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Abstract

For objects in the low Earth orbit region, uncertainty in atmospheric density estimation is an important source of orbit prediction
error, which is critical for space traffic management activities such as the satellite conjunction analysis. This paper investigates the evo-
lution of orbit error distribution in the presence of atmospheric density uncertainties, which are modeled using probabilistic machine
learning techniques. The recently proposed “HASDM-ML,” “CHAMP-ML,” and “MSIS-UQ” machine learning models for density
estimation (Licata and Mehta, 2022b; Licata et al., 2022b) are used in this work. The investigation is convoluted because of the spatial
and temporal correlation of the atmospheric density values. We develop several Monte Carlo methods, each capturing a different spa-
tiotemporal density correlation, to study the effects of density uncertainty on orbit uncertainty propagation. However, Monte Carlo anal-
ysis is computationally expensive, so a faster method based on the Kalman filtering technique for orbit uncertainty propagation is also
explored. It is difficult to translate the uncertainty in atmospheric density to the uncertainty in orbital states under a standard extended
Kalman filter or unscented Kalman filter framework. This work uses the so-called “consider covariance sigma point (CCSP)” filter that
can account for the density uncertainties during orbit propagation. As a test-bed for validation purposes, a comparison between CCSP
and Monte Carlo methods of orbit uncertainty propagation is carried out. Finally, using the HASDM-ML, CHAMP-ML, and MSIS-
UQ density models, we propose an ensemble approach for orbit uncertainty quantification for four different space weather conditions.
© 2023 COSPAR. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/
by-nc-nd/4.0/).
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1. Introduction

In recent decades, ambitious satellite mega-constellation
projects such as SpaceX’s Starlink constellation
(McDowell, 2020), OneWeb satellite constellation (Henri
and Pelton, 2020), and others, as well as affordable access
to space, have resulted in an exponential growth of objects
in the low Earth orbit (LEO) region. There are no signs of a
reversal of this trend, as tens of thousands of satellites are
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tentatively planned for launch in the near future (Boley and
Byers, 2021). This proliferation increases the risk of colli-
sions between active space assets and space debris or
between debris and debris, threatening the sustainability
of this commercially and scientifically critical near-Earth
region. We need better space domain awareness (SDA)
and space traffic management (STM) measures to address
this sustainability challenge. A particularly important
aspect of SDA/STM is the conjunction assessment that
involves computing the probability of collision between
two space objects, which is critical for operational decisions
such as the firing of thrusters or differential drag applica-
tion (Finley et al., 2013) for orbit modification. Reliable
estimates of the uncertainties in the orbital state of a space

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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object are required for determining the probability of colli-
sion. This paper thus focuses on the quantification and
propagation of orbital state uncertainties.

The primary sources of errors in orbit prediction prob-

lems are - (a) initial state uncertainties and (b) dynamical
uncertainties. The first source of error refers to inadequate
knowledge about the initial orbital state (position and
velocity) that arises from uncertainties in the measurements
(obtained using ground-based or space-based sensors),
which are used in the orbit determination (OD) process.
The second source of error emanates from incomplete
knowledge about the dynamical form of the perturbation
forces, uncertainties in the dynamical parameters (e.g.,
atmospheric density, drag coefficient, reflection coefficients,
and others), and from missing low-order forces (e.g., Lor-
entz force (Paul and Frueh, 2021), Earth albedo (Knocke
et al., 1988), and others) that are often not included in
the modeling. In the proposed study, we focus on the effects
of uncertainties in atmospheric density, which is one of the
largest sources of dynamical uncertainties for objects in the
LEO region (Vallado and Finkleman, 2014). The uncer-
tainty in atmospheric density manifests itself through the
atmospheric drag force, which is given as:
1 CpApy
L d— (1)
where p is the atmospheric density, Cp is the drag coeffi-
cient, 4,,,; is the projected area of the satellite perpendicu-
lar to the flow direction, 7’,.; is the velocity of the satellite
relative to the atmosphere, and v,,; is the magnitude of
T ,.;. The satellite mass is usually known from the opera-
tors and constant for a non-maneuvering satellite, but all
other parameters can have uncertainties (Vallado and
Finkleman, 2014). Except for the atmospheric neutral mass
density, we will not address the uncertainties in other drag
parameters in this paper.

Atmospheric density and its associated uncertainty have
a complex dependency upon the selected atmospheric
model, solar irradiance in the extreme ultraviolet (EUV)
and far ultraviolet (FUV) spectral ranges, geomagnetic
indices, location, epoch, and various other factors, which
make it a challenging problem to estimate the density.
The difficulty is particularly amplified during large geo-
magnetic storms (Bruinsma et al., 2021) and can even lead
to the loss of satellites (Hapgood et al., 2022). Several ther-
mospheric mass density models have been proposed over
the years. These density models can either be categorized
as physical models (those that solve fluid equations) or
empirical models (those that represent average behavior
of atmospheric observations in a parameterized mathemat-
ical formulation (Emmert, 2015)). A detailed review of
existing models can be found in He et al. (2018), Emmert
(2015). However, most density models in existence, includ-
ing the operational High Accuracy Satellite Drag Model
(HASDM) system (Storz et al., 2005) used by the United
States Space Force (USSF), do not provide an estimate
of the uncertainty in their predictions.

—

— —
ap= Urel U rel
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Little attention has been paid in the literature to the
direct quantification of the uncertainty in atmospheric den-
sity models. Using Gaussian Processes (GPs), Gao et al.
(2020) propose a framework for uncertainty quantification
of NRLMSISE-00 (Naval Research Laboratory Mass
Spectrometer and Incoherent Scatter Radar Extended)
and JB2008 (Jacchia-Bowman) neutral mass density mod-
els. Boniface and Bruinsma (2021) use statistical data bin-
ning techniques combined with least square fitting
approaches to provide an uncertainty quantification model
for the DTM2020 (Drag Temperature Model) thermo-
sphere density model. Licata et al. (2022a) leverage the
Monte Carlo dropout technique, a Bayesian approxima-
tion of the Gaussian Process, to develop a probabilistic
density model utilizing the Space Environment Technolo-
gies (SET) High Accuracy Satellite Drag Model (HASDM)
density database (Tobiska et al., 2021). More recently, in
two different works - the first by Licata and Mehta
(2022b) and the second by Licata et al. (2022b) - the
authors have developed three machine learning models that
directly predict mean and standard deviation (as opposed
to an “‘ensemble-like” approach followed in the computa-
tionally expensive Monte Carlo dropout technique). The
first model, which we will refer to as the HASDM-ML-
DP (ML: machine learning; DP: direct probability predic-
tion), is based on the SET HASDM database; the second
model, which we will refer to as the CHAMP-ML-DP, is
based on the accelerometer data collected by the Challeng-
ing Minisatellite Payload (CHAMP) satellite (Mehta et al.,
2017); the third model, which we will refer to as the MSIS-
UQ-DP, is based on combined data from the CHAMP,
Gravity Recovery and Climate Experiment (GRACE),
Swarm A, and Swarm B satellites (Doornbos, 2012;
Mehta et al., 2017; Sutton, 2008; van den IJssel et al.,
2020). The methodology we develop in this paper will use
the HASDM-ML-DP, CHAMP-ML-DP, and MSIS-UQ-
DP thermospheric density models (Licata and Mehta,
2022b; Licata et al., 2022b), which are detailed in later sec-
tions of this paper.

