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Abstract: In this article, using critical point theory and variational methods, we investigate the existence of
at least three solutions for a class of double eigenvalue discrete anisotropic Kirchhoff-type problems. An
example is presented to demonstrate the applicability of our main theoretical findings.
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1 Introduction

Let � { }∈ ⧹N 1 and put ��[ ] [ ]= ∩N N1, 1, . Consider the anisotropic discrete Kirchhoff-type problem
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The difference equation in (1.1) can be considered a discrete analogue of Kirchhoff’s equation
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which Kirchhoff studied in 1883 (see [1]) and which extends d’Alembert’s wave equation, by considering the
effect during vibrations when the length of the string is varied. In (1.2), the parameter L denotes string
length, h stands for the cross-sectional area, E is the material’s Young modulus, ρ is the mass density, and
ρ0 is the initial tension. A special feature of the Kirchhoff equation is that (1.2) contains the nonlocal
coefficient
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on [ ]L0, , and therefore (1.2) is not a

pointwise identity. On the other hand, the stationary analogue of (1.2) is given as follows:
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which was studied extensively only after Lions [2] initiated an abstract setting for this problem. Some
related, interesting, and important results can be seen, e.g., in [3–7].

Difference equations are generally understood as the first theory to appear with the systematic growth
of mathematics, and they can be found in biological neural networks, economy, signal processing, com-
puter engineering, genetics, medicine, ecology, and digital control. In the last decades, many researchers
around the globe have used variational methods and critical point theory to study the existence and
multiplicity of solutions for discrete boundary value problems, as referenced in [8–12]. We also refer the
reader to [13–16], where discrete Kirchhoff-type equations were studied. However, as to the problem (1.1), it
contains the Kirchhoff term ∣ ( ) ∣

( )
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∑
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, which makes it much more complicated to work with, and

there are some studies [17–23], that discuss the existence of solutions for some discrete boundary value
problems of ( )p k -Kirchhoff-type using variational methods and critical point theory.

Inspired by the above results, in this article, we investigate the existence of three solutions for (1.1). In
this case, we apply suitable conditions and create intervals for the two parameters λ and μ. We also give
Example 3.3 to show the use of our proven theorems.

2 Preliminaries and basic notation

In this article, X denotes a finite-dimensional real Banach space and �→I X:λ is a functional satisfying
the following structure hypothesis:

( ) ( ) ( )≔ −I u u λ uΦ Ψλ for all ∈u X , where �→XΦ, Ψ : are two functions of class C1 on X such that Φ is coercive, i.e.,
( ) = ∞‖ ‖→∞ ulim Φu , and λ is a positive real parameter.

In this framework, a finite-dimensional variant of [24, Theorem 3.3] (see also [24, Corollary 3.1 and
Remark 3.9]) is as follows.
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Theorem 2.1. (See [24, Theorem 3.3]) Assume that
(a1) Φ is convex and ( ) ( )= = =inf Φ Φ 0 Ψ 0 0X ,
(a2) for every ∈u u X,1 2 such that ( ) ≥uΨ 01 and ( ) ≥uΨ 02 , one has
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For an application of Theorem 2.1 to the discrete case, see [18]. Furthermore, we refer the reader to
[25–28] for situations of successful employment of results such as Theorem 2.1 in order to prove the
existence of solutions for various boundary value problems. We introduce the N -dimensional Hilbert space
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Proof. This inequality is a consequence of [29, (A.6)], as in our setting �[ ] [ )→ ∞p N: 1, 2, . □

Definition 2.3. We say that ∈u X solves (1.1) provided

( ( )) ∣ ( )∣ ( ) ( )

( ( )) ( ) ( ( )) ( )

( )
∑

∑ ∑

− − −

= + ∈

=

+

− −

= =

M ρ u u n u n v n

λ f n u n v n μ g n u n v n v X

Δ 1 Δ 1 Δ 1

, , for all .

