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Abstract

For satellites in the Low Earth Orbit (LEO) region, the drag coefficient is a primary source of uncertainty for orbit determination and
prediction. Researchers at the Los Alamos National Laboratory (LANL) have created the so-called Response Surface Modeling (RSM)

toolkit to provide the community with a resource for simulating and modeling satellite drag coefficients for satellites with complex
geometries (modeled using triangulated facets) in the free molecular flow (FMF) regime. The toolkit fits an interpolation surface using
non-parametric Gaussian Process Regression (GPR) over drag coefficient data computed using the numerical Test Particle Monte Carlo
(TPMC) method. The fitted response surface provides a substantial computational benefit over numerical approaches for calculating
drag coefficients. In this work, the RSM toolkit is further developed into a versatile software with extended capabilities. The capabilities
are specifically expanded to include uncertainty quantification and adaptation for automatic development of regression models for satel-
lites with non-stationary components (e.g. rotating solar panels). Furthermore, the toolkit uses Python 3.x and C programming lan-
guages to provide an open source software package with a OSI approved GPL license. To assist the end user, the new RSM toolkit
has been developed to have a user-friendly installation process and is provided with extensive documentation. The analysis of two dif-
ferent conceptual satellites is performed during this work: a simple cube and a CubeSat consisting of a simple cube body with 2 rotating
solar panels. During the creation of the regression model for each satellite for different atmospheric species, it is found that the cube’s
minimum Root Mean Squared Error (RMSE) is 0.00211 and the maximum RMSE is 0.00350. The CubeSat has a minimum RMSE of
0.00304 and the maximum is 0.00498. These results are overall conducive of a well performing regression model.
� 2022 COSPAR. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/
by-nc-nd/4.0/).

Keywords: Gas-surface interaction; Response surface modeling; Drag modeling; Satellite drag coefficient

1. Introduction

The near-Earth space environment has experienced
expeditious object population growth in the recent past
because of increased participation from private companies.
According to IEEE, the Federal Communications Com-

mission (FCC) has approved SpaceX to launch a total of
nearly 12,800 satellites for its Starlink constellation. To
date, SpaceX has launched 1,300 of these satellites
(SpaceNews, 2020). Satellite constellations for the internet
and other consumer services are becoming more and more
popular. Companies like OneWeb, Telesat, and Kuiper
Systems LLC also plan to send satellites en masse to orbit.
Between these four companies, 46,100 satellites are planned
to be launched in the next decade (CNBC, 2020). With so
many satellites in orbit, it is imperative that operators have
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an accurate knowledge of the location of their assets at any
given time, i.e., predict the orbital states. Furthermore,
NASA states that, as of 2021, there are more than 27,000
pieces of orbital debris that are being tracked by the
Department of Defense’s global Space Surveillance Net-
work (NASA, 2021). Most of these satellites and debris
are going to (or already do) reside in the LEO region,
where drag is the dominant source of orbit error resulting
from inaccurate drag coefficient and atmospheric density
modeling. The range of LEO used for this work involves
the free molecular flow (FMF) regime, typically
>�150 km in altitude above the surface of the Earth and
encompasses the high-altitude thermosphere. The thermo-
sphere is the neutral part of the upper atmosphere that is
generally dominated by atomic oxygen but significant
changes in composition can occur depending on the alti-
tude and solar conditions (Emmert, 2015). Improved drag
modeling will help us make more informed decisions about
collision avoidance maneuvers, thereby preventing a Kess-
ler syndrome-like scenario (Kessler et al., 2010). The work
presented here is targeted at improving modeling of the
satellite drag coefficient. The focus is on the development
of a drag coefficient modeling software that provides uncer-
tainty estimates in a computationally efficient manner while
being user-friendly and open source.

The theoretical model for calculating satellite drag is
given by:

a!drag ¼ � 1

2
q
CDA
m

vrel v
!

rel ð1Þ

where a!drag is the acceleration due to drag, q is the atmo-
spheric density, CD is the drag coefficient, A is the projected
area of the satellite as seen by the flow, m is the mass of the

satellite, v!rel is the velocity of the satellite with respect to

the atmosphere, and vrel is the magnitude of v!rel. Error
in calculating the acceleration due to drag comes from
two main sources: density and drag coefficient. An impor-
tant group of variables also worth noting is m

CDA
. Together,

these variables make up the ballistic coefficient. The ballis-
tic coefficient wraps the uncertainty of the satellite-specific
variables into a singular variable of uncertainty.

1.1. Satellite drag coefficient

In the context of orbital dynamics, there are three ways
to compute the drag coefficient (CD): a physical CD, a fitted
CD, and a fixed CD (Moe et al., 2010). A fixed CD is a con-
stant value. The fitted CD is estimated as part of an orbit
determination process. It is specific to the atmospheric
model used and includes the limitations of the atmospheric
model. It also frequently absorbs other force model errors.
Physical CD is determined by the exchange of energy and
momentum of the freestream atmospheric molecules with
the spacecraft surface (Chambre and Schaaf, 2017).
Throughout this work, the term CD will refer to a physical
CD. The CD is dependent on various parameters that

include the free-stream velocity, temperature, and composi-
tion, surface temperature, satellite surface geometry, and
gas-surface interactions (GSIs). The CD has been shown
to be most sensitive to GSI and strongly influenced by
the spacecraft shape or geometry.

1.1.1. Satellite geometry definition

Geometry has been show to play a large role in the fide-
lity in estimating CD for satellites (Pilinski et al., 2011;
Pilinski et al., 2013; Mehta et al., 2017; March et al.,
2019a; March et al., 2019b; Bernstein et al., 2020; March,
2021). Fig. 1 shows two satellites of interest: GRACE
(Ramillien et al., 2004), the Gravity Recovery and Climate
Experiment satellite, and CHAMP (Reigber et al., 2006),
the Challenging Minisatellite Payload satellite. High-
fidelity geometry models include components such as
antenna, solar arrays, sensors, etc. This can be seen in
the comparison of GRACE in Fig. 1 where GRACE is seen
as a simplified flat plate versus its high-fidelity model which
includes the miscellaneous components on the surface of
the satellite. CHAMP is an example of a satellite with rel-
atively large components, a better example as to why the
fidelity of the model can have a significant impact on the
CD of the object.

