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ABSTRACT

This study describes the generation and testing of a reference rainfall product created from field campaign

datasets collected during the NASA Global Precipitation Measurement (GPM) mission Ground Validation

Iowa Flood Studies (IFloodS) experiment. The study evaluates ground-based radar rainfall (RR) products

acquired during IFloodS in the context of building the reference rainfall product. The purpose of IFloodS was

not only to attain a high-quality ground-based reference for the validation of satellite rainfall estimates but

also to enhance understanding of flood-related rainfall processes and the predictability of flood forecasting.

We assessed the six RR estimates (IFC, Q2, CSU-DP, NWS-DP, Stage IV, and Q2-Corrected) using data

from rain gauge and disdrometer networks that were located in the broader field campaign area of central and

northeastern Iowa. We performed the analyses with respect to time scales ranging from 1 h to the entire

campaign period in order to compare the capabilities of each RR product and to characterize the error

structure at scales that are frequently used in hydrologic applications. The evaluation results show that the

Stage IV estimates perform superior to other estimates, demonstrating the need for gauge-based bias cor-

rections of radar-only products. This correction should account for each product’s algorithm-dependent error

structure that can be used to build unbiased rainfall products for the campaign reference. We characterized

the statistical error structures (e.g., systematic and random components) of each RR estimate and used them

for the generation of a campaign reference rainfall product. To assess the hydrologic utility of the reference

product, we performed hydrologic simulations driven by the reference product over the Turkey River basin.

The comparison of hydrologic simulation results demonstrates that the campaign reference product performs

better than Stage IV in streamflow generation.

1. Introduction

Rainfall estimates from ground-based radars are often

used as a reference to assess the capabilities and limita-

tions inherent in using space-based rainfall estimates in

hydrologic modeling and prediction (e.g., Schumacher

and Houze 2000; Chandrasekar et al. 2008; Villarini et al.

2009). During the period from late spring to early sum-

mer in 2013, the National Aeronautics and Space Ad-

ministration (NASA) conducted a hydrology-oriented

field campaign called Iowa Flood Studies (IFloodS) in

collaboration with the Iowa Flood Center (IFC) at The

University of Iowa. This field campaign sought to en-

hance the understanding of flood-related rainfall pro-

cesses and the prediction capability in flood forecasting

as well as to support activities of Global Precipitation

Measurement (GPM)GroundValidation (see, e.g., Hou

et al. 2014; Skofronick-Jackson et al. 2017). A number

of scientific instruments were deployed in central and

northeastern Iowa to collect high-quality precipitation

data and thus improve flood forecasting capabilities

(Petersen and Krajewski 2013). Therefore, this unique

campaign can be understood in the context of many

other NASA field experiments briefly summarized in

Dolan et al. (2018).
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Whilemultiple types of rainfall datasets (e.g., satellite,

radar, rain gauge and disdrometer, andmany others) are

available through IFloodS, we focus on evaluating the

ground-based radar rainfall (RR) composite products.

The utility of evaluating the RR products and charac-

terizing their uncertainties is toward the goal of building

a campaign reference product for the satellite data val-

idation and distributed hydrologic modeling (e.g., Reed

et al. 2004; Smith et al. 2004). The radar-only products

used in the evaluation are the U.S. Next Generation

Weather Radar (NEXRAD) single-polarization (SP)

estimates [i.e., next-generation National Mosaic and

QPE system (Q2) and IFC] and products generated

using dual-polarization (DP) procedures (i.e., the U.S.

National Weather Service operational and Colorado

State University experimental blended precipitation

processing algorithms). We also compare these radar-

only products with rain-gauge-corrected RR estimates

(Stage IV and Q2-Corrected products). We explore

the algorithm-dependent features (e.g., SP versus DP)

among the RR estimates based on the comprehensive

analyses of product intercomparison. The uncertainty

for different temporal and spatial resolution products is

also characterized using ground reference of dense rain

gauge and disdrometer networks. This multiscale char-

acterization is required for hydrologic modeling frame-

works that assess model predictive abilities as a function

of space and time scales. Based on the evaluation and

error characterization results, we create the campaign

reference product by combining selected RR estimates

with the data from the NASA polarimetric radar

(NPOL) that was placed at the center of the campaign

domain. We do not include the detailed evaluation of

NPOL RR estimates in this study because the compar-

ison between individual (e.g., NPOL) and composite

products would not be fair, and individual radar

products are often affected by significant range effects

(e.g., Fabry et al. 1992) that are less impactful for com-

posite products. A detailed evaluation and the perfor-

mance of NPOL estimates are documented in Chen

et al. (2017). We also drive the IFC hillslope-link model

(HLM) using the reference product over the Turkey

River basin in Iowa and assess its predictive capability

in flood prediction.

The paper is structured as follows. In section 2, we

introduce the study area in which the IFloodS campaign

was conducted and discuss the datasets of the RR

products, rain gauge, and disdrometer. Section 3 de-

scribes the methodology we used for the RR product

evaluation and error characterization in this study. In

section 4, we present the comparison and evaluation

results and discuss the observed similarity and discrep-

ancy among the RR products. In section 5, we provide a

procedure to create the campaign reference product and

evaluate its hydrologic utility. Section 6 summarizes and

discusses the main findings and required future works.

2. Data

In this section, we briefly introduce the IFloodS study

area and describe the RR products collected during the

campaign and the ground reference datasets (i.e., rain

gauge and disdrometer data) used for the evaluation of

the collected products. The IFloodS domain consists of

central and northeast Iowa, and the major basins in the

area are the Cedar and Iowa River basins in the middle

of the domain and the Turkey River basin near the

northeast Iowa border (Fig. 1). As a result of the record

flood that occurred in these basins in 2008, they have

been used in a number of hydrologic studies to in-

vestigate various hydrologic factors (see, e.g., Gupta

et al. 2010; Cunha et al. 2012; Seo et al. 2013; Smith et al.

