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ABSTRACT

This study compares and evaluates single-polarization (SP)- and dual-polarization (DP)-based radar-

rainfall (RR) estimates using NEXRAD data acquired during Iowa Flood Studies (IFloodS), a NASAGPM

ground validation field campaign carried out in May–June 2013. The objective of this study is to understand

the potential benefit of the DP quantitative precipitation estimation, which selects different rain-rate esti-

mators according to radar-identified precipitation types, and to evaluate RR estimates generated by the

recent research SP and DP algorithms. The Iowa Flood Center SP (IFC-SP) and Colorado State University

DP (CSU-DP) products are analyzed and assessed using two high-density, high-quality rain gauge networks as

ground reference. The CSU-DP algorithm shows superior performance to the IFC-SP algorithm, especially

for heavy convective rains. We verify that dynamic changes in the proportion of heavy rain during the con-

vective period are associated with the improved performance of CSU-DP rainfall estimates. For a lighter rain

case, the IFC-SP and CSU-DP products are not significantly different in statistical metrics and visual

agreement with the rain gauge data. This is because both algorithms use the identical NEXRAD reflectivity–

rain rate (Z–R) relation that might lead to substantial underestimation for the presented case.

1. Introduction

During the months of May–June 2013, the National

Aeronautics and Space Administration (NASA)

conducted a field experiment called Iowa Flood Studies

(IFloodS) as part of the Ground Validation (GV)

program for the Global Precipitation Measurement

(GPM) mission (see, e.g., Skofronick-Jackson et al. 2013;

Hou et al. 2014), carried out in central and northeastern

Iowa. The main purpose of IFloodS was to collect high-

quality precipitation measurements using a variety of

ground-based instruments (including radars with differ-

ent wavelengths) to assess uncertainties in spaceborne

and ground-based estimates of precipitation and impacts

of those uncertainties in hydrologic applications and to

help characterize the physical process of precipitation

production (Petersen and Krajewski 2013). Polarized
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weather radars were used as the primary instrument for

quantitative precipitation estimation (QPE) because, aside

from bridging the point estimate of rain gauges to that of a

larger satellite footprint, they provide critical information

such as size, shape, and concentration of raindropswith high

space–time resolution and for the validation of satellite-

based precipitation estimates (e.g., Schumacher andHouze

2000; Chandrasekar et al. 2008; Villarini et al. 2009).

Therefore, we take this opportunity to focus on the dual-

polarization (DP) capability that recently became avail-

able to NEXRAD (e.g., Istok et al. 2009) and to assess

strengths and weaknesses of DP QPE compared to those

of single-polarization (SP) QPE.

A number of radar-rainfall (RR) datasets acquired

through IFloodS were extensively evaluated with re-

spect to a scale that is often used for hydrologic appli-

cations (Seo et al. 2014). Seo et al. (2014) reveal that the

Colorado State University (CSU)-DP estimates gener-

ated using the CSUHydrometeor IdentificationRainfall

Optimization (CSU-HIDRO; Cifelli et al. 2011) algo-

rithm statistically performs better than radar-only DP

estimates (Istok et al. 2009) operationally created by the

U.S. National Weather Service (NWS) as well as other

SP-based estimates for the IFloodS period. One aspect

of the CSU-DPmethodology that makes it unique is the

three-category hydrometeor identifier that drives the

selection of rain-rate estimator based on the pre-

cipitation type. The primary goal of this study is to ex-

amine in detail the operational aspects of the CSU-DP

algorithm related to the precipitation type classification.

The CSU-DP algorithm has not been tested in a large

scale for NEXRAD because the NWS Radar Opera-

tions Center has its own DP algorithm. The hydrome-

teor identification is an exclusive capability that is

relatively hard to achieve in radar-only SP procedures

(e.g., Lerach et al. 2010) and is an initial step to define

basic features of precipitation. There have been nu-

merous studies to extensively explore hydrometeor

identification using dual-polarization radar (e.g., Lim

et al. 2005; Park et al. 2009; Chandrasekar et al. 2013)

and thus to improve QPE by relating identified

information to DP variables such as the differential

reflectivityZdr, specific differential phaseKdp, and cross-

polar correlation coefficient (e.g., Seliga and Bringi

1976; Sachidananda and Zrnic 1987; Ryzhkov et al.

2005a,b; Giangrande and Ryzhkov 2008). However,

there have been few studies (e.g., Cunha et al. 2013) that

evaluate operational DP rainfall products applied to the

recently upgraded dual-polarization NEXRAD net-

work. Additionally, testing of DP algorithms has been

generally limited to research-quality radars. The spatial-

resolution difference between current operational

(0.58 3 250m) and earlier polarimetric prototype of

Weather Surveillance Radar-1988 Doppler (WSR-88D)

known as the KOUN (18 3 250–267m) radar in Okla-

homa (see, e.g., Giangrande and Ryzhkov 2008) is an-

other aspect of this study because it might lead to

considerable dissimilarity in the outcome of pixel-based

rainfall estimation algorithms. In this study, we use the

CSU-DP and the Iowa Flood Center (IFC)-SP estimates

to evaluate the potential benefit of DP QPE. The

same NEXRAD data are used for the generation of

the two rainfall estimates. Since the NWSDP product is

also evaluated in detail by Cunha et al. (2015), the

evaluation of the NWS product is not within the scope of

this study.

