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Multi-Scale Hydrologic Evaluation of the National Water Model Streamflow Data

Assimilation

Bong-Chul Seo , Witold F. Krajewski , and Felipe Quintero

Research Impact Statement: Based on the multi-scale evaluation at 70 Iowa locations, the National Water
Model streamflow data assimilation leads to improved downstream predictions, compared to open-loop and per-
sistence methods.

ABSTRACT: Streamflow predictions derived from a hydrologic model are subjected to many sources of errors,
including uncertainties in meteorological inputs, representation of physical processes, and model parameters. To
reduce the effects of these uncertainties and thus improve the accuracy of model prediction, the United States
(U.S.) National Water Model (NWM) incorporates streamflow observations in the modeling framework and
updates model-simulated values using the observed ones. This updating procedure is called streamflow data
assimilation (DA). This study evaluates the prediction performance of streamflow DA realized in the NWM. We
implemented the model using WRF-Hydro® with the NWM modeling elements and assimilated 15-min stream-
flow data into the model, observed during 2016–2018 at 140 U.S. Geological Survey stream gauge stations in
Iowa. In its current DA scheme, known as “nudging,” the assimilation effect is propagated downstream only,
which allows us to assess the performance of streamflow predictions generated at 70 downstream stations in the
study domain. These 70 locations cover basins of a range of scales, thus enabling a multi-scale hydrologic evalu-
ation by inspecting annual total volume, peak discharge magnitude and timing, and an overall performance
indicator represented by the Kling–Gupta efficiency. The evaluation results show that DA improves the predic-
tion skill significantly, compared to open-loop simulation, and the improvements increase with areal coverage of
upstream assimilation points.

(KEYWORDS: flood forecasting; multi-scale data assimilation; National Water Model; streamflow assimilation.)

INTRODUCTION

In May 2016, the United States (U.S.) National
Weather Service (NWS) has implemented and contin-
ues to run a continental-scale hydrologic model, the
National Water Model (NWM), as part of its opera-
tions. The NWM is a distributed hydrologic model
that simulates water cycles and predicts streamflow
over the entire U.S. (Cosgrove et al. 2015, 2016). The
operational implementation of the NWM demon-
strates the increasing demand for high-resolution

hydrologic information. This modeling framework
helps researchers simulate and understand more
comprehensive aspects of the interactions between
atmosphere and land surface, which have been unex-
plored by conventional approaches using lumped and
mesoscale models (e.g., Sorooshian et al. 1993; Cuo
et al. 2011). Distributed modeling also complements
current streamflow guidance provided only at desig-
nated sites and expands prediction capabilities to
ungauged locations. Recent results from continental-
scale retrospective simulations provide a glimpse into
modeling performance and demonstrate the early
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success and potential of data-intensive national-scale
flood forecasting (e.g., Rafieeinasab et al. 2016). A
recent study by Rojas et al. (2020) documents the per-
formance of the NWM over Iowa at independent loca-
tions from which the model included no data.

The motivation to implement streamflow data
assimilation (DA) in the NWM was to improve model
simulation and forecast initial conditions by correcting
modeled streamflow using observations at gauging sta-
tions. However, the actual performance and capabili-
ties of DA in the NWM have not been documented well
at ungauged locations. Because the NWS has not con-
figured the model to run in an open-loop mode without
streamflow observations, and the model replaces mod-
eled streamflow at assimilation locations with observed
values in the model outputs, it has been difficult to
assess the model’s predictive skill. Therefore, we devel-
oped a hydrologic evaluation framework to understand
the capability of and improvements by the NWM’s cur-
rent DA scheme. We examined multiple aspects of
DA’s effects on hydrologic prediction and characterized
their features regarding catchment scale and fractional
coverage of upstream assimilation locations.