2013; Ayalew et al. 2014). The basin areas are visible

from the existing network of NEXRAD radars (KARX

in La Crosse, Wisconsin; KDMX in Des Moines, Iowa;

KDVN in Davenport, Iowa; and KMPX inMinneapolis,

Minnesota). Despite the fact that the field deployment

of rainfall measuring devices started as early as April,

we define the analysis time window as the period of

FIG. 1. IFloodS spatial domain and the distribution of the rain

gauge and disdrometer networks used in the RR product evalua-

tion. The shaded circular areas indicate the 230-km range domain

from the involved NEXRAD radars. The circular lines in the

middle of the domain demarcate every 50 km from theNPOL radar

location. The Cedar–Iowa and Turkey River basins are presented

in the middle of the domain and in the northeast close to the Iowa

border, respectively.
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1 May–15 June 2013 in order to synchronize different

periods of collected data and products. We refer to this

time window as the ‘‘official’’ IFloodS period. Further

details of the precipitation events that occurred during

the period are described in Cunha et al. (2015) and Seo

et al. (2015a).

a. Radar rainfall products

We acquired six NEXRAD-based rainfall composite

products through the campaign: the IFC real-time

product; Q2; the Colorado State University DP prod-

uct (CSU-DP); the National Weather Service real-time

DP product (NWS-DP); the National Centers for

Environmental Prediction (NCEP) Stage IV analysis;

and the Q2 product with rain gauge correction (Q2-

Corrected). As featured in Table 1, these composite

products can be categorized into three types: radar-only

SP (IFC andQ2), radar-only DP (CSU-DP and NWS-DP),

and rain-gauge-corrected (Stage IV and Q2-Corrected)

products. We provide a brief comparison of space and

time resolutions and estimation algorithms of each

product in Table 1.

Using processing algorithms documented in Krajewski

et al. (2013), the IFC rain rate map is generated every

5min with a grid spacing of a quarter decimal min-

ute (approximately 0.5 km). Seven NEXRAD radars

(KEAX in Kansas City, Missouri; KFSD in Sioux

Falls, South Dakota; KOAX in Omaha, Nebraska; and

four more radars discussed earlier) are used to cover the

entire state of Iowa, whereas the Q2 product is created

with a 5-min and one-hundredth decimal degree (ap-

proximately 1 km) resolution over the entire United

States. While the IFC uses a single NEXRAD Z–R

equation (Z 5 300R1.4), the Q2 algorithm uses four

different Z–R equations (see Table 1) that depend on

the precipitation type classification based on the three-

dimensional structure of reflectivity and environmental

(atmospheric) variables with physically based heuristic

rules (Zhang et al. 2011). We note that there have been

many changes and improvements in Q2, and it is now

TABLE 1. The RR composite products evaluated and their resolution and algorithm comparison.

Product type

QPE

product

Resolution Algorithms

Time

Space

(km) Quality control (QC) Classification Rain rate estimator

Radar-only SP IFC 5min 0.5 Vertical and horizontal

continuity of Z and

thresholds on rhv and

dispersion ofFdp (Seo

et al. 2015b)

— R(Z) 5 0.017Z0.714; Z 5 300R1.4

Q2 5min 1.0 Neural network and

heuristic rules (Zhang

et al. 2011)

Precipitation type
dConvective R(Z) 5 0.017Z0.714; Z 5 300R1.4

dStratiform R(Z) 5 0.036Z0.625; Z 5 200R1.6

dWarm rain R(Z) 5 0.013Z0.8; Z 5 230R1.25

dSnow R(Z) 5 0.115Z0.5; Z 5 75R2.0

Radar-only DP CSU-DP 5min 0.5 Thresholds on

dispersion of Fdp, rhv,

and SNR (Cifelli et al.

2011)

Hydrometeor
dHeavy rain R(Kdp, Zdr) 5 90.8Kdp

0.93Zdr
20.169

dHail R(Kdp) 5 40.5Kdp
0.85

dModerate rain R(Z, Zdr) 5 0.0067Z0.927Zdr
23.43

dDrizzle R(Z) 5 0.017Z0.714

dMixture R(Kdp) 5 40.5Kdp
0.85

dIce —

NWS-DP 1 h 1.0 Fuzzy logic using

polarimetric

observables (Park

et al. 2009)

Hydrometeor
dHeavy rain R(Z, Zdr) 5 0.0067Z0.927Zdr

23.43

dLight/moderate rain R(Z, Zdr) 5 0.0067Z0.927Zdr
23.43

dHail, mixed with rain R(Kdp)5 44.0jKdpj0.822sign(Kdp)
dWet snow 0.6R(Z)
dGraupel 0.8R(Z)
dDry snow and ice 2.8R(Z)

Gauge corrected Stage IV 1 h 4.0 Fuzzy logic using Zh and

Doppler information

(Kessinger et al. 2003)

with manual QC (Lin

and Mitchell 2005)

— R(Z) 5 0.017Z0.714; Z 5 300R1.4

Q2-Corrected 1 h 1.0 Same as Q2 Same as Q2 Same as Q2
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called Multi-Radar Multi-Sensor (MRMS; Zhang et al.

2016). The evaluation of Q2/MRMS and their compar-

ison with Stage IV are reported in Chen et al. (2013) and

Zhang et al. (2016).

For theCSU-DPproduct, the radar Level II volume data

(e.g., Kelleher et al. 2007) from four radars (KARX,

KDMX, KDVN, and KMPX) were postprocessed, not

in real time, using a DP algorithm called CSU-HIDRO

(Cifelli et al. 2011) and a hybrid scan algorithm docu-

mented in Seo et al. (2011) for combining multiple el-

evation angle data [for more details on the product

generating procedures, refer to Seo et al. (2015a)].

The time and space resolution is identical to that of the

IFC product. The CSU-DP product covers only the

IFloodS domain and does not provide full coverage of

the entire state of Iowa. Regarding the creation of the

NWS-DP product, the instantaneous precipitation rate

(Level III) products, generated using the algorithm

reported in Istok et al. (2009), were collected for involved

radars. We applied the procedure described by Cunha

et al. (2013) to generate hourly rainfall accumulations

based on the instantaneous precipitation rate. We then

combined the data from the individual radars into a

composite map using the exponential decaying scheme

(e.g., Zhang et al. 2005) that assigns weights calculated by

the distance from individual radars for a given location.

Most DP algorithms are based on the procedures of

identifying hydrometeor types and selecting relevant rain

rate estimators. Both the CSU (e.g., Lim et al. 2005) and

NWS (e.g., Park et al. 2009) identification algorithms

use a similar fuzzy logic, but the architecture of the

classification procedure is different in terms of the input

variables and membership functions employed. These

DP identification algorithms contain part of data quality

control (see Table 1) and yield categories of non-

precipitation radar echoes (e.g., ground clutter and bi-

ological returns) as well as hydrometeor types. The

comparison of NWS-DP and -SP products, as well as the

effect of hydrometeor identification, is documented in

Cunha et al. (2013).