The study is organized as follows. Section 2 describes the

RR estimates used in this study and associated algorithm

procedures as well as rain gauge data used as ground

reference. Section 3 characterizes three meteorological

events selected for the event-based evaluation in which

the hydrometeor identification plays a key role in DP

QPE. Section 4 evaluates the SP and DP estimates and

compares their strengths andweaknesses. In section 5, we

discuss the main findings and propose future work.

2. Rainfall data

In this section, we concisely describe the RR products

and rain gauge data used in this study. OurRR estimates

are generated using the Level II volume data (see, e.g.,

Kelleher et al. 2007) from NEXRAD that cover the

IFloodS study area shown in Fig. 1. The key differences

in the structure and specifications between the IFC-SP

and CSU-DP processing algorithms are presented and

discussed to account for the observed similarities and

discrepancies. We use high-quality, dense rain gauge

networks that cover the Turkey River basin and the vi-

cinity of the Iowa City area (see Fig. 1) as ground ref-

erence to assess the capability of the two RR estimates.

TheRRestimates and rain gauge data were collected for

the period from 1 May to 15 June 2013.

a. IFC-SP product

The Iowa Flood Center provides a real-time com-

posite rain map with the grid spacing of approximately

500m over the entire state of Iowa for the purpose of

flood monitoring and forecasting. This composite rain

map is constructed and updated every 5-min based on

the reception of the real-time streaming radar Level II

volume data using the Unidata Local Data Manager

(LDM) and Internet Data Distribution (IDD) technol-

ogy (e.g., Sherretz and Fulker 1988; Fulker et al. 1997).

The downstream LDM in the IFC acquires the Level II

data from seven NEXRAD sites that cover Iowa.

The acquired radar volume data are processed through
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the Hydro-NEXRAD environment documented in

Krajewski et al. (2013) to create the RR estimates. Four

NEXRADs that cover the basins of interest are used in

this analysis (KARX inLaCrosse,Wisconsin; KDMX in

Des Moines, Iowa; KDVN in Davenport, Iowa; KMPX

in Minneapolis, Minnesota).

In the individual radar data processing of the IFC

product, anomalous propagation effects are initially

identified and eliminated using three-dimensional

structure of the radar reflectivity Zh data (e.g., Steiner

and Smith 2002) as a quality-control step. The DP var-

iables are not used to classify nonprecipitating radar

returns in this SP procedure. The quality-controlled,

multielevation-angle data are then used to construct a

two-dimensional reflectivity field by using the hybrid

scan algorithm detailed in Seo et al. (2011). To syn-

chronize different observation times among individual

radars, a simple extrapolation scheme using an advec-

tionmethod (see, e.g., Krajewski et al. 2013) is applied in

the IFC-SP algorithm. Two consecutive individual re-

flectivity maps are used to calculate a single-velocity

vector for a given time span, and the resulting vector is

projected to generate reflectivity maps at the next two 5-

min nominal time steps (up to 10min), assuming that the

computed velocity vector will not change in 10min. The

time-synchronized individual maps are merged onto the

500-m common grid based on the exponentially decay

weighting scheme with respect to distance from each

radar. The statewide reflectivity map is then converted

to the rain-rate map by the reflectivity–rain rate (Z–R)

relation commonly used for NEXRAD (Z 5 300R1.4;

see, e.g., Fulton et al. 1998). We note here that the

vertical profile of reflectivity (VPR) correction (e.g.,

Vignal and Krajewski 2001) is not applied herein be-

cause of the high variance of range-dependent errors

(e.g., Krajewski et al. 2011) and possible gross over-

estimation of rainfall at far range (e.g., Bellon et al.

2007). For the evaluation in this study, the rain-rate

FIG. 1. Study area and two rain gauge networks (NASA and IFC) used as ground reference

for the two RR estimates evaluation. The circular domains centered on individual radars in-

dicate 200-km distance from the corresponding radars. The KMPX radar in Minneapolis,

Minnesota, is not visible in this domain. The location of NASA’s research S-band radar NPOL

during the IFloodS campaign is also included for reference.
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maps were accumulated over various time scales such as

hourly and the entire period.

b. CSU-DP product

For the DP rain-rate product, individual radar data

are quality controlled to eliminate nonmeteorological

echo using thresholds on dispersion of the differential

phase, cross-polar correlation coefficient, and signal to

noise ratio (Wang and Chandrasekar 2009). The specific

differential phase is calculated using the adaptive

methodology of Wang and Chandrasekar (2009). The

DP algorithm follows the CSU-HIDRO method of

Cifelli et al. (2011) where an appropriate polarimetric

rain-rate estimator is selected based on a simple three-

category (rain, mix, and ice) Hydrometeor Classification

System for Rainfall Estimation (HCS-R), which uses the

polarimetric information along with a sounding to de-

termine the water phase within a radar sampling vol-

ume. Under all liquid conditions identified by HCS-R,

the algorithm attempts to use R–Kdp–Zdr or R–Zh–Zdr

both of which better constrain variations in rain rate

with drop size distribution compared to R–Zh estima-

tors. The selection of each estimator is based on a

threshold on the polarimetric data to ensure these are

above values severely affected by noise [Zdr $ 0.5 dB,

Kdp $ 0.38km21, and Zh . 38 dBZ at S band; see Fig. 3

in Cifelli et al. (2011)]. If all of these thresholds are not

met, the algorithm defaults to an R–Zh relation (here,

Z 5 300R1.4). In the presence of a mixture of ice and

water determined by HCS-R, the algorithm uses R–Kdp

given sufficient phase shift (Kdp . 0.38km21 and Zh .
38dBZ) due to the relative insensitivity of Kdp to iso-