Several authors have investigated the effects of atmo-
spheric density uncertainty on the orbital state uncertain-
ties or derived quantities such as the probability of
collision. Wilkins and Alfriend (2000) use a first-order
Gauss—Markov process to model atmospheric density
uncertainty in an Extended Kalman Filter (EKF) frame-
work for orbit determination. Sagnieres and Sharf (2017)
present an Ornstein—Uhlenbeck process-based framework
that uses the intrinsic difference between various atmo-
spheric density models to characterize the uncertainty in
atmospheric density and subsequently study its effect on
orbit prediction. Emmert et al. (2017) develop analytic
expressions for in-track position errors due to EUV fore-
cast errors modeled using the Brownian motion process.
Bussy-Virat et al. (2018) investigate the effects of uncer-
tainty in F;, , and Ap space weather drivers on the proba-
bility of collision. Using Proper Orthogonal
Decomposition (POD), Gondelach et al. (2022) derive a
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dynamic reduced-order density model, which is then used
in a Kalman filtering framework for uncertainty propaga-
tion. The authors use the estimated uncertainties for the
calculation of the probability of collision. However, none
of these works use an atmospheric density model that
explicitly provides the uncertainty in its estimate.

The goal of the present paper is to develop an ensemble
methodology that combines the epistemic uncertainties
predicted by the HASDM-ML-DP, CHAMP-ML-DP,
and MSIS-UQ-DP density models to characterize the
uncertainty in the orbital states of a space object. To
address the fact that no model is perfect and the model skill
changes with conditions, our proposed ensemble modeling
approach provides a higher degree of covariance realism.
In Section 2, we describe the data and approach used to
develop the three stochastic density models. In Section 3,
we demonstrate how a standard high-cadence Monte Carlo
technique to orbit uncertainty propagation is insufficient
for capturing the spatiotemporal density correlation. We
then provide several Monte Carlo orbit propagation algo-
rithms that not only account for the effect of density uncer-
tainty but also preserve spatiotemporal correlation for the
density. In Section 4, we provide details about the so-called
consider covariance sigma point (CCSP) filter that is used
for orbit uncertainty propagation while capturing the
effects of atmospheric density uncertainty. We present
details of a framework that uses ensemble modeling for
predicting the orbit state probability density function
(PDF) in Section 5. In Section 0, test cases for the ensemble
approach for orbit uncertainty characterization are pre-
sented for a variety of space weather conditions. In the
same section, we also provide a comparison of the CCSP
and Monte Carlo methods for validation purposes. Finally,
in Section 7, we summarize the paper and draw important
conclusions.

2. Stochastic density models
2.1. HASDM-ML-DP density model

The HASDM is a proprietary operational thermo-
spheric density framework used by the USSF Combined
Space Operations Center. Using the so-called Dynamic
Calibration of the Atmosphere (DCA) algorithm, the
HASDM framework estimates 13 global density correction
parameters to provide near real-time corrections to the
base JB2008 thermospheric density model. The computa-
tion of the global density correction field relies on the
observed drag effects on a large number of calibration
satellites in the LEO region. For a thorough discussion
on the HASDM framework, see Storz et al. (2005).

Recently, as part of an open-access initiative for scien-
tific studies, SET has publicly made available the SET
HASDM density database (Tobiska et al., 2021) consisting
of data from January 1, 2000 through December 31, 2019.
The publicly available data has a cadence of three hours
and a resolution of 15° longitude, 10° latitude, and 25 km
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altitude ranging between 175-825 km. The database con-
sists of 58,440 samples. Licata and Mehta (2022b) use this
database for developing a deep neural network (DNN)-
based framework that directly predicts the mean and stan-
dard deviation of parameters of interest, which are subse-
quently processed through an inverse function to obtain
estimates of the mean and standard deviation of the atmo-
spheric density. The inputs for their DNN, motivated by
the drivers for the JB2008 density model, consist of eight
solar indices/proxies, 16 geomagnetic indices (time history
for ap and Dst), and four temporal parameters (for more
details on the inputs, see Licata and Mehta (2022b)).

The SET HASDM database has 12,312 outputs (combi-
nation of 24 longitude values, 19 latitude values, and 27
altitude values) at each epoch, which would make any
regression efforts a computationally challenging task. To
facilitate computational feasibility, Licata and Mehta
(2022b) use principal component analysis (PCA) to obtain
a reduced-order model (ROM) (Mehta and Linares, 2017;
Mehta et al., 2018). The authors use PCA to perform the
following decomposition:

x(s, t) = X(s) + X(s, )
10
X(s,0) = Y [o()U,(5)]
=1

where x(s, f) is the log-transformed HASDM density, X(s)
is the mean dependent only on the spatial coordinates, o;(¢)
are the temporal PCA coefficients, and U,(s) are the
orthogonal modes or basis functions. In the HASDM-
ML-DP, the authors predict the mean and standard devia-
tion of the 10 PCA coefficients, i.e., the output dimension
of the ML model is 20. The predicted coefficients are mul-
tiplied by matrix U (formed from the orthogonal modes of
variation), followed by the addition of the spatial mean to
decode back to log density. The authors carry out a Monte
Carlo simulation, where multiple sets of PCA coefficients
are sampled from their distribution, followed by the men-
tioned multiplication/addition operation to obtain a
stochastic estimate of the log density. For a detailed
description of the computation of the matrix U, refer to
Licata et al. (2021).

