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Abstract

Ambitious satellite constellation projects by commercial entities and the ease of access to space in recent times have led to a dramatic
proliferation of low-Earth space traffic. It jeopardizes space safety and long-term sustainability, necessitating better space domain aware-
ness (SDA). Correct modeling of uncertainties in force models and orbital states, among other things, is an essential part of SDA. For
objects in the low-Earth orbit (LEO) region, the uncertainty in the orbital dynamics mainly emanate from limited knowledge of the
atmospheric drag-related parameters and variables. In this paper, which extends the work by Paul et al. (2021), we develop a feed-
forward deep neural network model for the prediction of the satellite drag coefficient for the full range of satellite attitude (i.e., satellite
pitch 2 (�90�;þ90�) and satellite yaw 2 (0�;þ360�)). The model simultaneously predicts the mean and the standard deviation and is well-
calibrated. We use numerically simulated physical drag coefficient data for training our neural network. The numerical simulations are
carried out using the test particle Monte Carlo method using the diffuse reflection with incomplete accommodation gas-surface interaction
model. Modeling is carried out for the well-known CHAllenging Minisatellite Payload (CHAMP) satellite. Finally, we use the Monte
Carlo approach to propagate CHAMP over a three-day period under various modeling scenarios to investigate the distribution of radial,
along-track, and cross-track orbital errors caused by drag coefficient uncertainty. The key takeaways of this paper are - (a) a constant
drag coefficient cannot be used for reliable SDA purposes, and (b) stochastic machine learning models allow for the computation of drag
coefficients in a timely manner while providing reliable uncertainty estimates.
� 2023 COSPAR. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Keywords: Satellite drag coefficient; Orbit uncertainty quantification; Neural network

1. Introduction

Since the launch of the first artificial satellite, Sputnik,
and up until recently, the near-Earth space environment
saw a nearly balanced, steady growth of objects. However,
recent advancements in commercially viable space tech-
nologies, satellite mega-constellation launches from private
aerospace companies, and access to launch vehicles offering
secondary payload services have led to unsustainable pop-

ulation growth. Lemmens and Letizia (2020) investigate
conjunction events for the European Space Agency
(ESA) satellites at low altitude LEO. As highlighted in their
study, an increasing and significant portion of those close
encounters are due to satellite constellations and small
satellites. The LEO population growth, likely to go una-
bated, warrants better modeling of dynamical uncertainties
and a more accurate prediction of orbital errors to make
more informed decisions about space situational awareness
(SSA) functions such as satellite conjunction occurrence
and maneuvers for collision avoidance. The conservative
perturbation forces are well-modeled, and the prime
source of dynamical uncertainty for an LEO object is the
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atmospheric drag. Other non-conservative forces, such as
solar radiation pressure (SRP), can also be a source of sig-
nificant dynamical uncertainty for high area-to-mass ratio
(HAMR) objects, but this study focuses only on ‘‘typical”
space objects which are low area-to-mass ratio (LAMR).

For a satellite with mass m, the acceleration due to
atmospheric drag is given by the following commonly
accepted equation:

~aD ¼ � 1

2
q
CDAproj

m
vrel~vrel ð1Þ

where q is the atmospheric density, CD is the drag coeffi-
cient, Aproj is the projected area of the satellite perpendicu-
lar to the flow direction, ~vrel is the velocity of the satellite
relative to the atmosphere, and vrel is the magnitude of
~vrel. All parameters listed on the right-hand side in Eq. 1
can have uncertainties. The uncertainty in mass results
from the unknown characteristics of space debris/classified
objects or through the act of orbital/attitude maneuvers for
known active space objects. The uncertainty in the relative
velocity ~vrel arises from the uncertainty in local thermo-
spheric winds, which can be as high as several hundreds
of meters per second (March et al., 2019; Drob et al.,
2008). Barring a perfectly spherical satellite, the uncer-
tainty in the projected area emanates from missing/uncer-
tain satellite attitude data and uncertainty in the
computation of relative velocity vector direction. Much
of the literature focuses on modeling the atmospheric den-
sity q, which has a complex dependency upon parameters
such as geomagnetic indices, solar flux, the composition
of the atmosphere, data measured by onboard satellite
instrumentation, and others. These parameters themselves
have uncertainties, which ultimately equate to uncertainty
in the atmospheric density estimation. Instead of focusing
on the prevalent density modeling, the current paper
focuses on modeling the drag coefficient, a parameter that
captures the interaction between the satellite surface and
the atmospheric particles. Like density, modeling the drag
coefficient is an involved task because of its dependency on
atmospheric composition, satellite and atmospheric tem-
peratures, and atmospheric winds.

Broadly speaking, drag coefficient modeling falls under
one of the following three categories - fixed, fitted, and
physical (Mehta et al., 2022). When using the fixed
approach, the drag coefficient is considered to be constant.
In the fitted approach, the drag coefficient is estimated
using a filtering method as part of an orbit determination
process. In this study, our focus is on modeling the physical
drag coefficient, which is determined by simulating the
exchange of energy and momentum between the surface
of the spacecraft and free-stream atmospheric particles
(Chambre and Schaaf, 1961). The most common practice
for physical drag coefficient determination is to use compu-
tationally expensive numerical methods such as the Panel
method, Ray-tracing Panel (RTP) method, Test Particle
Monte Carlo (TPMC) method, or the Direct Simulation
Monte Carlo (DSMC) method (Mostaza Prieto et al.,

2014). To avoid the high computational cost of the numer-
ical methods, Mehta et al. (2014a) build surrogate models
based on Gaussian Process Regression (GPR)
(Rasmussen, 2004) for predicting satellite drag coefficient.
The authors demonstrate that GPR is able to accurately
represent the drag coefficient model on which they are
based with root mean square percentage errors below 1%
for a number of simple and complex geometries. However,
Mehta et al. (2014a) do not carry out uncertainty quantifi-
cation. Building upon the work by Mehta et al. (2014a),
Paul et al. (2021) develop GPR and Monte Carlo Dropout
(Gal and Ghahramani, 2016) based feed-forward deep neu-
ral network (FFDNN) models for stochastic/probabilistic
prediction of the satellite drag coefficient. The authors
demonstrate that both models are able to produce reason-
ably accurate and well-calibrated drag coefficient estimates.
However, their models are valid for only a limited attitude
range with satellite pitch and yaw varying between �10�

and þ10�. The current paper aims to develop stochastic
models for drag coefficient prediction for the full attitude
range, i.e., satellite pitch 2 (�90�;þ90�) and satellite yaw
2 (0�;þ360�). Additionally, Paul et al. (2021) use a mere
1000 ensemble points for training their machine learning
models, which is not sufficient for the full attitude range.
Tens of thousands of ensemble training points (Sun et al.,
2019a) are desirable to accurately capture the full-attitude
drag coefficient variations. Because GPR scales poorly with
the data size, it is computationally infeasible to use GPR
for the full-attitude drag coefficient modeling. Partially
scalable variants of GPR are discussed later in the paper.
Machine learning models such as the Monte Carlo
Dropout-based FFDNN (Paul et al., 2021) or other vari-
ants of the neural network are scalable and can also pro-
vide an uncertainty estimate, making them ideal for
large-scale full-attitude drag coefficient modeling.