tropic scatterers such as hail. Otherwise, as in the case of

HCS-R all ice, the algorithm does not calculate a rain

rate. The implication of this logic is that no rain rate is

calculated above the bright band. In other words, at long

ranges from the radar when the radar beam is in or

above the bright band, the DP method is not applicable.

Further discussion of the DP algorithm and the specific

equations for each rain-rate estimator are given in

Cifelli et al. (2011). We used the same hybrid scan, time

synchronization, and merging schemes employed in the

SP algorithm for the creation of a composite map from

the individual DP rain-rate products.

c. Rain gauge data

High-quality rain gauge data are required to assure

the credibility and reliability of the RR product evalu-

ation that is often subject to the accuracy of the ground

reference data. In this study, we selected two rain

gauge networks, the NASA and IFC (see Fig. 1), which

were deployed and operated for IFloodS. During the

field campaign, these two networks were regularly

maintained by the IFC staff and students at the Uni-

versity of Iowa. The reported errors and malfunctions

were corrected in the postprocessing of the rain gauge

data. In the NASA network, 20 rain gauges were de-

ployed in the range between 90 and 130 km from the

KARX radar and almost evenly distributed over the

Turkey River basin, which enables the investigation of

hydrologic impact from inherent uncertainty in the RR

estimates as well as the evaluation of the RR itself. The

IFC network consists of 30 rain gauges centered on the

Iowa City Municipal Airport, including 11 locations

within the Clear Creek basin (see, e.g., Villarini et al.

2014). The gauges are located at a range of 80–120km

from the KDVN radar.

Both theNASA and IFC networks are structured with

the same configuration of two tipping-bucket gauges at

each site. We used the accumulated number of tips data

with the time resolution of 5min. The double tipping-

bucket feature reduces the gauge sampling effect due to

rainfall variability on a small scale (see, e.g., Ciach 2003)

and allows us to detect malfunctioning gauges, such as

shown in Fig. 2. In Fig. 2, the disagreement of rain gauge

records observed from two rain gauge clusters around

Iowa City is presented. We use an arbitrary threshold of

5mm (for hourly accumulation) to address the observed

difference between two tipping buckets in the same rain

gauge platform. This threshold value should well rep-

resent the systematic measurement errors such as

overestimation or undercatch issues (e.g., Steiner et al.

1999) as well as rainfall spatial variability. We take an

average of two records if the difference is smaller than

the threshold. Otherwise, the bigger value/record is se-

lected to account for the issue of undercatch by one of

the tipping buckets.

For radar–gauge comparisons, we use point mea-

surements at rain gauge locations for the collocated ra-

dar estimates assuming that rainfall spatial variability is

not significant at the employed time (e.g., hourly) and

space (0.5 km) scales (e.g., Krajewski et al. 2003; Ciach

and Krajewski 2006). We also assume negligible wind

effect between the radar sampling height and ground.

d. Precipitation classification

Using the HCS-R output from the DP and the se-

lected rain-rate estimator (e.g., R–Kdp, R–Kdp–Zdr, R–

Zh, or R–Zh–Zdr), we have devised a precipitation clas-

sification to help put the DP and SP statistical perfor-

mance in context. When the algorithm uses R–Kdp–Zdr

and HCS-R identifies liquid, the precipitation type is

assumed to be heavy rain (HR). If the algorithm iden-

tifies liquid but reverts to using an R–Zh relation, this is

indicative of small drops with no appreciable differential

signature, and in this regime, these conditions are likely
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light rain (LR). In the case of liquid where R–Zh–Zdr is

selected, reflectivities are generally less than 38dB

(above which the algorithm would try to use R–Kdp–Zdr

because 38dBZ is a threshold for using Kdp in rainfall

estimation at S band), indicative ofmoderate rain (MR).

When R–Kdp is used, the HCS-R identification distin-

guishes whether the point is in the liquid [rain with ice in

the liquid phase (RI-L)] or a mix of ice (hail or wet

snow) and rain [rain with ice in themixture (RI-M)]. The

HCS-R category of ice (IC) can be associated with wet

snow or significant graupel or hail.

3. Meteorological events

The major difference between the SP and DP algo-

rithms is the ability of the DP algorithm to adapt to

different precipitation microphysics through the hy-

drometeor classification and multiparameter rain esti-

mators while the SP algorithm used in this study relies

solely on a unique relation between radar reflectivity

and rain rate without distinction of storm type or vari-

ability in hydrometeor types. To evaluate the estimation

performance resulting from the aforementioned algo-

rithm difference, we analyze diverse precipitation cases

in May 2013 characterized by different meteorological

phenomena. We selected three precipitation cases in

which major storms directly affected the two rain gauge

networks. We describe meteorological features for the

three events in this section. Iowa is relatively flat with

some rolling hills, and there are no significant oro-

graphic effects (e.g., snow) in the development of

precipitation.

