the model. There is a
very good agreement between the empirical and fitted
survival functions (Fig. 3, top panel), and the worm plots do
not point to any problems with the fitted model (Fig. 3,
bottom panel). Moreover, the first four moments of the
residuals (mean equal to 0, variance equal to 1, coefficient of
skewness equal to 0, coefficient of kurtosis equal to 2.99, and
Filliben correlation coefficient equal to 0.9998) provide
strong evidence that they are white noise. All of these
diagnostics strongly suggest that the gamma mixture is able
to describe very well the random component.

The spatial and temporal dependencies are described by
Kendall's τ due to the non-Gaussian nature of random errors
(Fig. 4, top panel). The values of the temporal and spatial
correlations are comparable to other published studies for
Oklahoma (Ciach et al., 2007; Villarini and Krajewski, 2010a),
south–west England (Villarini and Krajewski, 2009b), and
Louisiana (Habib and Qin, 2013). Using Eq. (10), we can
transform Kendall's τ into Pearson's ρ, which represents the
input correlation coefficient for our generator (Fig. 4, bottom
panels). We have parameterized the Pearson-based spatial

Fig. 2. Scatterplots of the rain gage measurements versus radar rainfall
estimates before (top panel) and after (bottom panel) correction for the
unconditional bias. In the bottom panel, the red line represents the
systematic component (computed using a cubic spline with five degrees of
freedom), while the solid black line represents its fit with a power law
function.

Fig. 3. Top panel: Survival function of the random component and of the
fitted mixture of three gamma distributions. Bottom panel: Worm plot
associated with the fit of the random component by means of the gamma
mixture in the top panel.
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correlation (C(·)) using a power law model of the form (e.g.,
Chilés and Delfiner, 1999):

C rð Þ ¼ exp − r
a

� �αh i
; ð11Þ

where r is the intergage distance, a is equal to 50.6 km, and α
is equal to 0.46.

For the Pearson-based temporal correlation, we used an
ARMA(1,1) model, with the value of the AR and MA
parameters equal to 0.8 and −0.5, respectively. This model
is comparable to a fractional Gaussian noise with a Hurst
coefficient of 0.722 (O'Connell, 1971), indicating a power-law
decay in the temporal correlation. This model describes well
the temporal correlation for a number of lags (Fig. 4,
bottom-right panel). Accounting for the sample size at each
temporal lag, there is not enough statistical evidence (at the
1% confidence level) to reject the hypothesis that the
estimated temporal correlation was generated by an ARMA
(1,1) model with the parameters equal to 0.8 and −0.5 for
the AR and MA components, respectively.

Now that we have identified the probability distribution
and estimated the spatial and temporal dependencies, the
random component is fully characterized. Using the approach

described in Section 2.1, we generate Gaussian-distributed
random fields correlated in space according to Eq. (11). These
fields are used as innovation terms for the ARMA(1,1) models
at each pixel. In this way, we have Gaussian fields correlated
in space and time with the prescribed spatio-temporal
structure. By using the inverse of the NQT, we can transform
the Gaussian fields to gamma distributed fields. Fig. 5 shows
that the spatial and temporal dependencies are generally
preserved in the transformation and within the sampling
uncertainties, even though it appears that the space-time
fields generated according to our method tend to be less
correlated than the theoretical correlation functions.

Since the random component is independent of the radar
rainfall values, we can generate large ensembles of gamma
distributed random fields with the prescribed spatial and
temporal dependencies off-line. We can then correct the
radar rainfall fields for unconditional and conditional biases
and super-impose the error fields in real time. This method-
ology allows for the generation of ensembles of rainfall fields
conditioned on the radar rainfall maps and reflecting the
uncertainties characterized by the comparison with respect
to rain gages. Fig. 6 presents three realizations from the
ensemble generator for a three-hour period (3 September