(2a)

(2b)

2.2. CHAMP-ML-DP density model

CHAMP was a German satellite launched on July 15,
2000 (Reigber et al., 2002) and remained in orbit for a dec-
ade before re-entering the Earth’s atmosphere in 2010. Its
orbit was near-circular, near-polar (i ~ 87°), and an initial
altitude of 460 km (Reigber et al., 2002) was chosen. The
STAR accelerometer on board the CHAMP satellite mea-
sured the resultant non-gravitational forces experienced by
the satellite. By modeling out the effects of atmospheric lift,
solar radiation pressure, albedo, and infrared radiation
pressure, Sutton (2008) derives estimates of acceleration
due to atmospheric drag. Thereafter, Sutton uses a drag
coefficient model (Cp,,,,) and a satellite geometry (repre-



S.N. Paul et al.

sentative of the satellite cross-sectional area, Ago,) to
obtain an estimate of the neutral thermospheric density
(Psuson)- However, Sutton’s work uses a simplified model
of the satellite drag coefficient. Using a higher fidelity satel-
lite geometry (Apen.) and an improved drag coefficient
model (Cp,,,,), Mehta et al. (2017) scales Sutton’s density
estimates to obtain a new set of density estimates for the
CHAMP satellite as:

CguuonAsuton
pMehta -

Sutton

3
CDMehmAMehta ( )

The CHAMP database provided by Mehta et al. (2017)
spans from January 1, 2002 through February 22, 2010.
The data has a cadence of 10 s, making it a total of more
than 25 million samples. The CHAMP-ML-DP (Licata
and Mehta, 2022b) is a DNN-based regression model that
utilizes the density data provided by Mehta et al. (2017).
The input data for the CHAMP-ML-DP consists of eight
solar indices/proxies, three geomagnetic indices, and eight
spatiotemporal parameters, and the output data consists
of the mean and standard deviation of the atmospheric
density. More details on the input and the training of the
model can be found in Licata and Mehta (2022b). The
main distinction between the CHAMP-ML-DP and the
HASDM-ML-DP is that the CHAMP-ML-DP is based
on local measurements, whereas the HASDM-ML-DP is
based on global measurements.

2.3. MSIS-UQ-DP density model

The Naval Research Laboratory updated the empirical
NRLMSISE-00 density model to release a new version
called NRLMSIS 2.0 (Emmert et al., 2021) in 2021.
Changes are incorporated in the fundamental formula-
tions, and substantial additional measurements are
included to make NRLMSIS 2.0 more accurate than the
original version. The density estimates from NRLMSIS
2.0 depend upon the exospheric temperature. Recently,
Licata et al. (2022b) have developed a feed-forward deep
neural network model, MSIS-UQ-DP, that performs
uncertainty quantification for the exospheric temperature,
which in turn is fed into the NRLMSIS 2.0 model to obtain
uncertainty estimates for the density. To develop the
MSIS-UQ-DP model, the authors use a database of 81 mil-
lion exospheric temperatures. These exospheric tempera-
tures are computed using a binary search method
(Weimer et al., 2016; Weimer et al., 2020; Weimer et al.,
2021) such that the densities from NRLMSIS 2.0 match
density estimates of the CHAMP, GRACE-A, Swarm A,
and Swarm B satellites. CHAMP and GRACE-A density
estimates are obtained from accelerometer measurements,
whereas the Swarm density estimates are obtained from
orbit determination using the onboard Global Positioning
System (GPS) receivers (Weimer et al., 2020). The input
data for the MSIS-UQ-DP model consists of 21 space
weather, spatial, and temporal parameters. The MSIS-
UQ-DP model provides a well-calibrated uncertainty esti-
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mate and has a superior mean absolute error performance
compared to the NRLMSIS 2.0 and HASDM density
models. For more details on the MSIS-UQ-DP model,
please refer to Licata et al. (2022b).

3. Monte Carlo methods for orbit uncertainty propagation

3.1. ‘Traditional’ Monte Carlo method with a high sampling
frequency

Orbital parameters and measurements have uncertain-
ties, which are expressed using PDFs derived from some
mathematical model or heuristics. In a Monte Carlo
method, one repeatedly samples from the PDF represent-
ing the uncertainty and carries out orbit propagation to
construct a population of objects, from which statistical
information about their states can be obtained. The sche-
matic of a ‘traditional’ Monte Carlo approach to orbit
uncertainty propagation in the presence of atmospheric
density uncertainties is shown in Fig. 1. In the traditional
approach, the sampling frequency, which is defined as the
inverse of Ar in Fig. 1, is high. This high sampling fre-
quency leads to partial ‘cancellation’ of the (drag) pertur-
bation effects, resulting in unrealistically small orbit
errors. To explain the ‘cancellation’ effect, let us consider
a hypothetical case of Az = ls and a constant density field
with normal distribution N (10™"%kg/m* 10" "kg/m?). A
series of sampled density values at four consecutive time
steps 0s, 1s, 2s, 3s can be
94 x 10" kg /m?,1.07 x 10" kg /m?, .98 x 10™"%*kg/m’,
and 1.01 x 10~ "2kg/m?, respectively. The drag force with a
density greater than the mean value will increase the along-
track error, and the drag force with a density smaller than
the mean value will decrease the along-track error. Without
a sufficiently large A¢, the two perturbation effects partially
cancel out each other. Such behavior is unrealistic as actual
density values have spatiotemporal correlation, i.e., the
change in density should be more gradual. In the later part
of this paper, we simulate an orbit uncertainty propagation
scenario using the traditional Monte Carlo method.

3.2. Modified Monte Carlo simulation techniques for density
correlation

The atmospheric density is correlated in both time and
space. The sampling procedure for the traditional Monte
Carlo scheme needs to be modified to correctly capture
the effect of this correlation on the evolution of orbital state
uncertainty. Here, we present two Monte Carlo schemes
based on the sampling of so-called ‘bias’ factor k. If k; is
a sampled value of the bias factor at any point in the orbit
for a Monte Carlo run, then the corresponding density
sample is p; = p, + Kx,0,, where the mean density y, and
the standard deviation o, are obtained from either
HASDM-ML-DP or CHAMP-ML-DP or MSIS-UQ-DP
density model. When computed across all Monte Carlo
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START
Counter=1

Att = tg, draw a density sample from p ~ N (), 75,)-
WNVis the normal distribution. The mean 1, and the
standard deviation g, comes from the HASDM-ML-
DP/CHAMP-ML-DP/ MSIS-UQ-DP model for the initial
time, orbit location, and space weather condition. Use
this sampled density value to calculate the drag force

force

Using the orbit dynamics, propagate the space object to
the next time step, t = ty + At. Draw a sample from

p ~ N(Hp,, 0p,), where u, and g, are the mean and
standard deviation values for the density at t = ty +
At. Use the sampled density value to calculate the drag

Y

state.

