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A B S T R A C T

This study proposes a new estimation method for vertically integrated liquid water content (VIL) using radar
reflectivity volume data and temperature sounding retrieved from the numerical weather model analysis. This
method addresses uncertainty factors in conventional VIL estimation associated with the effects from the bright
band (BB) and radar beam geometry near the radar site. The new VIL is then used for precipitation classification
(convective/stratiform) and wind turbine clutter detection in the hope that the estimated VIL indicating vertical
activities or development of precipitation systems will account for the two independent subjects together, in
opposite ways. The non-precipitation radar echoes returned from wind turbines do not likely generate significant
degree of VIL, compared to the one estimated from actual convective cells, which contain comparable reflectivity
strength. We tested the proposed VIL estimation, precipitation classification, and wind turbine clutter detection
methods using various Iowa cases and illustrated their successful application. We also performed a quantitative
evaluation of precipitation classification using ground reference data from a dense rain gauge network over the
Turkey River basin in Iowa. The evaluation results show improved performance for most non-convective event
cases estimated by the stratiform estimator (Z = 200R1.6) because we applied the convective estimator
(Z = 300R1.4) to all event cases without classification. In addition, we demonstrated the potential of the new
classification to mitigate significant BB effects in quantitative precipitation estimation using a correction method
based on the vertical profile of reflectivity.

1. Introduction

Vertically integrated liquid water content (VIL) is an estimate of
liquid (precipitation) mass within a column of air/clouds. It is generally
obtained by the vertical integration of radar reflectivity observations
(Greene and Clark 1972). Before enhanced capabilities (e.g., dual-po-
larization) are available from radar observations, operational fore-
casters applied this quantity to severe weather warnings, particularly
for hail detection and thunderstorm tracking (e.g., Johnson et al. 1998;
Witt et al. 1998; Skripniková and Řezáčová 2014), as well as to the
validation of cloud models (e.g., Löhnert et al. 2004). Because both hail
and thunderstorms imply the presence of convection, many studies
(e.g., Matrosov 2009; Zhang and Qi 2010; Qi et al. 2013) have in-
troduced VIL into precipitation estimation procedures to discriminate
precipitation types (convective or stratiform), which are characterized
by different raindrop size distributions (DSD). The variability of DSD is
one of the substantial error sources in quantitative precipitation esti-
mation (QPE), and different types of DSD often require different

estimators to improve QPE accuracy (e.g., Chapon et al. 2008). Other
than the VIL application, many other classification approaches exist;
these include the use of neural networks, observed rainfall intensity at
the surface, and DSD parameters (e.g., Anagnostou 2004; Llasat et al.
2007; Caracciolo et al. 2008). The classification also serves as a re-
quired first step for the application of the vertical profile of reflectivity
(VPR) correction (e.g., Creutin et al. 1997; Zhang and Qi 2010) to
mitigate the bright band (BB) effects in QPE.

Radar observations contain a variety of error sources (e.g., Villarini
and Krajewski 2010), and some of which become major uncertainty
factors in the VIL estimation (e.g., French et al. 1995; Boudevillain and
Andrieu 2003). Among these, BB often causes significant VIL over-
estimation, which may lead to the misclassification of stratiform to
convective precipitation. The presence of BB is typically an indicator of
stratiform precipitation (e.g., Stewart et al. 1984). Radar beam geo-
metry provides another practical challenge when estimating VIL for the
region near the radar site. VIL is usually underestimated because of the
radar beam's poor vertical coverage near the radar site (e.g., the so-
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called “cone of silence”), which makes it harder to detect a convective
system in that area. As such, some classification studies (e.g., Qi et al.
2013) switch to another decision factor (e.g., VIL to reflectivity) for that
range (e.g., < 25 km). On the other hand, some non-precipitation radar
echoes (e.g., those returned from wind turbines) might yield some de-
gree of VIL associated with the vertical beam width at the turbine lo-
cations. Despite enhanced capabilities (e.g., dual-polarization) of
modern radars, the elimination of these echoes has been quite chal-
lenging because the turbines are generally clustered to augment the
efficiency of energy generation (e.g., Kusiak and Song 2010), and their
interactions with radar beam often show features similar to intense
precipitation (e.g., Seo et al. 2015b; Zhang et al. 2016). However, the
turbine clutter does not seem to generate considerable degree of VIL
compared to actual convective cells that have reflectivity strength si-
milar to the clutter echoes. Therefore, the primary objectives of this
study are: (1) to propose a new VIL estimation method that can reduce
the effects from the aforementioned uncertainty factors (e.g., BB and
radar beam geometry); and (2) to examine the two independent issues
of precipitation classification and wind turbine clutter detection to-
gether, based on the improved VIL estimation. This approach is feasible
because both issues are likely represented in opposite ways by the
vertical activities or development of precipitation systems. Our basic
classification/detection strategy is to use VIL consistently over the en-
tire radar range without switching to another decision factor. We note
that all the components proposed in this study were developed as part
of the Iowa Flood Center (IFC) operational QPE algorithm (e.g.,
Krajewski et al. 2017).