In this paper, we use an in–house developed FFDNN
model that directly predicts the mean and the standard
deviation. We prefer the direct prediction of the uncer-
tainty against an ensemble approach like the Monte Carlo
dropout technique for uncertainty quantification because
of the lesser computational costs in the direct prediction
method. For any regression, the quality and quantity of
the training data are critical to the correctness of the devel-
oped machine learning model. For machine learning train-
ing purposes in the current study, high-quality drag
coefficient data are generated using the numerical TPMC
method (Davis, 1960). The gas-surface interaction (GSI)
in the TPMC simulations is modeled using the Diffuse
Reflection With Incomplete Accommodation (DRIA)
model (Walker et al., 2014a; Walker et al., 2014b).

The current paper has a number of desirable goals: (1)
the developed drag coefficient prediction model must be
quick to evaluate and valid for any satellite orientation,
(2) the developed model should be accurate not only in
terms of the mean predictions but also provide meaningful
and reliable uncertainty estimates, (3) the data size or the
number of samples used to train the models should be
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sufficiently large to capture the drag coefficient variations
with sufficient accuracy, and (4) the developed models
should be inductive (as opposed to transductive) so that
they can be saved and later re-used in an orbit propagation
framework and perform orbital perturbation studies in a
computationally efficient manner.

We organize the remainder of this paper into the follow-
ing sections: Section 2 provides brief background knowl-
edge about the TPMC method and the DRIA GSI
model. Section 3 provides details about the data used to
train the regression models. We discuss the machine learn-
ing model used for the drag coefficient prediction in Sec-
tion 4. Model calibration, which is a concept closely
related to the reliability of the predicted uncertainty, is dis-
cussed in Section 5. Prediction performance for different
data sizes is analyzed in Section 6. Section 7 highlights dif-
ficulties in using scalable Gaussian processes for large-scale
drag coefficient modeling. We investigate the effects of drag
coefficient uncertainty on the orbital state uncertainties in
Section 8. Section 9 discusses the proposed approach’s
applicability and limitations. Finally, we summarize the
paper and provide the conclusions in the last section.

2. Background - TPMC and the DRIA GSI model

The TPMC is a numerical method for computing the
physical drag coefficient in the free molecular flow (FMF)
regime. In TPMC, test particles representing actual mole-
cules are sequentially fired into the computational domain.
Each particle is fired with a probabilistically determined
velocity. The TPMC assumes that molecules do not collide
with one another, which speeds up computations while
maintaining accuracy on par with other Monte Carlo tech-
niques like the DSMC. The TPMC method is versatile
because it can simulate different GSI models and easily
handle flows with complex boundaries.

As stated, our TPMC simulations are carried out using
the DRIA GSI model. In the DRIA GSI model, the
reflected particles have a diffuse angular distribution, based
on Knudsen’s cosine law (Knudsen, 1916). The particles
may exchange energy with the surface depending on the
value of the energy accommodation coefficient. For more
details on the DRIA GSI model, refer to Walker et al.
(2014a), Walker et al. (2014b), Pilinski et al. (2010), Moe
et al. (2004), Sutton (2009).

3. Input data for the machine learning models

The training data for our predictive models are gener-
ated by numerical computation of the physical drag coeffi-
cient using the TPMC method, which is implemented using
the West Virginia University (WVU) Response Surface
Modeling (RSM) toolkit (Sheridan et al., 2022). The
WVU RSM toolkit is an open-source software package
and can be accessed at https://github.com/ASSISTLabora-
tory/WVU_RSM_Suite. In this paper, drag coefficient
modeling is carried out for the following primary LEO

atmospheric constituents - atomic hydrogen (H), helium
(He), atomic nitrogen (N), molecular nitrogen (N 2), atomic
oxygen (O), and molecular oxygen (O2). The total drag
coefficient can be computed from the drag coefficients of
the constituent species.

For the TPMC method with the DRIA GSI model, six
independent variables determine the value of the dependent
drag coefficient - (i) relative velocity of the satellite, v1, (ii)
satellite surface temperature, T w, (iii) local free-stream tem-
perature, T1, (iv) energy accommodation coefficient, a, (v)
satellite yaw, b, and, (vi) satellite pitch, U. In this study, the
input configurations for the numerical simulations are
carefully selected via the Latin Hypercube sampling
(LHS) method (McKay et al., 1979). We use a high-
fidelity geometry model corresponding to the CHAllenging
Minisatellite Payload (CHAMP) satellite for our analysis.
A total of 50,000 LHS design points are selected for each
of the species H ;He;N ;N 2;O;O2 for training purposes.
The upper and lower bounds defining the LHS design
points are given in Table 1.

The number of training samples, i.e., 50,000, is deter-
mined through a data size sensitivity analysis, which is dis-
cussed later. Besides the training data points, a different set
of 50,000 LHS points, using the same bounds as that of
Table 1, are constructed for validation/testing purposes
for each of the six species.

4. Constrained dual prediction of mean and standard

deviation using FFNN With NLPD loss function

One of the most popular supervised machine learning
techniques roughly based on the working of a human brain
is the feed-forward neural network (FFNN). It is charac-
terized by an input layer, an output layer, and layers in-
between called hidden layers, where each layer is composed
of neurons or nodes. An FFNN, especially one with multi-
ple hidden layers (the so-called feed-forward deep neural
network or FFDNN), often consists of a large number of
parameters (weights and biases) that control the function
mapping from one layer to the next. The depiction of the
mapping for a dummy 3-layer FFNN is shown in Fig. 1.

The parameters aðjÞi in Fig. 1 are called activation units,
and their expressions are given in Eqs. (2)–(5). The func-
tions g1 and g2 appearing in Eqs. (2)–(5) are some user-

defined activation functions, and ~hðjÞ denotes the matrix of
weights controlling function mapping from layer j to layer

Table 1
Upper and lower bounds defining the LHS design points.

Independent Variables Lower Bound Upper Bound

v1 7250.0 m/s 8000.0 m/s
Tw 100.0 K 2000.0 K
T1 200.0 K 2000.0 K
a 0.0 1.0
b 0� 360�

U �90� 90�
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ðjþ 1Þ. The elements of matrix ~hðjÞ are determined from the

optimization of a user-defined ~hðjÞ-dependent cost function.
For more details on FFNN, see Svozil et al. (1997).

að2Þ1 ¼ g1ð~hð1Þ10 þ ~hð1Þ11 x1 þ ~hð1Þ12 x2 þ ~hð1Þ13 x3Þ ð2Þ
að2Þ2 ¼ g1ð~hð1Þ20 þ ~hð1Þ21 x1 þ ~hð1Þ22 x2 þ ~hð1Þ23 x3Þ ð3Þ
að2Þ3 ¼ g1ð~hð1Þ30 þ ~hð1Þ31 x1 þ ~hð1Þ32 x2 þ ~hð1Þ33 x3Þ ð4Þ
að3Þ1 ¼ hhðxÞ ¼ g2ð~hð2Þ10 þ ~hð2Þ11 a