The Stage IV product (Lin and Mitchell 2005; Wu

et al. 2012) consists of hourly-based rain-gauge-cor-

rected precipitation analyses with some manual quality

controls that are performed by forecasters in the River

Forecast Center (RFC). The rainfall maps that cover

each individual RFC are collected at NCEP and are then

combined into a national coverage based on the 4-km

Hydrologic Rainfall Analysis Project (HRAP; see,

e.g., Reed and Maidment 1999). The Q2-Corrected

product represents the hourly Q2 bias correction using

a national network of rain gauges (e.g., Kim et al. 2009),

and the detailed procedures are documented in Zhang

et al. (2011).

A comparison of the IFC and Q2 SP estimation al-

gorithms presented in Table 1 demonstrates that dif-

ferent Z–R relations can be used even for identical

meteorological targets, depending on the result of pre-

cipitation classification in Q2. This can lead to a major

discrepancy between the two SP products. The DP

algorithms initially implement a sophisticated quality

control method (e.g., Ryzhkov and Zrnić 1998; Park

et al. 2009) to eliminate nonprecipitation echoes that

have been identified during the hydrometeor classifi-

cation step and then apply a designated relationship

between rain rate and measured radar variables (i.e.,

differential reflectivity, specific differential phase, or

horizontal reflectivity) according to the classified types.

There are two major differences in defining the rain

rate conversion between the CSU and NWS algorithms

(we do not discuss the difference in the hydrometeor

identification procedures): 1) there is no rain rate esti-

mation in the CSU algorithm when the radar beam ob-

serves the melting layer or ice region and 2) the CSU

algorithm uses both the specific differential phase Kdp

and differential reflectivityZdr for the liquid phase, while

the NWS algorithm seems to rely more heavily on Zdr.

Section 4 discusses the algorithm-derived differences in

rain rate estimation among products in more detail.

b. Rain gauge and disdrometer data

We use rain gauge and disdrometer data as a ground

reference to evaluate the collected RR products. We

acquired data from local networks that were operated by

NASA, IFC, the USDA Agriculture Research Service

(ARS), and the University of Wyoming as well as the

national networks of Automated Surface Observing

System (ASOS; Clark 1995), Automated Weather Ob-

serving System (AWOS), and NWS Cooperative Ob-

server Program (COOP; NOAA 1989). As illustrated in

Fig. 1, we selected rain gauge sites that effectively cover

the IFloodS study area and discussed basins.

NASA deployed 20 and 5 rain gauge platforms, each

with double tipping-bucket gauges, in the Turkey River

basin and South Fork Iowa River basin, respectively.

Likewise, 20 NASA-owned disdrometers [14 Autono-

mous Parsivel Units (APUs) and 6 two-dimensional

video disdrometers (2DVDs)] were deployed and dis-

tributed along the southeast direction from the domain

center (some of them were clustered). Additionally, 30

IFC gauges, which were similar to the platforms in the

NASA network, were clustered around Iowa City, and

four more IFC gauge platforms were deployed in central

Iowa. The NASA and IFC rain gauge networks trans-

ferred the recorded time-of-tip data, and the accumu-

lated number of tips data with a 5-min resolution was

used. TheARS deployed 15 rain gauges within the South

1796 JOURNAL OF HYDROMETEOROLOGY VOLUME 19
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Fork IowaRiver basin, and all gaugeswere equippedwith

double tipping buckets (Coopersmith et al. 2015). The

University of Wyoming group placed four triple tipping-

bucket gauges with soil moisture probes in the vicinity of

the IFC network. The ASOS and AWOS data were col-

lected with their original resolutions (i.e., 1 and 5min,

respectively) and accumulated over the designated time

intervals (e.g., hourly). The use of the NWS COOP data

was limited to the rain total and daily analyses because

the network only reports data daily.

3. Methodology

We provide the analysis procedures that are associ-

ated with product evaluation and error characterization

with respect to multiple time scales ranging from 1h to

the entire campaign period. As shown in Table 1, with

respect to radar–rain gauge (R–G) comparison, the

majority of the RR products have comparable spatial

resolutions (0.5 and 1km), so it is assumed that point

rainfall measurements from rain gauges well represent

the areal rainfall over such spatial scales. This assump-

tion can be justified for given time scales (e.g., hourly) of

the analyses because rainfall spatial variability is rela-

tively small at such spatial (even for the 4-km resolution

of Stage IV) and temporal scales (e.g., Villarini et al.

2008). This enables direct R–G comparison without

considering a spatial sampling disagreement (e.g., Seo

and Krajewski 2011) between different measuring de-

vices (e.g., radar versus rain gauge). Subhourly scale

(e.g., 15 and 30min) evaluation may require much

denser rain gauge networks because gauge representa-

tiveness decreases (rainfall spatial variability increases)

at finer temporal scales.

a. Product evaluation

The evaluation began by examining and comparing

accumulated rain totals for the entire campaign period.

We present and discuss the observed discrepancies that

arise from the different estimation algorithms among

all acquired RR products. In addition, we perform an

R–G comparison analysis to assess campaign totals at

the ground reference locations. We also use the Parameter-

Elevation Regressions on Independent Slopes Model

(PRISM) rain gauge interpolated analysis (Daly et al.

2008) as a gridded reference for the campaign total (we

assume that the rainfall spatial variability at the time scale

of the entire period and spatial scale of 4km is relatively

small), which enables us to explore the spatial error

structure of each RR product at the 6-week period scale.

While the campaign total analysis solely reveals over-

all agreement with ground reference data, the tempo-

ral variation of the error (over- or underestimation

depending on individual events) might be somewhat

compensated for and concealed in this analysis. In fact,

different rainfall estimators (see Table 1) determined by

the classification procedures and their outcomes tend to

be sensitive to individual rain events. The classification

and resulting estimators among different RR products

that are associated with meteorological regimes and

storm types could become major factors of estimation

errors (e.g., Rosenfeld et al. 1995; Anagnostou 2004).

Consequently, we selected two precipitation cases that

were identified as the snow/mix (with stratiform rain)

and mesoscale convective system events, respectively.

We present the results of the R–G comparison analysis

and discuss possible reasons that algorithm-derived

discrepancies were detected. This event-based analysis

allows for the persuasive assessment of the potential

benefits of using DP versus SP algorithms as well as

exposes the basic performance of each algorithm.

In the multiscale R–G comparison, we use time reso-

lutions of 1, 3, 6, 12, and 24h. For those accumulation

times, we integrated the RR products and ground ref-

erence data over the corresponding time intervals from

the original data resolutions. If missing minutes or hours

in a specific accumulation window exceed 10% of the

designated time interval, the corresponding hour data

are regarded as missing and are excluded from the

analysis. We define the systematic tendency of the RR

products using the overall and conditional bias terms.