MODEL AND DATASET

The NWM is an hourly based, uncoupled hydrologic
modeling and forecasting system built on the WRF-
Hydro® community model (Gochis et al. 2018). In this
study, we implemented WRF-Hydro® with the NWM
configuration, similar to the one running at the NWS,
for the Iowa domain where abundant water informa-
tion is readily accessible via an online platform (e.g.,
Demir and Krajewski 2013; Krajewski et al. 2017). In
Iowa, there are many U.S. Geological Survey (USGS)
stream gauges covering a wide range of drainage scales
(Figure 1). This enables a comprehensive performance
evaluation of NWM DA across scales. NWM retrospec-
tive analysis with streamflow DA requires meteorologi-
cal forcing products (e.g., precipitation) and streamflow
observations, and we collected these data for the period
of 2015–2018. We note that several earlier studies (Seo
et al. 2018; Krajewski et al. 2020; Seo and Krajewski
2020) include a variety of evaluation (e.g., precipita-
tion) and analyses of these data for the common tempo-
ral and spatial domain used in this study.

NWM Implementation

We acquired the NWM domain dataset for Iowa
from the Consortium of Universities for the Advance-
ment of Hydrologic Science, Inc. (CUAHSI,

Cambridge, MA, USA), using an application known
as “domain subsetter (Castronova et al. 2019)” offline.
The model grids and parameters were retrieved from
the NWM version 1.2.2, rather than the current oper-
ational version, 2.0 (the version 1.2.2 was the latest
one available with the application at the time of con-
ducting this study). This is unlikely to generate seri-
ous differences in simulation results because the
version upgrade focused mostly on spatial (e.g., add-
ing Hawaii) and temporal (e.g., extended lookback
hours of the analysis cycle for model calibration and
regionalization) domain expansion. To implement
NWM in our computational environment, we used
WRF-Hydro V5.0.3, which allows operational NWM
configurations, including the DA capability.

The NWM consists of the land surface model (LSM)
and water routing elements, each of which is executed
on a different NWM grid resolution (1 km for LSM
and 0.25 km for routing, respectively). The LSM repre-
sents a vertical exchange of energy and water fluxes
between atmosphere and land surface using the Noah
multi-parameterization (Noah-MP) model (Niu et al.
2011; Yang et al. 2011). The routing elements encom-
pass diffusive wave surface routing (Downer et al.
2002), saturated subsurface flow routing (Wigmosta
et al. 1994; Wigmosta and Lettenmaier 1999), and
Muskingum-Cunge channel routing (e.g., Tang et al.
1999). The routing of surface and subsurface is ful-
filled on a grid basis, whereas the channel routing
functions on vectorized units (i.e., channel links)
derived from NHDPlus V2 stream reaches (McKay
et al. 2012). We excluded reservoir routing in our
NWM configuration to simplify the model implementa-
tion and ran the model with a default hydrologic
parameter set (without parameter calibration). In the
NWM’s DA approach (Gochis et al. 2018), parameter
calibration in LSM and surface/subsurface routing is
of less interest because channel flow routing from an
assimilated location along the downstream river reach
is the major factor determining streamflow discharge.

Dataset

Input forcing data for the Noah-MP LSM includes
incoming short- and long-wave radiation, specific
humidity, air temperature, surface pressure, near-
surface wind components, and precipitation rate. We
retrieved these meteorological variables from the
hourly North America Land Data Assimilation Sys-
tem (NLDAS) dataset (e.g., Xia et al. 2012) at a reso-
lution of 0.125°. In our forcing dataset, we replaced
the NLDAS precipitation rate data with the Multi-
Radar Multi-Sensor (MRMS; Zhang et al. 2016) pro-
duct as a separate precipitation forcing, which
includes a rain gauge correction with an enhanced
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resolution of 0.01°. We collected these hourly NLDAS
and MRMS data for 2015–2018 and resampled them
onto the 1-km LSM grid for model (Noah-MP) forcing.