The paper is structured as follows. In Section 2, we outline this
study's methodology for the VIL estimation, precipitation type and wind
turbine clutter classification, and evaluation of the proposed method.
Section 3 provides detailed algorithmic procedures for the elements
described in Section 2, including required parameters and their quali-
tative test results using a variety of Iowa cases. Section 4 evaluates the
proposed precipitation classification method using ground reference
data and demonstrates its potential for the VPR correction. In Section 5,
we summarize and discuss the main findings and relevant future work.

2. Methodology

In this section, we define VIL and provide its estimation procedures
using radar observations and temperature sounding retrieved from the
analysis of a numerical weather prediction model. The temperature
sounding data are used to mitigate VIL overestimation affected by the
melting layer effect (e.g., BB). We briefly describe schemes for pre-
cipitation type (convective/stratiform) classification and wind turbine
clutter detection based on the estimated VIL. We then specify weather
radar and reference data (e.g., rain gauge) sets used for the algorithm
development and testing and outline the evaluation of the proposed
method in this study.

2.1. VIL

Liquid water content indicates the degree of condensation and
precipitation development and can be determined using radar mea-
surements with an assumption about the DSD. Using an exponential
DSD (Marshall and Palmer 1948) and radar reflectivity (Z, mm6/m3)
presented in Eqs. (1) and (2), liquid water content (LW, kg/m3) is de-
rived in Eq. (3):
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where D, N0, and λ denote drop diameter (mm), concentration (m−4),

and size parameters (m−1), respectively. x is the maximum drop dia-
meter, and ρw is the density of water (kg/m3). Further detailed deri-
vation of Eq. (3) is provided in Greene and Clark (1972). For a given
radar gate (r) location, VIL (kg/m2) is estimated by the vertical in-
tegration of LW, calculated using radar reflectivity measurements at
multiple tilt angles:
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where n is the number of radar tilts, and hi(r) denotes the radar beam
altitude of ith tilt at a given gate location. While the subscripts, top and
bottom in Eq. (4) indicate the highest and lowest radar beam altitudes
related to the vertical beam width at a given location, their practical
calculation for the VIL estimation is provided in many studies (e.g.,
Zhang and Qi 2010; Qi et al. 2013).

The VIL estimation using radar reflectivity measurements in Eq. (4)
has two weaknesses: (1) VIL underestimation near the radar site due to
the poor vertical coverage of radar volume structure; and (2) VIL
overestimation in the regions affected by the BB (e.g., significant re-
flectivity enhancement). For a range near the radar site, the conven-
tional VIL approach integrates reflectivity values at each tilt over the
respective vertical intervals/distances that are relatively short. Fur-
thermore, most tilt elevations at this range is generally much lower than
the altitudes where convective systems are active, and this leads to VIL
underestimation at the range. We attempt to mitigate this under-
estimation by specifying a constant altitude range (e.g., 20 km) within a
radar domain for the VIL estimation. The use of an altitude limit
(20 km) is based on the updraft measurements of convection clouds
studied in the prior research (e.g., Auer and Sand 1966). For those radar
ranges where the altitude of the highest tilt is below 20 km, we uni-
formly expand observed reflectivity at the highest tilt up to 20 km after
checking the vertical continuity of reflectivity. The continuity check
inspects sudden enhancement of reflectivity at the highest tilt compared
to that at the second highest tilt to mitigate the BB effect at the highest
tilt. This extrapolation may exaggerate VIL quantities for some con-
vective systems (observed at the highest tilt) that pass the vicinity of the
radar site. Therefore, we use the estimated VIL for the classification of
precipitation types (convective/stratiform) only and do not directly use
it for rain rate estimation. The melting layer (e.g., BB effect) is another
important factor that can contaminate the VIL estimation because of
strong reflectivity enhancement—for example at the highest tilt near
the radar site. To avoid the effect from this contamination at all radar
ranges, we adjust observed reflectivity values (only for the VIL esti-
mation) that are likely affected by the BB using the temperature
sounding and local VPR structure. We retrieve the temperature
sounding data from the Rapid Refresh (Benjamin et al. 2016) model
analysis. The Rapid Refresh is a continental-scale, hourly-updated as-
similation and model forecast system based on a 13 km resolution
horizontal grid. We describe the algorithm details of VIL estimation and
provide some example cases to demonstrate the effectiveness of the
proposed scheme in the next section (Section 3).