n

N
p n

n

N

n

N
1

1
1 2

1 1

Set

( ) ( ( )) ( ) ⎛
⎝

( ( )) ( ( ))⎞
⎠

∑= = +

=

u M ρ u u F n u n μ
λ

G n u nΦ , Ψ , , ,
n

N

1

where, for �∈t and �[ ]∈n N1, ,

( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫= = =M t M ξ ξ F n t f n s s G n t g n s sd , , , d , , , d .
t t t

0 0 0

3 Main results

In this section, we formulate our main results based on the existence of at least three solutions for the
problem (1.1). Set
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the problem (1.1) has at least three nonnegative solutions u1, u2, and u3 satisfying
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where � ��[ ] × →f Nˆ : 1, is a continuous function defined by
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In a similar way, we obtain
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p

p p p

2 3
Φ ,

3

Φ , 1

3

1

3

1
1

3 2

1
2 3

1
2 3

3

3
3

0

Now, for ( )∈ −∞
−u rΦ ,1

1 , we have

( )
( ) ( ) [ ]

( ) ( )

( ) ( ) [ ]

∑

∑

≥

− + −

−

≥

− + −

=

=

+

−

β r r
F n η F n θ G G

w u

F n η F n θ G G

η

,
, ,

Φ Φ

, ,
.

n
N μ

λ η
θ

n
N μ

λ η
θ

m
p

p

1 2
0 1 1

0 1 1
2

1

1

1
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Due to the condition (A2), we obtain

( ) ( )<α r r r β r r, , , .1 2 3 1 2

Therefore, the assumptions (a3), (a4), and (a5) of Theorem 2.1 are verified. Since f̂ and g are nonnegative,
the solutions of the problem (1.1) are nonnegative. Indeed, let ∗u be a nontrivial solution of the problem (1.1).
Then, ∗u is nonnegative. Arguing by contradiction, assume that the discrete interval �� { [ ]≔ ∈n N1, :

( ) }< ≠ ∅∗u n 0 . Put ( ) { ( ) }= ∗v n u n¯ min , 0 for �[ ]∈n N1, . Clearly, ∈v X¯ , and one has

( ( )) ∣ ( )∣ ( ) ( ) ( ( )) ( ) ( ( )) ( )( )
∑ ∑ ∑− − − = +∗

=

+

∗

− −

∗

=

∗

=

∗M ρ u u n u n v n λ f n u n v n μ g n u n v nΔ 1 Δ 1 Δ ¯ 1 ˆ , ¯ , ¯ .
n

N
p n

n

N

n

N

1

1
1 2

1 1

By choosing = ∗v u¯ , we have

( ) ( ( )) ∣ ( )∣ ( )
∑≤ + ‖ ‖ ≤ − ≤

− /

∗ ∗

=

+

∗

−
−m N u M ρ u u n0 1 Δ 1 0,p

n

N
p n

0
1 2

1

1
1

i.e.,

‖ ‖ ≤∗u 0.

Thus, =∗u 0 in � , which is absurd. Hence, ∗u is nonnegative. Now, we show that the functional Iλ satisfies
the assumption (a2) of Theorem 2.1. Let u1 and u2 be two local minima for Iλ (see [24, proof of Theorem 3.3]).
Then u1 and u2 are critical points for Iλ, and so, they are nonnegative solutions to the problem (1.1). Then, we
have ≥u u, 01 2 . Thus, it follows that

( ) [ ]+ − ≥ ∈su s u s1 0 for all 0, 1 .1 2

Therefore, ( ( ) )( )+ + − ≥f g n su s u, 1 0μ
λ 1 2 for all [ ]∈s 0, 1 . Consequently,

( ( ) ) [ ]+ − ≥ ∈su s u sΨ 1 0 for all 0, 1 .1 2

Hence, Theorem 2.1 implies that for every λ in the interval given in the statement and for every μ in the
interval given in the statement, the functional Iλ has three critical points ∈u u u X, ,1 2 3 with ( ) <u rΦ 1 1,

( ) <u rΦ 2 2, and ( ) < +u r rΦ 3 2 3, i.e.,

� � �

∣ ( )∣ ∣ ( )∣ ∣ ( )∣
[ ] [ ] [ ]

< < <

∈ ∈ ∈

u n θ u n θ u n θmax , max , max .
n N n N n N1,

1 1
1,

2 2
1,

3 3

This completes the proof. □

Remark 3.2. Note that (3.3) is satisfied with large η if, for example, f is positive and then F is increasing
with respect to the second variable.