ð2Þ
1 þ ~hð2Þ12 a

ð2Þ
2 þ ~hð2Þ13 a

ð2Þ
3 Þ ð5Þ

In this paper, we use a variant of the FFNN that simul-
taneously predicts the mean and standard deviation of the
drag coefficient as a function of the input features (see
Licata and Mehta (2022)). For networks modeling the drag
coefficient associated with the DRIA GSI model, we have
the following eight features:
v1; T w; T1; a; sin b; cos b; sinU; cosU. Instead of a univari-
ate output, we predict an output with shape ½2; 1�. The first
output node represents the mean drag coefficient and the
second output node represents the corresponding standard
deviation. For the proposed variant of the FFNN, the
input training data has an array structure of [number of
samples, feature dimension], where the feature dimension
is eight for DRIA. The output training data is augmented
with zeros to have an array structure of ½number of sam-
ples, 2, 1�. Since standard deviation values can only be
non-negative, we constrain the second output node to be
non-negative using the softplus function so that meaningful
uncertainties are predicted. One may also use alternatives
such as the absolute value function to impose the positivity
constraint on the standard deviation prediction, but it may
lead to unstable predictions because of the non-smooth
first derivative at zero. For training purposes, we use the
negative logarithm of the probability density (NLPD) loss
function, given as:

lossNLPD ¼ 1

nt

Xnt
i¼1

log r̂i
2 þ kyi � l̂ik2

r̂i
2

þ log 2p

" #
ð6Þ

where ðxi; yiÞi¼1;...;nt
represent the training data set, l̂i repre-

sents the prediction mean, and r̂i
2 represents the prediction

variance.
Although the training data set only contains a cosmetic

set of zeros as standard deviations, we will see later in this
paper that the functional form of NLPD is powerful
enough to allow the network to learn well-calibrated uncer-
tainty estimates while also producing reasonably accurate
mean estimates. The implementation of the model is car-
ried out using the Keras deep learning API (Chollet,
2015), where we define a custom class for modifying the
in-built dense layers to meet our constraints. A dummy
FFNN with three inputs for dual prediction of the mean
and standard deviation of a variable y is shown in Fig. 2.

5. Model calibration

Calibration is the requirement in stochastic modeling
that the predicted probabilities approximate the probabil-
ity of actual events (Camporeale and Carè, 2020). A well-
calibrated model (assuming Gaussian distribution), for
example, should have around 68% of observations within
one standard deviation of the predicted mean, 95% of
observations within two standard deviations of the pre-
dicted mean, and 99.7% of observations within three stan-
dard deviations of the predicted mean. Uncalibrated
models tend to be overconfident or underconfident in their
predictions, and one should not trust their inferences. A
convenient way to check how well a model is calibrated
is by looking at its ‘‘consistency curve” or ‘‘calibration
curve”.

Let the expected confidence interval levels be:
C ¼ ½5%; 10%; 15%; . . . ::; 95%�. The corresponding coeffi-
cients defining the uncertainty bounds are then given as:

f½k� ¼ ffiffiffi
2

p
erf�1ðC½k�=100Þ, where erf is the well-known

error function. Let ðxoj ; yojÞj¼1;...;m
be the observation data

set and let the corresponding predictions be ðlj; rjÞj¼1;...;m
,

where lj represents the mean and rj represents the standard

deviation. Then, the percentage of the observed data set
within the lower and upper uncertainty bounds associated
with C½k� is obtained as (Anderson et al., 2020):

Fig. 1. Neural network mapping for a dummy 3-layer case with a three
dimensional input and a univariate output.

Fig. 2. Dummy feed-forward neural network for dual prediction of the
mean and standard deviation. The non-negative constraint on the
standard deviation prediction is indicated by the softplus function Sk � k.
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P ½k� ¼
Xm
j¼1

I ðlj � f½k�rjÞ < yoj < ðlj þ f½k�rjÞ
� �

m

2
4

3
5

� 100 ð7Þ
where I is the indicator function.

The consistency curve mentioned earlier is the plot of P
versus C. The proximity of the consistency curve to the

y ¼ x line (i.e., a straight line with a slope of 450 and pass-
ing through the origin) is used to measure calibration in
this study. The consistency curve will perfectly overlap
the y ¼ x line in a perfectly calibrated system (this does
not usually happen in real-life models).

In addition to the qualitative performance of the esti-
mated uncertainties, we also investigate the quantitative
performance using the mean absolute calibration error
(MACE), defined as:

MACE ¼ 1

nC

XnC
k¼1

jC½k� � P ½k�j ð8Þ

where nC is the number of confidence interval levels.
In this work, in order to improve the model calibration

performance, we scale the predicted standard deviation val-
ues using the following scaling factor (Laves et al., 2021):

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nv

Xnv
i¼1

kyi � l̂ik2
r̂i

2

" #vuut ð9Þ

where nv is the number of validation data samples, yi is the
TPMC drag coefficient, l̂i is the predicted mean drag coef-

ficient, and r̂i
2 is the predicted standard deviation for the ith

validation sample.

6. Prediction performance for different data sizes

In this section, we first simulate drag coefficients for a
sphere, assuming that the drag coefficient is attitude-
independent. Following that, we carry out drag coefficient
simulations for the CHAMP satellite. Because of its com-
plex geometry and drag coefficient’s dependence on atti-
tude, we demonstrate that a satellite like the CHAMP
necessitates a much larger number of data points for neural
network training to achieve sufficient accuracy and
reliability.

We perform neural network simulations for the spheri-
cal satellite using 10,000 data points for training/validation

purposes for each of the species H ;He;N ;N 2;O;O2. A crit-
ical task in the design of neural network architecture is to
decide on the values of the model hyper-parameters. These
are the parameters that we cannot learn from the training
process. In our work, we restrict ourselves to the hyper-
parameter optimization (also known as ‘‘tuning”) of the
following quantities: (i) number of hidden layers, (ii) num-
ber of neurons in each hidden layer, (iii) activation func-
tions, (iv) Monte Carlo dropout rates, (v) network
optimizer, and (vi) batch size. The traditional practice uses
a heuristic or manual approach to select the hyper-
parameters. In our work, however, we use the KerasTuner
library (O’Malley et al., 2019) to find our near-optimal
hyper-parameters. Within KerasTuner, we have the follow-
ing optimizer options: (i) random search, (ii) Bayesian opti-
mization, and (iii) hyperband; this work uses Bayesian
optimization. Table 2 lists the search space used for the
hyper-parameter tuning and Table 3 lists the essential tun-
ing parameters.

We carry out the training using the best architecture
resulting from the KerasTuner optimization process. The
training data set comprises 8,500 samples obtained through
a 15:85 split of 10,000 samples, with 15% data samples used
for validation and the remaining used for training. The per-
formance of the trained network is assessed on a test data
set of size 10,000. The 10,000 test samples are distinct from
the training/validation samples and are generated using
TPMC in the same way that the training data sets are. Note
that the machine learning input dimension is now reduced
to four (from eight for the CHAMP satellite) because the
sphere is assumed to be rotationally invariant. Fig. 3 shows
the neural network prediction results for the test data set.
On the x-axis, we have the observed (numerical) drag coef-
ficients; on the left y-axis, we have the predicted mean drag
coefficients; on the right y-axis, we have the predicted 3r
uncertainty values. The calibration curves corresponding
to the prediction shown in Fig. 3 are not included here

Table 2
Hyper-parameter search space.

Hyper-parameter Values

Number of hidden layers ½1; 2; 3; � � � ; 9; 10�
Number of neurons in each hidden layer ½32; 64; 96; � � � ; 512; 1024�
Activation function for the neurons of each hidden layer [relu, tanh, sigmoid, softsign, selu, elu, linear]
Dropout rate for each hidden layer ½:05; :10; :15; � � � ; :75; :80�
Optimizer for neural network training [rmsprop, adagrad, adam, nadam]
Batch size ½256; 512; 768; � � � ; 3840; 4096�

Table 3
Tuning parameters used in the hyper-parameter optimization.