We collected streamflow data from 140 USGS sta-
tions in Iowa (Figure 1) where quality-controlled
streamflow records are available at a 15-min resolution.
These streamflow data facilitate streamflow DA at all
USGS locations and the evaluation of DA at their
downstream gauge locations. As indicated in Figure 1,
70 USGS locations are available for the DA evaluation;
this number varies slightly depending on the status of
missing data at these stations. The streamflow records
were obtained by converting measured water level
(stage) into discharge using well-defined rating curves
produced for each site. The USGS has developed these
rating curves from periodic collection of stage-discharge
measurements, especially during low- and high-flow
events. In this study, we do not consider rating curve
uncertainty and its effect on our DA evaluation.

METHODOLOGY

NWM Simulations

To assess the improvement made by DA, we simu-
lated the NWM with DA and open-loop (no DA)

modes for a period from August 2015 to December
2018. We used the early simulation period (August
2015–March 2016) to warm-up the model states for
the remaining analysis period. Because precipita-
tion estimation for winter months still remains chal-
lenging (e.g., Seo et al. 2015; Souverijns et al. 2017)
and thus may affect model simulation results, we
limited the analysis of simulation results to the per-
iod of April through October in each year (2016–
2018).

The DA scheme in NWM is knowns as “nudging”
and consists of direct insertion; i.e., the observed
value replaces the model value without considering
the associated uncertainty. In the DA procedure, we
did not account for the quality of observed stream-
flow in the nudging process (see Gochis et al. 2018)
in that the measurement (or rating curve) uncertain-
ties remain unknown. Nudge at the assimilation
location is defined as the difference between
observed and model estimated streamflow (i.e.,
model error) with a limited temporal interpolation.
In the NWM, spatial smoothing is inactive for com-
putational efficiency, while temporal smoothing
assigns a heavy weight to an observation within
15 min from the current time and sets e-folding time
as two hours. The calculated adjustment (nudge) at
each assimilation location is then propagated down-
stream through a channel routing procedure using
the Muskingum-Cunge method:

FIGURE 1. The locations of 140 USGS stations in the study domain where streamflow observations were assimilated into the NWM. The
yellow circles represent the uppermost USGS stream gauges. The red circles indicate the evaluation points in this study. The solid blue lines
represent river and stream networks. The two shaded watersheds delineate the drainage areas of two USGS stations (Van Meter and Cedar
Falls) used in Figure 2. NWM, National Water Model; USGS, United States Geological Survey.
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Qd tð Þ ¼ C1 Qu t� 1ð Þ þNd t� 1ð Þ½ �
þC2 Qu tð Þ þNd t� 1ð Þ½ �
þC3 Qd t� 1ð Þ þNd t� 1ð Þ½ � þ qldt

D

� �
,

(1)

where Q denotes streamflow discharge at the current
(t) and previous (t� 1) times at the downstream (d)
and upstream (u) reaches. C1, C2, and C3 are coeffi-
cients calculated using routing parameters (see Tang
et al. 1999), and ql and D indicate lateral inflow and
the wedge storage contribution from lateral inflow.
The model includes the nudge Nd t� 1ð Þ in all three
streamflow terms in Equation (1) to lessen disconti-
nuity between the upstream and downstream
reaches. However, the nudge included in the first and
second terms for the upstream reach is applied only
for solving downstream discharge in Equation (1) and
is not saved as part of the model output for the
upstream reach. In other words, the nudge is not
propagated upstream.