The first case (event 1) is identified as a widespread

snow/mix and light precipitation event (from 0900 UTC

2 May to 0300 UTC 5 May). In the early morning

of 2 May, rain started in a robust southwest-to-

northeast-oriented band that moved slowly to the east

and transitioned into a rare May snow event in the late

morning. The local 1200 UTC DVN sounding in Dav-

enport, Iowa (the location is the same as KDVN shown

in Fig. 1) showed multiple freezing levels and elevated

conditional instability. Radar echoes were marked with

embedded convection. On 3 May, frozen and mixed

snow transitioned to stratiform rain between 1300 and

1400 UTC because of the complex melting layer struc-

ture and the westward movement of the rain–snow line.

There was some convection in a rotating band in south

and southeast of the domain shown in Fig. 1 on 4 May.

The convection had tops of roughly 6–8km and gener-

ated some heavy rain and lightning. Some isolated cells

ahead of the convective line moving northward merged

together to create an east–west band of rain.

The other two cases (events 2 and 3) are characterized

by mesoscale convective systems (MCSs; from 1000 UTC

19 May to 0700 UTC 20 May and from 1900 UTC

29 May to 0600 UTC 30 May). At the beginning of the

event on 19May, a narrow band of convection developed

and passed over the Turkey River basin. A few isolated

cells developed to the southwest around 2000 UTC

19 May and then rapidly moved off to the northeast.

Shortly after 0000 UTC 20 May, a strong line of con-

vection was observed, moving toward the east from the

west. This convective event was quickly followed by the

passage of an asymmetric MCS from the southwest,

with a strong convective line, well-defined transition

zone, and an extensive trailing stratiform region that was

enhanced behind the northern part of the line. Overall,

heavy rain fell in northern and western Iowa, with

FIG. 2. An example showing rainfall spatial variability at small scale and rain gauge measurement error/difference

between two tipping buckets in one location. The two rain gauge locations in cluster 2 indicate that the record for one

of the tipping buckets was missed.
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corresponding smaller amounts within the Turkey

River basin.

On 29 May, some isolated but strong cells merged

together and developed into an MCS. The MCS de-

veloped to the north andmoved to the northeast; as with

the 19–20 May case, large portions of the system were

followed by widespread stratiform rain.

4. Results

In Figs. 3–5, we provide example snapshots of radar

reflectivity, DP rain rate, the three-category HCS-R,

and DP rain estimator observed from the KARX,

KDMX, and KDVN radars for the three events selected

in section 3. The HCS-R maps were generated using the

CSU-DP algorithm. We briefly describe event features

characterized using the HCS-R maps and how the HCS-

R maps are used in estimating rain rate for each event.

During the colder, more stratiform case (event 1), the

HCS-R classified all liquid and ice, with two distinct

freezing levels (Fig. 3). In this relatively light rain re-

gime, the DP rain-rate estimator relies mainly onR–Zh–

Zdr and R–Zh since Kdp values were not large enough

to provide meaningful constraints on the rain-rate

estimates. In the more convective events 2 and 3 (19–

20May and 29–30 May), the DP rain estimation method

optimized the use of the information provided by the

polarimetric observations (Figs. 4, 5). The HCS-R

identified areas of mixed rain and hail in the convective

cores, and the algorithm subsequently relies on R–Kdp to

estimate rain rate under those conditions since Kdp is

insensitive to isotropic scatterers such as hail that render

the power-based measurements of reflectivity and dif-

ferential reflectivity less useful. The more intense cases

also allowed for the algorithm to use information from

both Kdp and Zdr via the R–Kdp–Zdr relation and only

defaulted to the R–Zh estimator in the very light rain

regions around the edges of the storms (Figs. 4, 5).

a. Event totals

We illustrate maps of total rainfall for the selected

three events in Fig. 6 [IFC-SP in Fig. 6 (left) and CSU-

DP in Fig. 6 (right)]. Event 1 in Figs. 6a and 6b shows

relatively less rainfall than the other two events because

it is characterized by snow/mix and stratiform types of

precipitation (see section 3). The major difference no-

ticeable between Figs. 6a and 6b is a region around the

KDMX radar. While reflectivity remained relatively

FIG. 3. An overview of the 3 May (event 1) case from (a)–(d) KDVN at 1425 UTC and (e)–(h) KDMX at 1238 UTC. Illustrated is

(a),(e) reflectivity; (b),(f) DP rain rate; (c),(g) the three-category HCS-R; and (d),(h) DP rain estimator. Circular rings depict every

50-km range from the radars. Shaded rings in the KDVN HCS-R indicate the locations of two radar-detected melting layers.
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strong (up to 50dBZ) during this rain–snowmix, the DP