Continue this iterative process of sampling and
propagating until t = Ty, where Tgpq is the user-
supplied orbit propagation time. Store the final orbital

From the N final
orbital states,
obtain the error
distribution

Counter = counter+1

Counter > N?

[N is the number of total
Monte Carlo cases that a user
wants to run, e.g., N =1000]

Fig. 1. ‘Traditional’ Monte Carlo Method for orbit uncertainty propagation.

runs, the bias factor needs to have the following properties
for each epoch of the orbit propagation - (a) E[x] is roughly
equal to zero, (b) Var[k] is roughly equal to unity, where
E[-] represents the expected value and Var[] represents the
variance. These two desirable properties of the bias factor
ensures that the machine learning model predicted

moments are preserved, i.e., E[p]= E[upi + Kap‘} is
roughly equal to the model predicted mean pu, and
Var|p] = Var ['“p, + rca,,,} is roughly equal to the model pre-

dicted variance o} .

In the first proposed Monte Carlo method, x is sampled
from a standard normal distribution. Two variants of this
method are implemented - (1) first variant: for each Monte
Carlo run, we sample x every 18 min and interpolate the
value of x in between, (2) second variant: for each Monte

2539

Carlo run, we sample x every 180 min and interpolate the
value in between. A detailed schematic of the first proposed
Monte Carlo method is shown in Fig. 2.

In the second proposed Monte Carlo method, x is sam-
pled from a first order Gauss—-Markov process (Schutz
et al., 2004):

K(t + At) = exp(—PA)x(t) + u ()

o2

2

X

(1 — exp(—=2pAz)) (4a)

7ln0.5
T

B (4b)
where u;(¢) is a random number sampled from the standard
normal distribution. The factor (¢%/(2f)), which represents
the steady-state variance of x, is taken to be unity. The
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START
Counter=1
to = 0, Orbit
location = X

At t = ty, if £y is zero, draw a bias factor sample x; from x ~ N (0,1). At
t = ty, draw a bias factor sample x; from x ~ N (0,1). Nis the normal
distribution. Using x;, compute the density sample py = pi,  + K10, . The
mean p, and the standard deviation g, comes from the HASDM-ML-
DP/CHAMP-ML-DP/MSIS-UQ-DP model for the given time ¢y, orbit
location, and space weather condition. Use p, to calculate the drag force.

Design a linear interpolator for x between (ty, x,) and (t; + 7, x3) for a

F'Yy

generic time f as: Kk —x; = (

the first variant and T = 180 minutes for the second variant.

K3~y

T

) (t — tg), where T = 18 minutes for

v

Ka—K
x=xl+(#

T

calculate the drag force

Using the orbit dynamics, propagate the space object to the next time
step, t = t + At. Compute the value of k using the linear interpolator as:

) (t — tg). Using k, compute the density sample p; =
Mo, K0, , where u, and g, are the machine learning model-provided

mean and standard deviation values for the density at t. Use p, to

F Y

Yes.
Store the final
orbital state

Counter = Counter+1

t = Tepa? Where T,, 4 is the user-
supplied orbit propagation time

(t—to) =12 |

v

v

No

Yes

tg =ty + T, Ky = K2

Counter > N?

ty = 0, Orbit location = X

No

[N is the number of total

Monte Carlo cases that

a user wants to run]

From the N final
orbital states, obtain
the error distribution

Fig. 2. Modified Monte Carlo method 1 for orbit uncertainty propagation.

parameter 7 is the “‘half-life” and governs the rate at which
the auto-correlation fades. We implement two variants of
the second Monte Carlo method - (1) half-life 7 is taken
to be 18 min, (2) half-life 7 is taken to be 180 min. The
value of 18 min or 180 min is taken from literature
(McLaughlin et al., 2012). Fig. 3 shows the detailed sche-
matic for the second Monte Carlo approach.

We simulate a 3-day orbit propagation using various
Monte Carlo schemes discussed so far to examine the
along-track position error between the mean orbit (i.e.,

2540

the orbit propagated with mean density) and the Monte
Carlo runs. For each Monte Carlo method, we use a total
of 1000 Monte Carlo iterations. The initial epoch for the
simulation is taken as 01:00:00 UTC, September 07,
2002, which corresponds to a geomagnetic storm from
the solar cycle 23. We use a high-inclination LEO orbit
and assume no initial uncertainty in the position or veloc-
ity. The initial orbit state is taken as X, = [3782900.7032 m,
—5441600.6779 m, —1420075.1327 m, —606.6600 m/s,
1539.2559 m/s, —7488.3946 m/s]in the Earth-centered iner-
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START
Counter=1
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At t = to, draw a bias factor x; sample from k ~ N (0,1).
NVis the normal distribution. Using x,, compute the density
sample pg = Up, + K10p,. The mean u,, and the standard

deviation Gp, COMes from the HASDM-ML-DP/CHAMP-ML-
DP/MSIS-UQ-DP model for the initial time, orbit location, and
space weather condition. Use py to calculate the drag force

!

A

Using the orbit dynamics, propagate the space object to the
next time step, t = ty + At. Draw a sample u;, fromu ~
MV(0,1). Compute the bias factor sample as i, = e("F80, +

Uy ,%(1 — e(=BAD)). Using 15, compute the density sample

as p1 = pp, + K20,,, where up and g, are the machine
learning model-provided mean and standard deviation values
for the density at t = to + At. Use p; to calculate the drag

force

h 4

Continue this iterative process of sampling via the Gauss
Markov process and propagating until t = Topg, Where Tepg is
the user-supplied orbit propagation time. Store the final

orbital state.