2.2. Classification

In this study, we use two types of classification based on the esti-
mated VIL in Eq. (4): (1) the separation of precipitation types into
convective/stratiform regions; and (2) the detection of wind turbine
clutter. The precipitation classification employs a VIL threshold of
6.5 kg/m2 to define convective cores within precipitation regions. This
threshold applied to the entire network of the U.S. Weather Surveil-
lance Radar-1988 Doppler (WSR-88D) radars demonstrated good per-
formance in the studies of Zhang and Qi (2010) and Qi et al. (2013). We
then use a seeded region-growing method (Adams and Bischof 1994) to
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expand the convective areas centered on the detected cores by ag-
gregating pixels based on the inspection of surrounding pixel values.
This procedure is required to define a boundary of convective rain and
to mitigate misclassifications of some convective cells into stratiform
rain caused by the use of a fixed VIL threshold (Qi et al. 2013). As an
aggregating factor for this method, we use a VIL average of surrounding
pixels, while Qi et al. (2013) applied an average of those pixels' re-
flectivity (e.g., a threshold of 35 dBZ). We note that the use of re-
flectivity for region-growing might be vulnerable to the effect of the
melting layer within which radar reflectivity is significantly enhanced
(e.g., Austin and Bemis 1950; Zhang and Qi 2010). We decided to use
the threshold of VIL average (4.0 kg/m2) based on the results of the
qualitative case studies and quantitative evaluation using a few dif-
ferent VIL average values, as presented in section 3.2.

In the proposed approach, we put forward the following basic idea
to distinguish wind turbine effects: the estimated VILs for the clutter
locations should be relatively low despite the strong reflectivity values
observed in the locations. This is because radar observations at the
lowest tilts are typically contaminated by the interactions between
radar beam and wind turbine wakes (e.g., Seo et al. 2015b). To detect
likely returns from wind turbine effects, the proposed algorithm uses
adaptive VIL thresholds conditioning on reflectivity values (e.g.,
VIL < 2.0 kg/m2 for Z > 50 dBZ; VIL < 1.0 kg/m2 for Z > 25 dBZ).
We determined these threshold values based on the comparison of VIL
distributions between expert-selected obvious rain and wind turbine
cases. For the detected clutter locations, we perform a vertical con-
tinuity check once more and then expand the clutter regions because
wind turbines are typically clustered to maximize wind energy gen-
eration (e.g., Kusiak and Song 2010). We use the reflectivity average of
surrounding pixels (e.g., 15 and 40 dBZ) as an aggregating parameter in
the growing algorithm. The use of these threshold values is a subjective
decision based on our experience. While the clutter identification for no
rain area is relatively easier, it is even harder to detect clutter em-
bedded in rain echoes. Therefore, a higher threshold value (e.g., 40
dBZ) is required to preserve actual rain echoes for rain areas. The use of
reflectivity for this process does not seem to be affected by the melting
layer.

2.3. Testing and evaluation

Because the proposed method is motivated by the needs of the IFC
QPE algorithms, we use data from the WSR-88D radars in the Iowa
domain for development and evaluation of the algorithm in this study.
The WSR-88D system description, its data collection, and enhanced
polarimetric capability are provided in Crum and Alberty (1993), Crum
et al. (1993), and Ryzhkov et al. (2005), respectively. Fig. 1 shows the
locations of the involved radars covering Iowa, and data from some of
these radars (e.g., KARX, KDVN, KDMX, and KOAX) are used as illu-
strated in Sections 3 and 4. The locations of clustered wind turbines
(e.g., wind farm) are also presented in Fig. 1. Iowa is a relatively flat
area with some rolling hills, and there is no significant terrain and
orographic effect in the study domain. We provide both qualitative and
quantitative analyses to demonstrate and verify the utility of the pro-
posed VIL estimation and classification methods. In particular, we as-
sess the usefulness of our precipitation classification by evaluating
improvement in QPE. This requires a high-quality, high-density ground
reference (e.g., rain gauge) network that can capture the dynamic as-
pects of precipitation movements, evolution, and spatial coverage
change of each precipitation type. Therefore, we selected a network
containing 20 rain gauges within the Turkey River basin in Iowa (see
Fig. 1) and collected hourly data for a period of 1 May–15 June 2013,
during which time we hosted a NASA field campaign known as Iowa
Flood Studies or IFloodS (e.g., Quintero et al., 2016; Seo et al. 2018).
We note that the QPE product employed in the evaluation was gener-
ated using the data from the KARX radar that is the closest one to the
rain gauge network. The distances between the KARX radar and the rain

gauges are 80–120 km, and an average inter-gauge distance between
nearest rain gauges within the network is 13.2 km. The network con-
sisted of dual tipping-bucket gauges at all 20 sites; their maintenance
and quality controls are documented in Seo et al. (2015a). For a
quantitative measure, we use several statistical metrics of multiplicative
bias (B), correlation (r), mean absolute error (MAE), and root mean
square error (RMSE). Because these metrics have been widely used in
several meteorological and hydrologic studies (e.g., Seo et al. 1999; Li
et al. 2017), we do not provide their detailed formulas here. We also
note that the evaluation of wind turbine clutter detection is limited to
qualitative assessment only because rain gauges deployed near the wind
turbines are quite rare.