We also employ two more statistical metrics, the cor-

relation coefficient and root-mean-square error nor-

malized by the mean of rain gauge data (normalized

RMSE), to measure the accuracy across the presented

time scales and to compare performance among the

RR products.

b. Error characterization

In general, the error is identified as the discrepancy

between the true and estimated rainfall, and we use rain

gauge measurements as a reference against RR esti-

mates at radar pixels that are collocated with the gauge

location. As we discussed earlier in this section, sam-

pling scale disagreements between rain gauges and ra-

dars are less impactful with respect to the temporal

(1–24 h) and spatial (0.5–4 km) scales used in this anal-

ysis. The RR estimation error is typically defined using

two mathematical notions of multiplicative and additive

terms (represented as the proportions/ratios and dif-

ferences, respectively), and both terms have been em-

ployed numerous times in the literature. In this study,

we adopt the multiplicative term of the error/bias to

characterize the error structure of the acquired RR

products. The full procedure of error characterization

conforms to the one in Ciach et al. (2007).
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As an initial step in the error characterization, we

estimate and eliminate a systematic or climatological

tendency, which is described as the overall bias factorB:

B5
�
t

R
g
(t)

�
t

R
r
(t)

, (1)

where Rg(t) and Rr(t) denote rain gauge and radar

rainfall at a time step t, and R–G data pairs are aggre-

gated for all of the time steps in the period in order to

calculate the overall bias factor. This value should be

unique for the same RR product regardless of the data

accumulation time scales if the R–G data pairs at any

time scale are not significantly affected by missing data

or gaps. After removing this overall bias, we need to

account for the over- or underestimation that occurs

depending on theRRmagnitude (e.g., Katz andMurphy

1997; Ciach et al. 2000). This behavior can be deter-

mined by the concept of conditional expectation func-

tion h(�):

h(r
r
)5EfR

true
jR

r
5 r

r
g , (2)

where E{�} denotes an expectation function, Rr is a

random variable, and rr is a specific RR value. The

function h(rr) implies a systematic distortion describing

the conditionality of error on the RR magnitude. This

tendency can be estimated using the nonparametric

kernel smoothing regression (e.g., Nadaraya 1965) or

the two-parameter (ah and bh) power-law function:

h(r
r
)5 a

h
r
bh
r . (3)

Although Eqs. (1) and (3) account for the systematic

behaviors of RR estimates, there is a remaining com-

ponent describing a stochastic process of random un-

certainties. We address this random component by

estimating conditional variance of the error in Eq. (4)

and use a three-parameter (s0e, ae, and be) function in

Eq. (5) to take into account the random factor:

s2
e(rr)5E

("
R

true

h(r
r
)
2 1

#2

jR
r
5 r

r

)
, (4)

s
e
(r

r
)5s

0e
1 a

e
r
be
r , (5)

where se denotes the standard deviation of the multi-

plicative error, and the estimated random feature is used

to combine selected RR estimates for the campaign

reference products. In our error characterization, we

assumed that the conditional mean and standard devi-

ation of the RR error are stationary for convenience in

modeling because accounting for nonstationarity in the

modeling procedure is challenging. We also note that

other factors (e.g., radar beam altitude) can be consid-

ered in modeling errors depending on product types

(e.g., individual versus composite) while we used rain

rate as a main factor in this study.

4. RR product evaluation

In this section, we present the analysis results of

product rain totals (for the entire period and two se-

lected events) and the statistical evaluation of the

products with respect to diverse time scales (1, 3, 6, 12,

and 24h). The former analysis compares the total

amounts of rainfall for the specified periods among the

RR products and the ground reference data and assesses

the algorithm-dependent strengths and weaknesses of

each product. The latter approach discloses the statisti-

cal structure of the product error and provides useful

information for the reference product generation and

hydrologic modeling.

a. Difference among products

1) CAMPAIGN TOTALS

The rain maps of the campaign totals for the ‘‘official

period’’ (1 May–15 June) are illustrated in Fig. 2, in

which the rain-gauge-corrected (Stage IV and Q2-

Corrected), radar-only SP-based (IFC and Q2), and

radar-only DP-based (CSU-DP and NWS-DP) products

are aligned from the left to the right panels. While we

evaluate the RR products using the ground reference

data for the spatial domain, as shown in Fig. 1, we

present the campaign totals for the entire state of Iowa

in Fig. 2. For that reason, the CSU-DPmap in Fig. 2 that

we created using the data from the four NEXRAD ra-

dars only (see section 2) shows some of themissed (gray)

rain area that is not covered by the four radars. Themain

features of the rainfall spatial structure are captured in

most composite products, with some differences. The

CSU-DP product shows certain range rings at far ranges

from the individual radar locations because theCSU-DP

algorithm does not estimate rain rate when the radar

beam interacts with the melting layer or ice regions, and

the chance of detecting the cold regions increases at

far range with higher sampling altitudes. On the other

hand, the NWS-DP exposes the inconsistency among

individual radar observations (maybe due to radar cal-

ibration errors, and we will discuss this issue in section 6)

as well as quality control issues such as the wind farm

effects discussed in Seo et al. (2015b). The wind farm

locations are also clearly visible in the Q2 and Q2-

Corrected products in Fig. 2.
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To ensure that the PRISM rain gauge interpolation

analysis can be used as gridded reference at the cam-

paign total scale, we first evaluate the PRISM rain totals

with rain gauge observations (Fig. 3). Despite the fact

that only the ASOS and NWS COOP rain gauge net-

work data are incorporated in the PRISM analysis

shown in Fig. 3 (left panel), the PRISM analysis agrees

well with the IFC, NASA, and ARS network data near

the one-to-one line as shown in Fig. 3 (right panel). This

agreement with the independent network data confirms

that the PRISM estimation is reliable as a reference

(only at the scale of rain totals) and allows a further

analysis to show the spatial pattern of product error

using the normalized error/difference term:

RR
total

2PRISM
total

PRISM
total

, (6)

where RRtotal denotes the campaign totals from the six

RR products presented in Fig. 2. The RR products are

resampled (averaged) with the same spatial resolution

of as PRISM (4km), and the normalized error calcu-

lated by Eq. (6) is mapped in Fig. 4. The blue and red

colors used in Fig. 4 distinguish under- and overesti-

mation patterns, respectively. Since the campaign

totals of Stage IV (top-left panel in Fig. 2) and PRISM

(left panel in Fig. 3) look quite similar, the Stage IV

error shown in Fig. 4 is even less than in the others,

which implies that the rain gauge correction in Stage IV

was successful. We note that a small number of ASOS

rain gauges (e.g., 15 in Iowa) are commonly used for

both PRISM and Stage IV. The Q2-corrected estimates

tend to reduce the error that was originally observed in

the Q2, but some errors remain. The IFC in Fig. 4 shows

underestimation mostly in the northeast and some

overestimation within the domain of the KOAX radar.

