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Optimal Tracking of Nonlinear Discrete-time Systems using Zero-Sum
Game Formulation and Hybrid Learning

Behzad Farzanegan1 and S. Jagannathan1

Abstract— This paper presents a novel hybrid learning-based
optimal tracking method to address zero-sum game problems
for partially uncertain nonlinear discrete-time systems. An
augmented system and its associated discounted cost function
are defined to address optimal tracking. Three multi-layer
neural networks (NNs) are utilized to approximate the optimal
control and the worst-case disturbance inputs, and the value
function. The critic weights are tuned using the hybrid technique,
whose weights are updated once at the sampling instants and
in an iterative manner over finite times within the sampling
instants. The proposed hybrid technique helps accelerate the
convergence of the approximated value functional to its actual
value, which makes the optimal policy attain quicker. A two-layer
NN-based actor generates the optimal control input, and its
weights are adjusted based on control input errors. Moreover, the
concurrent learning method is utilized to ease the requirement of
persistent excitation. Further, the Lyapunov method investigates
the stability of the closed-loop system. Finally, the proposed
method is evaluated on a two-link robot arm and demonstrates
promising results.

Index Terms— Discrete-time concurrent learning, experience
replay, zero-sum game formulation, optimal tracking control.

I. INTRODUCTION

Zero-sum games, which have drawn extensive attention
from researchers, appear widely in nonlinear discrete-time
(DT) systems. Generally, the primary aim is to design an
optimal feedback controller to minimize the user-defined
performance index comprising two penalties corresponding to
the system state and control signals while maximizing the
penalty related to disturbances. In practice, there are external
disturbances that weaken the closed-loop system performance.
The optimal adaptive control (OAC) as a zero-sum game (ZSG)
has been investigated to achieve the best control performance
in the presence of external disturbances [1].

The optimal control policies for nonlinear systems, which are
subject to disturbances, are obtained by solving the nonlinear
PDE referred to as Hamilton–Jacobi–Isaacs (HJI) equation.
Adaptive dynamic programming (ADP) is a robust forward-in-
time framework to solve the HJI equation approximately.

The optimal control schemes are also discussed in the
game theoretical framework [2]. In [3], reinforcement learning
(RL) has constructed an iterative method to find the optimal
control policies for a quadratic zero-sum game of unknown
nonaffine nonlinear systems. In [4], a neural network (NN)-
based online simultaneous update policy algorithm (SUPA)
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has been proposed to solve the HJI equation, and an integral
RL has been utilized to ease the need for internal dynamics.
Unlike SUPA, the authors [1] utilized policy iterations on two
players by the Gauss-Newton method to find optimal solution.

To deal with the DT zero-sum game, the authors in [5] have
proposed an event triggered control strategy using gradient
descent ADP. In [6], a heuristic ADP algorithm has been
proposed to handle the ZSG problem for nonlinear DT systems.
Three NNs were employed to address the HJB equation
associated with H∞ optimal regulation control problem. In
[7], two ADP approaches, comprised of an iterative offline
learning procedure and a modified gradient-descent-based
online method, have been presented for DT multi-player
games.

Like traditional adaptive control, a persistence of excitation
(PE) condition is needed to guarantee convergence and
boundedness of the value function NN weights [8]. In [9], [10],
[11], concurrent learning has been introduced and utilized to
eliminate the requirement for the PE condition by adopting
an easy-to-check and online condition. Instead of applying
external noise to fulfill the PE condition, both current and
past data saved in a replay buffer are used at the same time
[10], [11]. In [10], [11], a concurrent learning-based single-
layer NN optimal control has been employed for nonlinear
continuous-time systems. The authors in [9] have proposed an
optimal adaptive control method that incorporates concurrent
learning for discrete systems. However, they did not provide
evidence of its stability and convergence.