1.1.2. Gas-surface interactions

GSI models describe the exchange of energy and
momentum between atmospheric molecules and the surface
of an object. The energy exchange is represented by adsorp-
tion modeling, while the momentum exchange is repre-
sented by reflection modeling. Two accommodation
coefficients are used to define a GSI model: the tangential
momentum accommodation coefficient (rt) and the energy
accommodation coefficient (a). The energy accommodation
coefficient is defined as:

a ¼ Ei � Er

Ei � Es
ð2Þ

Fig. 1. GRACE as a simplified flat plate (a) and as a high-fidelity model
(b), CHAMP as a high-fidelity model. The red boxes are components that
can not be simplified as a flat plate. (Mehta et al., 2017).
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where Ei is the kinetic energy of an incident molecule, Er is
the kinetic energy of a reflected molecule, and Es is the
energy that a molecule would have after being re-emitted
in thermal equilibrium with the surface. The other coeffi-
cient, rt, defines how the particle is reflected from the sur-
face. If the tangential momentum coefficient is equal to
one, then it is said that the reflection is diffuse. If the coef-
ficient is equal to zero, then it is said that the reflection is
specular. Any other values of rt is said to correspond to
the quasi-specular reflection (Walker et al., 2014b). Fig. 2
is an illustration of the different reflections. Ultimately,
the tangential momentum coefficient controls the scattering
kernel for the particles in the software. The kernel that we
use was developed by Lord (1991) and can be seen in Eq. 3.

P vit ! vrtð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
prt 2� rtð Þp e

�vrt� 1�rtð Þvitð Þ
rt 2�rtð Þð Þ ð3Þ

where vit is the incident tangential velocity component, vrt is
the reflected tangential velocity component, and
P vit ! vrtð Þ is the probability that the vit is reflected as vrt
(Walker et al., 2014b).

Together, these coefficients define the GSI modeling.
Several GSI models have been developed to simulate these
types of gas-surface interactions, including Maxwell’s
Model (Maxwell, 1879), Cercignani-Lampis-Lord (CLL)
(Cercignani and Lampis, 1971), and Diffuse Reflection with
Incomplete Accommodation (DRIA) (Pilinski et al., 2010;
Moe et al., 2004; Sutton, 2009).

Adsorption models. Laboratory experiments began in the
early 1900s to measure the reflection of molecules from sur-
faces. But, since the 1960s, satellite experiments have been
performed using pressure gauges and mass spectrometers
to reveal that satellite surfaces are covered by adsorbed
gases which can vary given different altitudes (Moe and
Moe, 1969). Moe et al. (1998), in the first figure of their
paper, presents atomic oxygen surface coverage data from
the mass spectrometer onboard NASA’s OGO-6 satellite.
The mass spectrometer data demonstrate that the surface

coverage of oxygen is much higher at perigee (P) than at
apogee (A). Adsorption occurs at lower altitudes and des-
orption occurs at higher altitudes (Moe and Moe, 1969).
This realization has led to the necessity of creating different
adsorption models of oxygen. While these measurements
are not without errors (e.g. atomic oxygen recombination
in old mass spectrometers), the hypothesis that adsorption
is driven by the amount of atomic oxygen in the vicinity of
the satellite has been widely accepted in the community.

An adsorption isotherm is an empirical representation
of the phenomenon governing the retention, release, or
mobility of a substance from a fluid medium to a solid at
a constant temperature. To date, there has been a total
of fifteen isotherms developed (Foo and Hameed, 2009).
Two of the most notable isotherms are the Freundlich
(Freundlich, 1907) and Langmuir (Langmuir, 1916) iso-
therms, both of which are used in the development of the
RSM software outlined later in this work.

Freundlich isotherm. The Freundlich isotherm is the first
adsorption isotherm created in 1906 by Herbert Freundlich
(Freundlich, 1907). It is a robust empirical model that can
be applied to multi-layer adsorption, with non-uniform dis-
tribution of adsorption heat and affinities over a heteroge-
neous surface (Foo and Hameed, 2009). The following
equation is the empirical model of the Freundlich isotherm:

x
m
¼ kP

1
n ð4Þ

where x is the mass of adsorbate adsorbed, m is the mass of
the adsorbent, P is the pressure of adsorbate, and k and n
are empirical constants for each adsorbent-adsorbate pair
at a given temperature.

Langmuir Isotherm. The Langmuir Isotherm was created
by Irving Langmuir in 1916 (Langmuir, 1916). In its for-
mulation is an empirical model that assumes monolayer
adsorption, with adsorption that can only occur at a finite
number of definite localized sites that are identical and
equivalent, with no lateral interaction and steric hindrance
between the adsorbed molecules, even on adjacent sites
(Foo and Hameed, 2009). The Langmuir isotherm is
defined by Eq. (5), where h is the fractional surface cover-
age, K is the Langmuir adsorbate constant, and PO is the
partial pressure of atomic oxygen.

h ¼ KPO

1þ KPO
ð5Þ

Historically, the adsorption model coefficients would have
been estimated using laboratory experiments, however, the
difficulty with accurately recreating LEO conditions in a
laboratory setting can introduce large errors in the models.
Contemporary models for satellite applications estimate
these empirical values by inverting fitted drag coefficients
for satellites with simple shapes (e.g. sphere) (Pilinski
et al., 2013; Walker et al., 2014b).

Maxwell’s model. Maxwell’s model assumes that a frac-
tion � of the particles is specularly reflected, and the
remaining fraction 1� � is diffusely reflected. Molecular

Fig. 2. Reflections of different gas-surface interactions (Walker et al.,
2014b).
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beam experiments (Hurlbut, 1957; Hurlbut, 1962; Hinchen
and Foley, 1966; Kleyn, 2003) have shown that the
reflected particles do not follow Maxwell’s model and
instead follow a quasi-specular model.

Cercignani-Lampis-Lord (CLL) model. Cercignani and
Lampis developed the original model in 1971 (Cercignani
and Lampis, 1971) by using scattering kernels that describe
the relationship between the incident and reflected velocity
distribution functions when particles interact with a solid
surface. In 1989, R.G. Lord extended the original model
to the cases of diffuse reflection with incomplete accommo-
dation and internal energy accommodation (Lord, 1990),
thus creating the CLL GSI model. The CLL model ulti-
mately uses the normal energy accommodation coefficient
and the tangential momentum coefficient as independent
parameters and assumes the quasi-specular deflection
kernel.