Tuning Parameter Value

Maximum number of trials 150
Executions per trial 5
Number of initial points 50
Early stop regularization patience 50
Number of epochs 200
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for brevity. The RMSE and the MACE values for predic-
tion on the test data set are given in Table 4. For reference,
the RMSE results obtained here are comparable to that of
the results obtained by Mehta et al. (2014a), where the

authors use Gaussian Process regression and 1000 ensem-
ble points for training purposes. From Fig. 3 and Table 4,
we can conclude that 10,000 data points are sufficient for
producing accurate and well-calibrated results for a simple
geometry like sphere.

Next, we perform simulations for the CHAMP satellite.
We perform a sensitivity analysis to determine the appro-
priate data size for neural network training. We inspect
three different data sizes - (1) training with 10,0000 sam-
ples, (2) training with 20,000 samples, and (3) training with
50,000 samples for each of the species H ;He;N ;N 2;O;O2.
The performance of the trained networks is assessed on test
data sets. In addition, the neural network predicted drag
coefficients are compared to SPARTA-based drag coeffi-
cient data provided by Dr. Christian Siemes of the Delft

Fig. 3. Comparison of the true and predicted drag coefficients for the test data set for a spherical satellite. In red, we have the predicted means, and in
green, we have the uncertainty predictions. Training is carried out using 8,500 samples. The testing is carried out using a different set of 10,000 samples.

Table 4
RMSE and MACE performance on the test data set for all species for a
spherical satellite.

Species RMSE MACE (%)

H 0.0058 0.2879
He 0.0044 0.4810
N 0.0038 0.9447
N2 0.0038 0.5584
O 0.0037 0.7421
O2 0.0038 0.8310
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University of Technology (March et al., 2021). The accu-
racy of the neural network predictions compared to the
SPARTA-based drag coefficients and the computational
costs determine the appropriate data size. For interested
readers, Stochastic PArallel Rarefied-gas Time-accurate
Analyzer (SPARTA) (Plimpton et al., 2019) is a parallel
Direct Simulation Monte Carlo (DSMC) code for perform-
ing simulations of low-density gases in 2D or 3D.

We carry out the training for the three data sizes
(10,000, 20,000, and 50,000) using the best architecture
resulting from the KerasTuner optimization process (based
on Tables 2 and 3). Subsequently, we use the trained

networks for drag coefficient prediction for the test data
set. The test data set contains 42,500 samples obtained
through a 15:85 split of 50,000 samples, with 15% data
samples used for validation and the remaining 85% data
samples used for testing. The 50,000 validation/test sam-
ples are distinct from the training samples. For training
using 50,000 samples, the prediction performance on the
test data set is shown in Fig. 4. The observed drag coeffi-
cients are on the x-axis, the neural network predicted mean
drag coefficients are on the left y-axis, and the neural net-
work predicted 3r uncertainty values are on the right y-
axis. The calibration performance for prediction on the test

Fig. 4. Comparison of the true and predicted drag coefficients for the test data set for the CHAMP satellite. In red, we have the predicted means, and in
green, we have the uncertainty predictions. Training is carried out using 50,000 samples. The testing is carried out using a different set of 42,500 samples.
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data set for models trained using 50,000 samples is given in
Fig. 5. We have the calibration curve in red, and in blue, we
have the reference y ¼ x line. Also shown in the figure, in
green, we have the calibration curve corresponding to the
case if we were ‘‘not” to scale the neural network predicted
standard deviations using Eq. 9. It is evident from Fig. 5
that the neural network models provide well-calibrated
estimates after scaling. We do not show prediction perfor-
mance plots and calibration curves for training using
10,000 and 20,000 samples for brevity. However, for com-
pletion, the RMSE and MACE values for all the species for

training using 10,000, 20,000, and 50,000 samples are
shown in Table 5.

Next, for comparison of the neural network-predicted
drag coefficients with the DSMC-predicted drag coeffi-
cients, the drag coefficients of the individual species are
combined to compute the total drag coefficient. The total
drag coefficient is given as (Mehta et al., 2014b; Walker
et al., 2014c):

CD ¼ f scCDads þ ð1� f scÞCDsurf ð10Þ

Fig. 5. Calibration curves for the predicted drag coefficient for the test data set for the CHAMP satellite. The prediction models are trained using 50,000
samples.
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where CDads is the total drag coefficient based on a satellite
completely covered by the adsorbate (atomic oxygen), and
CDsurf is the total drag coefficient based on a clean satellite

surface. The weight f sc is given as (Walker et al., 2014c):

f sc ¼
KDRIAPo

1þ KDRIAPo
ð11Þ

where KDRIA is the Langmuir adsorbate constant for the

DRIA model (= 1:44� 106) and PO is the partial pressure
of atomic oxygen. The adsorbate and the surface drag coef-
ficients are obtained from the drag coefficients of con-
stituent species (H ;He;N ;N 2;O;O2) using (Walker et al.,
2014c):

CDads=surf
¼ 1X6

k¼1

ðvkmkÞ

0
BBBB@

1
CCCCA
X6

k¼1

ðvkmkCDads=surf ;kÞ ð12Þ

where vk is the mole fraction of species k;mk is the mass of
species k, and CDads=surf ;k is the drag coefficient for species k.

The adsorbate drag coefficient corresponding to species k,
i.e., CDads;k, is obtained by sampling from the distribution
predicted by the neural network model for each species
with features: [v1, 400 K, T1; aads; sin b; cos b; sinU;
cosU]. Similarly, the surface drag coefficient corresponding
to species k, i.e., CDsurf ;k, is obtained by sampling from the

distribution predicted by the neural network model for
each species with features: [v1, 400 K, T1; asurf ; sin b;
cos b; sinU; cosU]. The local free-stream temperature, T1,
is obtained from the NRLMSISE-00 model. We get the
satellite relative velocity v1 and the species mole fraction
vk data from DSMC files provided by Dr. Christian
Siemes. The energy accommodation coefficients aads and
asurf are taken as 0.85 because the DSMC results are gener-
ated using an accommodation coefficient of 0.85.

Fig. 6 shows a 24-h comparison between the neural net-
work predicted drag coefficient and the SPARTA-based
drag coefficient for four randomly selected days - (a) June
27, 2001, (b) March 27, 2002, (c) January 26, 2004, (d)
April 20, 2010 - for the CHAMP satellite. In each of the fig-
ures, we also show how the performance varies for models
trained using different data sizes. The solid lines show the
neural network predicted mean drag coefficient multiplied
by the projected area of the CHAMP satellite. Blue color:

the neural networks are trained using 10,000 samples; red
color: the neural networks are trained using 20,000 sam-
ples; green color: the neural networks are trained using
50,000 samples. In black, we have the DSMC-based drag
coefficient multiplied by the projected area of the CHAMP
satellite. The shaded green area shows the neural network
predicted 3r uncertainty multiplied by the projected area
for models trained using 50,000 samples. Uncertainties
are not shown for models trained with 10,000 or 20,000
samples for clarity/readability. As evident from Fig. 6,
the appropriate number of training samples is 50,000, as
using 50,0000 training samples results in much better accu-
racy (determined by closeness to the DSMC results) in
comparison to 10,000 or 20,000 training samples.