In contrast, this paper presents a novel optimal adaptive
tracking (OAT) scheme to solve the ZSG problems for partially
uncertain DT nonlinear systems using a two-layer NN-based
ADP framework and a hybrid-learning strategy. Two-layer
NN is an efficient function approximator and does not require
explicit selection of basis functions. In contrast, the analysis
and closed-loop stability are involved, and this aspect is
addressed in this effort. First, the original system and its cost
function are augmented with the desired trajectory to address
optimal tracking via ZSG formulation.

Next, three two-layer NNs are employed to evaluate the
value functional, the optimal control input, and the worst-case
disturbance. The temporal difference error (TDE) is defined
based on the actual and approximated value functional by
using two-layer NN in comparison with single-layer NN in
the literature. The weights of the critic are adjusted using the
hybrid technique through instantaneous TDE. This involves
tuning the weights at the sampling instants once, and then
adjusting them a finite number of times within the sampling
instants. The suggested hybrid tuning method aids in speeding
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up the convergence of the estimated value function toward
its optimal value. Moreover, the concurrent learning term
is included to ease the requirement of the PE condition.
Lastly, we demonstrate that the errors in tracking and weight
estimation of the multi-layer NNs (MNN) used for the critic
and actor are proven to be uniformly ultimately bounded
(UUB) through the use of Lyapunov’s direct method.

In short, this article’s contributions are as follows:
• To address the HJI equation in the context of tracking, a

combination of traditional adaptive control and iterative
technique is employed, known as hybrid learning. This
approach differs from relying solely on policy iteration
techniques, as seen in [1].

• Using the concurrent learning terms relaxes persistent
excitation in the critic MNN weight update laws in
contrast to [10], [11]

• Unlike [9], the actor-critic framework that employs both
hybrid and concurrent learning for multi-layer NNs is
shown to have overall closed-loop stability.

II. PROBLEM FORMULATION

Consider a nonlinear DT system given in the affine form as

ξk+1 = f(ξk) + g(ξk)uk + d(ξk)wk, (1)

where ξk ∈ Rn represents the system state, uk ∈ Rm is the
control input, and wk ∈ Rq denotes the external disturbance,
which satisfies wk ∈ L2. The smooth functions f(.) ∈
Rn represents unknown internal dynamics, g(.) ∈ Rn×m

denotes a bounded known input coefficient matrix satisfying
||g(ξk)||F < gM on a compact set, and d(.) ∈ Rn×q is a
bounded disturbance function satisfying ||d(ξk)||F < dM .

The reference trajectory can be generated by

rk+1 = h(rk), (2)

where rk ∈ Rn presents the reference trajectory that is
bounded and h(rk) is a C∞ function such that h(0) = 0. Let
the tracking error define as

ek = ξk − rk . (3)

Next, combine (1), (2), and (3) to get

ek+1 = f(ek + rk) + g(ek + rk)uk

+ d(ek + rk)wk − h(rk).
(4)

Now, by augmenting (4) and (2), the augmented system
dynamics are derived as

ξak+1 =

[
f(ek + rk)− h(rk)

h(rk)

]
+

[
g(ek + rk)

0

]
uk +

[
d(ek + rk)

0

]
wk,

(5)

where ξak = [e⊤k , r
⊤
k ]

⊤ ∈ R2n. For simplicity, the augmented
system in (5) can be represented as ξak+1 = F (ξak)+G(ξak)uk+

D(ξak)wk with F (ξak) =

[
f(ek + rk)− h(rk)

h(rk)

]
, G(ξak) =[

g(ek + rk)
0

]
and D(ξak) =

[
d(ek + rk)

0

]
. It is assumed

the state and desired trajectory vectors are measurable, and a
control input exists for (5) that is admissible. Therefore, the
primary aim of this paper is to find an optimal control policy
uk minimizing the infinite horizon discounted cost function
defined as

J(ξak) =

∞∑
j=k

γj−k
d r(ξaj , uj , wj), (6)

where r(ξak , uk, wk) = ξa⊤k Qξak + u⊤
k Ruk − γ2w⊤

k Pwk is
the cost-to-go function. The design matrices Q ∈ Rn×n,
R ∈ Rm×m, and P ∈ Rq×q are positive definite, 0 < γd < 1
is a discount factor, and γ is the disturbance attenuation factor.
By applying the ADP framework, the recursive Bellman
equation is achieved as

J(ξak) = r(ξak , uk, wk) + γdJ(ξ
a
k+1), (7)

By invoking the system dynamics (5), we have

J(ξak) = r(ξak , uk, wk)

+ γdJ
(
F (ξak) +G(ξak)uk

+D(ξak)wk

)
.