The area covered by the KFSD represents some radar

beam blockage effects and significant differences with

surrounding radars (e.g., KOAX and KDMX). It is

likely that the KFSD difference from other radars de-

tected in the IFC product was suitably handled in the

Q2 and NWS-DP algorithms. However, the Q2 and

NWS-DP, shown in Fig. 4, introduce other questions

regarding substantial overestimation in the KOAX and

KDMX regions. The CSU-DP shows mostly underesti-

mation due to range effects.

In Fig. 5, we present rain gauge comparison results.

The rain-gauge-corrected products show relatively good

agreement but indicate slight overestimation. While the

Q2 and NWS-DP demonstrate significant overestima-

tion, as seen in Fig. 4, the IFC and CSU-DP appear as

underestimation. Although the dots denoting the R–G

FIG. 2. Rain total maps of the RR products accumulated over the entire campaign period (1 May–15 June). Shown are the (left) rain-

gauge-corrected (Stage IV and Q2-Corrected), (center) radar-only SP (IFC and Q2), and (right) radar-only DP (CSU-DP and NWS-DP)

products. Since the CSU-DP product was created using only four radars (KARX, KDMX, KDVN, and KMPX), the coverage of this

product is limited to the central and eastern regions of Iowa.
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pairs in the IFC are clustered along the one-to-one line

in Fig. 5, the scatter is relatively larger than that in the

rain-gauge-corrected one (e.g., Stage IV), andmanymore

dots (rain gauges in the blue area in the top-center panel

of Fig. 4) are densely placed in the underestimation area.

2) EVENT TOTALS

We selected two example precipitation cases to

demonstrate the algorithm-derived capabilities of RR

estimation. The first case is defined as a snow/mix case

with stratiform rain during the period of 2–4 May. The

second one, which took place during 27–30 May, was

relatively wetter and is characterized by some convec-

tive systems. Some of the convective storms were fol-

lowed by widespread stratiform storms. For the detailed

meteorological characteristics of these two events, refer

to Seo et al. (2015a). Figure 6 shows 3- and 4-day event

rain totals of the RR products with the same configu-

ration that is seen in Fig. 2. Figure 7 also presents the

event-based R–G comparison.

FIG. 3. (left) Rain total map of the PRISM rain gauge interpolation analysis and (right) rain gauge comparison of

PRISM rain totals. Independent gauges (e.g., NASA, IFC, and ARS) show good agreement with the PRISM data.

FIG. 4. Normalized error/difference maps estimated by Eq. (6) for the campaign totals. Red and blue colors indicate over- and

underestimation, respectively. The map alignment is as in Fig. 2.
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Regarding the snow/mix case, it is hard to conclude

that the DP algorithm shows superior performance (see

Fig. 7a) and, in particular, the CSU-DP shows significant

low estimation, which is due to the range limitation

arising from the detection of a low-level melting layer.

However, we note that the rain gauge measurement in

such a cold case might contain errors as well because the

rain gauges used in this study are mostly nonheated

tipping-bucket types. We think that these probable er-

rors, if any, were not considerable because the frozen

and mixed snow transitioned to stratiform rain after a

short duration of snow. For the SP algorithm compari-

son, the IFC does not capture the rainfall feature in the

northeast (Fig. 6a), which appears in theQ2 and Stage IV.

It is likely that the rain type classification and the appli-

cation of different Z–R equations in Q2 (see Fig. 8a) lead

to this observed difference. The Z–R curves illustrated in

Fig. 8a demonstrate that the snow and stratiform (repre-

sented as ‘‘M-P’’ in Fig. 8a) types result in a larger rain rate

at the lower reflectivity range (e.g., 0–30dBZ) than the

unique Z–R (NEXRAD) used in the IFC algorithm does.

In Fig. 7b, the convective example shows better

agreement in both the SP and DP algorithms than the

cold one. In this case, the DP tends to work better than

the SP in terms of the scatter and the R–G pair

alignment on the one-to-one line. Particularly, the

superior performance of the CSU-DP is noticeable

(upper-right panel in Fig. 7b). Most dots are aligned

and concentrated on the line (indicates very good

agreement) except for some NWS COOP gauge lo-

cations (yellow dots). As the COOP gauges are well

distributed over the analysis domain, the disagree-

ment can be interpreted by the observed range issue

(in the upper-right panel in Fig. 2) due to the fact that

some of the gauges are located far from the radars.

Regarding the observed difference between the DP

estimates in Fig. 7b, one probable deriving factor

could be DP variables used in rain rate estimation.

Since the CSU-DP shows better agreement at its ob-

servable range, the rain rate estimation in the CSU-

DP based on bothKdp andZdr for the liquid phase (see

Fig. 8b) seemsmore reliable than that in the NWS-DP,

mostly based on Zdr and Zh. The detailed equations

related to each phase in Fig. 8b are listed in Table 1.

Concerning the SP estimate comparisons in Fig. 7b, it

seems likely that the use of the ‘‘tropical’’ Z–R (Fig. 8a)

FIG. 5. The R–G comparison of the campaign totals. The rain gauge color code is as in Fig. 3 (right panel). Shown are the (left) rain-gauge-

corrected (Stage IV and Q2-Corrected), (center) radar-only SP (IFC and Q2), and (right) radar-only DP (CSU-DP and NWS-DP) products.
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in Q2 generates some overestimation and differences

between the IFC and Q2.

b. Multiscale comparison

We evaluated the R–G agreement with respect to the

diverse accumulation time scales (1, 3, 6, 12, and 24 h)

that are frequently used for various hydrologic models.

Figure 9 shows two-dimensional histograms of the

hourly R–G comparison. The different colors in Fig. 9

indicate data occurrences for the given R–G magnitude

with a 1-mm resolution. The overall bias values are

placed in the upper-right corner of each panel and imply

FIG. 6. Rain total maps for the two selected events characterized by (a) snow/mix with stratiform rain (2–4 May) and (b) a mesoscale

convective system (27–30 May). The map alignment is as in Fig. 2.
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FIG. 7. The R–G comparison of event rain totals shown in Fig. 6 for the two selected events characterized by (a) snow/mix with stratiform

rain (2–4 May) and (b) a mesoscale convective system (27–30 May).
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under- (.1) or overestimation (,1) of the RR estimates.