Fig. 4. Top panels: plots of the spatial and temporal correlations of the random component estimated using Kendall's τ. Bottom panel: Pearson's estimator ρ of the
correlation derived using Eq. (10) from the results in the top panels. The solid black lines represent the fitting of the data with parametric models. The black
circles indicate lags which are not significantly different from zero at the 5% level. The gray shaded area in the bottom-right panel shows the sampling
uncertainties associated with the ARMA(1, 1) model (the value of the AR and MA parameters is 0.8 and −0.5, respectively).
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2011, 17–19 UTC). Fig. 7 compares rain gage measurements
to radar rainfall estimates before and after accounting for
radar rainfall uncertainties for a period not used for the
calculations of the error model (June–October 2012). The
radar tends to over-estimate rainfall with respect to the rain
gage measurements. Moreover, it is clear how the largest
uncertainties are associated with the largest rainfall values,
highlighting the difficulties in estimating heavy rainfall.

4. Conclusions

This study focuses on the characterization of the radar
rainfall uncertainties and on the development of a generator
that is able to reproduce these error characteristics. The
results are based on 19 months of radar rainfall data from the
Davenport KDVN WSR-88D radar and 11 rain gages located
within and near Clear Creek, Iowa. The temporal and spatial
resolutions are hourly and about 0.5 km, respectively. The
main conclusions of this work can be summarized as follows:

1. Scatterplots indicate a reasonably good visual agreement
between the radar and rain gage data, with the former
generally over-estimating the rain amounts with respect to
the latter. The unconditional bias (defined as the ratio
between rain gage measurements and the corresponding
radar rainfall estimates) is equal to 0.7. This bias correction
results in a reduction of the root mean squared errors and
in points that are scattered around the 1:1 line.

2. The error model we used consists of a systematic and a
random component. The systematic function accounts for
conditional biases and is represented by a conditional
expectation function. Accounting for the unconditional
bias is enough to remove most of the biases, even though
there is a tendency towards over-estimation by the radar
for larger rainfall values.

Fig. 5. Spatial (top panel) and temporal (bottom panel) correlations of the
random component from the synthetic fields generated using conditional
copulas. The solid black lines represent the theoretical (input) correlations.
The gray areas represent the region between the 1st and 99th percentiles of
the correlation sampling distribution. The black circles represent the
correlations estimated from the data.

Fig. 6. Example of three realizations from the ensemble generator for the period 17–19 UTC on 3 September 2011.
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3. The random component accounts for the variability
remaining after correcting for conditional and uncondi-
tional biases. The comparison between radar and rain gage
data indicates that there is a large degree of scatter that
needs to be accounted for in order to fully describe the
radar rainfall uncertainties. The probability distribution of
the random component can be described by a mixture of
three gammadistributions.We used Kendall's τ to describe
the spatial and temporal dependencies of the random
errors. The spatial correlation can be approximated by a

power law model, and the temporal dependencies can be
approximated by an ARMA(1,1) model.

4. Once we have characterized the structure of the random
component in terms of its probability distribution and
spatio-temporal dependencies, we have a generator that is
able to reproduce them. This generator is based on
conditional copulas and allows the successful generation
of perturbation fields with the prescribed distribution and
spatio-temporal characteristics. These random fields are
then superimposed onto the bias-corrected radar rainfall

Fig. 7. Time series plots comparing the rainfall measured at one rain gage (blue lines) and the corresponding radar rainfall estimates before (red lines) and after
(gray areas) accounting for radar rainfall uncertainties. The data refer to the year 2012.
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fields, allowing the generation of ensembles of rainfall
fields with the prescribed spatio-temporal dependencies
conditioned on the radar rainfall maps.

5. The formulation of this model is general enough that it can
be used for any other radar rainfall products, including the
new polarimetric-based estimates (e.g., Zrnić and Ryzhkov,
1999; Ryzhkov et al., 2005; Berne and Krajewski, 2013). At
the same time, because the results are model-specific, it is
not possible to make these results general for any other
radars and/or products. While the unconditional bias
depends on the radar calibration and is site specific, it is
possible that the stratification of the data into different
types of precipitation systems (e.g., convective, stratiform)
could lead to a generalization of these results. Polarimetric
measurements of rainfall could be extremely useful in
performing this task.
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