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A B S T R A C T

This study demonstrates the potential use of the NASA's Global Precipitation Measurement (GPM) Dual-fre-
quency Precipitation Radar (DPR) to examine ground radar (GR) miscalibration and other uncertainty sources
(e.g., partial beam blockage). We acquired the GPM Ground Validation System Validation Network reflectivity
matchups between the DPR and three GRs (two in Iowa and one in South Dakota) for 2014–2017. We then
refined the matching parameters (e.g., time separation) to reduce uncertainty in the matchup samples by ana-
lyzing the sensitivity of the matchup statistical properties to changes in these parameters. To reconcile the same
observables (i.e., reflectivity) with different observational properties among the space- and ground-based radars,
we developed a statistically integrated framework using inter-comparisons of them all with a Monte Carlo si-
mulation. This method verifies the absolute calibration bias estimated from the refined DPR–GR matchups using
relative calibration biases between GRs. We found that taking samples with a narrow temporal gap, estimated by
actual measurement time of the DPR and GRs, can significantly reduce sample variability. Through inter-com-
parisons among the DPR and GRs, we observed that reflectivity differences among GRs in a similar environment
(e.g., climatology and geography) are likely to be affected primarily by the calibration mismatch. In this case, the
inter-comparison results demonstrated good agreement, and we inferred that the differences can be mitigated by
calibration bias correction against the DPR. On the other hand, when the disagreement level of the inter-com-
parison results is significant, the authors found that other factors, such as partial beam blockage even in rela-
tively plain regions, are more dominant than the calibration bias. In fact, the partial beam blockage effects can
manifest themselves as a seasonal pattern in the GR inter-comparison results.

1. Introduction

In current ground-based precipitation estimation systems, weather
radar (hereafter Ground Radar, GR) observations play a central role in
determining the spatial and temporal structures of precipitation sys-
tems. Their advantages are highlighted in real-time weather and flood
prediction, where rapid updates of precipitation information over broad
spatial domains are required. However, our incomplete understanding
of the weather system under various environmental conditions serves as
the main obstacle to eliminating a variety of uncertainty sources in
Quantitative Precipitation Estimation (QPE) (e.g., Villarini and
Krajewski, 2010).

The types and magnitude of the uncertainties involved in different
GRs can vary (e.g., Bringi et al., 2011; Thurai et al., 2017). The dif-
ferences often manifest themselves on large-scale rainfall accumulation
maps derived from multiple radar observations as discontinuous

features at the equidistance zones among radars. For example, Fig. 1
illustrates a rainfall accumulation map for the State of Iowa from 1 July
to 31 August 2017, derived from the Iowa Flood Center (IFC) real-time
radar QPE (Krajewski et al., 2017). In Fig. 1, we can recognize clear
border lines at the overlapping areas among the involved radars, par-
ticularly centered on the Sioux Falls radar (KFSD) in South Dakota. We
have also observed similar patterns in other radar composite products
(e.g., the Multi-Radar Multi-Sensor product; Zhang et al., 2016). One
plausible explanation for this issue might be the negative calibration
bias of the KFSD radar (i.e., underestimation) because we can observe
the same precipitation at equidistant zones; all areas covered by the
KFSD radar show this underestimation tendency, and there are no sig-
nificant topographic features (i.e., mountain effects) in Iowa. Recently,
Zhong et al. (2017) and Warren et al. (2018) reported the same issues
existing in the radar networks in China and Australia, respectively.
Many studies have identified radar miscalibration as one of the most
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significant practical issues affecting radar uncertainties (Smith et al.,
1996; Brandes et al., 1999; Wang and Wolff, 2009; Seo et al., 2014;
Zhong et al., 2017). Small discrepancies in calibration may lead to large
uncertainties in QPE, as well as hydrometeorological applications, be-
cause of their nonlinear propagation properties (e.g., Seo et al., 2013).

The literature documents many methods to calibrate GRs using a
variety of targets (e.g., a metal sphere and corner reflectors) and in-
dependent observation systems (e.g., rain gauges and disdrometers)
(e.g., Atlas, 2002; Frech et al., 2017). However, these methods may not
be suitable to detect abrupt changes (in real-time) and/or gradual de-
gradation of the (calibration) offset caused by decreased performance of
the radar hardware system over time (Anagnostou et al., 2001). Alter-
natively, we can use direct comparison of reflectivity data among ad-
jacent GRs for the same targets (Smith et al., 1996; Seo et al., 2013,
2014). The main advantage of this method is that it can benefit from the
high temporal resolution of GR observations, and the comparison re-
sults can be immediately applied to bias adjustment. In this case, other
uncertainty sources such as anomalous beam propagation and range
effects might be compounded together with the calibration error; se-
lecting appropriate samples should be done with great care to isolate
the calibration bias. Furthermore, the lack of detailed information on
how much adjustment and when the GR calibration was performed
makes it challenging to verify the accuracy of this method (Seo et al.,
2014).

Space-borne radars—in particular, the Ku-band precipitation radar
(PR) onboard the Tropical Rainfall Measuring Mission (TRMM) satellite
and the dual-frequency (Ku- and Ka-band) precipitation radar (DPR)
onboard the Global Precipitation Measurement (GPM) mission Core
Observatory—have also received attention as a tool for monitoring GR's
performance (Anagnostou et al., 2001; Liao et al., 2001; Wang and
Wolff, 2009; Schwaller and Robert Morris, 2011; Gabella et al., 2013;
Hou et al., 2014; Speirs et al., 2017; Zhong et al., 2017; Warren et al.,
2018). The PR/DPR can serve as a reference to estimate the calibration
bias of GRs (Schwaller and Robert Morris, 2011) because it not only
produces the same variable (i.e. reflectivity) with stable calibration
level (± 1 dB), but it can also be free from a substantial portion of the
uncertainties common in GR products, such as ground clutter and beam
blockage effects. Previous studies asserted that the accuracy of GR's
precipitation estimates could be improved by correcting their calibra-
tion biases against space-borne radars. However, the low temporal
frequency of space-borne radar measurements leads to their limited
usage for operational applications.

The main purpose of this study was to examine reflectivity dis-
agreement among adjacent GRs using relatively consistent (in space)
measurements from the GPM. We speculate that the issue shown in
Fig. 1 is mainly caused by differences in GR calibration offsets, which
raises the central question of this study: are the reflectivity differences
observed among GRs caused by miscalibration? To address this ques-
tion, we compared the ground-based and space-based approaches to
evaluate and diagnose GR's calibration bias, while taking advantage of
supplementary aspects of the DPR and GRs: (1) high temporal resolu-
tion of GRs; and (2) spatial consistency and stable calibration of the
DPR.

To reconcile the same observables (i.e., reflectivity) with differing
observational properties among the space- and ground-based radars, we
developed a statistically integrated framework with a Monte Carlo si-
mulation. The proposed method is validated through the inter-com-
parisons among the GPM DPR and GR products using the GPM Ground
Validation System (GVS) Validation Network (VN) dataset and a re-
flectivity comparison method for adjacent GRs (developed in this
study). We expect the use of reflectivity measurements in the compar-
ison to prevent the uncertainty associated with the variability of Z–R
relationship. In addition, this approach allowed us to avoid the as-
sumption of zero mean errors for DPR measurements, which may not be
true but has been used widely by many other studies (e.g., Anagnostou
et al., 2001; Wang and Wolff, 2009; Schwaller and Robert Morris, 2011;
Kim et al., 2014; Warren et al., 2018). Instead, we assumed that only
the DPR's error distribution is stationary. We also noted that the ap-
proach of Warren et al. (2018) is similar to the one proposed in this
study; both evaluated space-borne radar's capability to correct GR's
calibration bias by looking at reductions in the reflectivity differences
among GRs. However, this study incorporates the reflectivity differ-
ences into the examination process on GR miscalibration and in-
vestigates other uncertainty sources, if any, that would affect those
differences.