Diffuse Reflection with Incomplete Accommodation

(DRIA) model. In the DRIA GSI model, particles are
always reflected with a diffuse angular distribution based
on Knudsen’s cosine law (Knudsen, 1915). The particles
may exchange energy with the surface depending on the
value of the energy accommodation coefficient, said to be
incomplete accommodation (values between 0 and 1). A
special case is when the particles interact with a contami-
nated surface; it is assumed that the particles adsorb to
the layer of atomic oxygen, becoming fully accommodated,
and are reflected with a diffuse distribution about the sur-
face normal as illustrated in Fig. 2. (Walker et al., 2014a).

1.2. Total drag coefficient

A quasi-specular drag coefficient model requires relating
the effective energy accommodation to the atmospheric
properties and such a model was developed by Walker
et al. (2014b). Pilinski et al. (2010) showed that the varia-
tion of the energy accommodation coefficient assuming dif-
fuse reflection is well-matched by a Langmuir isotherm
dependent on the partial pressure of atomic oxygen, PO.
Later work by Pilinski et al. (2013, 2011) was the first to
quantitatively test the validity of the Langmuir isotherm
model for LEO satellites. The model developed by
Walker et al. (2014b) builds on the work of Pilinski et al.
(2010) but uses a modified approach with a different scat-
tering kernel and fitting technique. The approach of
Walker et al. (2014b) fits a Langmuir isotherm not to the
effective energy accommodation coefficient but instead to
the fraction of the surface covered by atomic oxygen, h.
Modeling the mixed reflection properties of surfaces with
impurities such as adsorbed atomic oxygen through h
was previously suggested by Goodman (1974). The Lang-
muir isotherm can only model monolayer adsorption; how-
ever, PO at the altitudes of interest for LEO satellites is well
below the threshold where only monolayer adsorption can
occur. Many other adsorption models exist, but the Lang-
muir isotherm has been used extensively to model the
adsorption of atomic oxygen to satellite surfaces (Pilinski

et al., 2010; Moe and Moe, 1967; Hedin et al., 1973). The
total drag coefficient can be found using the relation
(Walker et al., 2014b):

CD ¼ 1� hð ÞCD;c þ hCD;ads ð6Þ
where h is the fractional surface coverage of adsorbed oxy-
gen, CD;c is the surface drag coefficient based on a clean
satellite surface, and CD;ads is the drag coefficient of a sur-
face completely covered by an adsorbate (atomic oxygen).
The linear relation between CD and h assumes that the
adsorbed atomic oxygen uniformly covers the satellite
surface.

The CD;ads and CD;c are obtained from the drag
coefficients of atmospheric constituent species
(H ;He;N ;N 2;O;O2) using:

CD;ads ¼ 1X6
k¼1

vkmkð Þ

0
BBBB@

1
CCCCA
X6
k¼1

vkmkCD;adskð Þ ð7Þ

CD;c ¼ 1X6
k¼1

vkmkð Þ

0
BBBB@

1
CCCCA
X6
k¼1

vkmkCD;ckð Þ ð8Þ

where vk is the mole fraction of species k;mk is the mass of
species k, and CD;adsk=ck is the drag coefficient for species k.
In our toolkit, the mole fractions of the species are
obtained from the NRLMSISE-00 density model (Picone
et al., 2002).

For DRIA, following are the independent variables
required for the drag coefficient (dependent variable) com-
putation: (i) relative velocity of the satellite, v1, (ii) satellite
surface temperature, T w, (iii) atmospheric translational
temperature, T1, (iv) energy accommodation coefficient,
a, (v) satellite yaw, b, and, (vi) satellite pitch, U. The
CD;adsk for DRIA is computed using the diffuse reflection
with complete accommodation (a ¼ 1). The CD;ck for
DRIA is computed based on Goodman’s empirical model
(Goodman and Wachmann, 1966):

a ¼ Ksl

1þ lð Þ2 ð9Þ

where a is the energy accommodation coefficient for the gas
particles of the clean satellite surface, and l is the ratio of
the average mass of the atmospheric gases to the mass of
the particles that compose the satellite surface. The mass
of particles that compose the satellite surface is dependent
on the material and finish of the satellite surface. The value
of Ks, the substrate coefficient, can lie anywhere from 2.4 to
3.6 depending on the shape of the satellite (Mehta et al.,
2017). Mehta et al. (2014) used the coefficient of 3.0 for
the original RSM suite which we do not change here. Fur-
ther analysis of a more appropriate Ks is possible for the
user to perform.
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For the CLL GSI model, the drag coefficient depends
upon the following independent variables: (i) v1, (ii) T w,
(iii) T1, (iv) normal energy accommodation coefficient,
an, (v) tangential momentum accommodation coefficient,
rt, (vi) b, and, (vii) U. For CLL, the CD;adsk is computed
using an = 1 and rt = 1. The clean surface drag coefficient
for CLL, CD;ck , is obtained using rt = 1 and:

an ¼ max 2
Ksl

1þ lð Þ2
 !

� 1; 0

( )
ð10Þ

where Ks ¼ 3:0, and the max function represents the max-
imum of the two provided arguments.

1.3. Computational analysis methods

1.3.1. Flow regimes

The Knudsen number is used to determine the appropri-
ate computational method for modeling a flow. This non-
dimensional parameter defines the flow regime in which
the analysis is performed. The Knudsen number is given
by Eq. (11), where k is the mean free path and L is the char-
acteristic length of the object.

Kn ¼ k
L

ð11Þ

Fig. 3 shows the classification of flow regimes according
to their Knudsen numbers. The FMF regime is recognized
as a flow system with a Knudsen number roughly greater
than 10, typically assumed to occur at an altitude greater
than 150 km (depending on the shape of the satellite. This
regime is where the satellites of our interest orbit. This
form of flow is thought to occur in high vacuum, where
intermolecular collisions are rare, and GSIs are the preva-
lent phenomena.

Currently, there are several computational analysis
methods for modeling satellite drag. For a simple geomet-
ric figure like a sphere, we have closed-form solutions for
CD in the FMF regime (Sentman, 1961). However, most
satellites do not have simple geometries. The most common
computational tools used for computing CD in the FMF
regime are the Test Particle Monte Carlo (TPMC) method
and the Direct Simulation Monte Carlo (DSMC) method.
The Monte Carlo techniques are popular and are used for

various studies to obtain normalized aerodynamic force
coefficients. A fundamental difference between the two
methods is that the DSMC method simulates particle–par-
ticle collisions (although it can be turned off in some
DSMC software such as SPARTA (Plimpton et al.,
2019)), whereas the TPMC method does not.