HCS-R detects the presence of cold precipitation even

at close range (see the KDMX snapshots in Fig. 3). This

is because of robust polarimetric signatures associated

with melting, such as a lowering of correlation co-

efficient. The mixed-phase nature and low melting level

associated with this case are manifest as a range limit in

Fig. 6. Based on the WSR-88D volume coverage pat-

terns, the radar beam (center) altitude of the lowest el-

evation angle (0.58) is around 2km at 120-km range, and

radar measurements of the lowest elevation angle at far

range used to be affected by the lowmelting layer. These

range effects in the CSU-DP, however, are not visible in

the cases of events 2 and 3 (Figs. 6d,f) for which a ver-

tically well-developed and well-mixed convective

structure played a major role for storm creation, and the

melting layer was much higher during those cases, at a

height of 3.5–4.0 km. While both the IFC and NASA

network locations shown in Fig. 6 accumulated some

amounts of rainfall in event 1, the IFC locations in

events 2 and 3 do not show meaningful rainfall in both

RR event totals. Therefore, we use both rain gauge

networks for event 1 and only theNASA (TurkeyRiver)

network for events 2 and 3 to compare and evaluate the

two RR products in this section.

In Table 1, we provide two simple rainfall statistics for

each event case, namely, mean areal rainfall (pre-

cipitation) and maximum hourly accumulation. The

mean areal rainfall is identified as the mean of event

totals at corresponding RR grid pixels with rain gauge

locations. Overall, the estimated rainfall in the CSU-DP

tends to be slightly closer to the rain gauge observations,

although both RR products show underestimation. This

underestimation tends to be more significant for the

lighter rain case of event 1, where the radar totals are

almost half of the gauge totals. The larger gauge value of

mean areal rainfall (81.5mm) at the IFC network in

event 1 was due to the relatively longer duration (even if

the event is identified as snow/mix and stratiform case

that is a less strong precipitation type), and we also note

convective activity over the IFC network region at the

end of the period resulting in almost twice the rain ac-

cumulation compared to the NASA network. The

maximum hourly accumulation values in Table 1 dem-

onstrate how intense the rain was in each case, and we

recognize that event 3 was the most intense, whereas

FIG. 4. An overview of the 19 May (event 2) case from (a)–(d) KDVN at 1055 UTC and (e)–(h) KARX at 1135 UTC. Illustrated is

(a),(e) reflectivity; (b),(f) DP rain rate; (c),(g) the three-categoryHCS-R; and (d),(h) DP rain estimator. Circular rings depict every 50-km

range from the radars.
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event 1 was relatively mild, especially over the NASA

gauge locations.

b. Radar–gauge comparison

The hourly radar–gauge comparison results for the

events listed in Table 1 are presented in Fig. 7.

Figures 7a (left, middle) and 7b (left, middle) are rele-

vant to event 1, and the results from different rain gauge

networks are distinguished by different colors of dots.

The results for events 2 and 3 are placed in Figs. 7c (left,

middle) and 7d (left, middle). The insets in Fig. 7

(left, middle) indicate representative hours in which the

two RR estimates showed considerable differences. We

use three statistical metrics, namely, multiplicative bias

(radar/gauge), correlation coefficient, and root-mean-

square error (RMSE) to assess radar–gauge agreement

of the two RR estimates. The bias values greater and

smaller than one indicate over- and underestimation,

respectively. Figure 7 (right) illustrates precipitation

type occurrence rate (%) for the inset hours. The oc-

currence rate is computed for the spatial area of corre-

sponding rain gauge network that can be defined using

the ranges of azimuth from the north (08) and of distance
from the radar. For example, the NASA network area

from the KARX radar is defined as 1798–2438azimuth

and 89–132-km distance. The polar-based HSC-R maps

at the lowest elevation are then accumulated over inset

hours in Fig. 7 for the azimuth and distance ranges.

For Figs. 7a and 7b, the two network areas were likely

affected by different types of precipitation, the northern

NASA network being influenced by more rain–snow

mix and the southern IFC network by heavier convec-

tion. The resulting scatter patterns are completely dif-

ferent, although bias values are in similar range. While

radar–gauge agreement for the IFC network area shows

some improvement in the CSU-DP estimates, the SP

and DP estimates for the NASA network do not show

much difference, and the improvement in the CSU-DP

is little if any. As discussed earlier, some convective

storms passed over the IFC network area at the end of

the period (event 1), and we find a nonzero occurrence

of heavy precipitation beginning just after 1830 UTC. In

addition, since the total occurrence rate of all pre-

cipitation types is less than 50% during the hours shown,

we can infer that the precipitation system was narrow in

spatial extent and did not cover the entire domain. On

the other hand, for the NASA network area (event 1),

we recognize that the precipitation system widely

FIG. 5. An overview of the 29 May (event 3) case from (a)–(d) KDVN at 2243 UTC and (e)–(h) KARX at 2241 UTC. Illustrated is

(a),(e) reflectivity; (b),(f) DP rain rate; (c),(g) the three-category HCS-R; and (d),(h) DP rain estimator. Circular rings depict every 50-km

range from the radars.
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covered the area (the Turkey River basin) with almost