2. Data sources

In this study, the GPM GVS VN datasets and individual radar re-
flectivity products of the IFC are collected for three “NEXRAD” WSR-
88D (Weather Surveillance Radar-1988 Doppler) radars in Des Moines
(KDMX) and Davenport (KDVN), both in Iowa and Sioux Falls, South
Dakota (KFSD), for the period of March 2014 through September 2017
(Fig. 2). We provide more details on each dataset in the following sub-
sections.

2.1. The GPM GVS VN dataset

Since the launch of the GPM mission Core Observatory satellite in
February 2014 (Speirs et al., 2017), the National Aeronautics and Space
Administration (NASA) has been operating the GPM GVS VN to im-
prove the accuracy of the satellite products through comparisons with
GR observations. The GPM GVS VN provides several types of geome-
trically matched datasets (matchups) between GPM satellite and GR
measurements using 75 WSR-88Ds as well as various international
partners' radars (National Aeronautics and Space Administration,
2015). All input and output datasets used in the VN are accessible
through a VN data server (ftp://hector.gsfc.nasa.gov/gpm-validation/
data/). Among the datasets, we used the geometry-matched products
between DPR and GR (referred to as the DPR–GR matchups) for the
comparisons.

The DPR–GR matchups are directly generated from the GPM DPR
standard Level 2 products (2ADPR) and coincident GR products
(National Aeronautics and Space Administration, 2015), which are
averaged over common volumes defined by a matching algorithm (see
Section 3.1). The DPR standard products consist of three datasets that
depend on the swath types: (1) normal scan (NS); (2) matched scan
(MS); and (3) high-resolution scan (HS). Consequently, the DPR–GR

Fig. 1. A rainfall accumulation map derived from the IFC radar-only products
over the state of Iowa from 1 July to 31 August in 2017.
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matchups offer the same categories. To ensure adequate sample size, we
used the NS matchups, which have the widest spatial coverage. We note
that measured reflectivity values of the NS matchups were derived from
Ku-band radar reflectivity with attenuation correction. We refer to the
attenuation-corrected DPR reflectivity as “DPR reflectivity.” A NASA
staff specialist performed quality control on the GR reflectivity data in
the matchups. The DPR–GR products were generated only when suffi-
cient rainfall matchup samples (≥100 Ku-DPR rays tagged as “rain
certain”) were detected within 100 km from a GR.

A recent upgrade of the DPR Level 1 algorithm (Version 5) changed
the Level 2 products (e.g., matchups). Among all the changes, adjust-
ments in the offset parameters related to hardware performance (such
as transmitting power, receiver gain, beam width, and the pulse width)
affected the results of this study. We found that the DPR reflectivity
values increased (1.17 dB), and 7.6% of precipitation classification re-
sults changed for the period of May 2014 through April 2017 within the
KDMX domain. The increase in the DPR reflectivity value resulted in
precipitation type changes because one of the decision factors for
convective rain is a reflectivity threshold of 39 dBZ. Because further
investigations of the version change are beyond the scope of this study,
we selected the latest version (version 5) matchups for our analyses.

2.2. IFC individual radar products

To compare the reflectivity data between two adjacent GRs, we used
the IFC's individual radar-rainfall products. The IFC generates time-
synchronized products every five minutes for seven NEXRAD radars
covering Iowa; these serve as the main input for the IFC's real-time
flood forecasting system (Krajewski et al., 2017). Various studies have
used and validated these products (Ayalew et al., 2014; Cunha et al.,
2015; Quintero et al., 2016). The basic algorithms used to generate the
products are documented in Seo et al. (2011) and have undergone
several improvements (e.g., Seo et al., 2015). The product's features
include: (1) vertical averaging based on a non-parametric weighting
scheme to build the Constant Altitude Plan Position Indicator (CAPPI)
at 1.5 km altitude above mean sea level (AMSL); (2) temporal syn-
chronization (every 5-min nominal time) among involved radars that
transfer observations at different times; and (3) spatial synchronization

onto a common geographic grid with the resolution of 15 arc-second in
latitude and longitude (approximately 400–500m in Iowa). These fea-
tures enabled us to readily investigate the reflectivity differences be-
tween adjacent GRs.

3. Methodology

In this section, we define several key terms frequently used in our
analysis: (1) Calibration Bias (CB) — the average difference between a
GR and the DPR (reference); (2) Relative Calibration Bias (RCB) — the
average difference in CB between two GRs; and (3) Relative Bias (RB)
— the average difference for the same meteorological targets between
two GRs. In this study, we defined the null hypothesis (H0): the RCB
between two GRs is the same as the RB between the involved GRs if the
CB is a dominant factor of RB in Eq. (1); and the alternative hypothesis
(H1): otherwise, other factors would be the main sources of RB.

= ≠− − − −H RCB RB vs H RCB RB: . :GR GR GR GR GR GR GR GR0 1 2 1 2 1 1 2 1 2 (1)

In the following sub-sections, we describe the estimation methods of
each defined element and formulate them to test the null hypothesis.

3.1. Calibration bias (CB) and relative calibration bias (RCB)

The stable calibration of the GPM DPR makes it possible to estimate
the CB of multiple GRs with the same reference. In this study, we de-
fined the GR's CB (dB) as the spatially averaged reflectivity difference
between the GPM DPR and coincident GR observations.

∑= −−
=

CB
n

Z i Z i1 [ ( ) ( )]GR DPR
i

n

GR DPR
1 (2)

where GR's and DPR's reflectivity measurements (dBZ) of a DPR–GR
matched volume i are expressed by ZGR(i) and ZDPR(i), respectively. The
number of matched volumes is denoted by n.

Aside from the radar frequency differences, the main challenge to
estimating the CB is beam geometry (e.g., sampling volume resolution)
difference and observation time mismatch between the DPR and GRs.
To resolve this issue, NASA adopted a geometric volume matching
scheme based on the methods developed by Bolen and Chandrasekar
(2003) and provided matchup samples. The matched volume is defined
as the intersection between a DPR ray and individual GR elevation
sweeps with an assumption of standard radar beam propagation. Fig. 3
demonstrates the matching scheme. Spatial resolutions of the DPR are
250m in the vertical and about 5.2 km (at nadir) in the horizontal. The
resolutions of GRs are 250m in range and 0.95° in azimuth and ele-
vation, oversampled to 0.5° in azimuth. The matching volume size is
determined by the DPR field of view coverage (horizontal size) and the
vertical extent of GR range bins within the coverage (vertical size). For
one matching volume, two mean reflectivity values are computed as the
horizontal average of the GR products for the GR and the vertical
average of the DPR products for the DPR. The DPR–GR matchup dataset
contains information on multiple factors that determine the agreement
of different sampling volumes (e.g., partial beam filling ratio, pre-
cipitation type, and time separation; see Table 1). We refined these
factors and performed a sensitivity analysis to reduce uncertainties in
the CB estimation (Section 4.1.1).

We presented the CB estimate at each time with 95% confidence
interval. Based on the central limit theorem, the sampling distribution
of the CB estimate, which is unknown, follows roughly a normal dis-
tribution when the sample size is large enough (Mikosch and
Kallenberg, 1998). The confidence interval can simply be estimated by
using Student's t-test statistic (Anagnostou et al., 2001; Wang and Wolff,
2009). From the CB estimates of two GRs, we can quantify the RCB:

= −− − −RCB CB CBGR GR GR DPR GR DPR1 2 1 2 (3)

where RCBGR1−GR2 (dB) is the CB difference between GR1 and GR2.
Although we cannot directly estimate the RCB at an instantaneous

Fig. 2. Study area map. The black points indicate the locations of the selected
three NEXRAD radar sites: KDMX in Des Moines, IA; KDVN in Davenport, IA;
and KFSD in Sioux Falls, SD. The dotted and solid line circles demarcate 100 km
and 230 km range rings from each radar site, respectively. The gray- and pink-
shaded areas indicate an example swath of the GPM DPR normal scan (NS) and
high resolution scan (HS) over the study area. (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the web version of
this article.)
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time (there is no coincident DPR measurement for two GRs at the same
time within the 100-km range limits), we use a temporal averaging
method to obtain the RCB. We provide further details in Section 3.3.