3. Algorithm development and testing

3.1. VIL estimation

VIL estimation begins with construction of a two-dimensional
(polar-based) reference map of reflectivity that contains reflectivity
observations below the melting layer. This reference map supports in-
spection of the vertical variability of reflectivity at each grid location.
We use the temperature sounding data to define an altitude range as-
sociated with the melting layer. Figs. 2 and 3 illustrate two example BB
cases that show considerable reflectivity enhancement (e.g., about
3–5 dB) within the melting layer. The VPRs and temperature sounding
presented in Fig. 3 were sampled from and averaged over a range of
30–80 km from each radar. Some tests (not provided) on several tem-
perature profiles retrieved from the Rapid Refresh model grids within
the sampling zone confirmed that they have insignificant variability
within the sampling zone, and its effect on the VPR variability should
be considered negligible. Therefore, temperature profiles retrieved from
coarse horizontal resolution data such as North American Regional
Reanalysis (Mesinger et al. 2006) could be used for other geographic
regions where high resolution data are barely available.

Based on the two cases in Figs. 2 and 3, we identify a temperature
zone above 5 °C as the region below the melting layer and include the
lowest tilt (reflectivity) data observed from this region in the reference
map. For regions where the lowest tilt intersects with the melting layer
(e.g., between 5 and − 5 °C), we select the tilt data closest to the
temperature of about −5 °C as reference values. Once the reference

Fig. 1. The domain of this study and WSR-88D radar locations covering Iowa.
The black solid line and the circular zones indicate the Iowa border and each
individual radar domain (230 km from the radar), respectively. The red dots
represent 20 rain gauge locations within the Turkey River basin (white solid
line) in Iowa. The clustered orange dots indicate wind farm locations as of
2015. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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map is complete, we then examine VPRs at all grid locations and re-
place reflectivity values that show strong enhancement within the
melting layer with the one in the reference map. The VIL estimation
procedure described in Eq. (4) integrates this adjusted reflectivity field
vertically up to 20 km depending on the WSR-88D's volume coverage
pattern (e.g., Brown et al. 2005) and creates a two-dimensional VIL map
as illustrated in Fig. 4. Fig. 4 compares the proposed VIL estimation
with the conventional estimation with/without a 20 km altitude lim-
itation and demonstrates that the proposed estimation successfully re-
duces the BB effect for the two cases shown in Figs. 2 and 3. The clear
BB effect appears in Fig. 4, and the mitigation of this effect in the VIL
estimation leads to an improved precipitation classification because a
system with the melting layer should be identified as stratiform pre-
cipitation.

3.2. Classification of precipitation types

As described in Section 2.2, classification involves two steps: (1)
identification of convective cores using a VIL threshold; and (2) ex-
pansion of areas centered on the cores using the VIL structure of
neighboring pixels. After these two steps, the remaining rain pixels are
defined as stratiform regions. While the first step is quite simple (e.g.,
binary thresholding), the subsequent one requires an aggregating factor
to grow the convective regions. For the aggregating factor, we do not
use reflectivity to inspect neighboring pixels. The use of reflectivity is
likely inappropriate because reflectivity enhanced by the BB effect often
results in overgrowing, which entails another decision on which tilt
data should be selected for the neighboring pixel values. Therefore, we
use the estimated VIL to simplify the proposed classification procedures
(as it is employed in the first step) and define the region-growing
parameter as an average of surrounding VIL values.

We tested a variety of cases (e.g., over 50 cases) observed from
multiple radars to decide on the parameter values and inspected the

Fig. 2. Base scan (approximately 0.5° elevation angle) reflectivity maps for two
example BB cases observed from the KOAX and KDVN radars. The red circular
bands in the maps indicate the regions affected by the BB effect. The maximum
range shown in the map is 230 km, and the circular lines centered on the radars
demarcate every 50 km distance from the radars. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 3. Estimated VPRs (gray solid lines) and retrieved temperature sounding
(blue solid lines) for the cases presented in Fig. 2. The gray-colored areas and
dashed arrows indicate the temperature ranges associated with the BB effect
(e.g., reflecivity enhancement). (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. Maps of estimated VIL for the BB cases presented in Fig. 2. (a) and (d): the proposed VIL estimation in this study; (b) and (e): the conventional method with a
20 km altitude limitation; and (c) and (f): conventional estimation. The annular patterns near the radar site shown in (b) and (e) were because of reflectivity
enhancement at the highest elevation angle and its extrpolation up to 20 km. (a) and (d) demonstrate that the proposed VIL estimation mitigates clear BB effects
observed in (b), (c), and (e).