From the N final
orbital states,
obtain the error
distribution

Counter = counter+1

[N is the number of total
Monte Carlo cases that a user
wants to run, e.g., N =1000]

Counter > N?

l

Fig. 3. Modified Monte Carlo method 2 for orbit uncertainty propagation.

tial (ECI) frame. Apart from the central Earth gravity, only
the dominant J, and atmospheric drag perturbations are
considered for the orbit propagation, where the atmo-
spheric density is modeled using the stochastic HASDM-
ML-DP model. The object is assumed to be spherically
symmetric with a cross-sectional area-to-mass ratio
(AMR) value of.0015 m?/kg and drag coefficient Cp,,,,,
value of 3.0912. Fig. 4 shows a comparison of the different
Monte Carlo methods. Figs. 4(a), 4(c), 4(e), 4(g), and 4(i)
show the density values for the first three hours of the
propagation. The bold black curve in the density plots is
the mean density curve, and the five colored curves corre-
spond to the first five Monte Carlo iterations. Figs. 4(b),
4(d), 4(f), 4(h), and 4(j) show the normal PDF for the
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along-track error at the end of three-day propagation.
Figs. 4(a), 4(b) correspond to the traditional Monte Carlo
method, Figs. 4(c), 4(d) correspond to the modified Monte
Carlo method 1 with k = 18 min, Figs. 4(e), 4(f) correspond
to the modified Monte Carlo method 1 with k = 180 min,
Figs. 4(g), 4(h) correspond to the modified Monte Carlo
method 2 with a half-life of 18 min, and Figs. 4(i), 4(j) cor-
respond to the modified Monte Carlo method 2 with a half-
life of 180 min. For the traditional Monte Carlo method, as
seen in Fig. 4(a), the density variations have little to no spa-
tiotemporal correlation, resulting in a small standard devi-
ation of 95.61 m for the along-track error. As x increases
for the modified Monte Carlo method 1, the along-track
error (standard deviation value) increases from 951.4 m
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Fig. 4. Comparison of traditional and modified Monte Carlo techniques. Traditional Monte Carlo approach is shown in (a), (b), modified Monte Carlo
method 1 with k = 18 min is shown in (c), (d), modified Monte Carlo method 1 with x = 180 min is shown in (e), (f), modified Monte Carlo method 2 with
half-life = 18 min is shown in (g), (h), modified Monte Carlo method 2 with half-life = 180 min is shown in (i), (j). In (a), (c), (e), (g), and (i), we show the
density values for the first three hours of orbit propagation. Only the first five Monte Carlo iterations are shown, but a total of 1000 iterations are used for
orbit uncertainty quantification; the bold black curve is the mean density curve. In (b), (d), (f), (h), and (j), we show the normal PDF for the along-track

error at the end of three days of orbit propagation.

to 2908 m, as a larger x leads to a stronger spatiotemporal
correlation of the density, allowing the orbital errors to
grow more in between two sampling times. Similarly, for
the modified Monte Carlo method 2, as the half-life
increases from 18 min to 180 min, the along-track error (s-
tandard deviation value) increases from 1588 m to 4898 m.
A larger half-life means a stronger spatiotemporal density
correlation. There is no way to confirm the correct
approach, but based on the literature (McLaughlin et al.,
2012), we assume that Monte Carlo method 2 with an
18-min half-life is the most realistic. This approach is used
for the remainder of this work.

4. The Consider Covariance Sigma Point (CCSP) Filter

The Monte Carlo simulation method is probably the
most well-known method for orbit uncertainty propaga-
tion. With a sufficiently large number of samples, the
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method can capture the evolution of any higher-order
moments. However, the computing costs are substantial,
especially if the goal is to propagate uncertainty in tens
of thousands of catalog objects for conjunction assessment
over a period of several days or more. An alternative
method for orbit uncertainty propagation - one that is
computationally cheap and often used in space operations
- is the extended Kalman filter (EKF) (Kalman, 1960;
Welch and Bishop, 2001) for linear uncertainty propaga-
tion. For highly non-linear systems, the unscented Kalman
filter (UKF) (Julier and Uhlmann, 1997; Julier and
Uhlmann, 2004; Wan and Van Der Merwe, 2000) is a more
accurate and convenient alternative to the prevalent EKF
because it does not make any linearization approximations,
nor does it require the computation of the Jacobian matri-
ces. The UKF relies on non-linear propagation of a select
number of the so-called sigma points (Julier and
Uhlmann, 1997), which are carefully selected to capture
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the first two moments. The Kalman filtering techniques
typically have two steps - a propagation step and an update
step. The computations in the update step rely on sensor
measurements. Our filtering discussions are limited to the
propagation step since the investigations in this paper con-
cern with future predictions in the absence of any
measurements.

There is no direct method to translate the epistemic
uncertainty predicted by the HASDM-ML-DP/CHAMP-
ML-DP/MSIS-UQ-DP models in atmospheric density to
the uncertainty in orbital states (position, velocity) under
a traditional EKF/UKF framework. A consider covariance
analysis (Schutz et al., 2004) based propagation of sigma
points can address the issue of translating atmospheric den-
sity model uncertainty to uncertainty in state estimates. In
this paper, we will refer to such a framework as the con-
sider covariance sigma point (CCSP) filter. The CCSP filter
originates from the work by Lisano (2006). We are now
going to detail the methodological procedure for the imple-
mentation of the CCSP filter for orbit uncertainty propaga-
tion for the first two time steps.

The state X of interest for our orbit dynamical equa-
tions consists of the space object position and velocity, aug-
mented by the atmospheric density, which is our “consider
parameter”:
X=[x y z I’ ()

U U

y Uz

P
where x, y, z are the Cartesian position coordinates, vy, vy, U;
are the Cartesian velocity coordinates, and p is the atmo-
spheric density.

4.1. Computations for t,

At the initial time (i.e., £ = 0 or #)), we assume (almost)
no uncertainty in the position and velocity (modeled by
numbers ¢; that are very small and arbitrarily close to zero),

and the density uncertainty oio is estimated from the

HASDM-ML-DP/CHAMP-ML-DP/MSIS-UQ-DP mod-
els. We assume the initial cross-correlation between differ-
ent states to be zero. Mathematically, we have the
following equations for the initial mean state and the
covariance matrix:

T
Xo=[x Yo 20 vy v, U4 po] (6a)

2
6)’

62

z

Px,, = Diag( !

)

where Diag represents the diagonal matrix. As a useful rule
of thumb, ¢ are smaller than ¢}, ¢;, €.