We now present the following example to illustrate Theorem 3.1.

Example 3.3. Consider the problem

�⎧

⎨
⎩

( ( ( ))) ( ( ( ))) ( ( )) ( ( )) [ ]

( ) ( )

( )− + − = + ∈

= =

−
ρ u ϕ u n λf n u n μg n u n n

u u
2 sin Δ Δ 1 , , , 1, 4 ,
0 5 0,

p n 1 (3.7)

which is in the form (1.1) with

( ) ( )= = + = +N p n n M ξ ξ4,
4

2, 2 sin .

Here,

= = = =
− +p p m m2, 3, 1, 3.0 1

Let

Three solutions for discrete anisotropic Kirchhoff-type problems  7



( )
⎧

⎨
⎩

=

≤

>

f n t
t t

t
t

,
for 10 ,

10 for 10

6 10

70
10

for all �[ ]∈n 1, 4 . Thus, we have

( )

⎧

⎨

⎪

⎩
⎪ ⎛

⎝
( )⎞

⎠

=

≤

+ − >

F n t

t t

t t
, 7

for 10 ,

10 ln 1
7

10 ln 10 for 10

7
10

70 10

for all �[ ]∈n 1, 4 . Let now

= = = =θ θ θ η10, 10 , 10 , 10 .1 2
100

3
200 10

Then

< < > > ⋅θ θ θ0 10 , 45 101
2 21

3
2

2
2 30

and ( ) ≥f n t, 0 for each ��( ) [ ]∈ ×n t, 1, 4 . Taking into account

⎧

⎨
⎩

( ) ( ) ( ) ⎫

⎬
⎭

⎧

⎨
⎩

( ) ( ) ⎫

⎬
⎭

( ) ( )

∑ ∑ ∑

−

=

⋅ ⋅ + ⋅ +

−

= ⋅

= = =

F n F n F n
max

, 10
10

,
, 10

10
,

, 10
10 10

max
4

10
,

4 10 90 ln 10

10
,

4 10 190 ln 10

10 10
4
7

10 ,

n n n1
4

2
1

4 100

200
1

4 200

400 200

10
7

2

70 1
7

200

70 1
7

400 200
5

7

so (A2) of Theorem 3.1 is verified. Note

⎜ ⎟
⎛

⎝

⎞

⎠
⋅ <

⋅

−
⋅4

7
10 1

45 10
10

7
4 10

7
.5

30

70 7

Then, for every

⎜ ⎟
⎛

⎝

⎞

⎠
∈

⋅

− ⋅

⋅
−λ 21 10

10 4 10
, 7

60
10

30

70 7
5

and for every nonnegative continuous function � ��[ ] × →g : 1, 4 , there exists δ such that, for each
[ )∈μ δ0, , the problem (3.7) has at least three nonnegative solutions u1, u2, and u3 satisfying

� � �

∣ ( )∣ ∣ ( )∣ ∣ ( )∣
[ ] [ ] [ ]

< < <

∈ ∈ ∈

u n u n u nmax 10, max 10 , max 10 .
n n n1,4

1
1,4

2
100

1,4
3

200

Remark 3.4. If either ( ) ≠f n t, 0 for some �[ ]∈n N1, or ( ) ≠g n t, 0 for some �[ ]∈n N1, , or both hold true,
then the solutions from Theorem 3.1 are not trivial.

We now deduce the following consequence of Theorem 3.1.