7. Scalable Gaussian process modeling for large-scale drag

coefficient modeling - difficulties

Traditional Gaussian Processes provide accurate mean
drag coefficient predictions and highly calibrated uncer-
tainty estimates. But they do not scale well with the number
of samples or output dimension. Another drawback of the
traditional GPR is that the trained models are often too
large to be saved, making reusability a challenging task.
Despite using powerful computers (GPU-enabled/
multiple cores), a GPR model training with 50,000 training
samples is unsuccessful due to memory constraints. GPR
model training with 10,000/20,000 training samples is fea-
sible, but the saved models are in gigabytes, rendering them
useless for later use in orbit uncertainty propagation stud-
ies. Therefore, we explore scalable GPR techniques, which
are approximate but faster versions of the full-scale Gaus-
sian Processes. Based on the literature review, we explore
the following three scalable Gaussian Processes - (1) Para-
metric Gaussian Processes (PGP) (Raissi et al., 2019), (2)
GPflow-based Sparse Variational Gaussian Process
(SVGP) (van der Wilk et al., 2020) and (3) local approxi-
mate Gaussian Process (laGP) regression (Sun et al.,
2019b). For the PGP regression, the training is computa-
tionally expensive, lacks sufficient prediction accuracy,
and reusability is a challenging task. Therefore, we do
not give it further consideration. For the GPflow-based
SVGP, reusability and accuracy are the issues. Therefore,
we do not recommend using it. The primary challenge with
laGP is that the trained approximate models cannot be
saved for later use, as it is a transductive model. We seek

Table 5
RMSE and MACE performance on the test data set for all species for the CHAMP satellite. Comparison is shown for training carried out using 10 K
samples, 20 K samples, and 50 K samples.

Species RMSE (10 K j 20 K j 50 K) MACE (%) (10 K j 20 K j 50 K)

H 0.0768 j 0.0686 j 0.0295 0.9511 j 0.7778 j 0.8845
He 0.0337 j 0.0485 j 0.0188 3.3381 j 0.2550 j 2.2404
N 0.0248 j 0.0210 j 0.0250 2.4136 j 1.5145 j 1.0279
N2 0.0368 j 0.0251 j 0.0159 0.6852 j 0.4904 j 1.3170
O 0.0634 j 0.0475 j 0.0142 1.9360 j 1.6784 j 0.5117
O2 0.0266 j 0.0445 j 0.0209 2.2379 j 1.6260 j 0.8384
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an inductive model for reusability purposes. Based on our
investigation, we conclude that scalable Gaussian Processes
are not ideal for large-scale drag coefficient modeling,
where a primary requirement is that the trained models
be saved and re-loaded later for orbit uncertainty propaga-
tion investigations. An alternative, such as the neural net-
work, is more suitable for our application.

8. Effect of physical drag coefficient modeling uncertainties

on orbital state uncertainties

In this section, first, we demonstrate the importance of
physical drag coefficient modeling for orbit propagation.
Following that, we study the effects of drag coefficient
uncertainties on orbital state uncertainties.

8.1. Demonstration of the importance of physical drag

coefficient modeling

In orbit propagation, drag coefficients are often
assumed to be constants for simplicity or lack of a compu-
tationally efficient method of calculating drag coefficients.
To demonstrate the drawback of this assumption and the
need for modeling the physical drag coefficient, we consider
six test case studies, which are detailed in Table 6. In each

of the six cases, we consider two scenarios: (i) in the first
scenario, we propagate an object with a variable drag coef-
ficient which we compute using the machine learning mod-
els, and (ii) in the second scenario, the same object is
propagated with a constant drag coefficient obtained by
averaging the drag coefficient values along the orbit from
the first scenario. We then investigate the temporal evolu-
tion of the along-track difference between the two
scenarios.

The test case objects are assumed to be in a high-
inclination, near-zero eccentricity orbit with an altitude
of around 400 km. The initial orbital elements for all the
test cases are the same and are given in Table 7. Relevant
simulation parameters are given in Table 8. It is important
to note that the selected propagation period corresponds to
a geomagnetic storm during a solar maximum. For orbit
integration, we use a modified version of Dormand and
Prince’s Runge–Kutta Method (Dormand and Prince,
1980) (also referred to as the ‘RK45’ integrator in Python’s
scipy.integrate package (Virtanen et al., 2020)). The modi-
fied integrator uses a constant integration step size of 10 s
rather than striving for specified absolute and relative tol-
erances. This modification was made because a variable
step size integrator takes a long time to converge in the
presence of a stochastic drag coefficient, whose value

Fig. 6. CHAMP CD � Area for four select dates for models trained using 10,000, 20,000, and 50,000 samples. Comparison of neural network predicted
drag coefficient with SPARTA-based drag coefficient.
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changes in every internal adjustment of a single call of the
step size. The cross-sectional areas of the objects for test
cases I and II are taken as 0.770981 m2. For test cases
III, IV, V-a, and VI-a, cross-sectional area (attitude-
dependent) is obtained by applying SciPy’s LinearNDInter-

polator (Virtanen et al., 2020) to an area look-up table. The
constant cross-sectional areas for test cases V-b and VI-b
are obtained by averaging the cross-sectional area values
along the orbit from test cases V-a and VI-a, respectively.

For all six test cases, for the machine learning-based
drag coefficient computations, we use the predicted mean
drag coefficients (and ignore the predicted standard devia-

tions). For the drag coefficient computation, we use Eq. 10,
where the satellite surface temperature (T w) is taken as
400 K, the atmospheric translation temperature (T1) is
obtained from the NRLMSISE-00 density model, the
adsorbate energy accommodation coefficient (aads) is taken
as 1 (Mehta et al., 2022), and the surface energy accommo-
dation coefficient (asurf ) is obtained as (Mehta et al., 2022):

asurf ¼ 3l

ð1þ lÞ2 ; l ¼

X6

k¼1

ðvkmkÞ

msurf
ð13Þ

where vk is the mole fraction of species k;mk is the mass of
species k, and msurf is the mass of a particle that composes
the surface lattice (=263.3223 amu (Mehta et al., 2022)).
Mole fractions for the species H ;He;N ;N 2;O;O2 are
obtained from the NRLMSISE-00 density model.

Fig. 7 shows the evolution of along-track errors for the
six cases. Test cases I, II, III, IV, V, and VI are shown in
red, green, blue, black, magenta, and cyan, respectively.
The history of along-track errors shows that assuming a
constant drag coefficient can result in errors of a kilometer
or more at the end of the three-day propagation period.

8.2. Orbital state uncertainties

We use the well-known Monte Carlo approach for orbit
uncertainty propagation for the CHAMP satellite. Several
different scenarios are investigated, where for each case,
we use a total of 500 Monte Carlo runs and investigate
the error distribution at the end of three days of orbit prop-
agation. A top-level description of the Monte Carlo
approach is given in Table 9. Uncertainty investigations
are carried out for different (a) drag coefficient models, (b)

Table 6
Description of test cases to motivate the importance of physical drag coefficient modeling. The parameter ‘D’ is the time in days since the initial epoch of
orbit propagation. The arguments for the sine and cosine functions in the definition of pitch and yaw are in radians; however, pitch/yaw themselves are in
degrees.