To facilitate the computation of the sigma points, we
compute a scaled lower-triangular block-Cholesky decom-
position (Golub and Van Loan, 1989; Lisano, 2006) of the

initial covariance matrix as:

(6b)

Po
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S N chol([PX,:(,](l,,),(]:n)) O
X —
0y Vit o

(7)

where Chol(-) computes the Cholesky decomposition of the
argument matrix and can be computed using Python’s
Numpy package (NumPy linear algebra function numpy.
linalg.cholesky). The notation [] ., ., denotes the subma-
trix consisting of the first » rows and first # columns of the
argument matrix. Parameter n is the dimension of the non-
augmented state, i.e., n = 6, parameter p is the dimension
of the consider parameter, i.e., p = 1, 4; and 4, are scaling
parameters such that A, +n=3 and /4, +p=3,0,,
denotes the n x p all-zero matrix, and 0,., denotes the
p % n all-zero matrix.

Using the Sy, , matrix, two sets of sigma points are com-
puted. The first set, comprising 2n 4+ 1 sigma points (13
sigma points), is given by:

Xy, , = Xi=o where i =0 (8a)
X, =Xico+ [Sx_,], where i=1:n (8b)
Xitn,_y = Xi=o — [Sx.,], where i=1:n (8c¢)

where [-], represents the i” column of the argument matrix.

The second set, comprising 2p + 1 sigma points (3 sigma
points), accounts for the uncertainty in the consider param-
eter p and is given by:

z(),_, = Xi=0 where i =0 (9a)
20,y = Xi—o + [SX,:o],,Jr,- where i=1:p (9b)
Z(iap),y = Xizo — [SX/:o]H,- where i=1:p (9¢)
where, for our orbit propagation problem,

[SX,0),ss = [Sx.4),.,, 18 the last column of Sx,_, matrix.

The first set of 13 sigma points and the second set of
three sigma points are then propagated from the initial
time to the next time step (¢ = fo + A¢) using perturbed

two-body dynamics to obtain X and z(; respec-

1=t+At 1=1p+At?

tively. Only the dominant J, and atmospheric drag pertur-
bations are considered in this work.

4.2. Computations for ty + At

At t = ty + At, the first step involves estimating the mean
and the covariance matrix from the propagated sigma
points using a weighted averaging method. The mean and
the covariance matrix from the first set of sigma points
are computed as:

2n

XX,t:10+Az - Z [Wl(«mean))('

i=0

2n T
PX&',!:/UAAI = Z |:Wz((m) (X(i)1:10 Y XXJ:!MA') <X(f)1:xo Y X“"-’:fﬁm) :|
i=0

(10b)

(i)z:zO+Ar:| (103)
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where the weights are derived from the standard UKF
framework and are obtained as:

A

(mean) _ (cov) _ 11

0 0 nt A (11a)
. 1

(mea)1) _ (cm) - - h i—1:2 11b

: : ) where i n (11b)

Similarly, we compute the mean and the covariance matrix
for the second set of 2p + 1 propagated sigma points using:

2p

Xa,,t:t0+A, = Z |:w§mean)

i=0

x(i>f:10+Ar:| (123)

Px, i = ,zzpo {wgcm (f”(")f:row - X"":’°+A’> (gim’z’oﬂ’ - X""t:tﬁm) T]
- (12b)
with weights obtained as:
w(()mean) _ (()cov) :p 1222 (13a)
Emm) — wEC””) - _ where i=1:2p (13b)
2(p+ 4)

Following the computation of the consider covariance

matrix Py __, ., we compute the n x p cross-correlation
matrix as:
PC”0551710+At = [PX'-‘:’O*A/ :I(l:;z),(n+1:n+p) (14)

where the notation [ , denotes the submatrix

1:n),(n+1:n+p
consisting of the first #» rows and last p columns of the argu-
ment matrix.

From the cross-correlation matrix Peross._,y,p» ONE CAN

compute the additive uncertainty resulting from the inclu-
sion of the consider parameter p as:

1 )P
T,

where 0/2)] is the atmospheric density uncertainty estimate
from the HASDM-ML-DP/CHAMP-ML-DP models
computed at ¢ = ¢y + Az at the mean position indicated by
the first three coordinates of the vector Xy s -a,-

The covariance matrix updated for the uncertainty in
the consider parameter is then given as:

— |: |:PX‘Y-’:’0 t A’] (1:n),(1:m) (1:n),(1:n)

T
CrOSS =1+ At

dPt:t0+At = Pcross,:tmm ( (15)

+ [dPt:tg +Az]

CroOSS i~y At

Xz:to +At T 02

CrOSS 1+ At P1

(16)

A scaled lower-triangular block-Cholesky decomposition
of the matrix Py,_, ., is then obtained as:

Chol(A) 0,
1
i Vi P o

where the n X n matrix 4 is given by:

X 1o +At = T (17)

CrosS i +Ar
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A= (n+n)|Px ] o BB (18a)
1
B= 5 Pz;'ass,f, A (lgb)
V42 +p oy -0

Thereafter, using the Sy,_, ., matrix, two sets of sigma

points are computed. The first set of sigma points is given
by:

X D = Xty where i =0 (19a)
X(i)1:f0+At = XXJ:f(ﬁrAt + |:SX/‘:I0VAY:| . where i =1
‘n (19b)
X(i+’7)f:zO+Ar = ‘Xv')('t:l‘oJrAZ - |:SX1:10+At:|, Where i= 1 tn
(19¢)
The second set of sigma points is given by:
L) gy — XX‘t:tOJrAt where i =0 (203)
LD mtgrar XX,l:lo+At + |:SX1:10+A1:| i where /=1 -p
(20b)

L(+P) iy Xoi=trar — [SX':ta*A'} i where i=1:p
(20c)

Both sets of sigma points are then propagated to the next
time step.

5. Ensemble modeling for orbit uncertainty quantification

There is no evidence that any single atmospheric density
model is always more accurate than alternative density
models under all space weather conditions (Vallado and
Finkleman, 2014). As a result, drawing firm conclusions
about orbital state uncertainties caused by atmospheric
density uncertainties from a single density model is not rec-
ommended. The current study, therefore, proposes a multi-
model ensemble approach where the final orbit state PDF
is expressed as a combination of orbit state PDFs resulting
from the individual HASDM-ML-DP, CHAMP-ML-DP,
and MSIS-UQ-DP thermospheric density models. The
approach is motivated by the ensemble approach com-
monly used in terrestrial weather forecasting; however, it
is fundamentally different due to the inter-dependency
between density and drag/ballistic coefficient. Because of
the inter-dependency, we cannot simply combine density
outputs from different models and use them in orbit predic-
tions. The density from a given model needs to be effec-
tively combined with the appropriate drag/ballistic
coefficient for prediction, which we label as ‘advanced
ensemble modeling’. Although we use just three stochastic
density models in this study, the multi-model ensemble
approach for orbit uncertainty quantification can be
expanded to include any number of atmospheric density
models. For completeness, readers should be aware of the
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alternative input-based ensemble modeling technique in
which a single model is used, but the starting condition
or driver input is perturbed to produce many outputs
(Murray, 2018), which are then aggregated to provide the
final uncertainty distribution. Next, we turn attention to
the implementation of the proposed ensemble approach,
which we describe through a dummy example.