3.2. Relative bias (RB)

We can evaluate the calibration bias by the direct comparison of
reflectivity measurements at overlapping zones between two GRs.
Occasionally, this approach may not yield results that are contributed
by radar miscalibration, only because other uncertainty sources might
be blended in the estimated differences. Therefore, we defined the di-
rect comparison results of GRs' reflectivity products as the “relative”
bias, RB. We wanted to determine whether the observed RB is mainly
contributed by the relative difference in calibration (i.e., RCB) between
GR sites. For this purpose, we used a volume matching strategy between

GRs to minimize contributions from other uncertainties. We estimated
the RB using the IFC individual radar products (with the minimum
reflectivity threshold of 10 dBZ), comparing the averaged reflectivity
values included in a specific large volume in the overlapping zones of
two GRs (referred to as the Equidistance Sampling Volume, ESV). We
note that the radar reflectivity comparison tool (RRCT: http://rrct.nwc.
ou.edu/) uses a similar method to provide the relative bias information
among adjacent radars over the national network. For estimation of the
RB, the main difference is that we compare reflectivity values projected
onto common spatiotemporal coordinates. This approach minimizes the
error arising from the temporal mismatch of sampling volumes between
different radars. We selected the KDMX radar as a reference GR for the
comparisons of GRs because it has overlapping zones with both KDVN
and KFSD.

We set up the ESV by matching its center line to the equidistance

Fig. 3. Schematic representation of the matching volume computation between the GPM DPR and a GR: (a) a quasi-3D schematic of the intersection between a single
DPR ray and a single GR sweep, (b) horizontal and (c) vertical cross sections of the intersection.

Table 1
Descriptions of main variables extracted from the DPR–GR geometry matched data (Version 5 2ADPR, NS swath) of GPM GVS VN utilized in this study. More detailed
information can be found from GPM GVS VN Data Product User's Guide (National Aeronautics and Space Administration, 2015). All variables are assigned to each
matchup.

Variable name Description Related parameter

ZFactorCorrected Attenuation corrected DPR reflectivity (dBZ) –
GR_Z Quality controlled GR reflectivity (dBZ) –
TypePrecip DPR precipitation type (stratiform/convective/other) Precipitation type
n_gr_z_rejected The number of GR bins below 15 dBZ Partial beam filling ratio (PBFR)
n_gr_expected The total number of GR bins
n_dpr_corr_z_rejected The number of DPR bins below 15 dBZ
n_dpr_expected The total number of DPR bins
site_elev Ground radar site elevation above mean sea level (km) Proximity to the bright band
BBheight DPR bright band height above mean sea level (m)
topHeight Top height of a matched volume above ground level (km)
bottomHeight Bottom height of a matched volume above ground level (km)
site_lat Latitude of ground radar site Temporal gaps of measurements between DPR and GR
site_lon Longitude of ground radar site
latitude Latitude of DPR surface bin
longitude Longitude of DPR surface bin
scanNum DPR scan number (zero-based)
rayNum DPR ray number (zero-based)
elevationAngle Elevation angle of GR sweep (degree)
timeNearestApproach Nearest approach time of DPR to GR site (seconds since 1/1/1970 00:00:00)
timeSweepStart Starting time of GR sweep for each elevation (seconds since 1/1/1970 00:00:00)
GR_file GR Level2 filename
DPR_2ADPR_file 2ADPR filename
GR_blockage Ground radar blockage fraction –
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line (Fig. 4). We used width and length parameters to adjust the shape
of the ESV depending on the distance between GRs. The width para-
meter is defined as the absolute difference of two distances between
each grid center in the ESV and two GRs (d1 for GR1 and d2 for GR2).
In fact, it is not equivalent to the actual width of the ESV which varies
along the length of the ESV. This parameter plays a role in maintaining
range effects at a similar level from both radars so as to mitigate the
effects on the reflectivity comparisons. We fixed the width parameter at
5 km for any combinations of GRs. The length parameter was estimated
so that the number of grid points within the ESVs for different GR
combinations are balanced. Using the ESV allowed us to accelerate
computation of reflectivity differences and minimize effects from spa-
tial distortion caused by map projections onto Cartesian coordinates. In
addition, the similar number of grids within the ESVs leads to a fair
statistical comparison between different GR combinations. Based on the
fixed grid system, we decided on length parameters of 171 km for
KDMX-KFSD and 144 km for KDMX-KDVN, resulting in 6657 and 7081
grid points in the ESVs, respectively.

Our assumption of the standard beam propagation occasionally fails
because of non-homogenous atmospheric conditions along different
propagation paths (from both radar sites). This results in the spatial
mismatch of rain echoes and the effect of this mismatch on GR inter-
comparisons might be significant when only small area within the ESV
is covered by precipitation. To mitigate this error, we eliminated
matchup samples: (1) that have difference>8 dB (used in the RRCT
analysis as an adaptable parameter); and (2) of which the sample size at
each observation time is< 10% of the total number of grids in the ESV.
Then, instantaneous RB estimates were averaged over a precipitation
event. Precipitation events were identified with an arbitrary inter-event
time threshold of 12-h. Any consecutive events separated by< 12-h are
combined in to a single event. Because radar maintenance (e.g., cali-
bration) is likely not performed during a precipitation event, this event-
based RB estimation is reasonable while mitigating sample noise
(hereinafter, the event-based RB is denoted by RB). We computed the
RB as

∑ ∑ ∑= ⎧
⎨⎩

⎫
⎬⎭

−
= ∈ ∈

RB
N
1 10log 10 / 10GR GR

t

N

i V

Z i t

i V

Z i t
1 2

1
10

( , )/10 ( , )/10GR GR1 2

(4)

where RBGR1−GR2 is the event-based RB estimate (dB) between GR1 and
GR2. The number of observation times within a precipitation event is

denoted by N. The ESV and a pixel in the ESV are expressed by V and i,
and ZGR(i, t) is GR's reflectivity (dBZ) at the ith pixel at time t. The form,
∑ ∈ 10i V

Z i t( , )/10GR , can be interpreted as GR's total reflectivity in linear
units (mm6m−3) within the ESV. In this study, GR1 is KDMX and GR2
is either KDVN or KFSD.

3.3. Comparison of RCB and RB

The ideal condition to test our null hypothesis using the estimated
CB and RB is to have three independent measurements (for the same
target) of DPR, KDMX, and another GR. However, the DPR–GR
matchups are generated for a significant rainfall event within a 100 km
radius from a corresponding GR such that no coincident zones between
adjacent GRs exist in these data in our RB estimation domain.
Alternatively, we tested the assumption that the RB is caused by the
RCB, by averaging Eqs. (3) and (4) over time. Under the null hypoth-
esis, we obtained Eq. (5):

= = −− − − −E RB E RCB E CB E CB[ ] [ ] [ ] [ ]GR GR GR GR GR DPR GR DPR1 2 1 2 1 2 (5)

Eq. (5) provides an integrated framework that enables the joint
evaluation of three independent bias estimates generated by different
platforms at different times. In this equation, it is implicitly assumed
that an event-based RB is statistically compatible with a CB estimate.
The much narrower comparison area of GR–GR (i.e., the ESV) than that
of DPR–GR could be compensated for to some extent by temporally
averaging instantaneous RB estimates. This conceptual conversion of
time into space may justify the assumption. Before we estimated the
expectations in Eq. (5), we needed to verify the stationarity of RB or
RCB time series. We tested the stationarity using a nonparametric
multiple change point analysis called E-Divisive (Matteson and James,
2014). This method is based on a permutation test and provides the
number and location of the distributional change points simultaneously
without any assumptions of the samples and test statistics distributions.
Because we have more frequent samples of RB than of RCB, we per-
formed this analysis on the RB estimates. We can use the results not
only to test the stationarity assumption of the RB, but also to assess the
DPR's ability to capture the GRs' calibration consistency over time. We
used the RCB and RB estimates for the time duration when the statio-
narity assumption is verified for the null hypothesis tests.