Fig. 5. Maps of base scan reflectivity, VIL, and precipitation classification (with different region-growing parameters) for three example cases observed by the KARX
and KDMX radars. The red circular bands in the reflectivity maps of (a) and (b) indicate the regions affected by the BB effect. Each colour scale used for the
reflectivity and VIL maps is identical to the ones in Figs. 2 and 4, respectively. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

B.-C. Seo, et al. Atmospheric Research 236 (2020) 104800
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maps of base scan reflectivity, estimated VIL, and precipitation classi-
fication (representative cases are shown in Fig. 5). Overall, our VIL
estimation demonstrates effective control of the effects from the BBs
observed in Fig. 5(a) and (b). The BB effects are indicated by circular
bands in Fig. 5. The classification maps in Fig. 5 show that the con-
vective regions become gradually larger as the parameter (VIL average
of neighboring pixels, VILavg) value decreases. However, relatively
small parameter value often yields erroneous expansion to the regions
affected by the BB, as shown in the map (VILavg = 2.0) of Fig. 5(b). A
prominent aspect of the proposed approach is that convective storms in
the vicinity of the radar site can be successfully captured, as presented
in Fig. 5(c). This was challenging because of the deficient vertical
coverage at close radar ranges. To determine the region-growing
parameter, we performed a simple sensitivity analysis using hourly rain
gauge data from the Turkey River basin (see Fig. 1) for the entire period
of 1 May–15 June 2013. We applied VILavg of 3.0, 4.0, 4.5, and 5.0 and
generated hourly radar rainfall estimates for all different VILavg values.
We then evaluated radar estimates using rain gauge data, and the re-
sults showed that VILavg of 3.0 and 4.0 performed slightly better than
others. The performance difference between 3.0 and 4.0 seemed neg-
ligible and did not show a distinguishable difference. Therefore, we
selected 4.0 as the region-growing parameter to reduce the potential
chance of containing the BB effect in convective areas, rather than
taking slightly larger convective zones as shown in Fig. 5.

3.3. Detection of wind turbine clutter

VIL describes vertical development of precipitation systems and
implies the degree of convective activities for specific locations. Given
the features of radar returns from wind turbines (e.g., Hood et al. 2010;
Seo et al. 2015b), their VIL should be significantly smaller than that for
an actual convective cell, despite their comparable reflectivity strength
observed. This is mainly caused by their weak vertical extension (lim-
ited tower height and blade size) and sudden decrease of reflectivity at
higher tilts. The reflectivity values obtained from the wind turbine re-
turns are often>50 dBZ, even at a range over 100 km from the radar,
and these returns occasionally appear together with rain echoes. Fig. 6
shows three example cases of clustered wind turbine clutter: (a) wide-
spread clutter contamination in a clear (no rain) mode; (b) mixed re-
turns from ground and some wind farm locations in a rain mode; and (c)
wind farm clutter embedded in rain echoes. We present the maps of
base scan reflectivity and our VIL estimation for each case in Fig. 6.
Insets in Fig. 6 show detailed reflectivity and the VIL patterns of each
region marked by small red boxes in the reflectivity maps. While the
clutter at far ranges shown in the insets of Fig. 6(a) and (c) yields sig-
nificant VIL contributed by the wide vertical beam width at those
ranges, the estimated VIL for those near the radar shown in the inset of
Fig. 6(b) does not seem significant. The cases in Fig. 6(a) and (c) imply
that the convective cells defined by the proposed method in section 3.2
need to pass an additional check (e.g., vertical continuity) to filter out
these clutter cases.

To develop a clutter detection strategy, we further examined the VIL
distributions of radar returns from both wind turbines and precipitation
systems conditioning on the reflectivity strength. We analyzed the cases
shown in Figs. 5(a) and 6(a) using two reflectivity ranges (> 50
and > 25 dBZ) and presented their VIL distributions in Fig. 7. As il-
lustrated in Fig. 6(a), there are a variety of clutter returns in terms of
the reflectivity strength, and the two ranges represent very intense
(> 50 dBZ) and relatively mild (> 25 dBZ) interference by the clusters
of wind turbines, respectively. For the intense reflectivity range, we can
observe that most clutter cells (about 80%) exist within a low range of
VIL (e.g., 0.0–2.0 kg/m2), and rain cells make little contribution within
this range. On the other hand, the mild reflectivity range in Fig. 7(a)
shows that about 20% of rain cells are below the VIL value of 1.0, and
this also indicates the requirement for additional procedures to exclude
rain cells. The shaded areas in Fig. 7 specify the proposed conditional