1.3.2. Direct Simulation Monte Carlo method

DSMC was developed and applied by Graeme Bird in
1963 (Bird, 1963). It is widely used for its high fidelity mod-
eling of flow in transitional flow regimes, where the FMF
assumptions no longer hold. The ability to simulate parti-
cle–particle collisions is a valuable tool, but it can cause
simulations to be computationally expensive.

The satellite geometry is divided into small triangular
facets and introduced into the simulation domain. Each
facet is an area on the object where properties are defined
and calculated. Like most other computational fluid
dynamics (CFD) methods, the model fidelity depends upon
the quality of the mesh and on how well the surface prop-
erties are known.

DSMC operates by inserting molecules into a flow field.
To do this, the code uses one of the three methods: it either
performs the initial creation of molecules at the first time
step, a surface flux from the boundaries, or uses the reser-
voir method. In the reservoir method, the DSMC simula-
tions are extended to an external region adjacent to the
DSMC domain. Particles with the desired velocity distribu-
tion are generated in the reservoir at every time step and,
those that enter the DSMC domain are accepted while
the remaining particles are rejected. In DSMC simulations,
like other atmospheric CFD simulations, the computa-
tional domain is part of a larger flow environment. Because
the computational domain is part of the larger flow envi-
ronment, the boundary conditions are often set to free-
stream conditions where molecules are allowed to leave
and enter the computational domain, and the number of
simulated molecules varies with time. Every simulated par-
ticle in the DSMC method represents a number of real gas
molecules. This number acts as the statistical weight of a
simulated molecule as well.

NASA has created the DSMC Analysis Code (DAC) to
study rarefied gas dynamics pertaining to problems such as
atmospheric re-entry (LeBeau and Lumpkin, 2001). This
code is an export-controlled item that is only accessible
to U.S. citizens. DAC can automatically adapt the collision
grid to resolve the local mean free path of a flow field.
DAC also utilizes a pre-processor that specifies the time
step and statistical weight for representative molecules
given the gas conditions such as number density and free-
stream velocity. Furthermore, DAC offers the ability to
perform computations in parallel using the Message Pass-
ing Interface (MPI). DAC is capable of simulating multiple
GSIs including, Maxwell’s Model, CLL, and DRIA. These
features make DAC a powerful tool. However, it is more
computationally expensive than the TPMC method and,
therefore, not ideal for the FMF regime where intermolec-

Fig. 3. Classification of flow regimes based on Knudsen number (Bird,
1994).
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ular collisions are negligible. Unlike the DAC, the earlier
mentioned DSMC software SPARTA is open source and
has been used by a number of authors including March
et al. (2019a), Marı́n (2019), March (2021), Walsh et al.
(2021).

1.3.3. Test Particle Monte Carlo method

TPMC is a Monte Carlo simulation technique first pro-
posed by Davis (1961). TPMC is an excellent modeling tool
as it is computationally inexpensive and as accurate as
other known models in the free molecular flow regime. A
user can model the satellite with pronounced fidelity, often
with an error less than 1.0% (Mehta et al., 2014).

TPMC works similarly to DSMC, where each test parti-
cle represents a number of real gas molecules. These test
particles are sequentially launched into the computational
domain. The molecules enter the domain with probabilisti-
cally determined velocities. The velocity is composed of a
constant freestream bulk velocity and a thermal velocity
that is also probabilistically determined. The test particles
do not undergo intermolecular collisions. However, TPMC
is capable of simulating multiple deflections off the satel-
lite’s surface. This applies to complex and concave satellite
geometries where flow shadowing is prevalent as well.

1.3.4. Surrogate modeling

The numerical methods used to simulate the drag coef-
ficient are computationally expensive. Even a single simula-
tion instance for a specific input configuration can have a
significant computational cost. For orbit propagation of
satellites, users may need to perform multiple drag coeffi-
cient simulations that correspond to different input param-
eter values (e.g., different values for atmospheric
temperature and composition) at various orbit locations
and over time. The solution to this issue is to use an inter-
polation technique. By running numerical simulations that
cover the space of relevant input configurations, it is possi-
ble to generate a set of training data that one can use to
create an interpolation or surrogate surface. The Gaussian
Process Regression (GPR) model is a great tool to accom-
plish this. GPR is a generic supervised machine learning
method designed to solve probabilistic regression problems
(Pedregosa et al., 2011).

Los Alamos National Laboratory (LANL) created the
so-called ‘‘RSM toolkit” that uses the aforementioned
technique to calculate drag coefficients (Mehta et al.,
2014). The suite is capable of taking user inputs and imple-
menting multiple GSI models, where the user inputs consist
of atmospheric properties, satellite characteristics, and GSI
parameters. The LANL RSM toolkit uses MPI to paral-
lelize simulations, making it very efficient and ideal for
analysis with high-performance computing clusters. With
these abilities and resources, the code is capable of analyz-
ing the most complex of satellite geometries in the FMF
regime. The code can be found at the following GitHub
link: https://github.com/AndrewCWalker/rsm_tool_suite.
For further code resources, refer to Appendix B.

2. Methodology

The original RSM toolkit was developed at LANL to
provide the community with a resource for simulating
and modeling satellite drag coefficients in the FMF regime.
The code is used as the basis for the updated RSM software
package created at West Virginia University (WVU) with
extended capabilities to handle complex satellite geometries
that contain ‘‘rotating components”. Rotating components
mean the following: physical components on the satellite
that rotate independently of the satellite’s main body,
e.g., solar panels. Furthermore, the new RSM tool kit is
capable of providing uncertainty estimates, which was
not possible in the previous version. Known as the WVU
RSM, a comparison between the LANL RSM and the
new WVU RSM can be seen in Fig. 4.