Given a time period during which the stationarity assumption holds,
testing the hypothesis presents another difficulty: the different

Fig. 4. Schematic representation that demonstrates the construction of the Equidistance Sampling Volume (ESV). Please note that due to the definition of the width
parameter, abs(d1− d2), the actual width of the ESV is not constant but varies along the ESV's length.
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uncertainty levels in the mean RCB and RB estimates. These are caused
by not only unbalanced sample sizes of the three components,
RBGR1−GR2, CBGR1−DPR, and CBGR2−DPR, in Eq. (5) but also inherent
differences in sample variability due to the different comparison
methodologies. We can address this issue with a Monte Carlo simula-
tion as a way of inferring possible RCB behaviors based on the RB es-
timates. We first assumed the amount of information included in un-
synchronized nGR1−DPR (for GR1) and nGR2−DPR (for GR2) CB estimates
for the mean RCB estimation is greater than nGR1−DPR and less than
nGR2−DPR when nGR1−DPR < nGR2−DPR. To minimize the possibility of
failure in rejecting a false null hypothesis (type II error), we defined the
equivalent sample size of the RB estimates corresponding to the mean
RCB as neq= max [nGR1−DPR,nDR2−DPR]. Then, we took random sam-
ples with the sample size of neq from the RB estimates and averaged
them to simulate a sample mean (μi ) of the RB values. We performed
this simulation 1000 times and tested the statistical significance of the
null hypothesis based on the simulation envelope defined by the
minimum and maximum values of μi . Please note that we decided to use
the simulation envelope concept along with the Monte Carlo simulation
instead of using the traditional p-value approach to test the null hy-
pothesis. Our simulation experiment showed that even when the mean
RCB value is estimated from a known population, the p-value can be
very small (e.g., < 0.005), due to the unsynchronized and small
number of CB estimates. Although the estimated RCB approaches the
true value as the sample size increases, this was not the case in our
study. Under this situation, the simulation envelope could be more
reasonable than the p-value based test.

4. Results and discussion

4.1. CB (DPR vs. GR)

4.1.1. Sensitivity analysis
The DPR–GR matchups from the VN are insufficient to directly

quantify the CB of GRs because of probable uncertainties contained in
the matchup samples. The main reasons are attenuation of the DPR
signal, differences in detectable ranges in reflectivity, high variability of
precipitation system, retrieval algorithm errors, and measurement time
gaps (e.g., Anagnostou et al., 2001; Morris and Schwaller, 2011; Biswas
and Chandrasekar, 2018; Warren et al., 2018). Following the procedure
in Schwaller and Robert Morris (2011), we performed a sensitivity
analysis of the four parameters described below on the variability of
matchup samples. This analysis provides information on the sampling
strategy that can reduce the aforementioned uncertainties and increase
the reliability of CB estimates. The four parameters used in the sensi-
tivity analysis are: (1) precipitation type; (2) partial beam filling ratio
(PBFR); (3) vertical proximity to the mean bright band height defined
as above, within, and below the bright band (BB); and (4) temporal
gaps between DPR and GR measurements. All the parameters except for
the temporal gaps can be estimated utilizing the variables provided by
the DPR–GR geometry matched datasets. Table 1 summarizes the main
variables in the DPR–GR matchups used in this study. For example, the
mean BB layer (for each overpass) is defined as the DPR-identified
mean BB height ± 0.75 km. This BB layer was used to categorize
matchups' proximity to the BB as: (1) “above” if the bottom of a
matching volume is above the BB layer; (2) “below” if the top of the
volume is below the BB layer; and (3) “within,” otherwise. The PBFR
indicates a proportion of the number of DPR and GR range bins (with
the minimum reflectivity threshold of 15 dBZ for both of the DPR and a
GR) within a matching volume. We note that the minimum detectable
reflectivity of the DPR (Ku band) is reported as 12–13 dBZ (Skofronick-
Jackson et al., 2018). The 15 dBZ threshold used above is a conservative
value to avoid issues of variability of the DPR detection capability in
different situations.

To quantitatively assess the effects of each parameter on the sample
quality, we focused on the sample variability rather than the mean

value of the reflectivity differences, which may vary over time. In cases
where the temporal fluctuations of the mean values are severe, the
standard deviation (σ) of all matchups for the entire sampling period
may not be appropriate to represent the sample variability. Therefore,
we also considered the weighted average of standard deviations (σw) in
terms of sample size as a measure of the samples' dispersions.

=
∑ ×

∑
σ

σ n
nw

t t

t

2

(6)

where σt2 is the sample variance (dB2) of GR – DPR at time t, nt is the
matchup sample size at time t, and σw is the weighted average of sample
standard deviations (dB). The lower the variability of sample means
are, the closer σ and σw are.

Among the four factors, the PBFR and the temporal separation are
affected by characteristics of radar measurement mechanisms rather
than precipitation system properties. Therefore, we first looked at the
effects of these two factors and limited them with certain threshold
values for further analyses, which consider various conditions defined
by the permutations of the other factors.

Unlike other parameters, the accurate time separation between DPR
and GR observations cannot be achieved based on the DPR–GR
matchups because only the DPR's nearest approach time to GR and GR's
scanning start time (and start time of each sweep) are available. We
note that other earlier studies used the start time of either the entire
volume scan (e.g., Wang and Wolff, 2009; Morris and Schwaller, 2011)
or each elevation sweep (e.g. Schwaller and Robert Morris, 2011;
Biswas and Chandrasekar, 2018; Warren et al., 2018) to estimate the
time separation. However, the time period taken by a GR to complete a
volume scan (i.e., 4–6min in a precipitation mode of NEXRAD) was
longer than the time it took for the DPR to scan the GR's coverage (i.e.,
~30 s), thus degrading the accuracy of time gap measurements based
on this approach. Clearly, the accuracy becomes worse when GR's vo-
lume scan starting time is used. For example, in the case of the DPR–GR
matchups for the KDMX radar observed on June 26, 2015, the time
differences between the DPR's nearest approach time and the KDMX
volume scan starting time (DPR – GR) is 9 s, while the actual time se-
paration for all matchup samples ranges from −221 to 18 s. We found
that the actual time separation for part of the matchup samples could
be>13min, even though the nearest approach time-based separation
is< 5min. Therefore, we recalculated more accurate time gaps for each
matchup pair based on observation time records for each ray of the DPR
and GRs. We retrieved the observation time information from the DPR
Level 2 standard products and GR Level 2 volume scan data. Fig. 5 il-
lustrates the effect of temporal separation between the DPR and KDMX
on the agreement of two independent observations. Matchups of which
time separations are< 30 s (Fig. 5(b)) clearly show less variability and
stronger linear relationship (σ=2.99, σw=2.76, ρ=0.93) than those
without any filtering (σ=3.96, σw=3.83, ρ=0.89 in Fig. 5(a)).

Fig. 6 illustrates the combined effects of the PBFR and the actual
temporal measurement gaps on the statistics that reflect the differences
between the DPR and the KDMX radar for the entire data period. As the
PBFR increases and the measurement time difference decreases, the
sample size decreases because of the stricter criteria applied (Fig. 6(a)).
The changes in the variability can be found in Fig. 6(b) and (c), and the
slightly different results between σ and σw can be attributed mainly to
the variations of the mean differences over time. One observation is
that the actual temporal gap is the dominant factor on sample varia-
bility in regions where the PBFR is> 50%. Consequently, using the
50% PBFR allows us to obtain more samples by adjusting the allowable
time differences, while maintaining a similar variability level to that of
the samples that are achievable only by applying a high PBFR threshold
(i.e., 95% or 100%). Based on these results, we limited further analyses
to the matchup samples of which PBFR values are ≥70% and the time
differences are< 120 seconds, considering the sample size and varia-
bility (red points in Fig. 6). As a result, we obtained more reliable
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matchup samples with a similar sample size, but less variability
(σ=2.31, σw=2.16, ρ=0.96) than the ones in which we used the
95% partial beam filling criterion as a limiting factor (σ=2.70,
σw=2.51, ρ=0.93).