Theorem 3.5. Assume there exist constants >θ θ, 01 4 , ≥η 1, and �[ ]∈n N1,0 with

{ ( ) }< +
+ /

− − −θ η N ηmin , 2 1p p p p
1

2

and

⎧

⎨
⎩

( )
⎫

⎬
⎭

> +

+

−

− +
− − −θ η m p

m p
N ηmax , 4 1p p p p

4
1

0

1

such that
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(A5) ( ) ≥f n t, 0 for each �( ) [ ] [ ]∈ × −n t N θ θ, 1, ,4 4 ,
(A6) the inequality

⎧

⎨
⎩

( ) ( ) ⎫

⎬
⎭

( )

( )

( )∑ ∑

<
+

+ +

⋅
= =

− −

+ − − +
− −

−

−

F n θ
θ

F n θ
θ

m p N
m p m p N

F n η
η

max
,

,
2 , 1

2 1
,n

N

p
n
N

p

p

p p
1 1

1

1 4

4

0
1

1 0
1

0

holds.

Then, for every

⎛

⎝

⎜⎜ ( )

( ) ⎧

⎨
⎩ ( ) ( )

⎫

⎬
⎭

⎞

⎠

⎟⎟

( )

∈

+
+

∑ ∑

+

+
+

− −

= =

− −
−

−
− −

λ η
m p

F n η
m p N θ

F n θ
θ
F n θ,

, 1
2

min
,

,
2 ,

p
m p N p p

n
N

p

n
N

1
2 1

0

0
1

1

1 1

4

1 4

p0 1

and for all

⎡

⎣

⎢
⎢
⎢

⎧

⎨

⎪

⎩
⎪

( ) ( )

⎧

⎨
⎩

( ) ( ) ( )

( ) ( ) ⎫

⎬
⎭

⎫

⎬

⎭

⎞

⎠

⎟
⎟

( )

( )∑

∑ ∑

∑

∈

− −

−

+ − + −

+ −

+

=

−

=

−

=

−

=

−

+

− −

+

− −

−

−

+

− −

μ
η λ F n η F n θ

G G

N θ λ F n θ

G

N θ λ F n

G

N θ λ F n θ

G

0, min
, ,

,

min
1 ,

,
1 2 ,

2
,

1 2 ,

2
,

m
p

p
n
N

η
θ

m
p

p p
n
N

θ

m
p

p p
n
N θ

m
p

p p
n
N

θ

2
0 1 1

1
1 1 1

1
4 1 2

1
4 1 4

p

θ
p

1

1

0

1

0 4

4
2

0

4

the problem (1.1) has at least three nonnegative solutions u1, u2, and u3 satisfying

� � �

∣ ( )∣ ∣ ( )∣ ∣ ( )∣
[ ] [ ] [ ]

< < <

∈ ∈ ∈

−u n θ u n θ u n θmax , max
2

, max .
n N n N n N1,

1 1
1,

2
4

1,
3 4p

Proof. Choose = −θ θ
2 2p

4 and =θ θ3 4. So from (A6), we obtain

( )

( )

( )

( )

( )

( )∑ ∑

∑

=

≤

<
+

+ +

⋅

=
=

=

− −

+ − − +

−

−

−

−

−

−

F n θ

θ

F n

θ

F n θ

θ
m p N

m p m p N
F n η

η

, 2 ,

2 ,

1
2 1

,

n
N

p
n
N θ

p

n
N

p

p

p p

1 2

2

1 2

4

1 4

4

0
1

1 0
1

0

p
4

(3.8)

and

( ) ( ) ( )

( )

( )∑

−

=

∑

<
+

+ +

⋅
= =

− −

+ − − +
− − −

−

−

F n θ
θ θ

F n θ
θ

m p N
m p m p N

F n η
η

, 2 , 1
2 1

, .n
N

p p
n
N

p

p

p p
1 3

3 2

1 4

4

0
1

1 0
1

0 (3.9)

From (A6) and taking into account <

+

−θ η1
p
p , we have

⎜ ⎟

( ) ⎛

⎝

( ) ( )
⎞

⎠

( )
( )

( )
( )

( )
( )

( ( ) )

( ( ) )
( )