VIL thresholds (VIL < 1.0 for Z > 25 dBZ; and VIL < 2.0 for Z > 50
dBZ) to identify wind turbine clutter cells. We perform a vertical con-
tinuity check as an additional procedure to exclude rain cells, particu-
larly for the ones included in the clear rain case shown in Fig. 7(a). This
continuity check inspects the vertical gradient of reflectivity between
successive tilts using the lowest three tilts (e.g., typically 0.5°, 1.0°, and
1.5° elevation angles in a rain mode) and restores rain cells when there
is no distinguishable reflectivity drop at higher tilts. For example, the
procedure regards cases as wind farm echoes when there is no echo
(e.g., < 10 dBZ) observed at higher tilts (although we observed some
significant echo at the lowest tilt), or reflectivity difference between
successive tilts are> 20 dBZ. We then use the detected cells as seeds to
expand the clutter regions with the parameters of reflectivity values, 15
and 40 dBZ for no rain and rain regions, respectively. We present our
detection results together with precipitation type classification in Fig. 8
for the presented cases in Fig. 7. All cases in Fig. 8 demonstrate suc-
cessful clutter detection in both clear and rainy cases. However, we also
note that our proposed approach was partially unsuccessful in detecting
few cases of mild and strong clutter observed in Fig. 8(a). Our data
quality control (e.g., Seo et al. 2015b) can readily handle this handful of
turbine echoes, as well as the ground clutter shown in Fig. 8. We did not
apply the quality control procedure in Fig. 8 to show all the turbine
clutter detected. We also examined many other rain cases to make sure
our detection approach does not erroneously remove rain echoes.

4. Evaluation

In this section, we quantitatively assess the rainfall estimation im-
provement accomplished using the proposed classification method. To
enable this assessment, we applied different reflectivity-rain rate (Z-R)
relationships according to the classified types (i.e., Z = 300R1.4 for
convective; and Z = 200R1.6 for stratiform) and compared the results
with those from the case without classification. We uniformly applied
one of the estimators (e.g., Z = 300R1.4) for the case without classifi-
cation. This uniform estimator had been applied to the U.S. official QPE
algorithm of WSR-88Ds for many years (Fulton et al. 1998), and is also
currently used as the main element to generate the real-time IFC rainfall
estimates (e.g., Krajewski et al. 2017).

We evaluate two rainfall products, those of which were processed
with/without precipitation classification, using hourly rain gauge data
over the Turkey River basin (see Fig. 1) for the six-week period of 1
May–15 June 2013. Fig. 9 shows six-week rainfall accumulation maps,
centered on the KARX radar, with/without precipitation classification.
The maps shown in Fig. 9 (e.g., the regions marked by the dashed
circles) demonstrate that classification tends to increase rainfall
amounts in the relatively light rain regions. This period was quite wet
and offers enough rain events to allow us to examine the different event
features and the event-dependent (e.g., convective/stratiform or heavy/
light) performance in rainfall estimation. Based on rain gauge records
and visual inspection of the IFC rain rate maps archived for the period,
we selected 16 rain events with various durations and rainfall in-
tensities. Table 1 lists each individual event period, duration, and
maximum rainfall intensity (mm/h) observed during the event. The
maximum intensity in Table 1 implies an event feature because a rain
event with high maximum intensity is likely a convective one, for which
differences between two estimation procedures (with/without classifi-
cation) tend to be minimized.

Fig. 10 shows our rain gauge evaluation results for all 16 rain
events; the performance of the two procedures is measured by multi-
plicative bias (B), correlation (r), mean absolute error (MAE), and root
mean square error (RMSE). These metrics were calculated using hourly
radar-gauge pairs obtained for all 20 gauge locations. The values of all
metrics are also presented in Table 2. The multiplicative bias is re-
presented as a ratio between radar estimates (R) and rain gauge ob-
servations (G). In Fig. 10, the bias seems highly variable among the
selected events, although the correlation is quite consistent (e.g., > 0.7)
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for most events. We notice that some light rain events (6, 13, and 16)
led to significant overestimations (over 150%), indicated by their bias
values. For these light rain cases, the multiplicative bias is sensitive to a
low range of rainfall magnitude, and we confirmed that the significant
data portion of all three events belongs to a rainfall range below
1.0 mm/h. It is also recognized that QPE for such rainfall regime is
quite challenging, including with polarimetric estimation approaches
(e.g., Ryzhkov et al. 2005; Cifelli et al. 2011). Overall, the performance
illustrated in Fig. 10 does not show prominent differences between the
two estimation procedures for most event cases, whereas event 7 shows
a considerable error reduction in MAE and RMSE. For most cases in
Fig. 10, a reflectivity range for stratiform rain (e.g., 0–30 dBZ) does not
tend to yield significant rainfall differences based on the application of
the two different Z-Rs used in this study. We note that one factor that

can make notable differences is the BB effect, as seen in the clear per-
formance difference observed in the event 7. We ensured the presence
of the melting layer and its effect on the reflectivity observations over
the basin area during the entire period of event 7. We also applied a
VPR correction scheme as documented in Seo et al. (2011); we present
the correction results in Fig. 11. The improvement in the current VPR
correction compared to the one in Seo et al. (2011) is that the current
scheme corrects (adjusts) reflectivity values within regions identified as
stratiform precipitation only. Fig. 11 shows that our correction reduces
the overestimation tendency caused by the BB effect, and the estimated
rainfall values with VPR correction in Fig. 11 seem much closer to the
one-to-one line. This verifies the success of our VIL estimation and
subsequent classification for the regions affected by the BB effect.