Let us consider an LEO satellite A whose initial orbital
state (Cartesian position and velocity components) is given
to us. The given state information consists of the initial
mean and the covariance matrix. Furthermore, let us
assume that the satellite has a constant cross-sectional area
and a constant mass and that the atmosphere co-rotates
with the Earth. As a first step for the ensemble approach,
using the HASDM-ML-DP density model and the CCSP
filter (or the Monte Carlo approach), let A be propagated
over a user-defined period of choice. A constant value of
drag coefficient Cp,,,, derived from a physical model is
used for the propagation. In operational setups, ballistic
coefficient (or drag coefficient if the cross-sectional area
and mass are known) and atmospheric density are often
estimated simultaneously to match the satellite observa-
tions (refer Eq. (1)), if available. In other words, if p,
and p, are the density estimates from two different atmo-
spheric density models and if CD; is the drag coefficient
estimate corresponding to the first density model, then
the “debiased” drag coeflicient estimate CD, corresponding
to the second density model is such that p,CD; = p,CD,.
We do debiasing to simulate the coupling between orbit
determination and orbit prediction. This little detour to
explain the concept of debiasing is essential for the next
step. As a second step for the ensemble approach, let us
propagate A using the CHAMP-ML-DP density model
for the same initial condition and the same period of time
as earlier. The corresponding drag coefficient Cp,,, is
obtained from a debiasing scheme based on the average
ratio of densities predicted by the HASDM-ML-DP and
CHAMP-ML-DP models along the orbit for a user-
defined period before the initial epoch. As a third step
for the ensemble approach, we propagate A using the
MSIS-UQ-DP density model for the same initial condition
and time period as earlier. The corresponding drag coeffi-
cient Cp,,,, i3 obtained by a debiasing scheme based on
the average ratio of densities predicted by the HASDM-
ML-DP and MSIS-UQ-DP models along the orbit for a
user-defined period before the initial epoch.

Let u, and P, be the mean position and the covariance
matrix representing positional uncertainty at the end of the
propagation period using HASDM-ML-DP model. Let
M, P, represent the mean position and the covariance
matrix at the end of the propagation period following
CHAMP-ML-DP model. And, let u,, P; represent the
mean position and the covariance at the end of the propa-
gation using MSIS-UQ-DP model. In our ensemble formu-
lation, the final PDF for the orbital position is given by an
equally weighted Gaussian mixture as:
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1
P(X;uy, Prowy, Pa, s, Ps) :gN(X;ﬂl,Pu)

1
+§N(‘X7”27P2)

1
+7N(X§”3’P3)

: @)

where N (u,;, P;) represents the multivariate normal distri-
bution with mean u, and covariance P;.

6. Results

Space weather has a strong influence on the propagation
and prediction of orbital states. In this section, the evolu-
tion of orbital state uncertainty is investigated using the
ensemble approach under four different space weather
conditions:

1. Case-I: a geomagnetic storm during solar maximum

(circa September 07, 2002), which we refer to as ‘solar-

max-storm’.

. Case-II: a non-storm period during solar minimum
(circa December 02, 2009), which we refer to as ‘solar-
min’.

. Case-III: a simulated solar maximum scenario (circa
September 07, 2002) where we keep the geomagnetic
model drivers constant at global mean values and
let all other drivers (e.g., solar flux values) have the same
variations as that of case-I. The global mean values for
the geomagnetic model drivers are obtained from the
machine learning models’ training data. We refer to this
case as ‘solar-max-simulated’.

. Case-IV: a simulated non-storm solar minimum case
(circa December 02, 2009) where we keep the geomag-
netic model drivers constant at global mean values and
let all other drivers have the same variations as that of
case-I1I. We refer to this case as ‘solar-min-simulated’.

A 3-day orbit uncertainty propagation for a high-
inclination LEO object is carried out for the four cases in
the presence of J, and atmospheric drag orbital perturba-
tions. The details of the simulations are given in Table 1.

In Fig. 5, we show the orbit state PDF for the along-
track direction at the end of the 3-day propagation period.
Fig. 5(a) quantifies the uncertainty in orbit state for the
solar-max-storm case, Fig. 5(b) shows the orbit state distri-
bution for the solar-max-simulated case, Fig. 5(c) shows
the orbit state distribution for the solar-min case, and
Fig. 5(d) shows the PDF for the solar-min-simulated case.
In each of the figures, the red dashed curve corresponds to
the orbit state PDF for propagation using the HASDM-
ML-DP model, the blue dashed curve corresponds to the
PDF for propagation using the CHAMP-ML-DP model,
and the green dashed curve corresponds to the PDF for
propagation using the MSIS-UQ-DP model. The term
‘scaled’ in the title indicates that the drag coefficients for
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Table 1
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Simulation set-up for the orbit uncertainty propagation using super-ensemble approach.

Parameter

Value/Details

Initial position (ECI)

Initial velocity (ECI)

Propagation period

Object shape/type

Cross-sectional AMR

Drag coefficient Cp,,,,,
Propagation period for debiasing
Initial epoch for case-I and case-III
Initial epoch for case-II and case-IV
Orbit propagation method
Number of Monte Carlo iterations

[3782900.7032, —5441600.6779, —1420075.1327] m
[-606.6600, 1539.2559, —7488.3946] m/s

259200 s

Spherical & symmetric

0015 m?/kg

3.0912

8h

01:00:00 UTC, September 07, 2002

00:00:00 UTC, December 02, 2009

Modified Monte Carlo method 2 with half-life = 18 min
1000 for each case for each density model

HASDM-ML

CHAMP-ML Scaled

MSIS-UQ Scaled = —— Super Ensemble

Solar Max Storm
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Fig. 5. Orbit state PDF for the along-track direction using the super ensemble approach. Top-left figure, i.e., (a) corresponds to case-I (solar-max-storm),
top-right figure, i.e., (b) corresponds to case-111 (solar-max-simulated), bottom-left figure, i.e., (c) corresponds to case-1I (solar-min), and the bottom-right

figure, i.e., (d) corresponds to case-IV (solar-min-simulated).