( )

( ( ) )
( )

∑

∑

+
−

>
+

−
+

>
+

−
+

+ +

=
+

+ +

− −

+ +

=

− −

+ +

− −

+

=

− −

+ +

− −

+ + − − +

− −

+ − − +

−

− −

−

− −

−

−

−

m p N
m p η

F n η F n θ

m p N
m p η

F n η m p N
m p θ

F n θ

m p N
m p η

F n η m p N
m p m p m p N η

F n η

m p N
m p m p N η

F n η

1
2

, ,

1
2

, 1
2

,

1
2

, 1
2 2 1

,

1
2 1

, .

p

p
n

N

p

p

p

p
n

N

p

p

p

p p

p

p p

0
1

1
0

1
1

0
1

1
0

0
1

1 1 1
1

0
1

1
0

0
1 2

1 1 0
1 0

0
1

1 0
1 0
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Hence, from (3.8), (3.9), and (A6), the assumption (A6) of Theorem 3.1 is satisfied, and it follows the
conclusion. □

Here, we present a simple consequence of Theorem 3.5 in the case when f does not depend upon n.

Theorem 3.6. Assume that there exist constants >θ θ, 01 4 , and ≥η 1 with

{ ( ) }< +
+ /

− − −θ η N ηmin , 2 1p p p p
1

2

and

⎧

⎨
⎩

( )
⎫

⎬
⎭

> +

+

−

− +
− − −θ η m p

m p
N ηmax , 4 1p p p p

4
1

0

1

such that
(A7) ( ) ≥f t 0 for each [ ]∈ −t θ θ,4 4 ,
(A8) the inequality

⎧

⎨
⎩

( ) ( ) ⎫

⎬
⎭

( )

( )

( )
<

+

+ +

⋅

− −

+ − − +
− −

−

−

F θ
θ

F θ
θ

m p N
m p m p N

F η
η

max , 2 1
2 1p p

p

p p
1

1

4

4

0
1

1 0
1

holds.

Then, for every

⎜ ⎟

⎛

⎝
⎜

⎛

⎝

( ) ⎞

⎠ ( )

( ) ⎧
⎨
⎩ ( ) ( )

⎫
⎬
⎭

⎞

⎠
⎟∈

+
+

+
− −

+

+ − −
− −

− −

λ m p N m p η
F η

m p N θ
F θ

θ
F θ

1
2

, 1
2

min ,
2

p p p p p
0

1
1

0
1

4

1

4

4

and for all

⎡

⎣

⎢
⎢

⎧

⎨
⎩

( ( ) ( ))

⎧

⎨
⎩

( ) ( ) ( )

( ) ( ) ⎫

⎬
⎭

⎫

⎬
⎭

⎞

⎠

⎟
⎟

( )

∈

− −

−

+ − + −

+ −

+

−
−

−

−

+

− −

+

− −

−

−

+

− −

μ
η λ F η F θ

G G

N θ λF θ

G

N θ λF θ

G

N θ λF θ

G

0, min ,

min
1

,
1 2

2
,

1 2

2
,

m
p

p

η
θ

m
p

p p

θ

m
p

p p

θ

m
p

p p

θ

2
1

1
1 1

1
4

1
2 4

1
4 4

p

p

1

1

0

1

0

1
2

4

0

4

the problem (1.1) has at least three nonnegative solutions u1, u2, and u3 satisfying

� � �

∣ ( )∣ ∣ ( )∣ ∣ ( )∣
[ ] [ ] [ ]

< < <

∈ ∈ ∈

−u n θ u n θ u n θmax , max
2

, max .
n N n N n N1,

1 1
1,

2
4

1,
3 4p

Finally, we provide the following simple consequence of Theorem 3.5 when =μ 0.