100% of total occurrence rate, including about 10% ice

(e.g., dry snow) proportion. Here, the bias, correlation,

and RMSE are similar between the SP and DP algo-

rithms. Not unexpectedly, this implies that QPE for a

snow/mix or widespread stratiform system with a very

low melting layer might be still a challenge even for DP

radars based on the presented performance of the CSU-

DP for the case of event 1 with the NASA network

[Fig. 7b (middle)]. Regarding the cases of events 2 and 3

FIG. 6. Event rain total maps for the selected rain cases: (a),(b) event 1; (c),(d) event 2; and (e),(f) event 3. The

IFC-SP and CSU-DP are presented (left) and (right), respectively.
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shown in Figs. 7c (right) and 7d (right), the precipitation

type occurrence rate reveals some steady proportion of

heavy rain accompanying ice or hail particles, which is

an indication of convection. The CSU-DP estimates

show superior performance in all statistical metrics as

well as a visual agreement for these convective cases.

The shown enhancement in the CSU-DP is accom-

plished by the rain-rate estimation using dual-

polarimetric variables. For light rain, the IFC-SP and

CSU-DP use the same Z–R equation, but rain rate for

heavy (DP employs both Kdp and Zdr) and moderate

rain (whereDP usesZh andZdr) can generate significant

differences. This is demonstrated in the convective cases

shown Figs. 7c and 7d.

c. Time series analysis

To explore dynamic changes in the performance of

the SP and DP estimates associated with the variation of

precipitation types, the time series of hourly based

multiplicative bias and correlation as well as of pre-

cipitation type occurrence rate are presented in Figs. 8

and 9. The cases of events 1 (Fig. 8) and 3 (Fig. 9) both

with the NASA rain gauge locations are chosen to ex-

amine the worst and best cases for RR shown in Fig. 7.

For the efficient presentation of the RR performance

along the time line, the bias and correlation values are

categorized into several classes and color coded ac-

cording to the defined intervals. For example, blue and

red colors represent under- and overestimation for bias,

respectively. Likewise, lighter and darker tones indicate

each better and worse performance. We used two arbi-

trary thresholds, hourly minimum rainfall (0.5mm for

both hourly radar and gauge values), and minimum

number of available radar–gauge pairs (5) to estimate

hourly bias and correlation values. This is because oc-

casionally some spurious rainfall values in a very small

number of radar–gauge samples within an hourly in-

terval affect the systematic structure of RR error. The

unoccupied time spans in Figs. 8 and 9 indicate that

there were an insufficient number of radar–gauge pairs

whose rainfall values were greater than the threshold of

0.5mm. In Fig. 8, we recognize that the proportion of

moderate rain plays an important role in producing

meaningful amounts of rainfall because the periods

dominated by light rain are times that did not meet the

threshold criteria. Interestingly, during the 0200 UTC

time period, both CSU-DP and IFC-SP are biased high.

This time saw a spike in precipitation identified as IC,

with mostly light rain and some moderate rain. The

significant underestimation by both SP and DP at the

end of the period in Fig. 8 seems to be the result of an

increasing contribution from rain and ice mixes. An-

other possible reason for the underestimation at the end

of the time period could be attributed to the conven-

tional Z–R relation that is used not only in the SP

algorithm but also in the DP algorithm for light rain.

Since the conventional Z–R equation is known to be

inappropriate for stratiform-type storms (see, e.g.,

Klazura and Kelly 1995), the comparable proportion

of light rain to that of moderate rain at the end of the

period in Fig. 8 might lead to significant un-

derestimation. Interestingly, the SP rainfall is nega-

tively correlated with the rain gauge observations at

the end of the period. The considerable portion of ice

detected at the times of negative correlation seems to

decrease the reliability of the SP estimates. For event

3 (Fig. 9), the CSU-DP clearly shows superior per-

formance in both bias and correlation than the IFC-

SP. The contribution of heavy rain is apparent in this

convective case and illustrates the tendency for DP

estimates to improve as the proportion of moderate to

heavy rain increases. Additionally, in this time period

some amount of rain–ice mixture was identified,

which could indicate contamination from hail, biasing

the SP RR. Toward the end of the period when most

of the rain is moderate or light, the DP slightly

overestimates (bias of 1.07) the rainfall while the SP

significantly underestimates (bias of 0.4). In the cor-

relation comparison of Fig. 9, the categorical pre-

sentation seems to conceal which one performs

better, but actual correlation values at each time step

confirm that the correlation values of the CSU-DP are

superior to those of the IFC-SP in the same color zone

(e.g., 0.93 versus 0.83 for 2300 UTC 29 May).

TABLE 1. Rainfall statistics for the selected three rain cases. The mean areal rainfall for the RR estimates is the mean of event totals at

collocated grid pixels with rain gauge locations.