Case Number Object Drag Coefficient Attitude Cross-Sectional Area

Case I-a Sphere Physical CDi from machine learning N/A Constant
Case I-b Sphere Constant CD ¼ 1

ðnstepsÞ
P

orbitCDi s (case I-a) N/A Constant
Case II-a CHAMP Physical CDi from machine learning Pitch = yaw = 0� Constant
Case II-b CHAMP Constant CD ¼ 1

ðnstepsÞ
P

orbitCDi s (case II-a) Pitch = yaw = 0� Constant
Case III-a CHAMP Physical CDi from machine learning Pitch ¼ sinð100DÞ�, Attitude-dependent

yaw ¼ 5 cosð100DÞ�
Case III-b CHAMP Constant CD ¼ 1

ðnstepsÞ
P

orbitCDi s (case III-a) Pitch ¼ sinð100DÞ�, Attitude-dependent
yaw ¼ 5 cosð100DÞ�

Case IV-a CHAMP Physical CDi from machine learning Pitch ¼ 90 sinð100DÞ�, Attitude-dependent
yaw ¼ 180ð1þ cosð100DÞÞ�

Case IV-b CHAMP Constant CD ¼ 1
ðnstepsÞ

P
orbitCDi s (case IV-a) Pitch ¼ 90 sinð100DÞ�, Attitude-dependent

yaw ¼ 180ð1þ cosð100DÞÞ�
Case V-a CHAMP Physical CDi from machine learning Pitch ¼ sinð100DÞ�, Attitude-dependent

yaw ¼ 5 cosð100DÞ�
Case V-b CHAMP Constant CD ¼ 1

ðnstepsÞ
P

orbitCDi s (case V-a) N/A Constant
Case VI-a CHAMP Physical CDi from machine learning Pitch ¼ 90 sinð100DÞ�, Attitude-dependent

yaw ¼ 180ð1þ cosð100DÞÞ�
Case VI-b CHAMP Constant CD ¼ 1

ðnstepsÞ
P

orbitCDi s (case VI-a) N/A Constant

Table 7
Keplerian elements defining the initial position of the satellites.

Orbital Element Values

Semi-major axis 6778136.3000 m
Eccentricity 2.2150�10�3

Inclination 87:2193�

True anomaly 274:4887�

Argument of perigee 85:6397�

Right ascension of ascending node 206:9785�

Table 8
Simulation parameters for the test cases.

Parameter Values/Description

Initial epoch 00:00:00 UT, November 20, 2003
Propagation period 3 days
Perturbations J2, atmospheric drag
Atmospheric NRLMSISE-00
density model (Picone et al., 2002)
Source for ap;Ap, CelesTrak (Tapping (2013),
F 10:7 solar radio flux Matzka et al. (2021))
Satellite mass 500 kg
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spatiotemporal correlations for the drag coefficient, (c) atti-
tude profiles, (d) space weather conditions, and (e) altitudes.

Unless otherwise stated, all the Monte Carlo simulations
are run using the set-up described in Tables 7 and 8. We use
the same constant-step modified ‘RK-45’ integrator
described in Section 8.1 for orbit propagation. Further-
more, drag coefficients are computed using machine learn-
ing models, and, similar to Section 8.1, the machine
learning inputs T w = 400 K, T1 is from the NRLMSISE-
00 density model, aads = 1, and asurf is given by Eq. 13.

8.2.1. Different drag coefficient models

We consider three different drag coefficient models, the
details of which are given in Table 10. Cases A and B are
based on sampling from a normal distribution, whereas
case C is based on a first-order Gauss–Markov process
(Schutz et al., 2004):

jðtÞ ¼ expð�gDtÞjðt � DtÞ þ ukðtÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

2g
1� expð�2gDtÞð Þ

s
ð14aÞ

g ¼ � ln 0:5

s
ð14bÞ

where ukðtÞ is a random number sampled from the standard

normal distribution. The factor ðC2=ð2gÞÞ, which represents
the steady-state variance of j, is taken to be unity. The
parameter s is the ‘‘half-life” and governs the rate at which
the auto-correlation fades. Based on literature
(McLaughlin et al., 2012), the half-life s is taken to be
1.8 min. At the initial epoch (i.e., t ¼ 0), j is simply a ran-
dom number sampled from the standard normal
distribution.

Case C (Gauss–Markov process based) is the most real-
istic in operations as drag coefficients have spatiotemporal
correlations. Case A (Gaussian noise-based), on the other
hand, is the least realistic because the drag coefficient distri-
bution changes over time depending on various input fac-
tors such as atmospheric temperature, the density of
atmospheric species, and others. For all the three cases
A, B, and C, we assume that the attitude varies as: pitch
¼ 90 sinð100DÞ� and yaw ¼ 180ð1þ cosð100DÞÞ�, where D

is the time in days since the initial epoch, and the argument
for sine/cosine functions are in radians. The attitude-
dependent cross-section area is obtained using
LinearNDInterpolator.

Fig. 8 shows the along-track errors at the end of three
days of orbit propagation for cases A, B, and C. The refer-
ence orbit for the computation of the along-track errors is
the orbit propagated with constant drag coefficient C (see
Table 10 for details of C) with cross-sectional area varying
according to the full-attitude profile described earlier. In
Fig. 8, we show both the normalized histogram and the
theoretical normal probability density function (PDF) fit.
Compared to case A (Gaussian noise-based), the spread
in the PDF (or the standard deviation) is much larger for
case C (Gauss–Markov process-based). In case A, there is
little to no spatiotemporal correlation in the sampled drag
coefficient values along the orbit (partial random behav-
ior); this results in the cancellation of perturbation effects,
resulting in unrealistically small orbital errors. This behav-
ior is demonstrated in Fig. 9, where we show the drag coef-
ficients for the first five Monte Carlo samples and the
reference orbit for the initial 390 s. Table 11 lists the bias
and the 3r uncertainties for the radial, along-track, and

Fig. 7. Evolution of along-track error for different cases, demonstrating
the importance of physical drag coefficient modeling.

Table 9
Top-Level algorithm for orbit uncertainty propagation.

Algorithm: Monte Carlo simulations

For j ¼ 1 : 500
X 0 = initial orbital state
For t ¼ 0 : 10 seconds : 3Days
For s ¼ 1 : 6 (s represents the six species H ;He;N ;N2;O;O2)

� cd (j; t; s) = a sampled CD value for species s from its probability distribution function
End loop
� CDðj; tÞ = total drag coefficient computed using Eq. 10 and using the sampled drag coefficients of the six species
� Using CDðj; tÞ, compute the drag force. Propagate the object to the next time step

End loop
X ðjÞ = orbital state at the end of 3-day propagation

End loop
Compute the distribution of X � X ref , where X ref is some reference orbit
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cross-track errors for all three cases at the end of three days
of orbit propagation. From the table, the general trend is:
3r for case C (Gauss–Markov process-based) � 3r for
case B (machine learning-based normal distribution) > 3r
for case A (Gaussian noise-based). The bias is approxi-
mately zero for case A and is of a similar order for cases
B and C. Note that we do not show the plots for radial
and cross-track errors because they are much smaller than
the along-track errors and for brevity.

8.2.2. Different spatiotemporal correlations for the drag

coefficient

In the first-order Gauss–Markov process-based orbit
uncertainty propagation, i.e., case C (see Table 10), the
half-life is taken as 1.8 min. However, in operations, the
half-life can vary. We, therefore, re-run case C with a larger
half-life of 18 min; we refer to this new case as ‘case D.’
Fig. 10 shows the distribution of along-track errors for
cases C and D. The reference orbit we use here is the same
as the one we use in Section 8.2.1. The spread (uncertainty)
is much larger for case D (half-life = 18 min) because the
sampled drag coefficient values are more correlated along
the orbit, i.e., there is less random behavior in comparison
to case C (half-life = 1.8 min). Tables 11 (for case C) and
12 (for case D) list the bias and 3r uncertainties for the

radial, along-track, and cross-track errors at the end of
orbit propagation. The bias is nearly identical for cases C
and D.