Theorem 3.7. Let � ��[ ] × →f N: 1, be continuous with ( ) >tf n t, 0 for all ( ) ∈n t, ��[ ] ( { })× ⧹N1, 0 .
Assume that
(A9) we have

( )

∣ ∣

( )

∣ ∣
= =

→
−

→∞
−

− −

f n t
t

f n t
t

lim , lim , 0.
t p t p0 1 1
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Then, for every >λ λ̄, where

⎜ ⎟
⎛

⎝

( ) ⎞

⎠

⎧

⎨
⎩

( ) ( )

( )

( )

( )

( )

⎫

⎬
⎭

=
+

+

− −
− −

+

≥

+

< < − < < ≤−

+
− − −

λ m p N m p η
F n η

η
F n η

η
F n η

η
F n η

¯ 1
2

max inf
,

, inf
,

, inf
,

, inf
,

,
p

η

p

η

p

η

p

η

p
0

1
1

1 0 0 1 0 1 0 0 1 0

the problem (1.1), in the case =μ 0, possesses at least four distinct nontrivial solutions.

Proof. Put

�( )
⎧

⎨
⎩

( ) ( ) [ ] [ )
=

∈ × ∞f n t f n t n t N, , if , 1, 0, ,
0 otherwise1

and

�
( )

⎧

⎨
⎩

( ) ( ) [ ] [ )
=

− − ∈ × ∞f n t f n t n t N, , if , 1, 0, ,
0 otherwise,2

and define

��( ) ( ) ( ) [ ]∫= ∈ ×F n t f n ξ ξ n t N, , d for every , 1, .
t

1

0

Fix >λ λ̄, and let >η 1 be such that

⎜ ⎟
⎛

⎝

( ) ⎞

⎠ ( )
>

+
+

− −

+

+
−

λ m p N m p η
F n η

1
2 ,

.
p p

0
1

1
1 0

From

( )

∣ ∣

( )

∣ ∣
= =

→
−

→∞
−

− −

f n t
t

f n t
t

lim , lim , 0,
t p t p0

1
1

1
1

there is >θ 01 such that

{ ( ) }< +
+ /

− − −θ η N ηmin , 2 1p p p p
1

2

and

( ) ( )∑

<
+

=

− −

−

−F n θ
θ

m p N
λ

, 1
2

,n
N

p

p
1 1 1

1

0
1

and there is >θ 04 such that

⎧

⎨
⎩

( )
⎫

⎬
⎭

+ <

+

−

− +
− − −

η m p
m p

N η θmax , 4 1p p p p1

0

1
4

and

( ) ( )∑

<
+

=

− −

−

−F n θ
θ

m p N
λ

, 1
2

.n
N

p

p
1 1 4

4

0
1

Then the condition (A6) in Theorem 3.5 is satisfied, and

⎜⎜ ⎟
⎛

⎝

⎛

⎝

( ) ⎞

⎠ ( )

( ) ⎧

⎨
⎩ ( ) ( )

⎫

⎬
⎭

⎞

⎠
⎟

∈
+

+
+

∑ ∑

− −

+

+ − −

= =

− −
− −

λ m p N m p η
F n η

m p N θ
F n θ

θ
F n θ

1
2 ,

, 1
2

min
,

,
,

.
p p p p

n
N

p

n
N

0
1

1
1 0

0
1

1

1 1 1

4

1 1 4
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Hence, the problem (1.1), in the case =μ 0, admits two positive solutions u1 and u2, which are positive
solutions. Next, arguing in the same way, from

( )

∣ ∣

( )

∣ ∣
= =

→
−

→∞
−

− −

f n t
t

f n t
t

lim , lim , 0,
t p t p0

2
1

2
1

we ensure the existence of two positive solutions u3 and u4 for the problem (1.1), in the case =μ 0. Clearly,
−u3 and −u4 are negative solutions to the problem (1.1), in the case =μ 0, and the conclusion is
achieved. □

Remark 3.8. As is customary, difference schemes are used to approximate the solutions of differential
equations. The idea is to take N sufficiently large. But here, because of the term ( )+

−
−N 1 p1 , the intervals

that contain λ and μ then become smaller, obscuring the importance of our results. Example 3.3 for =N 4 is
an illustration of this fact.
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