(8)

Not only does the control input stabilize the nonlinear system
(1), but the cost function (6) must also be finite. Therefore,
we define admissible control next.

Definition 1: A feedback control strategy u(ξk) is referred
to as admissible for system (1) with respect to (6) on a compact
set Ω ⊂ Rn if a) u(0) = 0; b) uk stabilizes system (1); c)
u(ξk) makes the performance (6) finite, i.e., J(x(0), u(ξk)) <
∞ .

In this paper, the control problem is a zero-sum or two-player
min-max game where two strategies, i.e., w⋆(ξak) and u⋆(ξak)
are the worst case disturbance and the optimal control input
of the cost function (6), respectively. By utilizing Bellman’s
principle of optimality, the optimal value function can be
derived as

J⋆(ξak) = min
u

max
w

( ∞∑
j=k

γj−k
d r(ξaj , uj , wj)

)
= max

w
min
u

( ∞∑
j=k

γj−k
d r(ξaj , uj , wj)

)
= ξa⊤k Qξak + u⋆(ξak)

⊤Ru⋆(ξak)

− γ2w⋆⊤Pw⋆ + γdJ
⋆
(
F (ξak)

+G(ξak)uk +D(ξak)wk

)
.

(9)

The Hamiltonian function is obtained as

H(ξa, J, u, w) = γdJ
(
F (ξak) +G(ξak)uk

+D(ξak)wk

)
− J(ξak) + ξa⊤k Qξak

+ u⊤
k Ruk − γ2w⊤

k Pwk.

(10)

The HJI equation is derived as

min
uk

max
wk

H(ξa, J, u, w) = 0. (11)

Assume that there exists a unique saddle point for (11) with
J(ξa(∞)) = 0. Hence, by applying the stationarity conditions
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∂H(ξa, J, u, w)/∂u(ξ
a
k) = 0 and ∂H(ξa, J, u, w)/∂w(ξ

a
k) =

0, we can obtain the Nash equilibrium solution given the
input matrix as

u⋆(ξak) = −γd
2
R−1G⊤(ξak)

∂J⋆(ξak+1)

∂ξak+1

(12)

w⋆(ξak) =
γd
2γ2

P−1D⊤(ξak)
∂J⋆(ξak+1)

∂ξak+1

(13)

Based on the results, the following fact can be presented.
Fact 1: Applying the optimal control and the worst

case disturbance inputs to the augmented system in
(5) results in a bounded closed-loop system such that
∥F (ξak) +G(ξak)u

⋆(ξak) +D(ξak)w
⋆(ξak)∥ ⩽ k⋆ given a con-

stant k⋆.
Since the optimal control policy ensures the stability of
closed-loop for the nonlinear system in the presence of
disturbance, and the internal dynamics, input coefficient
matrix, and disturbance function are the Lipschitz functions,
the aforementioned fact is reasonable [12]. Fact 1 will be
utilized to demonstrate the boundedness of the closed-loop
system.

Remark 1: Note that to achieve the optimal control policy
u⋆ and the worst case disturbance w⋆, we need the future
state variables ξak+1, which is unavailable. In the following
section, we address this issue by using NNs.