Table 10
Description of different drag coefficient models.

Cases CD Model (For Each Time Step Along The Orbit)

A Total CD sampled from NðC; :01Þ, i.e., a normal distribution with constant mean C and standard deviation.01.
Computation of C -Let us consider case B described below. Let an object be propagated using lCD

, which
varies along the orbit. Then the constant C is the average of all the drag coefficient values along that orbit.

B For each species i, 500 drag coefficient values are sampled from Nðli;riÞ. The mean li and the standard
deviation ri come from the machine learning models for species i. Total mean drag coefficient lCD

and the
associated standard deviation rCD are computed from li (i ¼ 1 : 6) and the 500 samples using Eq. 10.
Total CD sampled from NðlCD

;rCD Þ
C Total mean drag coefficient lCD

and the associated standard deviation rCD are first computed in the same
manner as that of case B. A parameter j is then sampled from a first-order Gauss–Markov process. Total
drag coefficient is given as: CD ¼ lCD

þ jrCD

Fig. 8. Along-track errors for cases A, B, and C at the end of three days of orbit propagation. Case A: Gaussian noise-based; Case B: machine learning-
based normal distribution; Case C: based on Gauss–Markov process with half-life = 1.8 min. Attitude profile: full-attitude variation. Space weather
condition: geomagnetic storm, solar maximum. Study of the effect of different drag coefficient models.

Fig. 9. Comparison of CD samples for different drag coefficient models.
Case A: Gaussian noise-based; Case B: machine learning-based normal
distribution; Case C: based on Gauss–Markov process with half-
life = 1.8 min. Attitude profile: full-attitude variation. Space weather
condition: geomagnetic storm, solar maximum. Note that for case B and
case C, the mean drag coefficient values along the orbit (not shown in the
figure) would lie close to the shown Monte Carlo samples; the variability
of the CD, i.e., the difference between the CD samples and the reference is
not to be confused with the relatively small standard deviation values.
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8.2.3. Different attitude profiles

For cases A, B, and C in Section 8.2.1, we assume a full-
attitude variation (one can think of it as tumbling). How-
ever, space objects may have reduced-attitude profiles
achieved through control mechanisms involving reaction
wheels, control moment gyros, and others. We, therefore,
re-run cases A, B, and C with the following attitude profile:
pitch ¼ sinð100DÞ�, yaw ¼ 5 cosð100DÞ�; we refer to these
new cases as ‘case E’, ‘case F’, and ‘case G’, respectively.
Fig. 11 shows the along-track errors for cases E, F, and
G at the end of orbit propagation. For Fig. 11, we generate
the reference orbit using the same procedure as in Sec-
tion 8.2.1, except with a reduced-attitude profile instead
of the full-attitude profile. Table 13 lists the bias and 3r
uncertainties for the radial, along-track, and cross-track
errors at the end of orbit propagation for cases E, F, and

G. The 3r values are smaller for the reduced-attitude cases
when compared to the full-attitude cases. This is because of
the smaller variations in ballistic coefficient along the orbit
for the reduced-attitude cases; this is demonstrated in
Fig. 12, where we compare CD � Area for two randomly
selected Monte Carlo samples - one from the full-attitude
case (Case C) and one from the reduced-attitude case (case
G) - for approximately six hours.

8.2.4. Different space weather conditions

The effect of the drag coefficient on orbital perturbations
can be significantly influenced by space weather conditions
(Paul et al., 2021). In the previous simulations, the propa-
gation period roughly coincides with a geomagnetic storm
during solar maximum. To study the effect of different
space weather conditions, we re-run case C (Gauss–Mar-
kov process based) with an initial epoch of 00:00:00 UT,
October 01, 2009, which corresponds to a quiet time during
solar minimum; we refer to this new case as ‘case H.’
Fig. 13 shows the along-track errors for case H at the
end of orbit propagation. The reference for Fig. 13 is an
orbit generated by propagating an object with mean drag
coefficients along the orbit computed from the machine
learning models, full-attitude cross-sectional area varia-
tion, and quiet time space weather conditions. Table 14
lists the bias and 3r uncertainties for the radial, along-
track, and cross-track errors at the end of propagation
for case H. The uncertainty in the along-track errors for
the quiet time-based case H (196.5790 m) is almost half
that of the uncertainty in the along-track errors for the
storm time-based case C (384.0162 m). Compared to the
geomagnetic storm/solar maximum period, the atmo-
spheric densities are much smaller during the quiet solar
minimum period. There is a strong coupling between the
atmospheric density and drag coefficient values, which
results in the differences between cases C and H. In any
mission design, it is crucial to correctly model the space
weather conditions to account for the correct impact of
drag coefficient uncertainties.

8.2.5. Different altitudes

The simulations conducted so far assume an altitude of
around 400 km. To investigate the impact of satellite alti-
tude on drag coefficient-induced orbital uncertainties, we
re-run case C with an initial semi-major axis of
6628136.3000 meters (altitude � 250 km); we refer to this
new case as ‘case I.’ Since the starting position is different

Table 11
Bias and 3r uncertainties for the radial, along-track, and cross-track errors for cases A, B, and C at the end of orbit propagation. Case A: Gaussian noise-
based; Case B: machine learning-based normal distribution; Case C: based on Gauss–Markov process with half-life = 1.8 min. Attitude profile: full-
attitude variation. Space weather condition: geomagnetic storm, solar maximum.

Errors Bias (Case A j Case B j Case C) Uncertainty (3r Values) (Case A j Case B j Case C)

Radial (m) 0.0039 j �4.1968 j �4.5222 0.1794 j 0.2797 j 1.8238
Along-track (m) 0.0136 j 2569.3938 j 2654.6444 35.4259 j 61.7800 j 384.0162
Cross-track (m) 1.1563E-5 j 0.2362 j 0.1302 0.0034 j 0.0062 j 0.1772

Fig. 10. Along-track errors for cases C and D at the end of three days of
orbit propagation. Study of the effect of different drag coefficient
spatiotemporal correlation. Case C/D: Gauss–Markov process-based.
Attitude profile: full-attitude variation. Space weather condition: geomag-
netic storm, solar maximum.

Table 12
Bias and 3r uncertainties for the radial, along-track, and cross-track
errors for case D at the end of orbit propagation. Case D: based on
Gauss–Markov process with half-life = 18 min. Attitude profile: full-
attitude variation. Space weather condition: geomagnetic storm, solar
maximum.

Errors Bias Uncertainty (3r Values))

Radial (m) �4.5428 4.0219
Along-track (m) 2657.4929 986.7020
Cross-track (m) 0.1299 0.2157

S.N. Paul et al. Advances in Space Research 72 (2023) 922–939

935



for case I (compared to all the previous simulation cases), a
new reference orbit is defined with an initial location at an
altitude of 250 km; we propagate the reference orbit with
mean drag coefficients along the orbit computed from the
machine learning models, full-attitude cross-sectional area
variation, and storm time space weather conditions.
Fig. 14 shows the along-track errors at the end of three
days of orbit propagation for case I. Table 15 lists the bias
and 3r uncertainties for the radial, along-track, and cross-
track errors at the end epoch for case I. Thus, at very low
altitudes, the along-track uncertainties (3r values) can be
of the order of 10 km, emphasizing the importance of tak-

ing drag coefficient uncertainties into account when con-
ducting orbit propagation. Note that we did not
investigate any further lower altitudes; at altitudes below
200 km, the free molecular flow assumption starts to break
down, and our machine learning models are not valid in the
continuum flow regime.