With the PBFR and the temporal gap of measurements fixed at
≥70% and<120 seconds, respectively, Table 2 illustrates the effects
of different combinations of the other two factors, precipitation types
(stratiform or convective), and proximity to the bright band (above,
within, or below the BB) on sample variability. Table 2 shows that the
variability of samples from the stratiform precipitation type is less than
the convective type, regardless of the sampling regions related to the
BB. Also, given precipitation types, samples above the BB show less
variability. This could result from the uncertainties caused by the high
spatial variability of convective precipitation system and the attenua-
tion correction algorithm used in the DPR products (Morris and
Schwaller, 2011). Among the six categories, taking samples classified as
stratiform precipitation and above the BB leads to the smallest sample
variability, which agrees with other relevant studies (e.g., Schwaller
and Robert Morris, 2011). As a result, we used the DPR–GR matchups
satisfying: (1) both of PBFR values of the DPR and GR of ≥70%; (2) the
temporal gaps of measurements of< 120 seconds; (3) the stratiform
precipitation type; and (4) above the BB.

We acknowledge that different frequencies between the DPR and
GRs may also contribute to systematic reflectivity differences due to
non-Rayleigh scattering effects (Anagnostou et al., 2001; Liao et al.,
2001; Schwaller and Robert Morris, 2011; Wang and Wolff, 2009;
Warren et al., 2018). These effects are a function of the size, phase, and
density of the hydrometeors observed by radars and, in general, become
more significant with the increase in reflectivity (or, increase in size
and density of particles). To deal with this issue, we can use frequency
conversion formulas (from Ku- to S-band or vice versa) derived from
raindrop size distribution models (e.g., Liao and Meneghini, 2009; Cao
et al., 2013) or regression-based bias estimation scheme dependent on
reflectivity magnitude (e.g., Wang and Wolff, 2009). However, we as-
sumed that this effect on the refined matchup samples is negligible and
do not account for it in further analyses. This can be justified by the fact
that the refined samples (above the BB and in stratiform precipitation)
usually show low reflectivity of< 35 dBZ where the scattering effects
are not significant (Anagnostou et al., 2001).

4.1.2. CB estimation
In this section, we present the CB estimates over time for the entire

data period and selected GR sites as provided in Section 2. We elimi-
nated overpasses for which the number of samples that satisfied the
criteria explained above were<25 from the analysis. As a result, we
selected 10 out of 54, 7 out of 72, and 9 out of 61 overpasses for KDMX,
KDVN, and KFSD NEXRAD radars, respectively.

Fig. 7 shows the CB estimates of three GRs against DPR measure-
ments. Red squares represent the CB at each overpass, with a 95%
confidence interval. The red solid lines represent the overall CB over the
entire period for each radar; gray-shaded areas illustrate one standard
deviation range of the CB estimates. Please note that we excluded the
two extreme cases (July 26, 2015, and June 28, 2017) from the results
for KFSD from the overall CB calculation. We will further discuss this
shortly.

From Fig. 7, we observed that all three radars are negatively biased
with overall biases of −1.89, −2.20, and −1.68 dB for KDMX, KDVN,
and KFSD, respectively. It is interesting to note that their under-
estimation tendencies are consistent over time within± 1 dB (the
standard deviation values are 0.60 dB, 1.06 dB, and 0.42 dB for KDMX,
KDVN, and KFSD, respectively). Only a few CB estimates deviate
slightly from the one standard deviation interval. In fact, most of 95%
confidence intervals of even those estimates overlap with one standard
deviation range. This suggests that although all three GRs tend to sys-
tematically underestimate reflectivities when compared to the DPR
measurements, the tendencies are consistent. We note that the increase
in DPR reflectivity magnitude by the algorithm version change (refer to
Section 2.1) indicates a certain level of bias may be included in DPR
measurements even though it is assumed to be stable over time.
Therefore, we may not conclude that the CB estimates are the same as
the true calibration bias of the corresponding GRs. However, in the
process of estimating the RCB between GRs, the overall bias involved in
the DPR observations could be mitigated, so it may not be a problem in
evaluating the GRs' relative biases. Note that the lack of DPR ob-
servations for rainy events is the main obstacle to analyzing temporally
finer-scale variations of the CB. We will explain this issue in Section 4.2.

Let us examine closely the two extreme cases in Fig. 7 (c) to identify
what factor caused such large differences. This is of interest not only
because we use the reflectivity differences between the DPR and GRs as
a measure of GRs' CB, but also because it could shed light on our
speculation on KFSD's underestimation tendency when compared to

Fig. 5. Two-dimensional histogram plots for matchup samples over the entire period (a) without any filtering and (b) those of which actual measurement time offsets
between the DPR and the KDMX radar are<30 s. The colour scale represents frequency of the number of samples for each bin. The two-dimensional bin size is 1 dB.
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neighboring GRs (e.g., Fig. 1). We found that in both cases abrupt de-
creases in reflectivity magnitude occurred when a squall line sit on the
top of the radar site (from Fig. 8(a) to (b) and from (d) to (e) for cases 1
and 2, respectively) and they were recovered after the squall lines
passed over the radar (Fig. 8(c) and (f)). These temporal changes were
quantitatively verified by area-weighted average reflectivity values
estimated from the LEVEL II base scan reflectivity with> 10 dBZ within
100 km range from the radar (Fig. 8(g)). Both time series in Fig. 8(g)
were centered on the KFSD's volume scan starting times. Although the

case 2 showed more complex pattern due to multiple strong cells pas-
sing over the radar, similar sudden decreases can be identified at time
0. These decreases are localized in time, which are unlikely to originate
from natural precipitation system decay. Instead, we speculate that the
observed decreases were caused by attenuation associated with wet
radome effects. The existence of heavy rainfall over the KFSD site is
supported by rainfall observations recorded by the Automated Surface
Observing System (ASOS) rain gauge at Sioux Falls nearly 2 km away
from the KFSD radar. This gauge shows that the maximum 1-minute
rain rate was 107mm/h (15min rain rate of 73mm/h) and 91mm/h
(40mm/h) during the 15-minute period until the KFSD volume scans
start on July 26, 2015, and June 28, 2017, respectively. Although wet
radome or attenuation effects on S-band radars (i.e., NEXRAD) are
conventionally ignored, two-way attenuation caused by wet radome
effects can be severe (as much as 1 to 2 dB for heavy rainfall events
[≈100mm/h]) (Ryzhkov and Zrnic, 1995). Considering that the
abruptly decreased status (1 to 2 dB) persists for< 1 h (e.g., Fig. 8(c)
and (f)), the effects on rainfall accumulation would not be serious over
a long period. However, the DPR–GR matchups contaminated by these
attenuation-related effects can mislead the statistical inference on the
CB (i.e., overestimation). Therefore, we excluded these two cases from
our analysis. Please note that these examples suggested the need for a
more detailed study on the GR's wet radome and attenuation issues
because GR products are taken advantage of as a reference for the va-
lidation of the GPM DPR products (Schwaller and Robert Morris, 2011;
Tapiador et al., 2012; Hou et al., 2014; Kim et al., 2014; Speirs et al.,
2017; Kidd et al., 2018; Watters et al., 2018). However, these anom-
alous cases demonstrate the usefulness of the DPR measurements to
monitor the abnormal behavior of GR observations.

4.2. Evaluation of RB

4.2.1. Detection of temporal change points
We performed multiple change-point analyses on the RB time series

for the KDVN and KFSD radars against the KDMX to confirm their
stationarity assumption over time. We selected RB estimates for this
analysis instead of individual GRs' CB estimates primarily because of
the abundancy of the RB estimates. We focused on the changes in the
mean of the RB distribution over time.