Fig. 6. Maps of base scan reflectivity and VIL for three example cases of clustered wind turbine clutter: (a) widespread clutter in a clear mode; (b) wind turbine clutter
mixed with ground clutter in a rain mode; and (c) embedded wind turbine clutter within precipitation echoes. The insets show detailed spatial patterns for the regions
as indicated by the red dashed squares. Colour scales are identical to the ones in Figs. 2 and 4. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Fig. 7. VIL distributions (histograms) conditioned on reflectivity strength (> 25 and > 50 dBZ) for the rain and widespread wind turbine cases shown in Figs. 5(a)
and 6(a), respectively. The gray colored areas indicate our threshold selection depending on the reflectivity strength.
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5. Summary and discussion

We demonstrated the utility of the VIL application to the classifi-
cation of precipitation types (convective/stratiform) and the detection
of wind turbine effects present in radar echoes. A number of studies
have investigated the two subjects separately, but herein we propose to
examine these subjects together because both are likely well char-
acterized by the vertical signatures observed from radar data. This new
approach proposed for VIL estimation uses three-dimensional radar
reflectivity data and temperature sounding retrieved from a numerical
model (e.g., Rapid Refresh) analysis. Our approach detects reflectivity
enhancement within the melting layer identified based on temperature
sounding, adjusts the enhancement using the local VPR, and reduces
probable VIL overestimation caused by the BB effects. We tested the
proposed VIL estimation for many cases observed in Iowa and de-
monstrated its usefulness using the two representative BB cases, as
shown in Fig. 4.

Unlike other studies that involve a complex decision tree (e.g.,
Steiner et al. 1995; Qi et al. 2013), the classification procedure de-
scribed in this study is quite simple and includes two decision factors:
(1) a VIL threshold (6.5 kg/m2) to define convective cores; and (2) a
region-growing parameter (4.0 kg/m2 of VIL) to expand convective
regions. We apply these two factors consistently over the entire radar
domain without any range (or altitude) limitation, while other afore-
mentioned studies require a set of different reflectivity thresholds de-
pending on temperature, range, and altitude. We also avoid using

Fig. 8. Classification maps including the detection of wind turbine clutter for the three cases presented in Fig. 6. The insets show the detailed spatial patterns of the
clutter identification for the red dashed regions. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

Fig. 9. Rainfall accumulation maps with/without classification for the six-week
period of 1 May–15 June 2013. The dashed circles in “Classification” indicate
major differences between the two accumulation maps. The maximum range
shown in the map is 150 km, and the circular lines centered on the KARX radar
demarcate every 50 km distance from the radar.

Table 1
List of selected rain events for the entire period of 1 May–15 June 2013.

Event Event period (UTC) Duration
(h)

Maximum
intensity
(mm/h)

1 2 MAY 08:00–4 May 11:00 51 8.6
2 8 May 22:00–10 May 04:00 30 20.1
3 19 May 10:00–20 May 09:00 23 29.5
4 21 May 01:00–07:00 6 21.6
5 22 May 20:00–23 May 08:00 12 9.3
6 25 May 03:00–20:00 17 3.1
7 26 May 12:00–19:00 7 14.6
8 28 May 0900–12:00 3 4.6
9 29 May 20:00–30 May 06:00 10 44.1
10 30 May 22:00–31 May 00:00 2 19.2
11 4 June 12:00–5 June 05:00 17 12.2
12 5 June 08:00–6 June 02:00 18 5.5
13 8 June 21:00–10 June 02:00 29 3.1
14 12 June 10:00–13:00 3 37.2
15 12 June 21:00–13 June 03:00 6 29.3
16 15 June 06:00–15 June 13:00 7 3.9
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reflectivity in the (convective) region-growing procedure because it is
vulnerable to the BB effects. Instead, we adhere to VIL, for which the BB
effects are already mitigated, and selected a parameter value of 4.0 (an
average of neighboring pixels) based on a visual inspection and simple
sensitivity analysis. The sensitivity analysis tested several VIL values by
performing a radar-gauge comparison.