9. Application and limitations

We intend to add the proposed drag coefficient model-
ing approach to the WVU RSM toolkit to help satellite
owners/operators with their spacecraft operations and life-

Fig. 11. Along-track errors for cases E, F, and G at the end of three days of orbit propagation. Case E: Gaussian noise-based; Case F: machine learning-
based normal distribution; Case G: based on Gauss–Markov process with half-life = 1.8 min. Attitude profile: reduced-attitude variation. Space weather
condition: geomagnetic storm, solar maximum. Study of the effect of different attitude profiles.

Table 13
Bias and 3r uncertainties for the radial, along-track, and cross-track errors for cases E, F, and G at the end of orbit propagation. Case E: Gaussian noise-
based; Case F: machine learning-based normal distribution; Case G: based on Gauss–Markov process with half-life = 1.8 min. Attitude profile: reduced-
attitude variation. Space weather condition: geomagnetic storm, solar maximum.

Errors Bias (Case E j Case F j Case G) Uncertainty (3r Values) (Case E j Case F j Case G)

Radial (m) �0.0013 j �2.1898 j �7.7465 0.0329 j 0.1642 j 1.5581
Along-track (m) 0.4423 j 310.4729 j 1227.5856 6.3985 j 34.1737 j 293.9133
Cross-track (m) 3.4203E-5 j 0.0365 j 0.0415 0.0007 j 0.0035 j 0.1878

Fig. 12. Comparison of ballistic coefficient for two randomly selected Monte Carlo samples from cases C and G, respectively. Case C: based on Gauss–
Markov process with half-life = 1.8 min and full-attitude variation; Case G: based on Gauss–Markov process with half-life = 1.8 min and reduced-attitude
variation. Space weather condition: geomagnetic storm, solar maximum.
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time prediction. Particularly, for operations involving large
attitude changes, such as the application of differential
drag, or specific science mission maneuvers (e.g., the
GRACE satellite(s) did 180� yaw turns), our drag coeffi-
cient modeling approach can be applied. At the end of their

operational life, many of the current and upcoming satel-
lites will become defunct, possibly with a random tumbling
profile. With a broader push in the space community now
for owner-operators to release information on defunct
satellites’ geometry and surface properties, our methodol-
ogy (which requires sufficient fidelity geometry and surface
property know-how) can be used to predict the trajectories
of these objects. There is also a science application for our
approach - estimates of atmospheric density can be
obtained from good estimates of drag coefficient and satel-
lite acceleration measurements. A point to note is that the
developed approach can only be applied to space debris or
classified objects if the geometry and surface properties can
be estimated. For space debris, we may not readily know
the object characteristics, so we will have to use photomet-
ric/astrometric data to determine the object characteristics
before carrying out the numerical simulations to generate
the training data for the machine learning algorithms.

10. Conclusions and future possibilities

In this paper, we use stochastic machine learning tech-
niques to design surrogate models for predicting the phys-
ical drag coefficient for the complex CHAMP satellite. In
our study, we demonstrate that the machine learning mod-
els, which are computationally much faster than the
numerical methods, are able to emulate drag coefficient
results with sufficient accuracy.

Unlike other surrogate models, such as the Gaussian
Process regression, we particularly stress the computational
efficiency, model accuracy, reliability of the predicted
uncertainties, reusability of models, and applicability of
the models to all attitudes in this study. We develop a
methodology to determine the appropriate data size for
training the feed-forward deep neural network models.
With approximately 50,000 data points for training and
another 50,000 data points for testing purposes, our models
are able to predict drag coefficients for H ;He;N ;N 2;O;O2

with root mean squared errors of 0.0295, 0.0188, 0.0250,
0.0159, 0.0142, 0.0209 and mean absolute calibration errors
of 0.8845%, 2.2404%, 1.0279%, 1.3170%, 0.5117%, and
0.8384%, respectively.

To establish the importance of drag coefficient uncer-
tainties for space operations and space situational aware-
ness purposes, we carry out orbit uncertainty
propagation via Monte Carlo simulations for a variety of

Fig. 13. Along-track errors for case H at the end of three days of orbit
propagation. Case H: based on Gauss–Markov process with half-
life = 1.8 min. Attitude profile: full-attitude variation. Space weather
condition: quiet, solar minimum.

Table 14
Bias and 3r uncertainties for the radial, along-track, and cross-track
errors for case H at the end of orbit propagation. Case H: based on
Gauss–Markov process with half-life = 1.8 min. Attitude profile: full-
attitude variation. Space weather condition: quiet, solar minimum.

Errors Bias Uncertainty (3r Values))

Radial (m) 0.3740 1.1161
Along-track (m) �57.2505 196.5790
Cross-track (m) 0.0501 0.1566

Fig. 14. Along-track errors for case I at the end of three days of orbit
propagation. Case I: based on Gauss–Markov process with half-
life = 1.8 min. Attitude profile: full-attitude variation. Altitude: approx-
imately 250 km. Space weather condition: geomagnetic storm, solar
maximum.

Table 15
Bias and 3r uncertainties for the radial, along-track, and cross-track
errors for case I at the end of orbit propagation. Case I: based on Gauss–
Markov process with half-life = 1.8 min. Attitude profile: full-attitude
variation. Altitude: approximately 250 km. Space weather condition:
geomagnetic storm, solar maximum.

Errors Bias Uncertainty (3r Values))

Radial (m) 1.3790 65.5767
Along-track (m) �140.2569 9651.4373
Cross-track (m) 0.1898 1.1521
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(a) drag coefficient models, (b) spatiotemporal correlations
for the drag coefficient, (c) attitude profiles, (d) space
weather conditions, and (e) altitudes. In orbit propagation,
uncertainty in the drag coefficient mainly manifests itself in
the form of uncertainty in along-track errors. We demon-
strate a number of important observations - (1) uncertainty
in along-track errors can be an order of magnitude higher
for realistic sampling methods such as the first-order Gauss
Markov process when compared to the naive sampling
from a normal distribution, (2) the selection of correct val-
ues of parameters modeling the drag coefficient spatiotem-
poral correlation can significantly change the distribution
of the orbital uncertainties, (3) orbital uncertainties are
strongly affected by the attitude profile of the space object,
(d) the effect of the drag coefficient uncertainties on orbital
state uncertainties is much more significant under a geo-
magnetic storm during solar maximum when compared
to a quiet period during solar minimum, and (e) the uncer-
tainty in the along-track errors because of drag coefficient
uncertainties can be of the order of 10 km (or more) for
a low altitude of 250 km.

The current study only considers one gas-surface inter-
action model. In the future, we intend to explore different
kinds of gas-surface interaction, which is the largest source
of uncertainty in drag coefficient modeling. Additionally,
note that the investigations conducted in this paper only
concern themselves with the uncertainties emanating from
fitting the stochastic models to the training data. In the
future, we will also include the effects of the uncertainties
in inputs, such as the atmospheric composition, tempera-
ture, and others resulting from the space weather
uncertainties.
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