III. HYBRID OPTIMAL TRACKING CONTROL

In this section, the hybrid optimal control is derived for
the ZSG problem of the nonlinear DT system in (1). First,
a two-layer critic NN is constructed to evaluate the value
functional and another two-layer actor NN to approximate the
optimal control strategy. A new weight-tuning law combining
hybrid learning and concurrent learning is presented for the
critic NN. A third NN is utilized to estimate the worst-case
disturbance. Moreover, the closed-loop system stability and
the value function boundedness will be guaranteed using the
hybrid learning scheme embedded with a finite iteration.

The value function in (6) can be approximated as

J(ξak) = w⊤
c σc(v

⊤
c σ(ξ

a
k)) + εjk (14)

where σc ∈ RNc is the vector of the hidden layer activation
function, vc is the hidden layer, wc is the output layer, and
εjk denotes the critic NN error. Moreover, the optimal control
policy in (12) and worst case wk in (13) are approximated by

u(ξak) = w⊤
a σa(v

⊤
a σ(ξ

a
k)) + εuk, (15)

w(ξak) = w⊤
wσw(v

⊤
wσ(ξ

a
k)) + εwk, (16)

where σa ∈ RNa and σw ∈ RNw are the vector of the hidden
layer activation functions, va and vw are the hidden layers,
wa and ww are the weights of the critic output layer, and εuk
and εwk are the approximation errors. The following mild
assumption is needed.

Assumption 1: The neural network weights and the ap-
proximation errors and their gradients are bounded over a
compact set [12], i.e., ∥wc∥ ⩽ wcM , ∥vc∥ ⩽ vcM , ∥wa∥ ⩽

waM , ∥va∥ ⩽ vaM , ∥ww∥ ⩽ wwM , ∥vw∥ ⩽ vwM , ∥εjk∥ ⩽
εjM , ∥εuk∥ ⩽ εuM , ∥εwk∥ ⩽ εwM , ∥∇εjk∥F ⩽ ε

′

jM ,
∥∇εuk∥F ⩽ ε

′

uM , and ∥∇εwk∥F ⩽ ε
′

wM .

A. Concurrent Hybrid Learning

The estimated value functional, Ĵk(ξak) is given by

Ĵk(ξ
a
k) = ŵ⊤

c σc(v̂
⊤
c σ(ξ

a
k)) (17)

where v̂⊤c and ŵ⊤
c present the estimated hidden and output

layer critic weights. Substituting the estimated value functional
(17) into (7) results in TDE given by

Ek = r(ξak−1, u(ξ
a
k−1), w(ξ

a
k−1))

+ ŵ⊤
c ∆σc(ξ

a
k−1),

(18)

where Ek ∈ R is the TDE, and ∆σc(ξ
a
k−1) =

γdσc(v̂
⊤
c σ(ξ

a
k)) − σc(v̂

⊤
c σ(ξ

a
k−1)). Not only does the TDE

in (18) relies on the tracking error, but also it depends on the
desired trajectory unlike in the regulation problem.

Employing (14) in (7) renders
r(ξak−1, u(ξ

a
k−1), w(ξ

a
k−1)) = w⊤

c σc(v
⊤
c ξ

a
k−1) −

γdw
⊤
c σc(v

⊤
c ξ

a
k) − ∆εjk where ∆εjk = γdεjk − εjk−1.

Substituting r(ξak−1, u(ξ
a
k−1), w(ξ

a
k−1)) into (18) yields

Ek =w⊤
c σc(v

⊤
c σ(ξ

a
k−1))

− γdw
⊤
c σc(v

⊤
c σ(ξ

a
k))−∆εjk

+ γdŵ
⊤
c σc(v̂

⊤
c σ(ξ

a
k))

− ŵ⊤
c σc(v̂

⊤
c σ(ξ

a
k−1)).