We evaluated the proposed precipitation classification method using
data from a high-quality, high-density rain gauge network deployed in
the Turkey River basin, Iowa. The evaluation metrics (e.g., bias) show
that the estimation performance seems highly variable among the
presented event cases (Fig. 10). We speculate that the bias fluctuation
observed in Fig. 10 is likely not associated with the proposed classifi-
cation method, but rather accounts for the limitation of the R(Z) esti-
mators for some event cases. We have been making an effort to im-
plement and test the most recent polarimetric estimator (e.g., specific
attenuation) documented in Ryzhkov et al. (2014) and Wang et al.
(2019), which may resolve the issue of estimation variability on dif-
ferent event characteristics (e.g., drop size distribution). The rainfall
accumulation maps shown in Fig. 12 illustrate an early result on the
application of specific attenuation in conjunction with the proposed
quality control method in this study. Based on a visual inspection, we
verify that the proposed VIL method effectively removes significant
wind farm echoes observed in the map of Multi-Radar Multi-Sensor
(MRMS, Zhang et al. 2016). Because a quantitative evaluation (e.g.,
accuracy) of our new estimation presented in Fig. 12 is not within the
scope of this study, we hope to report the result of this effort in the near
future. The proposed classification method shows improved perfor-
mance (compared to no classification) primarily for non-convective
cases in Fig. 10. The convective cases (e.g., events 3, 9, and 14) show
similar performance because the effect of classified stratiform area
within the limited coverage of the rain gauge network is minimized in
those cases. We also demonstrated the usefulness of our precipitation
classification for a VPR correction procedure over the regions affected
by the BB effects. The VPR correction without proper classification of
precipitation types might lead to significant overestimation over con-
vective regions placed at far ranges (e.g., Bellon et al. 2005).

The detection of wind turbine clutter is challenging because of their
rain-like patterns in radar returns (e.g., Seo et al. 2015b). We note that
some earlier classification studies may misclassify wind turbine clutter
as convective cores if preprocessing (e.g., data quality control) fails to
remove them. For example, Qi et al. (2013) suggested a reflectivity
threshold of 45 dBZ below the freezing level within a 25 km radar
range. However, we have observed many cases of wind turbine clutter
where reflectivity values were even higher than 50 dBZ over a variety of
radar ranges in sufficiently warm environments. Since wind turbines
are typically clustered to optimize their operational efficiency (which
makes the clutter feature similar to isolated precipitation), it is hard to
remove the non-precipitation returns based on application of a simple
threshold of polarimetric observations (e.g., copolar correlation coef-
ficient or variability of differential phase). As such, we developed a new
idea that can detect wind turbine clutter based on the estimated VIL
because it is unlikely that the effect of wind turbines is extended ver-
tically compared to actual convective cells, which show comparable
reflectivity strength. The cases shown in Fig. 8 verify our proposed idea
and its applicability to various wind turbine effects (e.g., clutter em-
bedded in rain echoes). However, we note that there is a trade-off be-
tween removing clutter and preserving rain echoes, and application of a
strong filter may lead to the removal of some portion of light rain.
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Fig. 10. Rain gauge evaluation results for rainfall estimates with/without
precipitation classification using 16 rain events selected from the period of 1
May–15 June 2013. The performance (accuracy) is measured by multiplicative
bias (B), correlation (r), mean absolute error (MAE), and root mean square error
(RMSE).

Table 2
Rain gauge evaluation results quantified by the statistical metrics for the listed
rain events in Table 1.

Event No classification Classification Maximum
intensity
(mm/h)B r MAE

(mm)
RMSE
(mm)

B r MAE
(mm)

RMSE
(mm)

1 0.74 0.73 0.57 0.98 0.77 0.75 0.54 0.95 8.6
2 0.61 0.84 0.45 1.12 0.68 0.83 0.44 1.10 20.1
3 1.07 0.91 0.64 1.64 1.08 0.90 0.66 1.67 29.5
4 1.02 0.91 0.64 1.60 1.02 0.91 0.64 1.59 21.6
5 0.44 0.77 0.39 0.93 0.49 0.80 0.36 0.88 9.3
6 1.74 0.73 0.36 0.86 1.87 0.75 0.37 0.86 3.1
7 1.39 0.87 1.56 2.67 1.34 0.88 1.38 2.30 14.6
8 0.95 0.82 0.45 0.79 1.04 0.83 0.48 0.76 4.6
9 0.82 0.92 1.60 3.43 0.83 0.92 1.61 3.44 44.1
10 1.07 0.98 0.43 0.76 1.10 0.97 0.49 0.81 19.2
11 1.02 0.86 0.40 0.82 1.13 0.85 0.43 0.83 12.2
12 0.70 0.71 0.21 0.51 0.76 0.74 0.20 0.48 5.5
13 1.24 0.70 0.09 0.25 1.52 0.69 0.10 0.27 3.1
14 1.22 0.95 1.07 2.06 1.24 0.95 1.10 2.07 37.2
15 1.07 0.88 1.39 3.05 1.08 0.88 1.40 3.07 29.3
16 1.72 0.81 0.37 0.68 1.98 0.82 0.46 0.75 3.9
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