DA Evaluation

A meaningful evaluation of DA requires a compar-
ison of the model-estimated streamflow (at the evalu-
ation locations) with observations at points unused in
the DA. In the NWM, DA replaces model-simulated
values with the observations, if valid observations are
available at the gauging stations. In the NWM setup,
this is challenging for DA evaluation because the
model assimilates the observed values at all USGS
stations shown in Figure 1, including the 70 evalua-
tion locations, which also become assimilation points
for their downstream reaches. Therefore, we decided
to retrieve the simulated streamflow values (for DA
evaluation) at the immediate upstream links directly
connected with the evaluation point, assuming that
the effects of channel routing and lateral inflow along
the stream link containing the evaluation point are
negligible. To explore the validity of this assumption,
we conducted an experiment with two selected loca-
tions (Van Meter and Cedar Falls), which cover dif-
ferent scale basins as shown in Figure 1. In the
experiment, we did not provide streamflow observa-
tions at Van Meter and Cedar Falls to avoid the
replacement of model generated streamflow with the
observations (i.e., to obtain model streamflow propa-
gated from upstream DA). The result of this experi-
ment is presented in the next section. As reference
for DA evaluation, we employed the persistence-
based prediction (e.g., Krajewski et al. 2020), which
assumes spatial persistence from upstream observa-
tions. If there are multiple upstream stations on

different branches of the river network (see Krajew-
ski et al. 2020 for details), a simple addition of their
observations would provide a predicted value at the
downstream location.

We compared the prediction performance of the
NWM with DA to the performance without DA
(NoDA) and persistence (indicated as “No Model”).
The evaluation metrics used in the analyses are as
follows: (1) relative volume error (REV ); (2) relative
peak error (REQp

); (3) peak timing error (Etp ); and (4)
Kling–Gupta efficiency (KGE). The peak errors are
calculated for an annual maximum discharge. The
formulas of these metrics are provided in Equa-
tions (2–5):

REV ¼ VNWM � Vobs

Vobs
� 100%, (2)

REQp
¼ Qp;NWM �Qp;obs

Qp;obs

� 100%, (3)

Etp ¼ tp;NWM � tp;obs, (4)

KGE ¼ 1:0�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ� 1ð Þ2 þ α� 1ð Þ2 þ β � 1ð Þ2

q
, (5)

where V, Qp, and tp denote total volume (m3), peak
discharge (m3/s), and peak time (h) obtained from
model simulations (NWM) and observations (obs) from
April to October of each year. KGE (Gupta et al. 2009)
is an overall performance indicator describing the pre-
dictive power of hydrologic models and is represented
as a function of correlation (ρ), the ratio of standard
deviation (α), and the ratio of mean (β) between simu-
lated and observed streamflow. We examined these
evaluation metrics, focusing on catchment scale and
the analyzed performance improvements accomplished
by DA (against NoDA), with respect to the areal cover-
age fraction defined using the assimilated upstream
catchment area. The improvements are defined as sim-
ple differences in the evaluation metrics calculated
with and without DA.

RESULTS

The results of the experiment, conducted to learn
whether using model prediction from upstream links
is suitable for our analysis, are presented in Figure 2
for two gauging stations. These results show that
streamflow discharge at the two locations and their
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upstream links, represented by blue (solid) and red
(dashed) lines, agree very well; there is little if any
difference between them. The KGE values for the
blue and red lines appear to be the same (0.79 and
0.91 for Van Meter and Cedar Falls, respectively).
This allows us to use the modeled streamflow at the
upstream links for DA evaluation. The model simu-
lations at the location of the evaluation gauge are
“corrupted” by the data collected there. Figure 2
also demonstrates that DA significantly improves
model performance at the two locations, compared
to open-loop simulations. For example, DA elimi-
nated an erroneous peak observed at Van Meter in
August 2016 and significantly improved KGE (0.13
vs. 0.79).

In Figure 3, we present the evaluation results
focusing on the four metrics defined in Equations (2–
5) for each simulation year. We assessed the NWM’s
prediction performance with DA and NoDA, com-
pared to the result from the persistence method indi-
cated as “No Model” in Figure 3. To calculate the
relative peak error (REQp

) and peak timing error
(Etp ), we identified an NWM simulated peak within a
scale-dependent time window around the annual
peak observed from the USGS streamflow data. We
made this choice because the model occasionally gen-
erates an annual peak at a completely different time,
as shown in the case of Van Meter in Figure 2. The
search window was defined using time of concentra-
tion (i.e., the longest travel time along the river net-
work) or five days, whichever is smaller. In Figure 3,
DA seems to perform better at estimating runoff vol-
ume and peak discharge than NoDA and persistence
do. For REV and REQp