The WVU RSM software is developed around provid-
ing a new user with an easily navigable environment as well
as updating the GPR model used in the LANL RSM to a
GPR via Python and the Scikit-learn module. This is ben-
eficial as it is more efficient and free of proprietary pro-
gramming languages. This new suite allows the user to
not only execute and automatically develop RSM models
but also to execute individual scripts independently, such
as: projected area calculations, satellite geometry model
rotation and generation, model creation, and model evalu-
ation (Cd computation). Comparing the flowcharts in
Fig. 4, there are a couple of notable differences in opera-
tion: rotation has been added to the toolkit, and the area
script from the LANL RSM has been replaced with a linear
n-D interpolation model for projected area computation.
The TPMC simulations within the suite use a Cartesian ref-
erence frame where the flow is in the positive x-direction,
and the z-direction is facing upward, away from the Earth.
For satellites with rotating components, the suite operates
by taking individual components of the satellite, rotating
them, and then combining them to form one object for
TPMC simulation. The suite uses JavaScript Object Nota-
tion (JSON) files for reading inputs for flexibility of input
parameters. This is highly beneficial as a satellite can have
any number of components thus creating an n-number of
inputs.

The performance of the WVU RSM is seen to be the
same as that found by Mehta et al. (2014); however, there
is a significant difference in the performance of the regres-
sion model creation code. The LANL code took a matter
of hours to complete, while the WVU RSM took only a
couple of minutes to generate the files for the regression
model. Due to multiple variables (e.g., processors, number
of simulations, the fidelity of Standard Triangle Language
(STL) file representing the satellite geometry) affecting run-
time, a full comparative analysis was not performed; how-
ever, the difference in run time was quite significant and
worth noting. It is also worth noting that there are no lim-
its on the number of simulations or fidelity of the STL file.
The user should be mindful of the processing power of their
computer, as using an excessive amount of ensemble points
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or triangles in the STL can cause run-time to increase sig-
nificantly. In general, the satellite or spacecraft geometry
needs to have enough triangular facets to accurately repre-
sent the shape. For simple convex geometries with curved
surfaces such as a sphere, cylinder, or cone, hundreds or
even thousands of facets are typically required. For a cube
with flat faces, just two triangles on each side are expected
to be sufficient. Even for geometries with flat surfaces,
meshing requirements become more complex if shadowing
effects are significant, whereby more facets may be required
to accurately capture the area that is being shadowed. We
recommend that for every geometry, the user perform a
sensitivity study to arrive at a mesh that is optimized for
accuracy and computational cost with TPMC.

2.1. Rotation of STLs

The ability to rotate STL files allows for the creation of
a regression model with component rotations as inputs.
That is, components of a satellite can be rotated indepen-

dently of the satellite body and become inputs to the regres-
sion model, alleviating the need to create new STL
geometries for different configurations of the satellite. A
rotation algorithm was used for this software that can
rotate individual objects about a user defined axis. This
algorithm was extended upon to take the individual rotated
STL components and combine them together to form the
entire geometry of the satellite. For instance, the CubeSat
seen in Fig. 5 is comprised of three parts made by the user
using an external modeling tool: two solar panels and a
body with connecting arms. Each solar panel is rotated
independently by the WVU RSM and then combined with
the body to form the satellite geometry for simulation. This
rotation code is also its own script within the toolkit and
can provide the user with new STL files if they so desire.

To rotate an STL file, an algorithm that was created by
James A. Tancred at the Air Force Research Laboratory
(AFRL) is used (Tancred, 2012). Originally developed in
MATLAB�, the code uses two ‘‘hinge point” files to define
the line about which the components are rotated. The first

Fig. 4. Flowcharts of LANL (left) and WVU (right) RSM toolkit operation. LHS: Latin hypercube sampling; CWT: ‘‘Check Water-Tightness” function.

Fig. 5. An example ‘‘CubeSat” satellite showing hinge line vector and positive rotation.
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file defines the point at which the line of rotation begins,
and the second file defines the point at which it ends. These
two points define the rotation vector. An example of this
can be seen in Fig. 5 where the two hinge lines are defined,
and their directions of positive rotation are shown. This
algorithm was translated to non-proprietary programming
language Python and used to develop the STL models for
TPMC simulation.

In order to perform the rotation, each facet needs to be
rotated using direction cosine matrices. First, the hinge line
vector needs to be defined with respect to the ‘‘world ori-
gin,” a point of reference in the code. The user has the
option to define different world origins; however, the natu-
ral choice is to use (0,0,0). It should be noted the reference
frame used for the rotation is the same as the STL files ref-
erence frame. From there, three direction cosines can be
calculated by the angles given in Eqs. (12)–(14). These

angles are measured by the vector h
!

between the hinge line
and the world origin. The cosines of the three rotation
angles defining the rotation vector are defined with respect
to a Cartesian coordinate frame from the world origin.

a ¼ 180

p
cos�1 hx

j h!j

 !
ð12Þ

b ¼ 180

p
cos�1 hy

j h!j

 !
ð13Þ

c ¼ 180

p
cos�1 hz

j h!j

 !
ð14Þ

The rotation angles can be calculated using the following
equations:

h1 ¼ 180

p
cos�1 cos2 að Þ þ sin2 cð Þ � cos2 bð Þ

2 cos að Þ sin cð Þ
� �

ð15Þ

h2 ¼ 90� c ð16Þ
hH ¼ hdeflection ð17Þ
hdeflection is defined by the users input (e.g.. if the solar panel
is to be rotated 45�, then hdeflection ¼ 45�). These three angles
can then be used to create the appropriate Eulerian rota-
tion matrices:

R1 ¼
cos h1ð Þ sin h1ð Þ 0

� sin h1ð Þ cos h1ð Þ 0

0 0 1

2
64

3
75 ð18Þ

R2 ¼
cos h2ð Þ 0 sin h2ð Þ

0 1 0

� sin h2ð Þ 0 cos h2ð Þ

2
64

3
75 ð19Þ

R3 ¼
1 0 0

0 cos hHð Þ sin hHð Þ
0 � sin hHð Þ cos hHð Þ

2
64

3
75 ð20Þ

The vertices of each facet can now be rotated using the fol-
lowing equation:

X ¼ R�1
1 R�1

2 R3R2R1 Xb � Dð Þ þ D; ð21Þ
where X is the new set of vertices for the facet, Rn is the
matrix representing the elemental rotations about the
respective axes x, y, or z, Xb is an array of the original ver-
tex points, and D is the distance between the second hinge
point and the world origin. Once the vertices have been
rotated, the normal vectors of the facets also need to be
rotated. To do this, the same approach and equations are
used as the vertices.