In the case of the KDVN radar, the mean and standard deviation
(SD) of RB over the entire period from 1 April 2014 to 30 September
2017 are 0.77 dB and 0.72 dB, respectively. For comparison, the cor-
responding RRCT values are 0.7 (mean) and 1.4 dB (SD), respectively.
We attributed the smaller SD of our results to the temporal averaging.
Fig. 9 (a) shows slight changes in the RB estimates over time, detected
by the multiple change point analysis. As a result, we divided the RB
time series into three statistically homogeneous periods in terms of
mean by two statistically significant change points at 5% significance
level on July 16, 2015, and July 7, 2017. We observed changes in the
mean and SD values from 1.06 (period 1) to 0.53 (period 2) to 1.05
(period 3), and 0.71 to 0.61 to 0.89, respectively, as shown in Table 3.
These changes suggest that at least one of the radars (KDMX and KDVN)

Fig. 6. Contour maps for (a) the number of matchup samples (sample size/
10,000); (b) the ordinary sample standard deviation (dB); and (c) the weighted
sample standard deviation (dB) of reflectivity differences between the DPR and
the KDMX radar depending on changes in the criteria values of the PBFR and
measurement time offsets (minutes). The red point in each contour map re-
present the location of corresponding sample statistics when the selected cri-
teria (PBFR ≥70% and the time differences< 120 s) are applied to matchup
samples. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Table 2
Sample statistics of reflectivity differences depending on precipitation types and
proximity to the bright band, given the PBFR of> 70% and measurement time
offsets of< 2min. This table excludes samples categorized as the “other” pre-
cipitation type by the 2ADPR algorithm.

Precipitation type Proximity to the BB σ σw ρ N

Stratiform Above 1.29 1.17 0.90 2533
Within 1.95 1.86 0.94 10,384
Below 1.75 1.58 0.96 3739

Convective Above 2.35 2.27 0.96 1602
Within 3.14 2.86 0.92 3241
Below 3.67 3.39 0.88 1834
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may experience changes in the system performance because of gradual
degradation of radar hardware over time or a calibration adjustment by
routine maintenance procedures. Unfortunately, however, we could not
verify this because we lacked detailed information on the radars' cali-
bration maintenance.

The RB estimates for the KFSD radar (Fig. 9 (b)) show statistics

similar (mean=1.68 dB, SD=1.15 dB) to those from RRCT
(mean= 2.1 dB, SD=1.6 dB). The most distinct feature of KFSD's RB
estimates from the KDVN case is the seasonality, which can be detected
by visual inspection as well as a multiple change point analysis. For an
analysis on the seasonal difference, we categorized several periods into
two categories: warm seasons (periods 1, 3, and 5); and cold seasons

Fig. 7. Instantaneous calibration bias estimates of (a) KDMX, (b) KDVN, and (c) KFSD against the DPR measurements. The calibration bias is defined as the
reflectivity difference between coincident GR and DPR (GR – DPR) in dBZ unit. Red squares represent the bias estimate, and the vertical bar shows the 95%
confidence interval of the estimate. The mean CB over the entire period is shown as a red solid line, and its one standard deviation range is expressed by gray-shaded
area. The CB values for events estimated by fewer than 25 matchup samples are excluded. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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(periods 2, 4, and 6), as shown in Fig. 9 (b) and Table 3. The mean RB
values for each season show that they tend to be higher in cold seasons
(2.10 dB) than in warm seasons (1.17 dB). Since the CB is likely due to
internal system behavior, it is unreasonable to conjecture that the
seasonal variability results from the CB. Because there is no seasonality
in the comparison results between the KDMX and KDVN radars, we can
infer that the KFSD radar suffers from other uncertainty sources

affected by seasonal changes in environmental conditions (i.e., non-
standard beam propagation, climatological effects, etc.). If such factors
exist, they would be more influential on the mean structure than the
variability considering small differences in the SD values (1.00 dB in
warm season and 1.09 dB in cold season) in spite of the relatively large
mean differences between the two seasons.

From the results of Section 4.1, we observed no clear evidence of the

Fig. 8. Temporal changes in reflectivity observed by the KFSD radar for the two extreme cases. Base scan reflectivity maps are shown in top (case 1) and middle (case
2) rows: before ((a) and (d)) and after ((c) and (f) the squall lines passed over the radar site, and when the squall lines sit on the top of the radar site ((b) and (e)) at (a)
03:47:44 UTC, (b) 03:52:02 UTC, and (c) 04:04:54 UTC on July 26, 2015 and (d) 05:56:23 UTC, (e) 06:00:45 UTC, and (f) 06:13:46 UTC on June 28, 2017. Black
circles represent 100 km range rings from the radar. Time series of the area-weighted average reflectivity above 10 dBZ within the 100 km range (g) are centered on
the KFSD's volume scan starting times of case 1 and case 2.
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Fig. 9. The RB time series for the (a) KDVN and (b) KFSD radars against the reference radar (KDMX). The red vertical dotted lines show the distributional change
point locations. Identified homogeneous periods are labeled by the numbers in light gray boxes at the top of each panel (also, see Table 3). The additional change
point in period 6 of the KFSD's RB (b) detected by the second change point analysis (in Section 4.2.3) is marked by a dark gray dotted vertical line and labeled in
bottom boxes in the panel. Light red and blue shaded area in (b) illustrate warm (May through October) and cold (November through April) seasons. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 3
Distributional change point analysis results on the RB estimates of the KDVN and KFSD compared to the KDMX radar. Stationarity assumption on the RB holds for
each period. Period 6* is more divided into two parts (6-1 and 6-2) by the second change point analysis on recollected RB estimates in terms of seasons.

GR 1 GR 2 Period index Period Relative bias (RB) # of rain events # of DPR overpasses for GR 1 # of DPR overpasses for GR 2 Season

From To Mean (dB) SD (dB)

KDMX KDVN 1 01-Apr-14 11-Jul-15 1.06 0.71 157 1 3 –
2 16-Jul-15 06-Jul-17 0.53 0.61 224 9 4 –
3 07-Jul-17 26-Sep-17 1.05 0.89 28 0 0 –

KFSD 1 01-Apr-14 11-Nov-14 1.47 0.91 76 0 1 warm
2 15-Nov-14 26-May-15 2.42 0.98 34 1 1 cold
3 29-May-15 21-Oct-15 1.10 0.96 47 2 1 warm
4 23-Oct-15 24-Jun-16 2.16 1.26 67 3 5 cold
5 26-Jun-16 25-Sep-16 0.61 1.03 35 1 0 warm
6* 04-Oct-16 25-Sep-17 1.94 0.98 98 3 1 –
6-1 04-Oct-16 14-Jul-17 2.21 0.95 62 3 0 cold
6-2 14-Jul-17 25-Sep-17 1.49 0.89 36 0 1 Warm
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inconsistency in the CB of the three GRs against the DPR measurements
over the entire time period. However, the results above show several
change points in the RB time series, which implies that at least one
among them underwent some changes. This suggests that infrequent
DPR measurements have difficulty capturing progressive changes in the
CB. Nevertheless, the DPR measurements could be useful to detect in-
stantaneous systematic changes in GR observations (Fig. 8) and to
evaluate the general performance of GRs from a long-term perspective.

4.2.2. RB between KDMX and KDVN
The Monte Carlo simulation results for periods 1 and 2 are illu-

strated in Fig. 10. Period 3 is excluded from the analysis since there is
no DPR observation for both of the KDMX and KDVN radars. The mean
RCB and RB estimates are very close, and the values are 1.18 and
1.06 dB for period 1 and 0.03 and 0.53 dB for period 2. The simulation
envelopes, displayed as the blue shaded area, represent the range of
possible mean RCB values inferred by RB estimates with the equivalent
sample size of max[nKDMX−DPR,nKDVN−DPR] under the null hypothesis.
With this in mind and because of sample size effects, we can observe
that the range for period 1 with an equivalent sample size of 3 is clearly

larger (−0.03 to 2.40 dB) than the range for period 2, with the
equivalent sample size of 9 (−0.08 to 1.26 dB). Because the mean RCB
values are within the simulation envelopes, the reflectivity differences
observed at the equidistance zones are likely to be affected mainly by
the calibration mismatch between the KDMX and KDVN radars. In this
case, we can use either the RCB or RB estimates to mitigate the dis-
agreements on the reflectivity of GRs.