, most of the red dots repre-
senting DA stay near the no error (0%) line and

within a � 50% range, respectively, whereas NoDA
and persistence show underestimations both in vol-
ume and peak discharge. Persistence leads to under-
estimations in volume and peak discharge, and
early peak timing, as illustrated in Figure 3; drai-
nage areas (represented by single or multiple
upstream gauging stations) that are smaller than
the area represented by the downstream evaluation
station yield the observed underestimations and
early peak. However, the overall performance
(KGE) of persistence seems better at many locations
than that of model simulation with NoDA, implying
that the forecasting approach without models can
provide useful guidance if there are reliable gauging
stations upstream (see Krajewski et al. 2020). Over-
all, the NWM with DA outperforms persistence and
NoDA based on KGE. We note that DA’s slight
underestimations of total volume might be the
result of lateral inflow missed along the stream
links of evaluation points.

We examined the scale-dependent performance of
DA and persistence in Figure 4. In this analysis, we
excluded the result with NoDA because its perfor-
mance was lower than those of DA and persistence.
As shown in Figure 4, the performance of DA- and
persistence-based predictions tends to improve as
catchment scale becomes larger. This scale depen-
dence is obviously shown in KGE, while Etp reveals
wide distribution across catchment scales (many loca-
tions have timing errors outside a one-day window
from the actual peak time). With increasing scale, the
dispersion of REV and REQp

decreases, and the mean
of these errors gradually approaches negligible bias.
The key findings from Figure 4 are: (1) DA outper-
forms persistence, particularly at smaller scales (e.g.,

FIGURE 2. Observed and NWM simulated hydrographs with data assimilation (DA) and open-loop (NoDA) modes at Van Meter (USGS
05484500) and Cedar Falls (USGS 05463050) in Iowa.
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approximately up to 5,000 km2) for the study domain;
and (2) persistence-based predictions are comparable
with the ones made by DA at larger scales. This is
understandable because the skill in the streamflow
prediction is determined by measuring the water
already in the river system.

Based on the results shown in Figures 3 and 4,
we quantified the performance improvements (e.g.,
in terms of each evaluation metric) attained by DA
in the NWM procedures. Figure 5 shows the
improved model performance characterized by the
areal coverage fraction presented in Figure 5c,
which describes the areal coverage of upstream
assimilation stations to the entire catchment delin-
eated by downstream evaluation station. As shown
in Figure 5, the DA performance tends to improve as
the upstream stations cover larger areas, indicating
that fractional coverage is a primary factor in deter-
mining the performance of DA. The large variability

of the KGE improvement is somewhat surprising.
While the improvement is greater because more of
the upstream area is being monitored, the variability
is high. The variability in the improvement is partially
due to the statistical effect of the relative sample size
and is also a consequence of the model performance
(e.g., open-loop) itself. For example, when the model
works well with an open-loop mode, the expected
improvement by DA is small. When the model works
poorly, the potential for improvement is much higher
(see Supporting Information).

As we discussed in the “NWM Implementation”
section, parameter calibration in the LSM and sur-
face/subsurface routing elements would be less
impactful if this coverage fraction is sufficiently high.
Streamflow assimilation diminishes uncertainties/er-
rors generated by misinterpreted parameters in
upstream catchment modeling. We recognize from
Figure 5 that improving the peak estimation is

FIGURE 3. Performance comparison of model simulation results (DA and NoDA) with those of persistence (No Model). Each circle indicates
one of 70 individual evaluation locations presented in Figure 1.
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challenging with large variability even at the higher
coverage fraction range, although the total volume
reveals relatively low variability. Figure 5 could

provide insight for the potential performance of DA
for other regions with landscapes similar to Iowa’s
(e.g., no complex terrain and natural channels).