After this is accomplished, the new STL components
can be combined to create the entirety of the satellite’s
structure for TPMC simulations. To make sure that there
are no errors with this method, a check for water-
tightness of the geometries was implemented and is per-
formed on each STL file ensuring functionality with the
simulation code. This function makes sure there are no
holes in the STL object. Holes could cause particles to
become trapped inside the object and give incorrect results.

2.2. WVU regression model

Each input parameter for TPMC simulation is defined
over a range. Using this range, Latin hypercube sampling
(LHS) provides a set of ensemble designs (input configura-
tions). TPMC produces drag coefficients corresponding to
those ensemble designs to create the training data needed.
We use GPR, a well-known supervised machine learning
method, for fitting a response surface over the training
data. An advantage of using the GPR model is that it pro-
vides uncertainty estimates.

2.2.1. Gaussian process regression (GPR)

Gaussian process regression is a supervised machine
learning technique based on Bayes’ theorem. Unlike tradi-
tional regression approaches that fit a single function
through the observed training data, GPR models the prob-
ability distribution over the functional space conditional on
the observed data. In GPR, a GP prior is first defined over

the functional space x 2 RDi ! f xð Þ 2 RDo . GP is a
stochastic process such that for any set of inputs {x1; x2;
. . . :;xn}, the random variables {f x1ð Þ; f x2ð Þ; . . . :; f xnð Þ}
are jointly Gaussian. GP prior is defined by a mean func-
tion and a covariance matrix:

p FjXð Þ ¼ N Fj0;Kð Þ þN �j0; n2l I
� � ð22Þ

where F ¼ f x1ð Þ; f x2ð Þ; . . . :; f xnð Þ½ �T ;X ¼ x1; x2; . . . :; xn½ �T ,
and N represents the normal distribution. The variable �
represents the training data noise with noise-level nl. The
elements of the covariance matrix K are defined by the
‘‘kernel” functions.

The posterior predictive distribution is found using
Bayes’ theorem by conditioning on the prior and the obser-
vations. Given an observation dataset Xo;Fof g, the predic-
tive posterior distribution corresponding to test inputs X�
is given by (Rasmussen and Williams, 2006):
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p F�jX�;Xo;Foð Þ ¼ N F�jl�;R�ð Þ ð23Þ
l� ¼ KT

� Ko þ n2l I
� ��1

Fo ð24Þ
R� ¼ K�� � KT

� Ko þ n2l I
� ��1

K� ð25Þ
with K� ¼ K Xo;X�ð Þ;Ko ¼ K Xo;Xoð Þ;K�� ¼ K X�;X�ð Þ.
Hyperparameters l and nl are found by maximizing the
log marginal likelihood of the training data. The matrix I

represents the identity matrix and the value of R� is the
measure of the uncertainty of the model.

2.2.2. Implementation

We use the GPR module available with Python’s Scikit-
learn library (Pedregosa et al., 2011). For the Python GPR
implementation, the kernel function needs to be specified
by the user. Through much trial and error, we have deter-
mined that the most appropriate kernel for our applica-
tions is the Matern kernel. The Matern kernel is a
stationary kernel and a generalization of the Radial-basis
function (RBF) kernel (Pedregosa et al., 2011). The Matern
kernel is defined as:

k xi; xj
� � ¼ 1

C mð Þ2m�1

ffiffiffiffiffi
2m

p

l
d xi; xj
� � !m

Km

ffiffiffiffiffi
2m

p

l
d xi; xj
� � !

ð26Þ
where l is a length scale parameter greater than zero,

d xi; xj
� �

is the Euclidean distance, KmðÞ is a modified Bessel

function, and C mð Þ is the gamma function. The parameter m
controls the smoothness of the function. In this work, m is
set to 2.5, a value that is common for twice differentiable
functions. As m approaches infinity, the Matern kernel con-
verges to the RBF kernel. When m ¼ 1

2
, the Matern kernel

becomes identical to the absolute exponential kernel
(Pedregosa et al., 2011).

3. Results

3.1. GPR prediction results

If we use too few ensemble points in the training pro-
cess, i.e., if the ensemble points are sparsely distributed,
then the size of the predicted uncertainty is large. If we
use too many ensemble points, we have a computationally
expensive model at our hand. As such, the configuration
and the number of ensemble points need to be carefully
designed. For each of the primary constituent species in
the LEO region (H ;He;N ;N 2;O;O2), 1000 ensemble
designs, selected using LHS, are used for training purposes.
Another 1000 ensemble designs are used for testing pur-
poses. The simulations performed were done so using the
DRIA setting within the software; however, complete
accommodation (i.e. a ¼ 1) was used. Since the purpose
of this test is to judge the performance of the GPR, a ¼ 1
was chosen arbitrarily. Table 1 shows the minimum and
maximum values used in the development of the GPR for
a cube and a CubeSat. V 1 is the freestream velocity, T w

is the satellite surface temperature, T1 is the atmospheric
temperature, b is the yaw, and U is the pitch. These ranges
were chosen to correspond with values generally seen by
satellites in the LEO region. These parameter values were
used for both the training and test data for the GPR.
Fig. 6(a) shows the comparison between the numerical
(TPMC) drag coefficient values and the GPR predictions
for a cube for atomic hydrogen (H). Fig. 6(b) shows the
histogram of the residuals between the test and predicted
drag coefficient values. The predicted values closely follow
the numerical test values as evident from the 45� slope of
the line in Fig. 6(a). The residual values in Fig. 6(b) are

Table 1
Minimum and maximum for GPR parameters.