The overall tendency of under- or overestimation pre-

sented in Fig. 9 is similar to that observed in Figs. 4 and 5.

We performed the same analysis for other accumulation

time scales and confirmed that the bias values were in

the same range and exhibited smaller scatter as time

scale increases. The Stage IV in Fig. 9 reveals relatively

frequent false detection on the x (radar) axis at ranges

FIG. 8. Comparison of rain rate estimation functions in the SP and DP algorithms: (a) Z–R relation curves show the difference in rain

rate estimation between the IFC and Q2 algorithms (the inset shows a zoomed-in view for the reflectivity range of 0–30 dBZ) and (b) rain

rate estimation functions according to identified hydrometeor types in the CSU-DP and NWS-DP algorithms. The coefficient ‘‘A’’ for the

ice and snow types in the NWS-DP rain rate estimation changes according to hydrometeor classes.

FIG. 9. Two-dimensional histograms of the hourlyR–G comparison. Different colors indicate data occurrences for givenR–G pairs with

a 1-mm resolution. Overall bias values are provided in the upper-right corner of each panel. The solid black lines represent the averaged

tendency described by the presented overall bias values.
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smaller than 30mm. We speculated that the false de-

tection in Stage IV might arise from a mismatch of

spatial scales (point versus 4 3 4 km2) and the small

scale variability of rainfall.

In Table 2, we present three statistical metrics (overall

bias, correlation coefficient, and normalized RMSE)

from the sixR–G datasets that pertain to five time scales.

The overall bias should not change with time scale if

there is no significant effect from missing data or gaps

in data. Therefore, we calculated the overall bias values

presented in Table 2 from the hourly R–G data.

Figure 10 illustrates the change in correlation and

RMSE with respect to time scale and demonstrates that

temporal aggregation results in better R–G agreement

with increasing correlation and decreasing RMSE.

However, the correlation at a longer time span (e.g.,

24 h) slightly decreases for most products in Fig. 10 (top

panel), probably because of adding the NWS COOP

dataset to the analysis. Particularly, the most significant

correlation drop observed in the CSU-DP at the 24-h

scale is caused by the fact that some COOP gauges lo-

cated far from the radars are not within the observable

range of the CSU-DP, as seen in Fig. 2. Overall, the rain-

gauge-corrected (Stage IV) product shows statistically

superior performance in all metrics, assuming that the

difference in spatial resolution (4 versus 0.5 and 1km)

is negligible. Despite the given range limitation, the

CSU-DP agrees well with rain gauge observations at all

scales, and its agreement is comparable to that of the

Stage IV in both correlation and RMSE. Based on the

presented metrics, the NWS-DP does not seem much

better than the SP products.

c. Error characterization

The error structure of the RR products is character-

ized for the aforementioned time scales. As discussed in

section 3, the overall systematic tendency in theRRfield

is first eliminated by a simple multiplication of the bias

value (see Table 2) by the RR estimates. For the next

TABLE 2. The R–G comparison results with respect to time

scale: three statistical metrics (overall bias, correlation coefficient,

and normalized RMSE).

Statistical metrics RR product

Time scale (h)

1 3 6 12 24

Overall bias (G/R) Stage IV 0.96

Q2-Corrected 0.93

IFC 1.18

Q2 0.73

CSU-DP 1.40

NWS-DP 0.87

Correlation Stage IV 0.83 0.89 0.91 0.92 0.91

Q2-Corrected 0.84 0.87 0.90 0.90 0.90

IFC 0.81 0.85 0.87 0.87 0.86

Q2 0.83 0.87 0.89 0.89 0.88

CSU-DP 0.84 0.87 0.89 0.89 0.86

NWS-DP 0.82 0.85 0.87 0.86 0.85

Normalized RMSE Stage IV 3.23 1.98 1.46 1.04 0.82

Q2-Corrected 3.71 2.46 1.73 1.26 0.97

IFC 3.44 2.26 1.73 1.29 1.05

Q2 4.20 2.90 2.27 1.67 1.30

CSU-DP 3.08 2.08 1.60 1.22 1.06

NWS-DP 3.83 2.65 2.06 1.53 1.22

FIG. 10. Two statistical metrics of multiscale R–G comparison:

correlation coefficient and normalized RMSE. The CSU-DP

correlation drop at 24 h is caused by the NWS COOP rain

gauges that are located outside of the observable range shown

in Fig. 2.
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step, we use both nonparametric and parametric re-

gression methods to model the remaining conditional

bias. The advantage of employing the nonparametric

approach is that the bias structure/behavior is not

restricted by the predefined function as used in the

parametric approach. However, the curve (condi-

tional bias) pattern estimated by the nonparametric

Gaussian smoothing was inconsistent and showed abrupt

changes at large RR range with shorter time scales

(e.g., 1 h). This behavior can be attributed to the

limited sample size, which implies that there are few

large RR values at the hourly scale for the given

6-week period (but temporal aggregation increases

the number of large RR values). For that reason, we

present the results from only parametric application

in Fig. 11 for the RR products and all time scales. The

common aspect observed in Fig. 11 is that the RR data

aggregation over longer time spans reduces the con-

ditional bias. Table 3 presents the parameters of the

power function defined in Eq. (3). The estimated

curve feature shown in Fig. 11 and parameter values in

Table 3 are comparable to those in Ciach et al. (2007).

The presented conditional structure is useful for hy-

drologic applications that are forced by the RR esti-

mates because the systematic difference in rainfall

volume tends to significantly affect errors in streamflow

simulations/predictions (see, e.g., Seo et al. 2013).

We describe the results of random error structure in

section 5 because the random structure is used to com-

bine different RR estimates in generating the reference

product. We indicate that the error models provided in

this study represent the uncertainty features averaged

over the 6-week campaign period, and the uncertainty

features may vary with different events or seasons.

5. Reference product

a. Reference product generation

This section describes the procedures for creating the

campaign reference rainfall product. These procedures

involve the systematic error (overall and conditional

biases) correction of the RR estimates and their

weighted combinations, calculated using the relative

magnitude of random errors. The random errors are

FIG. 11. Conditional bias of the RR products represented by a power-law function with respect to time scale. Table 3 presents the power-

law function parameters.
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characterized by the standard deviation of remaining

errors after correcting the RR estimates for the overall

and conditional biases. We assumed the random error

as a normal distribution because we removed the effects

of bias and skewness in the RR estimates. We tested

Stage IV, Q2-Corrected, IFC, CSU-DP, and two NPOL

DP products as the ingredients of reference product.