(19)

Add and subtract γdw⊤
c σc(v̂

⊤
c σ(ξ

a
k)) and w⊤

c σc(v̂
⊤
c σ(ξ

a
k−1))

to (19) to get

Ek =− w̃⊤
c ∆σc(ξ

a
k−1)

+ w⊤
c

[
γdσ̃ck + σ̃c(k−1)

]
−∆εjk,

(20)

where w̃c = wc − ŵc is the weight estimation error of the
critic output layer and σ̃ck = σc(v̂

⊤
ckξ

a
k)−σc(v

⊤
c ξ

a
k). Eq. (20)

can be expressed as

Ek = −w̃⊤
c ∆σc(ξ

a
k−1) + εB , (21)

where εB = w⊤
c Πk −∆εjk with Πk = σ̃c + σ̃c(k−1). Due to

the fact that ∆σ̂c(ξ
a
k−1) ⩽ σM , ∥∆εjk∥ ⩽ εJM , wc ⩽ wcM ,

and ∥Πk∥ ⩽ ΠM , the approximation error is bounded on the
compact set, i.e., ∥εB∥ < εBmax.

Since a PE condition guarantees the critic NN weight
boundedness, the current transition samples are saved in a
stack. We employ them to the critic neural network update
law as a concurrent learning term [10]. The proposed update
law minimizes the summation of the TDE at k and the TDE
corresponding with the recorded time kj in the experience
replay buffer.

To store samples in the experience buffer in real-time, the
values of σ̂c and r(ξak , uk, wk) are evaluated at the recorded
time kj as σ̂c(kj) and r(ξakj

, ukj , wkj ). Thus, we define

∆σcj = γdσckj
− σc(kj−1) (22)

rj = r(ξakj
, ukj

, wkj
). (23)
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Then, the TDE error associated with the recorded time kj is
defined as

Ekj
= rj + ŵ⊤

c ∆σcj (24)

Based on the gradient-descent method, the tuning law for the
critic two-layer NN weights is proposed as

ŵc(k+1) = ŵc

− αJ∆σc(v̂
⊤
c σ(ξ

a
k))Ek

∆σ⊤
C (v̂⊤c σ(ξ

a
k))∆σc(v̂⊤c σ(ξ

a
k)) + 1

− αJ

l∑
j=1

∆σcj

∆σ⊤
cj∆σcj + 1

E(kj),

v̂c(k+1) = v̂c − σ(ξak)(v̂
⊤
c ξ

a
k

+B1kvEk)
⊤ −

l∑
j=1

σ(ξakj
)(B1kv∆σcjEkj )

⊤

(25)

where B1 and kv are constant matrices with proper dimensions,
and ηJ is a fixed rate of learning. The subscript j represents
the j − th instance in the history stack of stored sample
data. l is the number of the stored samples. Verifying the
PE condition becomes checking the following condition in
concurrent learning.

Condition 1: The experience buffer is defined as

Z = [∆σ̄1, . . . ,∆σ̄l] (26)

where ∆σ̄j = ∆σcj/(∆σ⊤
cj∆σcj + 1). Thus, the number of

linearly independent recorded data in Z is equal to the number
of critic NN neurons, i,e., rank(Z) = Nc. The number of
samples in the experience replay buffer is a fixed value
l > Nc.

Next, an innovative method for adjusting the weights of
sample intervals, i.e., [k, k + 1) is provided as

ŵi+1
c(k+1) = ŵi

c

− αJ∆σc(v̂
i⊤
c σ(ξak))Ek

∆σ⊤
C (v̂i⊤c σ(ξak))∆σc(v̂i⊤c σ(ξak)) + 1

− αJ

l∑
j=1

∆σcj

∆σ⊤
cj∆σcj + 1

Ekj
,

v̂i+1
c(k+1) = v̂ic

− σ(ξak)
(
v̂i⊤c σ(ξak) +B1kvEk

)⊤
−

l∑
j=1

σ(ξakj
)(B1kvEkj )

⊤ i = 1, . . . ,L,

(27)

where i is the finite iteration number, and L is the total
number of iterations during sampling intervals.

Remark 2: The hybrid learning technique enhances the
convergence rate of the learning scheme. The estimated control
policy reaches optimal value quickly when the value function
converges faster.