Gauge

network

Mean areal rainfall (mm) Max hourly accumulation (mm)

IFC-SP (radar/gauge) CSU-DP (radar/gauge) Gauge IFC-SP CSU-DP Gauge

Event 1 IFC 36.2 (0.44) 39.4 (0.48) 81.5 10.5 12.2 16.3

NASA 22.0 (0.44) 23.3 (0.47) 49.5 10.5 8.7 8.6

Event 2 NASA 31.2 (0.91) 32.3 (0.94) 34.3 28.1 32.5 29.5

Event 3 NASA 36.4 (0.72) 41.6 (0.83) 50.3 43.8 50.0 44.0
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FIG. 7. (left),(middle) Hourly radar–gauge comparison for event 1 with the IFC (a) andNASA rain gauge networks (b), event 2 with the

NASA network (c), and event 3 with the NASA network (d). The insets show radar–gauge scatter at the representative hours in each

event. (right) The representative hours are used for representing precipitation type occurrence rate over the network areas.
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d. Campaign totals

We now turn to larger spatial and temporal scales to

look at how the algorithms performed during the entire

IFloodS campaign. The RR maps of total accumulation

over the entire campaign period (from 1May to 15 June)

are presented in Fig. 10. The estimated rainfall was up to

500mm in some regions. On average, the campaign

period was wetter than expected in normal years, com-

pared to climatological precipitation in May and June in

Iowa (see, e.g., www.prism.oregonstate.edu/normals/).

Because of DP nonestimation above the melting level, it

is clear that the most striking difference between SP and

DP is the limited totals at far ranges from the radars. In

examining the rate of occurrence of each precipitation

type as a function of range throughout the entire period

(Fig. 11), it is clear that, on average, beyond 120 km the

contribution from ice systematically increases with

range, with a secondary jump at around 145km. This is

due to the behavior of the refractive index of air with

height and Earth curvature, which causes the beam to

intersect the melting layer at far ranges, and as such the

HCS-R identifies a mix of ice or ice particles. The top of

the radar beam would start interacting with a mean

melting layer (e.g., 3.5 km calculated from the DVN

soundings for the campaign period) at the first zone

(110–120 km), and the center of the beam would in-

tersect with the melting layer at the second zone (140–

150 km). Once the radar beam is partially or completely

in the mixed phase or ice regions, calculation of a

surface-based rain rate is not possible with current

knowledge of rain microphysics and polarimetric radar.

In fact, SP techniques can have similar limitations in and

above the bright band, which can result in over- or un-

derestimation of surface rainfall (e.g., Krajewski et al.

2011). We will further discuss the implications for op-

erational rainfall estimation in section 5. For reference,

we highlight the rain gauge distance bands from the

corresponding radars (KARX-NASA and KDVN-IFC)

in Fig. 11. Figures 10 and 11 also demonstrate that the

KDMX area was affected by more intense rainfall

[heavy andmoderate rain in Fig. 11 (middle)] than other

areas and that the KDVN area was associated with rel-

atively less rainfall.

The radar–gauge comparison for the rain totals is

presented in Fig. 12. Overall, both RR estimates show

underestimation against the rain gauge observations.

For the Turkey River basin area, the CSU-DP tends to

reduce the underestimation tendency observed in the

IFC-SP and increase rainfall estimations in most loca-

tions. However, six rain gauges that are located at a

relatively far range shown in the inset of Fig. 12 (right)

FIG. 8. Precipitation type changes over time for event 1 with the NASA network area. The estimated hourly bias

and correlation values are color coded and represented at corresponding time spans.

AUGUST 2015 S EO ET AL . 1669

Unauthenticated | Downloaded 08/31/23 06:24 PM UTC

http://www.prism.oregonstate.edu/normals/


are associated with significant underestimation (red

circle in Fig. 12). This considerable error can be in-

terpreted by the comparatively higher frequency of ice

presence at the highlighted range in Fig. 11 (top;

KARX). The rainfall increase in other gauge locations is

likely attributed to the proportion of moderate rain for

which the CSU-DP algorithm uses Zh and Zdr as rain-

rate estimators because both IFC-SP and CSU-DP

FIG. 9. Precipitation type changes over time for event 3 with the NASA network area. The estimated hourly bias

and correlation values are color coded and represented at corresponding time spans.

FIG. 10. Rain total maps of the (a) IFC-SP and (b) CSU-DP estimates accumulated over the entire campaign

period. The IFC rain gauge network is located in the west of the KDVN radar, and the NASA network is evenly

distributed over the marked basin (Turkey River basin) boundary in the southwest of the KARX radar.
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algorithms use the same Z–R transformation equation

for light rain. Regarding the IFC network, the un-

derestimation for the CSU-DP looks worse than that for

the IFC-SP. We further investigated this issue and

identified gauge locations where the CSU-DP estimates

are smaller than those of the IFC-SP. We then found

that the smaller estimation arose from rain gauge clus-

ters mostly located in the north and west of the network

FIG. 11. Occurrence rate of precipitation types over the campaign period with respect to radar

range. The shaded range zones for theKARXandKDVNradars indicate theNASAand IFC rain

gauge network locations from corresponding radars (KARX-NASA and KDVN-IFC).
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(see Fig. 1). These several gauges are all located in a

110–120-km range from the KDVN radar, and the ice

presence at that narrow range [Fig. 11 (bottom)] might

affect the observed consequence in the CSU-DP

estimates.