The NPOL estimates are called NPOL-RR and NPOL-

RC, identified by the data processing and QPE algo-

rithms known as DROPS2 (Pippitt et al. 2015; Chen

et al. 2017) and CSU-HIDRO (Cifelli et al. 2011). We

excluded NWS-DP and Q2 because of the relatively low

performance shown in the evaluation and the presence

of Q2-Corrected, respectively. As shown in Fig. 12, we

estimated the random error function in Eq. (5) for the

four selected RR composites and two NPOL products.

The parameters of conditional bias function in Eq. (3)

were also estimated for the NPOL products. We con-

ducted the parameter estimation for both conditional

mean and random components for the hourly scale at

which the reference product is generated.

We examined a variety of combinations using all the

ingredient products, and the resultant candidates for

the reference product looked more or less similar (at

the scale of a 6-week period), mainly because of the bias

correction used in the combining procedure. We then

selected the statistically better ones through an inde-

pendent evaluation at the scale of campaign totals.

For the selected reference, we used and combined

Stage IV, Q2-Corrected, IFC, CSU-DP, and NPOL-RC.

Figure 13 illustrates the map of campaign totals of the

selected reference product and its independent eval-

uation using NWS COOP and CoCoRaHS (Cifelli

et al. 2005) observations. The term ‘‘independent’’ is

justified here because the both network stations collect

daily reports only, and their observations were not used

to quantify uncertainties at the hourly scale shown

in Figs. 11 and 12. As shown in Fig. 13, part of the

CoCoRaHS observations contains a quality control is-

sue (e.g., missing), and we did not include data from this

network in a simple quantitative/statistical evaluation.

The calculated bias (G/R) and mean absolute error of

the reference product with the COOP observations are

0.97 and 28.3mm (9.4% of the mean of COOP totals),

respectively. Based on the observed agreement with the

TABLE 3. Estimated power-law function parameters describing the

RR conditional bias with respect to time scale.

Parameter RR product

Time scale (h)

1 3 6 12 24

ah Stage IV 1.08 1.08 1.06 1.21 1.03

Q2-Corrected 1.31 1.54 1.60 1.71 1.72

IFC 1.15 1.42 1.51 1.67 1.62

Q2 1.17 1.31 1.35 1.42 1.39

CSU-DP 1.30 1.57 1.66 1.83 1.89

NWS-DP 1.17 1.39 1.48 1.67 1.70

bh Stage IV 0.93 0.96 0.98 0.93 0.99

Q2-Corrected 0.80 0.80 0.82 0.81 0.83

IFC 0.82 0.80 0.81 0.79 0.82

Q2 0.88 0.87 0.88 0.87 0.89

CSU-DP 0.79 0.78 0.79 0.77 0.79

NWS-DP 0.85 0.82 0.83 0.80 0.82

FIG. 12. Random error structures at the hourly scale for the four composite and two NPOLDP products. Model parameters are provided

in the figure.
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COOP data (Fig. 13), the reference product appears

almost unbiased, which is the most significant element

required for hydrologic prediction (e.g., Seo et al. 2013).

b. Hydrologic evaluation

We created the reference product by correcting major

uncertainty features (e.g., overall and conditional bia-

ses) of the selected RR products. A direct evaluation

or verification of the reference product at finer scale

(e.g., hourly) was not feasible because of the lack of

independent ground reference data at the required

scale. Rain gauge and disdrometer data collected during

IFloodS were all included in the RR uncertainty char-

acterization and used in the reference product genera-

tion procedures. Therefore, in this section, we force a

hydrologic model using the reference product and assess

its predictive capability in flood forecasting.

We used the IFC hillslope-link model (HLM) to

simulate streamflow during the campaign period. This

distributed hydrologic model is based on landscape de-

composition into hillslopes and channels, and its con-

figuration and governing equations are documented in

Krajewski et al. (2017). Here, suffice to say that the

model is terrain based, that is, it respects water transport

in the stream and river network. The key components

are 1) rainfall to runoff transformation at the hillslopes

and 2) water routing in the river channels. The main

feature of the HLM is that it is calibration-free: the

model parameters are determined a priori, and there-

fore the model does not ‘‘favor’’ any particular input

product. Model calibration may conceal different as-

pects in streamflow generation driven by different pre-

cipitation forcing products. The use of HLM can be

understood in the context of the Prediction inUngauged

Basins (PUB; Sivapalan 2003) initiative because the

HLM predictions are not limited to the locations/

stations where streamflow observations exist. Although

such a physics-based model does not always guarantee

accurate predictions, our earlier and ongoing evalua-

tions of HLM (e.g., Cunha et al. 2012; Seo et al. 2013,

2018; Ayalew et al. 2014; Quintero et al. 2016; Krajewski

et al. 2017) have indicated its acceptable performance.

We selected the Turkey River basin for this hydrologic

evaluation because there are five USGS stream gauges

providing discharge at a range of spatial scales from

about 450 to about 4000km2. In addition, 20 NASA rain

gauges densely deployed within the basin (see Fig. 1)

allowed us to test and compare the simulation results

driven by gauge-based gridded estimates with those

driven by the reference product.

We created a gauge-interpolated rainfall product at

the hourly scale using a geostatistical procedure known

as the optimal interpolation technique, of which ordi-

nary kriging is an example (e.g., Tabios and Salas 1985).

Figure 14 shows the campaign rainfall totals of the ref-

erence and gauge interpolation products over the Tur-

key River basin and also indicates the locations of the

USGS stations and NASA rain gauges. We then ran the

HLM with the rainfall forcing of the reference, gauge

interpolation, and Stage IV products. We compare each

FIG. 13. Rain total maps of the campaign reference product and its independent evaluation using the NWS

COOP and CoCoRaHS rain gauge data. The scatterplots show R–G comparison of the campaign totals between

the reference product and rain gauge observations. The CoCoRaHS observations show a quality control issue