Now, by invoking (12), (13) and (17), the estimated control
input and the estimated worst case disturbance are obtained as

ûk = −γd
2
R−1G⊤ ∂σc

(
v̂⊤c σ(ξ

a
k+1)

)⊤
∂ξak+1

ŵc , (28)

ŵk =
γd
2γ2

P−1D⊤ ∂σc

(
v̂⊤c σ(ξ

a
k+1)

)⊤
∂ξak+1

ŵc. (29)

In the next subsection, the actor NN weight tuning law
is investigated, and then, the boundedness of the overall
closed-loop system is guaranteed through Lyapunov analysis.

B. Approximate Optimal Control Policy and Disturbance

To estimate the optimal control input and the worst
disturbance obtained in (12) and (13), two feedforward NNs
of two-layer each are utilized for the actor networks as

û(ξak) = ŵ⊤
a σa(v̂

⊤
a σ(ξ

a
k)) (30)

ŵ(ξak) = ŵ⊤
wσw(v̂

⊤
wσ(ξ

a
k)) (31)

where ŵa, ŵw, v̂a, and v̂w are the weights and σa, σw and
σ are the activation functions of the actor NNs. By invoking
(30) and (28), the control input error is expressed as

ũk = ŵ⊤
a σa

(
v̂⊤a σ(ξ

a
k)
)

+
γd
2
R−1G (ξak)

⊤ ∂σc

(
v̂⊤c σ(ξ

a
k+1)

)⊤
∂ξak+1

ŵc.
(32)

Similarly, the worst case error can be written as

w̃ = ŵ⊤
wσw(v̂

⊤
wσ(ξ

a
k))

− γd
2γ2

P−1D⊤(ξak)
∂σc

(
v̂⊤c σ(ξ

a
k+1)

)⊤
∂ξak+1

ŵc.
(33)

Substituting (14) and (15) into (12) gives

w⊤
a σa

(
v⊤a σ(ξ

a
k)
)
+ εuk =

− γd
2
R−1G (ξak)

⊤ ∂σc

(
v⊤c σ(ξ

a
k+1)

)⊤
∂ξak+1

wc

− γd
2
R−1G (ξak)

⊤ ∂εjk+1

∂ξak+1

.

(34)

Employing (34) in (32) renders

ũk = ŵ⊤
a σa

(
v̂⊤a σ(ξ

a
k)
)

+
γd
2
R−1G⊤ (ξak)

∂σc

(
v̂⊤c σ(ξ

a
k+1)

)⊤
∂ξak+1

ŵc

− w⊤
a σa

(
v⊤a σ(ξ

a
k)
)
+ εuk

− γd
2
R−1G⊤ (ξak)

∂σc

(
v⊤c σ(ξ

a
k+1)

)⊤
∂ξak+1

wc

− γd
2
R−1G⊤ (ξak)

∂εjk+1

∂ξak+1

.

(35)

2718

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on August 29,2023 at 13:16:01 UTC from IEEE Xplore.  Restrictions apply. 



Adding and subtracting w⊤
a σa

(
v̂⊤a σ(ξ

a
k)
)

and
γd

2 R−1G⊤ (ξak)
∂σc(v̂⊤

c σ(ξak+1))
⊤

∂ξak+1
wc in (35) and after

performing some manipulations, we have

ũk = −w̃⊤
a σa − w⊤

a σ̃a

− γd
2
R−1G⊤ (ξak)

∂σc

(
v̂⊤c ξ

a
k+1

)⊤
∂ξak

w̃c

− γd
2
R−1G⊤ (ξak)

∂σ̃c(k + 1)

∂ξak+1

wc − ε̃uk,

(36)

where σ̃a = σa

(
v⊤a σ(ξ

a
k)
)

− σa

(
v̂⊤a σ(ξ

a
k)
)
, σa =

σa

(
v̂⊤a σ(ξ

a
k)
)

and γd

2 R−1G⊤ (ξak)
∂εjk+1

∂ξak+1
. The actor weight

estimation error is w̃a = wa− ŵa. Since ũ(ξak) is measurable,
the actor weight updating rules are achieved as