Independent Variables Lower Bound Upper Bound

V 1 5500 m=ss 9500 m=s
Tw 250 K 400 K
T1 1100 K 2400 K
b 0� 180�

U 0� 90�

Fig. 6. GPR results for a cube for atomic hydrogen.
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significantly small numbers, and the histogram is approxi-
mately centered at zero. These very low non-biased residu-
als are an indication of excellent GPR performance. To
further quantify the performance of the GPR, the Root
Mean Square Error (RMSE) is given for each species in
Table 2. The minimum and maximum values for the cube
were.00211 and 0.00350, respectively, an indicator that
the regression model has high fidelity. The performance
corresponding to the other five constituent species is excel-
lent as well. Interested readers should refer to Appendix A,
Fig. A.1 for the results corresponding to He;N ;N 2;O;O2

for the cube.
Next, we evaluate a cube with rotating solar panels

(CubeSat), as seen in Fig. 5. This satellite consists of a
1mx1mx1m cube body with two solar panels that are each
1mx2m with 10 mm thickness. The rotation of each compo-
nent now becomes an input to the GPR model creation. In
this case, the central body of the satellite does not have any
rotation other than pitch and yaw. Therefore, the rotation
of the central body is set to zero, giving the GPR an input
with zero variance. The code is capable of recognizing the
input with zero variance and ignoring it so that it does not
have any impact on the GPR’s performance. The perfor-
mance of the GPR for the test data set of atomic hydrogen
is shown in Fig. 7. This data is similar to the case of the
cube in that the CubeSat also has excellent performance.
The RMSE values for the CubeSat are given in Table 2.
The CubeSat had a minimum RMSE of.00304 and a max-
imum RMSE of 0.00498 further proving that the regression
model creation is sufficient. For more results, please refer
to Appendix A, Fig. A.2.

3.2. Model calibration

Calibration is the requirement in stochastic modeling
that the predicted probabilities give an approximation of
the likelihood of true events (Camporeale and Caré,
2020). A well-calibrated model, for example, should have
around 68% true observations within one standard devia-
tion, 95% true observations within two standard devia-
tions, and 99.7% true observations within three standard
deviations. Uncalibrated models tend to be over-
confident or under-confident in their predictions, and one
should not trust their inferences. A convenient way to
check how well a model is calibrated is by looking at its
‘‘consistency curve”.

Let the expected confidence interval levels be:
C ¼ 5%; 10%; 15%; . . . ::; 95%½ �. The corresponding coeffi-
cients defining the uncertainty bounds are then given as:

j k½ � ¼ ffiffiffi
2

p
erf�1 C k½ �=100ð Þ, where erf is the well-known

error function. Let, xoj ; yoj

� �
j¼1;...;m

be the observation

dataset and let the corresponding predictions be

lj; rj

� �
j¼1;...;m

, where lj represents the mean and rj repre-

sents the standard deviation. Then, the expected percentage
of observed dataset within the lower and upper uncertainty
bounds associated with C k½ � is obtained as (Anderson et al.,
2020):

P k½ � ¼
Xm
j¼1

I lj � j k½ �rj

� �
< yoj < lj þ j k½ �rj

� �� �
m

2
4

3
5

� 100

ð27Þ

Table 2
RMSE for each species for cube and CubeSat satellites.

Species Cube CubeSat

H 0.0035 0.00498
He 0.00245 0.00360
N 0.00217 0.00304
N2 0.00211 0.00311
O 0.00221 0.00311
O2 0.00213 0.00316

Fig. 7. GPR results for a cubesat with rotating components for atomic
hydrogen.
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where I is the indicator function.
The consistency curve mentioned earlier is the plot of P

versus C. The proximity of the consistency curve to the

y ¼ x line (i.e., a straight line with a slope of 450 and pass-
ing through the origin) is used to measure calibration in
this study. The consistency curve will perfectly overlap
the y ¼ x line in a perfectly calibrated system. For further
explanation of the consistency curve, consider 3r error
bounds. Then ideally, when our model is perfectly cali-
brated (does not usually happen in real life models),
99.7% of predicted drag coefficients should lie within 3r
standard deviations of the mean (assuming a normal distri-
bution). When we manually count, let’s say only 95% of
predicted drag coefficients lie within 3r bounds. The point
(99.7, 95) would be one such point in the consistency curve.

For the evaluation of consistency, drag coefficient pre-
dictions are made for a sphere and the CHAMP satellite.
For each of the objects, 1000 ensemble designs are selected
for training, and another 1000 ensemble designs are
selected for testing purposes. The training/testing data
are created using the numerical TPMC method using the
CLL GSI model. The ensemble designs are selected using
LHS, where the design space for the LHS sampling is given

in Table 3. The consistency plots for sphere and CHAMP
drag coefficient predictions using GPR for the test dataset
are shown in Fig. 8. The blue dotted line corresponds to the
ideal case of perfect calibration, and the green curve corre-
sponds to the GPR predictions. The predictions for the
sphere are better calibrated than the predictions for the
CHAMP satellite as CHAMP has a more complex geome-
try than the sphere. For improvements in the model cali-
bration of the CHAMP satellite, we can use more LHS
samples, but that would increase the computational cost.

In addition to the qualitative performance of the esti-
mated uncertainties provided in Fig. 8, we also investigate
the quantitative performance using the mean absolute cal-
ibration error (MACE), defined as:

MACE ¼ 1

nC

XnC
k¼1

jC k½ � � P k½ �j ð28Þ

where nC is the number of confidence interval levels.
Table 4 lists the MACE values for the sphere and the

CHAMP satellites for different atmospheric species. For
the sphere, the best MACE value is 0:43%, which corre-
sponds to atomic hydrogen, and the worst MACE value

Table 3
Bounds defining the LHS design points.

Independent Variables Lower Bound Upper Bound

V 1 7250.0 m/s 8000.0 m/s
Tw 100.0 K 2000.0 K
T1 200.0 K 2000.0 K
an 0.0 1.0
rt 0.0 1.0
b �10� 10�

/ �10� 10�

Fig. 8. Consistency plots for a sphere and the CHAMP satellite for drag coefficient prediction using GPR for the test dataset.

Table 4
Mean absolute calibration error for each species for the sphere and the
CHAMP satellite.

Species MACE Sphere (%) MACE CHAMP (%)

H 0.43 7.66
He 1.69 5.37
N 1.03 6.16
N2 1.34 3.97
O 2.15 3.94
O2 1.56 6.55
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is 2:15%, which corresponds to atomic oxygen. For the
complex CHAMP satellite, the best and the worst MACE
values are 3:94% (atomic oxygen) and 7:66% (atomic

Fig. 9. CHAMP CD � Area for August 28, 2009. Comparison of WVU
GPR drag coefficient values with other models (in red, we have the WVU
GPR model results; in cyan, we have the LANL GPR model results; in
black, we have the DSMC results).

Fig. 10. Relative velocity magnitude and satellite attitude profiles for the
CHAMP satellite for August 28, 2009.
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hydrogen), respectively. These values demonstrate that our
models produce meaningful uncertainty estimates.