4.2.3. RB between KDMX and KFSD
The seasonality of the RB estimates for the KFSD radar gives rise to

the need to reorganize the original RB time series so we can secure more
DPR observations while maintaining the validity of the stationarity
assumption. From Section 4.2.1, we observed that the mean RB values
categorized into the same season show the same pattern: high in the
cold season and low in the warm season. We performed the multiple
change point analysis for each season RB estimates. As a result, we
detected only one change point for warm season at the starting point of
period 5 (Table 3). This means that the mean of the RB distributions in
period 1 and 3 are statistically the same (hereafter, defined as warm
season RB estimates), but period 5 differs. This indicates that radar

Fig. 10. The RB time series of the KDVN against the KDMX radar for (a) period 1 and (b) period 2 described in Table 3. Each point illustrates event-based RB
estimates. Red and blue solid lines represent the overall RCB and RB over the periods, respectively. Light blue shaded area indicates the simulation envelope derived
by the Monte Carlo simulations based on the RB. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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calibration for KDMX, KFSD, or both radars could be changed for period
5 as compared to other periods. However, it is impossible to further
clarify the reason for the difference because only one DPR observation
exists for the KDMX radar for period 5. In the cold season, one change
point groups the RB time series into two parts: (1) period 2, 4, and the
first 62 events in period 6 (that is, period 6-1); and (2) the last events in
period 6. The former is hereafter defined as cold season RB estimates.
We note that the change point in the middle of period 6 was not cap-
tured by the first change point analysis. We speculate that it would be
caused mainly by the much smaller mean RB in period 5 (0.61 dB) than
period 6 (1.94 dB). The large cross-variability between periods 5 and 6
made the inner-fluctuation of RB in period 6 seem to be relatively
consistent so that it failed to detect the change point between periods 6-
1 (2.21 dB) and 6-2 (1.49 dB). Due to statistical consistency of RB es-
timates in period 6-2 with those in periods 1 and 3, they were in-
corporated into the warm season RB estimates.

Fig. 11 clearly illustrates the difference in the mean RB values be-
tween the seasons (1.36 dB in warm and 2.23 dB in cold season). In
contrast, the mean RCB shows relatively small difference between the
seasons (−0.48 dB and 0.01 dB for the warm and cold season, respec-
tively). The mean warm season RCB could include relatively larger
uncertainties in representing the population mean because of the lack of
DPR observations for both KDMX and KFSD radars (nKDMX−DPR=2,
nKFSD−DPR=3). However, the results of small differences in the mean

RCB estimates and large gaps in RB estimates between seasons suggest
that other factors may affect the RB of the KFSD radar more than the
calibration mismatch between the two radars does. As seen in Fig. 11
(b), the small sample size of DPR measurements gives rise to a wide
simulation envelope (−0.39 dB to 2.78 dB) covering the variability of
almost all individual RB estimates. This weakens the statistical in-
ference on the null hypothesis. Therefore, we focused on the cold
season data for further analysis.

Fig. 11 (a) displays the Monte Carlo simulation results for the cold
season data. In this case, we estimated the mean cold season RB and
RCB as 2.23 dB (blue line) and 0.01 dB (red line), respectively. The
range of the simulation envelope (gray shaded area) is from 1.13 dB to
3.33 dB. We can observe the large difference of 2.22 dB between the RB
and RCB, and the fact that the RCB is obviously outside the simulation
envelope (neq=7); this means that the radar calibration is clearly not
the only factor in the RB and other factors are more significant.

Compared to the KDVN case (Section 4.2.2), the different char-
acteristics of KFSD's RB, seasonality, and significant deviation from the
mean RCB lead us to suspect the existence of other error sources rather
than calibration bias affecting only the KFSD radar. In this context, we
found that the topographic effect could be the most plausible ex-
planation on this distinct feature of the KFSD radar. Unlike the KDMX
and KDVN radars, the terrain surrounding the KFSD radar is sufficiently
high enough above the radar site to give rise to partial beam blockages.

Fig. 11. Same as Fig. 10, but for the KFSD against the KDMX radar for (a) the cold season including periods 2, 4, and 6-1 and (b) the warm season with periods 1,3,
and 6-2.
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To quantify the effects of the partial beam blockage on reflectivity
products of the KFSD radar, we estimated these power losses based on
the Gaussian beam pattern model with 0.5° elevation angle and 0.95°
beam width. Note that, for the VN matchup data for NEXRAD radars,
every volume-match sample has an associated value (GR_blockage
variable in Table 1) indicating the mean fraction of GR beam blockage.
The power distribution within the main lobe is not uniform, but instead
depends on the distance of the blocked segments from the beam center.
This cannot be accounted for by the mean fraction, so we considered
the finer-scale interactions of each radar beam with the terrain, using
1/9th arc-second (approximately 3m resolution) digital elevation
models (DEMs) data from U.S. Geological Survey (U.S. Geological
Survey, 2016). The power loss for each ray is integrated from −2 to 2°,

both in azimuth and elevation angle directions, accounting for 97.7% of
the total sensitivity of the beam pattern. Readers interested in the
power loss simulation can consult Krajewski et al., 2006. The beam
propagation, and thus the heights of radar range bins, are simulated
under standard atmospheric conditions.

Fig. 12(a) shows the KFSD estimated power loss (dB) at 0.5° ele-
vation angle in the native radar coordinates. We found that all radar
beams within the azimuthal range of the ESV (from 109° to 149°, shown
as red-dotted lines in Fig. 12(a)) are, in part, blocked by the terrain to a
greater or lesser extent; the power loss ranges from 0.58 to 1.09 dB,
with a mean of 0.78 dB.. The power loss is a deterministic function of
the radar bins' range and azimuth in this simulation setup. Its effects on
the RB are nonlinear, depending on the observed reflectivity magnitude

Fig. 12. (a) Power loss estimation (dB) for the KFSD radar caused by partial beam blockages based on the Gaussian beam pattern model with 0.5° elevation angle and
0.95° beam width. Inner and outer circles represent 10 km and 50 km range rings, respectively. Inner angles between two red-dotted lines shows the azimuth range of
the ESV. (b) Reflectivity correction amount (dB) based on the beam blockage from January 2016 to September 2017. The red line represents the mean reflectivity
correction amount (0.72 dB). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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because the RB is estimated as a total reflectivity difference. To reflect
this fact, we performed reflectivity corrections for the time period from
September 2016 to September 2017 (Fig. 12(b)). As expected, the
corrections reduced the mean RB by 0.72 dB on average (shown as the
red line in Fig. 12(b)), which accounts for 50% (or more) of the mean
RB values during warm seasons, but not the seasonal patterns. We
speculated that the remaining parts and seasonality in the RB may
originate mainly from more severe blockage caused by: (1) GRs' ele-
vation angle of< 0.5°; and (2) non-standard beam propagations de-
pending on environmental conditions (i.e., vertical gradients of re-
fractivity). Please note that all blockages occur near the radar site
(< 10 km), where radar sampling volume sizes are quite small. Fine
deviations from the assumptions used in the simulation could have
major effects on the intensity of the power loss. The KFSD radar's larger
SD of RB values (0.93 for warm season and 1.09 for cold) compared to
the KDVN radar (also see Table 3) could support this hypothesis. In
addition, due to the longer range (≈160.5 km apart from both radars)
of the ESV for the KDMX–KFSD comparison than the range
(≈130.5 km) for the KDMX–KDVN, the elevations of GRs' base scan
sampling volumes contributing to CAPPI products within the ESV for
the KFSD case (3.36 km above sea level) are higher than the KDVN case
(2.40 km). This is likely to exacerbate the blockage effects in combi-
nation with low level precipitation in cold seasons. In fact, it could
increase the possibility of non-uniform beam filling and the occurrence
of overshooting. Even though the RB was estimated based on GRs'
vertically averaged reflectivity products targeted at the same altitude
(i.e., CAPPI scan), observational limitations caused by these factors
cannot be resolved. More accurate quantifications of each factor's effect
on the RB could be another topic of research. Based on the results,
however, it is obvious that the RB between adjacent radars with het-
erogeneous topographic or climatic conditions (i.e., KDMX vs. KFSD)
could be dominated by other factors, including the partial beam
blockage, rather than the radar calibration mismatch, even though they
may not be substantially different. In this case, the bias correction based
on the RCB cannot eliminate the RB. Also, systematic shifts of KFSD's
reflectivity according to the RB estimate may unexpectedly intensify its
bias magnitude because the partial beam blockage effects are depen-
dent on the range and azimuth of radar bins.