ŵa(k+1) = ŵa

−
αuσa

(
v̂⊤a σ(ξ

a
k)
)
ũ⊤

(σa
⊤ (v̂⊤a σ(ξ

a
k))σa (v̂⊤a σ(ξ

a
k)) + 1)

v̂a(k+1) = v̂a

+ σ(ξak)
(
v̂⊤a σ(ξ

a
k) +B2kvũk

)⊤
,

(37)

where 0 < ηu < 1, B2, and kv are a positive learning rate
parameter and matrices of suitable dimensions, respectively.
By using (37), the actor weight estimation error dynamics
can be rewritten as

w̃a(k+1) = w̃a

−
αuσa

(
v̂⊤a σ(ξ

a
k)
)
ũ⊤

(σa
⊤ (v̂⊤a σ(ξ

a
k))σa (v̂⊤a σ(ξ

a
k)) + 1)

,

ṽa(k+1) = ṽa

+ σ(ξak)
(
v̂⊤a σ(ξ

a
k) +B2kvũk

)⊤
.

(38)

Similar to the actor update laws, the weight tuning laws
associated with the worst case disturbance are selected as

ŵw(k+1) = ŵw

−
αwσw

(
v̂⊤wσ(ξ

a
k)
)
w̃⊤

(σw
⊤ (v̂⊤wσ(ξ

a
k))σw (v̂⊤wσ(ξ

a
k)) + 1)

v̂w(k+1) = v̂w

+ σ(ξak)
(
v̂⊤wkσ(ξ

a
k) +B3kv3w̃k

)⊤
,

(39)

where 0 < ηw < 1, B3, and kv3 are a positive learning rate
parameter and matrices of suitable dimensions, respectively.
By using (39), the actor NN weight estimation error dynamics
associated with the worst case disturbance can be rewritten as

w̃w(k + 1) = w̃w

−
αwσw

(
v̂⊤wσ(ξ

a
k)
)
w̃⊤

(σw
⊤ (v̂⊤wσ(ξ

a
k))σw (v̂⊤wσ(ξ

a
k)) + 1)

,

ṽw(k + 1) = ṽw

+ σ(ξak)
(
v̂⊤wσ(ξ

a
k) +B3kv3ũk

)⊤
.

(40)

Note unlike the critic NN, the actor NN weights are only
tuned once at sampling instants. Next, the following theorem
shows the boundedness of the overall closed-loop system.

Theorem 1: Consider the augmented system in (5) under
Assumption 1 with Condition 1. Let the critic NN weights

update law be adjusted by (25), and the actor neural network
weights tuned by (37) and (39). Then, there exist ηu > 0,
ηw > 0 and ηJ > 0 such that the augmented state ξak , the
tracking error ek, the hidden and output weight estimation
error of critic NNs w̃c and ṽc and the weight estimation errors
of the actor ṽa, w̃a, ṽw, and w̃w, are all UUB.

Proof: Due to space constraints, the proof is omitted.

IV. SIMULATION RESULTS

In this section, a two-link robot is employed to show the
effectiveness of the proposed approach. We consider a two-link
robot manipulator defined by

X1((k + 1)T ) = X1(kT ) + TX2(kT )

X2((k + 1)T ) = X2(kT ) + T (F (X1, X2) +M(X1)
−1U),

(41)

where X1 = [x1, x2]
T denotes the joint position, X2 =

[x3, x4]
T presents the joint velocities and U = [u1, u2]

T

are the torque inputs for the joints. The time step is T =
0.01s. The nonlinear function is expressed as F (X1, X2) =
−[M(X1)]

−1N(X1, X2) with

M(X1(kT )) =

[
3 + 2cos(x2(kT )) 1 + cos(x2(kT ))
1 + cos(x2(kT )) 1

]
(42)