(e.g., missing).
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simulated hydrograph at the five USGS stations with

streamflow observations in Fig. 15 and present perfor-

mance metrics in Table 4 to quantitatively assess the

hydrologic prediction capability associated with each

rainfall product. We indicate that the rating curve un-

certainty was not accounted for in the analysis. The

performance metrics used here are Kling–Gupta effi-

ciency (KGE; Gupta et al. 2009), correlation, and nor-

malized RMSE. All simulations started with the same

initial conditions, that is, the amount of water in the soil

and in the channels. We can observe from Fig. 15 that

the simulation results driven by the gauge interpolation

product better agree with the USGS observations than

those driven by the RR products. The gauge in-

terpolation product simulation tends to capture small

peaks in May well, while both the reference and Stage

IV simulations overestimate these somewhat (the

overestimation is more significant in Stage IV). We

think that these streamflow overestimations were not

caused by the systematic rainfall overestimation in

the reference products, but rather by complicated

hydrologic processes and interactions between initial

soil water content and dynamic changes of rainfall

space–time distribution. We confirmed that there was

little difference between the reference and gauge in-

terpolation products in the total amounts of mean areal

precipitation (particularly for the event in early May) at

all five scales. Regarding the significant event in late

May and early June, the simulations driven by the ref-

erence product captured the flood peak and timing well

for the relatively smaller-scale basin (e.g., at Spillville in

Fig. 15). The observed delay of the streamflow peak at

Elkader and the noticeable underestimation at Garber

do not look like a rainfall issue because all forcing

products led to the similar results. Given the evaluation

metrics provided in Table 4, we concluded that the

overall performance of the reference product in gener-

ating streamflow is superior to that of Stage IV.

While the best performance of gauge-only rainfall

product may come as a surprise, the setup in terms of

gauge density (one gauge per 200 km2) and quality

(double gauges at each location) would be difficult to

repeat in an operational environment. For example, in

Iowa, this would require some 800 rain gauge sites. It

seems that the best strategy is what has been im-

plemented operationally, that is, rain-gauge-corrected

radar rainfall. Good performance of the Stage IV and

campaign reference products offers solid evidence to

support this approach.

6. Summary and conclusions

We evaluated the RR composite products collected

during the NASA IFloodS campaign, which was designed

to serve as a high-quality ground-based reference for

the validation of satellite rainfall estimates. We char-

acterized the acquired RR products as the SP (IFC and

Q2), DP (CSU-DP and NWS-DP), and rain-gauge-

corrected (Stage IV and Q2-Corrected) estimates. We

used data from a number of rain gauge and disdrometer

networks (NASA, IFC, USDA ARS, University of

Wyoming, ASOS, AWOS, and NWSCOOP) as ground

reference to assess the algorithm-derived capability

of the RR products and their potential benefit for

hydrologic prediction. Some of these networks were

newly deployed, while others were preexisting within

the campaign area. We implemented the performance

evaluation and error characterization of the RR products

with respect to multiscale ranging from 1 h to the en-

tire campaign period.

The analysis of rain totals for the entire period showed

significantly different spatial patterns (Figs. 2, 4) among

the RR products. The R–G comparison analysis verified

this discrepancy (Fig. 5), and the rain-gauge-corrected

FIG. 14. The maps of campaign rain totals of the (a) reference and

(b) gauge interpolation products over the Turkey River basin.
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products (Stage IV and Q2-Corrected) seemed fairly

close to the rain gauge observations. All other products

exposed either over- or underestimation properties. In

particular, the CSU-DP showed a range limitation be-

cause of an algorithm component in which rain rate was

not estimated when the radar beam interacted with re-

gions of ice or melting ice. In the event-based analysis,

the heavy rain case performance looked better in the

DP-based algorithms (based on the R–G comparison in

Fig. 7b), but the DP results were not superior to the

SP for a presented snow/mix with the stratiform case

(Fig. 7a). This implies that the DP algorithms still need

improvement [for more detailed evaluation of the

DP products and algorithms, refer to Cunha et al. (2015)

and Seo et al. (2015a)]. In the comparison of the DP

algorithms (see Fig. 7b with the exclusion of daily

COOP gauges for a fair comparison), it is likely that

the algorithm using both Kdp and Zdr (CSU-DP) better

represents heavy rain than that based on Zdr and Zh

(NWS-DP). The significant relative bias observed around

the KOAX radar (NWS-DP in Fig. 6b) seemed to be

affected by the calibration errors in either Zdr or Zh.

We confirmed with the Radar Operations Center

(ROC) that the Zh values of the KOAX radar were

somewhat hotter (1.0–1.5 dBZ) than those of adjacent

radars (e.g., KDMX) for May 2013. The observed

underestimation around the KFSD radar for the IFC

product is also explained by the relative Zh bias

from 21.5 to 21.0 dBZ. We note that this calibration

error is a challenging issue, particularly in the real-time

FIG. 15. Hydrologic simulation results driven by the gauge interpolation, campaign reference, and Stage IV products at the five USGS

stream gauge stations in the Turkey River basin.
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application, and hope that the new Dual-Frequency

Precipitation Radar (DPR) that was recently launched

by the GPM program will help address this problem in

radar QPE (e.g., Schwaller and Morris 2011; Warren

et al. 2018).

We performed the multiscale R–G comparison using

three statistical metrics: multiplicative bias, the correla-

tion coefficient, and normalized RMSE. As seen in the

precedent analyses, the rain-gauge-corrected product

(Stage IV) showed statistically superior results when

compared to the radar-only products. This implies that

radar-only products should be corrected in a way (e.g.,

Steiner et al. 1999; Seo and Breidenbach 2002) that ad-

dresses their intrinsic error structure before they are used

in hydrologic applications. However, the comparison re-

sult fromone of the radar-only products, that is, the CSU-

DP, demonstrates its noticeable capability and potential

in spite of the presented radar range restriction. We ex-

pect that even a simple application of the relation (in the

literature) between rain rate and observed radar variables

for some cold precipitation types in the CSU-DP algo-

rithm may improve upon the current state for an opera-

tional purpose. The vertical profile of reflectivity (VPR)

approach (e.g., Krajewski et al. 2011) has the potential to

remedy the previously discussed melting layer issue.

We quantitatively characterized the error structure

of the RR products using a framework documented in

Ciach et al. (2007). Using the characterized error

structure, we removed systematic errors (overall and

conditional biases) of the selected RR products (Stage

IV, Q2-Corrected, IFC, CSU-DP, and NPOL-RC) and

combined them using their random error features

to create the campaign reference product. We evalu-

ated the created reference product through the HLM

streamflow simulations. The streamflow simulation

results and evaluation metrics presented in Fig. 15

and Table 4 demonstrate that the reference product cre-

ated in this study performs better than Stage IV, which

was selected as the best RR composite product in

our evaluation. We hope that our findings and un-

derstanding, as well as our developments (e.g., the

campaign reference product) that have been gained

from this unique field campaign, will be useful for

satellite product validation and various hydrologic

modeling efforts.
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