Figure 13 shows the hourly radar–gauge comparison

result over the entire period. In Fig. 13, both RR esti-

mates show underestimation of similar magnitude as

evidenced by the bias values. The agreement in terms of

scatter and liner dependency measured by the RMSE

and correlation is better in the CSU-DP than in the IFC-

SP. Since most points are congregated in Fig. 13 in the

low rainfall totals (e.g., smaller than 5mm), which may

have a larger impact on characterizing the RR error

structure, we present a detailed data distribution for the

smaller rain area (0–20mm) with two-dimensional

radar–gauge histograms in Fig. 13. Each color used in

the two-dimensional histograms represents the data

occurrence frequency for given radar–gauge pairs.

5. Discussion and future work

Herein we have examined two different radar-rainfall

(RR) algorithms, IFC-SP and CSU-DP, and compared

error statistics (bias, correlation, and RMSE) against

extensive ground-based rain gauge measurements.

Earlier studies (e.g., Brandes et al. 2002; Ryzhkov et al.

2005a,b; Giangrande and Ryzhkov 2008; Cifelli et al.

2011) made advances in testing polarimetric rain-rate

estimators (e.g., R–Zh–Zdr and R–Zh–Kdp–Zdr) and

finding/selecting the ‘‘best’’ estimator depending on the

echo classification. In this study, we focus on in-

vestigating and evaluating the performance of the se-

lected estimators for operational applications. We

clearly show likely improvements and limitations in DP

estimates depending on the precipitation types. In gen-

eral, the DP algorithm performed better than the SP

across a variety of time scales, from hourly to event and

campaign rainfall totals. This is due to the ability of the

DP algorithm to ‘‘adapt’’ to the microphysics by using

different polarimetric information to constrain the rain

estimates. Event-based analysis shows that the CSU-DP

is especially advantageous under intense rain. Time se-

ries analysis reveals that the change in the proportion of

heavy rain plays a significant role for the estimation

accuracy because the CSU-DP estimates tend to be

fairly close to the rain gauge values when the proportion

of heavy rain increases and reaches local peaks, likely

because theDP algorithm is able to rely on bothKdp and

Zdr. However, under light rain and cold conditions, the

DP algorithm did not provide any advantage over the

SP, as the polarimetric variables were mostly below

threshold values, reverting to both algorithms using the

same Z–R relation. We think that this weakness in both

the DP and SP algorithms can be supplemented to some

degree by replacing the currentZ–Rwith one that better

represents lighter rain regimes (e.g., Marshall–Palmer

Z–R; Marshall and Palmer 1948). Additionally, from the

FIG. 12. Radar–gauge comparison for the campaign rain totals of the (left) IFC-SP and (right) CSU-DP esti-

mates. The map of rain total for the CSU-DP is presented in the inset (right) to demonstrate that the significant

underestimation (six rain gauge locations within the red circle and these locations are indicated in the map) was

caused by the observed range issue. The statistical metric values of multiplicative bias (radar/gauge), correlation

coefficient, and RMSE are provided for both estimates.
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comparison of radar–gauge rain totals over the entire

campaign period, it was found that both IFC-SP and

CSU-DP estimates are biased low. The CSU-DP tends

to increase the totals at some locations that are posi-

tioned within the DP retrieval range, compared to the

IFC-SP.

We note that the rain-rate estimators (e.g., R–Zh–Zdr

andR–Kdp–Zdr) that useZdr andZh might be vulnerable

to the radar calibration errors. We performed some spot

checking of the Zdr bias using high-elevation angle data

in some stratiform cases. We also confirmed with the

Radar Operations Center that the Zdr biases of the in-

volved radars for the campaign period were within an

acceptable range (e.g., 60.2 dB), and a relative re-

flectivity calibration among the radars was61 dBZ. This

small relative calibration bias can be verified by the fact

that rain totals created using reflectivity data (IFC-SP)

do not show any sharp border among the radars (see

Fig. 10a). However, the absolute calibration is more

challenging and could yield errors in the radar-based

rainfall estimates (see, e.g., Seo et al. 2013). We hope

that the new Dual-Frequency Precipitation Radar

(DPR) that was recently launched by GPM can help in

resolving the absolute radar calibration issue.

One drawback of the DP algorithm is shown to be the

areal extent to which the DP is applicable, which is

FIG. 13. Hourly radar–gauge comparison result with the statistical metric values of multiplicative bias (radar/

gauge), correlation coefficient, and RMSE. The 2D histograms in the insets show data frequency for given radar–

gauge pairs.
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limited to regions where the radar beam remains below

themelting layer. Although theDP algorithm is found to

be more accurate compared to gauge estimates of rain-

fall, the radar-range limitation is a major problem for

applying such an algorithm operationally, where com-

plete spatial coverage is essential for producing

streamflow and flood forecasts, for example. The po-

larimetric algorithm could be significantly improved

because it can well detect snow/ice and the location of

the melting layer. However, much research still remains

to enable such an improvement in the quantitative es-

timation. Relating polarimetric observations of ice and

mixed-phase volumes to surface-based rainfall remains

an open research question, but limits the applicability of

the DP method in the cold season and at long ranges

from the radar in the warm season. We do not expect

that a simple application of some dubious R–Zh esti-

mators proposed for the melting layer or snow/ice re-

gimes would improve the results. One possible solution

would be to use a vertical profile of reflectivity (VPR) at

far ranges to supplement the DP rainfall analysis.
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