N(X1(kT ), X2(kT )) =[
−(2x3x4 + x2

4)sin(x2) + 19.6cos(x1) + 9.8cos(x1 + x2)
x2
1sin(x2) + 9.8cos(x1 + x2)

]
(43)

The disturbance gain is taken as d(ξk) =
[
0 1 0 1

]⊤
,

and the disturbance w = 1
20e

−kT is applied to the robot at
k = 200. We define the reference trajectory as

rk = exp(−0.25k)


sin(k)
cos(k)

cos(k)− 1

4
sin(k)

−sin(k)− 1

4
cos(k)

 . (44)

The augmented quadratic function value is selected
as r(ξak , uk, wk) = ξa⊤k Qξak + u⊤

k Ruk − γ2w⊤
k Pwk with

Q̄ =
[
Q 02×2; 02×2 02×2

]
, with the selected value

of Q = I4, R = 0.01I2, P = I2, and γ = 100 . The
initial values for the state set as x0 =

[
0 1 1 0

]T
,

and the initial admissible control input is set to u0 =

−
[

100 0 20 0
0 100 0 20

]
e0.

To verify the effectiveness of the concurrent hybrid learning
technique, we select a 2-layer NN with 36, 11, and 1 neurons in
the input, hidden and output layers for the critic neural network,
respectively. The hidden and output layers are selected tangent
hyperbolic and polynomial activation functions, respectively.
The hybrid factor is set as L = 10. The design parameters
are taken as γd = 0.5, ηu = 0.02, and ηJ = 0.01. The value
of Bi is chosen as constant vector of 0.01 with Bci ∈ R36

for critic NN with 36 hidden layer neurons and Bai ∈ R20

for actor NN with 20 hidden layer neurons. The critic and
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Fig. 1: The system state and reference trajectory, when the
concurrent hybrid learning update law (25) is utilized.

0 1 2 3

103

-2

-1

0

1

0 1 2 3

103

-10

-5

0

Fig. 2: Performance of the concurrent hybrid learning approach.

actor NN weight initialization is chosen randomly selected in
the interval [0, 1] and [−0.1, 0.1], respectively.

In Fig. 1, the state and reference trajectories are depicted.
The tracking errors also are demonstrated in Fig. 2, which
shows the convergence of the tracking error. Indeed, the
proposed method helps generate optimal control input and
enables faster convergence of tracking error near zero and
neural network weights without the PE signal. In Fig.3, the
estimated control actions are depicted. It is worth noting
that the hybrid control policy implemented in the critic NN
does not necessitate the PE condition, while external noise is
applied to the actor. It is also noticed that the TDE and control
policy errors converge close to zero when the tracking error
approaches near zero. In Fig. 4, the simulation results are
shown for two distinct scenarios where in the first scenario,
the concurrent hybrid learning term in (25) and (27) is not
taken into account. In contrast, the second scenario considers
the results with the concurrent hybrid term. In Fig. 4, the
norm of the critic neural network weights is illustrated.

V. CONCLUSION

This paper presented a concurrent learning-based optimal
tracking control to solve the ZSG for partially uncertain
nonlinear DT systems. Using three two-layer NNs, the optimal
control policy, the worst-case disturbance, and the value
function were directly obtained. The novel hybrid technique
to update the critic weights at the sampling instants as well
as within the sampling instants in a finite iterative fashion
appears to enhance the controller performance. As can be seen,
the proposed hybrid tuning approach promoted accelerating
convergence. Moreover, the concurrent learning method was
devised to relax the need for the PE condition. Furthermore,
based on the Lyapunov stability theorem, the tracking and
weight estimation errors of all NNs are UUB. Finally, the
simulation outcomes have confirmed the validity of the
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Fig. 3: Estimated control input without (without CHL) and
with concurrent learning term (with CHL).
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Fig. 4: Total cost and the norm of the critic NN weight
comparison without and with concurrent learning term.

proposed concurrent hybrid learning-based optimal tracking
control for the ZSG problems of nonlinear DT systems.
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