the CHAMP-based and MSIS-based propagations are
obtained by scaling the Cp,,,.,,, using the debiasing scheme
discussed earlier. The bold black curve shows the resultant
orbit state PDF from the super ensemble approach. When
using more than one stochastic atmospheric density model,
an ensemble technique unquestionably yields distributions
that are capable of deviating greatly from the normal distri-
bution that would otherwise be obtained. Fig. 5 shows that
the uncertainties for the solar maximum cases are larger
compared to the solar minimum cases, highlighting the

2546

importance of the space weather condition in uncertainty
quantification. For the solar-max-storm case, the ensemble
approach leads to almost a bimodal uncertainty distribu-
tion, indicating the presence of two distinct regions of high
probability for the orbit state. From the plot for the solar-
max-simulated case, in the absence of geomagnetic varia-
tions, there is a reduced bias between the mean positions
predicted by the HASDM-ML-DP and CHAMP-ML-DP
models compared to the solar-max-storm case. As the geo-
magnetic variations are small in the solar minimum period,
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no such observation is made in comparison between solar-
min-simulated and solar-min cases.

In addition to the results for the ensemble approach
shown in Fig. 5, a comparison between the Monte Carlo
approach (modified Monte Carlo method 2 with a half-
life of 18 min) and consider covariance approach to orbit
uncertainty propagation is also demonstrated for a select
few density models. Fig. 6 shows the orbit state PDF for
the along-track direction for case-I, i.e., the solar-max-
storm condition. The left figure corresponds to the propa-
gation using the HASDM-ML-DP density model, the mid-
dle figure corresponds to the propagation using the
CHAMP-ML-DP model using the drag coefficient Cp,,q,,,
(i.e., no debiasing is performed), and the right figure corre-
sponds to the propagation using CHAMP-ML-DP model
using the drag coefficient obtained from the debiasing
scheme. In each of the figures, the blue curve corresponds
to the Monte Carlo approach, and the orange curve corre-
sponds to the CCSP filter. Similar to the case of the tradi-
tional Monte Carlo approach, if the covariance update rate
in the CCSP filter is high (At is small), the spatiotemporal
density correlation is not captured correctly, resulting in
unrealistically small uncertainty values. Based upon man-
ual tuning, we use a covariance update rate of 60 min for
the CCSP filter, where the density field varies according
to the selected model between consecutive covariance
updates. Clearly, from Fig. 6, the CCSP filter results and
the Monte Carlo results are comparable with the added
benefit of the CCSP filter being computationally much
faster.

7. Conclusion and recommendations for future work

Correct quantification and propagation of orbital uncer-
tainties are critical for space domain awareness and space
traffic management functionalities. Uncertainty in atmo-
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spheric density modeling is one of the primary sources of
uncertainty in orbit state prediction. Currently, most
researchers propagate orbital uncertainties by considering
uncertainty in atmospheric density model drivers and using
a single density model.

In this paper, we use machine learning-based models
that directly provide the epistemic uncertainty in the atmo-
spheric density prediction. We use three stochastic density
models - HASDM-ML-DP, CHAMP-ML-DP, and MSIS-
UQ-DP - to investigate the effect of atmospheric density
uncertainty on the evolution of orbit state probability den-
sity function (PDF). The popular and traditional Monte
Carlo approach for orbit uncertainty propagation fails to
capture the spatiotemporal correlation of the atmospheric
density. We, therefore, propose four modified Monte Carlo
schemes, the first two based on the sampling and interpola-
tion of the so-called bias factor from a normal distribution
and the last two based on the first-order Gauss—Markov
process, for orbit uncertainty propagation while success-
fully capturing the spatiotemporal density correlation.
Since Monte Carlo methods are computationally expen-
sive, we also investigate the ‘“‘consider covariance sigma
point (CCSP)” filter that can perform orbit uncertainty
propagation at a much smaller computational cost.

We propose a new super ensemble approach for predict-
ing orbit state PDF that combines the uncertainty distribu-
tions predicted individually by each of the three stochastic
density models. The super ensemble approach provides
more realistic uncertainty estimates as no single density
model is always more accurate across different regions of
space and time. The three machine learning-based density
models were developed using three different satellite data
sources, each having unique advantages and disadvantages.
In designing the super ensemble framework, we also ensure
that appropriate drag coefficient values are used for each of
the three density models. The drag coefficient value for the
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Fig. 6. Comparison between Monte Carlo and CCSP filter-based methods of orbit uncertainty propagation under solar-max-storm space weather

condition.
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HASDM-ML-DP model is obtained from a physical
model, the drag coefficient value for the CHAMP-ML-
DP model is obtained from a debiasing scheme based on
the average ratio of densities predicted by the HASDM-
ML-DP and CHAMP-ML-DP models, and the drag coef-
ficient value for the MSIS-UQ-DP model is obtained from
a debiasing scheme based on the average ratio of densities
predicted by the HASDM-ML-DP and MSIS-UQ-DP
models. This debiasing scheme is incorporated to simulate
the coupling between orbit determination and prediction.

To test our developed ensemble approach, we simulate a
3-day orbit propagation for a high inclination LEO object
under four different space weather condition - (i) a geomag-
netic storm during solar maximum, (ii) a non-storm condi-
tion with geomagnetic variations set to global mean values
during solar maximum, (iii) a non-storm solar minimum
period, and, (iv) a non-storm condition with geomagnetic
variations set to global mean values during solar minimum.
Our study shows that an ensemble approach can result in
an orbit state PDF that can deviate significantly from a
normal PDF resulting from a single density model. We find
that the spread in the PDF or uncertainties is much larger
for solar maximum conditions as compared to the solar
minimum conditions. Furthermore, we see that the bias
or difference between the mean positions predicted by dif-
ferent density models can be significantly influenced by
geomagnetic variations that occur during a storm.

The developed ensemble framework provides a novel
and realistic way to model orbit uncertainties for satellite
operations and the broader space weather community.
The approach is highly adaptive, and can be easily
expanded to include additional probabilistic atmospheric
density models (e.g. TIE-GCM ROPE (Licata and
Mehta, 2022a)). Generalizing the approach to a broader
and complete range of space objects, orbital regions, prop-
agation periods, and space weather conditions require a
comprehensive study. Finally, future work will also investi-
gate the impact of the proposed approach on operations
(e.g., conjunction analysis, track association, and sensor
tasking strategies).
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