FIGURE 4. Performance comparison between the results of DA and persistence (No Model) regarding catchment scale.

FIGURE 5. Performance improvement characterized by (a) the areal coverage fraction of upstream assimilation locations to a downstream
evaluation location and (b) the distribution change of peak timing error. The distribution of areal coverage fraction is shown in (c).
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SUMMARY AND CONCLUSIONS

This study extensively evaluated the NWM’s DA
performance based on our model implementation that
updated the model-simulated streamflow every
15 min using streamflow data observed during 2016–
2018 at 140 USGS stations in Iowa. Our investigation
builds on a recent evaluation done by Rojas et al.
(2020) on an earlier version of the NWM. Since NWM
DA evaluation is challenging with the current NWM
configuration (there is no access to the open-loop pre-
diction at the assimilation data points), we developed
a novel framework to assess streamflow predictions
generated by the DA procedure. To demonstrate DA’s
prediction capability compared to the open-loop
(NoDA) and persistence (No Model) method, we mea-
sured an overall performance metric known as KGE
and errors in annual total volume, peak discharge,
and peak timing. The analysis results showed that DA
significantly improves streamflow prediction. The
improvements (DA vs. NoDA) were characterized by
the areal coverage fraction of the upstream assimila-
tion point; it tends to increase with larger fractional
coverage (Figure 5). Given the large dispersion in the
annual peak errors (e.g., amounts and time), predict-
ing the peak remains challenging, even using the DA
procedure. We plan to investigate this aspect further
to learn if another channel routing scheme or use of a
different set of parameters (e.g., calibration) with the
current scheme can ameliorate the peak estimation.
The tendency of prediction improvement observed in
Figure 5 could be used as reference for application of
DA to other regions or guidance when designing a
stream sensor network for hydrologic prediction.

We used persistence-based predictions as reference
to assess the DA-based prediction results. The persis-
tence method incorporates streamflow observations
from the same upstream stations used in DA and its
concept is rather simple but efficient (e.g., Krajewski
et al. 2020). We found that DA outperforms persis-
tence, particularly at catchment scales smaller than
5,000 km2 (the number might be different at different
regions depending on the configuration of stream
gauge network), where the coverage fraction is not as
good as the one for larger scales as shown in Fig-
ure 5c. This should come as no surprise because the
model uses additional information, i.e., rainfall. Nev-
ertheless, the performance of persistence looks
impressive and reliable at larger scales, and thus
could be a good alternative to save model computa-
tion time and computational resources. The multi-
scale evaluation of this study revealed its scale-
dependent features: (1) the prediction performance
increases as catchment scale becomes larger (e.g.,

KGE); and (2) KGE and errors in volume and peak
discharge are approaching ideal prediction (e.g., no
error), and their dispersion decreases significantly at
larger scales.

RECOMMENDED FUTURE RESEARCH

Numerous stage-only sensors exist that can com-
plement the current coverage of USGS stations and
thus expand DA’s performance to relatively smaller
basins. A good example is about 250 stream sensors
(Kruger et al. 2016) operated by the Iowa Flood Cen-
ter (IFC) to monitor streams and creeks near Iowa
communities. The IFC has developed a procedure to
build “synthetic rating curves” (Quintero et al. 2021)
using hydraulic/hydrologic models. Soon we will
include these stations in our NWM configuration and
fill the significant scale gap (e.g., smaller than
1,000 km2) shown in Figure 4. This incorporation will
also provide an opportunity to independently evalu-
ate the synthetic rating curves developed using the
IFC’s Hillslope Link Model (Krajewski et al. 2017;
Quintero et al. 2020) with DA procedures different
than the one used in the NWM.

SUPPORTING INFORMATION

Additional supporting information may be found
online under the Supporting Information tab for this
article: A figure accounting for the variability of
prediction improvement shown in Figure 5.
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