3.2.1. Computational analysis comparison

To further test the credibility of the WVU RSM Toolkit,
a comparison between different models for drag coefficient
computation is performed. Fig. 9 compares the LANL and
WVU codes that use GPR with the SPARTA-based drag
coefficient data provided by Dr. Christian Siemes from
the Delft University of Technology (March, 2021). Each
of these plots shows the drag coefficient multiplied by the
projected area of the CHAMP satellite. The first sub-
figure covers one day, while the other two sub-figures are
zoomed-in versions with a ten hour duration and one hour
duration, respectively. The red-colored curve is calculated
using the WVU RSM software for the CLL GSI model,
and the cyan-colored curve is generated with the help of
LANL RSM software for the CLL GSI model. The satel-
lite surface temperature, which is one of the inputs for
the CLL RSM models (refer: Section 1.2), is taken as
400 K. The mass of the particles that compose the CHAMP
satellite surface is assumed to be 28 amu. The profiles of the
inputs: relative velocity magnitude, satellite pitch, and
satellite yaw are given in Fig. 10. The drag coefficient data
from the Delft University of Technology (shown in black in
Fig. 9) corresponds to the DRIA GSI model, and is gener-
ated from DSMC lookup tables. The lookup tables from
TU Delft can be downloaded here: http://thermo-
sphere.tudelft.nl. The TU Delft lookup tables (generated
for a sequence of accommodation coefficient values) consist
of three lookup columns: speed ratio, pitch, and yaw
angles; linear interpolation is used for extracting drag coef-
ficient values. The projected area is a function of yaw and
pitch and is found by interpolation of an area lookup table
generated via each software. Each of these techniques gen-
erate projected area using the same CHAMP model. The
LANL RSM results are quite noisy since the LANL
RSM suite uses bi-linear interpolation on the area lookup
table. The WVU RSM model, on the other hand, uses a
higher-order interpolation model for the area lookup.
The results of the three methods are similar but not the
same. The DSMC results, in particular, do not have
troughs as low as the RSM results. This probably arises
because of differences in TPMC and DSMC simulations
as well as the calculation of projected area of the satellite.
The LANL GPR results do show a significant amount of
noise, but for the most part, lie in close proximity to the
3r uncertainty bounds of the WVU GPR values. The
WVU GPR results follow the DSMC trend quite closely.
The RMSE between the mean WVU GPR predictions
and the DSMC results is a mere 0.0345. This shows that
the WVU GPR provides reasonable results.

4. Conclusions and future possibilities

The goal of the WVU RSM is to provide the community
with an efficient tool to estimate drag coefficient, while pro-

viding uncertainty, for satellites with and without rotating
components. The WVU RSM showed substantial success
in generating new STL files, combing STL files to form
whole objects, and automatically ensuring that the objects
were suitable for simulation (i.e., watertight). The GPR fit
by the toolkit shows promise of effectiveness as the residu-
als/RMSEs between numerically computed drag coeffi-
cients and surrogate-predicted drag coefficients were
small. The drag coefficient uncertainty estimates were also
reliable as illustrated in the consistency or calibration
curves. Furthermore, the comparison of CHAMP amongst
the different drag modeling software confirms that the
WVU RSM performs similarly; however, there is an oppor-
tunity for improvement as the LANL RSM and DSMC
deviate due to different means of calculating projected area
and simulation techniques.

The paper remains incomplete without discussing the
potential limitations of the developed toolkit. Since there
is a knowledge gap between the operational and the TPMC
simulated gas-surface interactions (GSIs) models/model
parameters, the fitted response surface is only as good as
the assumptions made in the numerical simulations. For
example, the work by Bernstein et al. (2020) indicates the
possibility of substantial inaccuracies owing to drag coeffi-
cient modeling assumptions, particularly at high LEO alti-
tudes. In the future, we may investigate the use of orbit
data (Crisp et al., 2021) or estimations of semi-empirical
parameters (Ray et al., 2021) to improve the GSI parame-
ters. Furthermore, we acknowledge that the total drag
coefficient computation depends upon the species’ mole
fractions, which are functions of the atmospheric density
model. We may explore the effect of different atmospheric
density models in the future.

Because we are dealing with regression modeling, there
is a prime potential for the use of neural networks instead
of the Gaussian process in the WVU RSM toolkit. GPRs
typically have a functionality form that is limited to the
kernel they use. A neural network could allow for more
flexibility in the analysis of data. The neural network also
has the capability to handle larger data sets with more effi-
ciency. While the GPR is still efficient, a neural network
could extend capabilities to analyze more real-world data.

Furthermore, the WVU RSM is still a software that
requires high-level knowledge of command scripting. With
the significant increase in efficiency from the Python mod-
eling, the WVU RSM could potentially: (a) move most of
the processing to GPUs or a smart combination of CPU
and GPU processing, (b) have a web-based graphical user
interface (GUI), and the execution happens on a high per-
formance computing (HPC) cluster (or cloud servers) with-
out the user having to know anything about the command-
line interface or job submissions, and controlling the input
and the output from a web browser, (c) improving the code
to use multiple levels of concurrency: multiple job execu-
tion, distributed parallelism, multicore parallelism and
GPU acceleration.
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Appendix A. GPR results

See Figs. A.1 and A.2.

Fig. A.1. GPR results for a simple 1mx1mx1m cube.
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Fig A.1. (continued)
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Fig. A.2. GPR results for a CubeSat with two solar panels.
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Appendix B. Code resources

B.1. Code

The Los Alamos National Laboratory Response Sur-
face Modeling code can be found at: https://github.com/
AndrewCWalker/rsm_tool_suite

Reference for this code can be found under the follow-
ing paper:

Mehta, P. M., Walker, A., Lawrence, E., Linares, R.,
Higdon, D., and Koller, J. (2014). Modeling Satellite Drag

Coefficients with Response Surfaces. Advances in Space
Research, 54(8), 1590–1607. doi:10.1016/j.asr.2014.06.033

The West Virginia University Response Surface Model-
ing code can be found at: https://github.com/ASSISTLab-
oratory/WVU_RSM_Suite

B.2. Developers

Phillip ‘‘Logan” Sheridan, Lead Developer, Author
pls0013@mix.wvu.edu
Dr. Guillermo Avendano-Franco, Cluster Specialist,

AutoTools.
guavendanofranco@mail.wvu.edu
Dr. Smriti Nandan Paul, GPR Creation.
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