We note that the partial beam blockage effects on the KFSD radar do
not affect the CB and the RCB estimates in this study since the lowest
elevation angle of the refined matchups (i.e., above the BB) is more
than about 1.7°. For readers interested in more general DPR–GR com-
parisons, the blockage effect could be mitigated by: (1) excluding VN
matchup samples with beam blockage above a specific threshold frac-
tion; (2) incorporating quality information on the DPR or GR products
into their comparisons (e.g., Crisologo et al., 2018); or (3) comparing
the DPR instantaneous rainfall products with those derived by GR's
dual-polarimetric algorithms less prone to the partial beam blockage
effect.

5. Summary and conclusions

This study developed a methodology to compare reflectivity pro-
ducts from independent platforms (the GPM DPR and ground radars) to
investigate reflectivity differences between adjacent GRs for the same
targets. The inter-comparisons are performed as a way of assuring the
agreement of sampling volumes by different radars in space and time.
To compare different observational properties among the DPR and GRs,
we developed a statistically integrated framework using inter-compar-
isons of all the platforms with a Monte Carlo simulation. To apply the
proposed methodology, we collected the DPR–GR Normal Scan (NS)
swath datasets (version 5) from the GVS VN and Iowa Flood Center's
individual radar products for thee NEXRAD radars covering Iowa from
April 2014 to September 2017. These radars include KDMX in Des
Moines and KDVN in Davenport, Iowa; and KFSD in Sioux Falls, South
Dakota. The following are the primary findings of our study:

1. We can reduce the observed variability in reflectivity between the
DPR and GRs by constraining matchup samples on the following
criteria: (1) PBFR ≥70%; (2) observation time offset ≤2min; (3)
precipitation type classified as stratiform; and (4) matchup eleva-
tion≥ bright band (or melting layer) heights. The results con-
sistently agreed with other studies, with the exception of the ob-
servation time gap effects. Our study achieved its unique results by
computing the measurement time gaps based on the time differences
of individual rays of the DPR and GRs. These proposed time gap
measurements can accurately evaluate the variability caused by the
time differences. The time gaps played an important role in de-
termining the sample variability, given a PBFR>50%.

2. All three radars in the study (KDMX, KDVN, and KFSD) showed
negative CB against the DPR observations for the entire time period,
which means they systematically underestimated reflectivity com-
pared to the DPR (on average, −1.89 dB, −2.20 dB, and −1.68 dB
for KDMX, KDVN, and KFSD, respectively). However, the CB’ stan-
dard deviation values for all the radars are around 1 dB or less
(0.6 dB, 1.06 dB, and 0.42 dB for KDMX, KDVN, and KFSD), in-
dicating that the underestimation tendencies are consistent over
time. Because DPR observations can be biased at a certain level, the
estimated calibration bias for each radar could deviate from the true
calibration bias. This speculation is predicated on the increase
(≈1.17 dB) in the DPR reflectivity caused by the DPR algorithm
version change. However, the possible bias in the DPR reflectivity
data could be canceled out in the process of estimating relative bias.

3. Two extreme cases prove the ability of the DPR to monitor system
performance of GRs. The KFSD CB estimates on July 26, 2015, and
June 28, 2017, showed exceptionally large decreases compared to
others. These are caused by sudden decreases in the KFSD re-
flectivites when heavy rain fell on the radar site. We eliminated
these cases from further analyses because we believed that the ab-
normal changes were likely caused by wet radome and the con-
sequent attenuation effects rather than the CB.

4. Both the KDVN and KFSD RB time series, showed high temporal
fluctuations when compared to the KDMX measurements. We de-
tected several statistical change points in the mean using multiple
change point analyses (two change points for the KDVN, and six for
the KFSD). Periods divided by the change points showed distinct
statistical behaviors, suggesting that the stationarity assumption for
each period could be valid, but not for the entire analysis period.
The infrequency of DPR overpasses made it impractical to identify
such temporal variations by the DPR, giving rise to an obstacle to
use of the DPR alone as an operational tool for the calibration bias
corrections of the GRs.

5. Based on the simulation envelopes derived by Monte Carlo simula-
tions, we tested the null hypothesis that the RB is caused by the RCB.
In the case of the KDVN radar, the mean RB estimates were statis-
tically the same as the mean RCB estimates. We concluded that the
main source of the reflectivity differences between the KDMX and
KDVN radars was likely the calibration mismatch. CB corrections
based on either the RB or RCB (or CB for each GR) estimates can be
expected to improve the reflectivity agreements between the two
radars. In contrast, the RB of the KFSD radar against the KDMX
showed statistically different characteristics from the RCB along
with a conspicuous feature both in the mean and variability, i.e.
seasonality. The discrepancy between the RB and RCB was greater in
cold season. Because the radar calibration bias is mainly related to
performance degradation of the radar system hardware and/or er-
rors in the radar constant value at a given GR site, the seasonal trend
is likely to be affected by other factors rather than the calibration
mismatch. The most plausible explanation for the underestimation
tendency of the KFSD radar was the topographic effects and con-
sequent power losses caused by partial beam blockages. Under
heterogeneous climatic or topographic conditions, factors other than
calibration bias can dominate the reflectivity differences between
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adjacent radars, requiring a different strategy to eliminate these
differences.

Comparing our work to the study conducted by Warren et al.
(2018), we can summarize the main differences as follows: (1) GRs'
calibration bias changing point analysis based on RB estimates between
adjacent GRs; and (2) diagnosis of the cause of the RB. Using en-
gineering records on radar calibration maintenance, as Warren et al.
did, helps identify actual changing points of GR calibration. However,
the records are not readily obtainable for NEXRAD radars. Thus, our
study focused on the temporal structures of RB estimates among GRs. In
addition, our RB diagnosis (Section 4.2) can provide an appropriate
remedy specific to the problem at hand, which may involve distinct
error structures in space and time from the calibration bias. Given a
situation where the RB is dominated by the calibration bias (i.e., ad-
jacent GRs under similar environmental conditions as seen in our
study), different methods provided similar results on the usefulness of
the DPR observations to alleviate the bias, supporting the conclusions of
both studies. Furthermore, our study focused on the validation of sev-
eral issues underestimated by earlier studies, such as time gap effects on
the noise of the DPR–GR matchups and negligible attenuation of S-band
radars. We believe these issues are important to improve our under-
standing of miscalibration and other uncertainty sources in ground-
based radar. The scarcity of the DPR overpasses makes it challenging to
apply the approach presented in this study to operational radar QPE
systems, especially when the RB is dominated by factors other than CB.
Also, the variability of RB estimates makes it difficult to detect small
changes in CB. One possible solution is to incorporate statistical char-
acteristics of ground clutter echoes into the CB estimation procedure in
this study (Silberstein et al., 2008; Wolff et al., 2015; Louf et al., 2019).
Depending on the stability of the clutter echoes around a given GR site,
this technique could detect even small changes in CB.

In the future, the wet-radome attenuation by S-band radars should
be investigated as it is an underappreciated problem. GR's QPE algo-
rithms based on polarimetric variables are well known as less prone to
the attenuation effects. Still, more quantitative analyses on attenuation
would help improve the accuracy of not only the DPR reflectivity-based
algorithm but also single polarimetric GR applications still widely used
over the world.
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