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Abstract

INTRODUCTION: Vascular damage in Alzheimer’s disease (AD) has shown conflict-

ing findings particularly when analyzing longitudinal data. We introduce white matter

hyperintensity (WMH) longitudinal morphometric analysis (WLMA) that quantifies

WMHexpansion as the distance from lesion voxels to a region of interest boundary.

METHODS: WMH segmentation maps were derived from 270 longitudinal fluid-

attenuated inversion recovery (FLAIR) ADNI images. WLMA was performed on five

data-driven WMH patterns with distinct spatial distributions. Amyloid accumulation

was evaluated withWMHexpansion across the fiveWMHpatterns.

RESULTS: The preclinical group had significantly greater expansion in the posterior

ventricular WM compared to controls. Amyloid significantly associated with frontal

WMH expansion primarily within AD individuals. WLMA outperformedWMH volume

changes for classifying AD from controls primarily in periventricular and posterior

WMH.

DISCUSSION: These data support the concept that localizedWMH expansion contin-

ues to proliferate with amyloid accumulation throughout the entirety of the disease in

distinct spatial locations.

Alzheimer’s Dement. 2023;1–10. © 2023 the Alzheimer’s Association. 1wileyonlinelibrary.com/journal/alz
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1 BACKGROUND

The etiology of Alzheimer’s disease (AD) has been described as the

accumulation of beta-amyloid (Aβ), phosphorylated tau, and neurode-

generation leading to cognitive impairment.1 Classically referred to as

the ATN hypothesis, this evolving concept has expanded to infer vas-

cular changes, but its role remains undefined in the pathophysiology of

AD.2 Pathological evidence suggests that amajority of individuals with

AD havemixed pathologywith concurrent vascular changes present. A

commonly usedmethod formeasuring the severity of vascular changes

is by quantifying regions of high intensity on fluid attenuated inver-

sion recovery (FLAIR) images called white matter hyperintensities

(WMH).3 Vascular changes are inherently a risk factor for the develop-

ment of not only AD but other neurodegenerative diseases. However,

it remains unclear whether AD pathology includes vascular damage,

or whether AD pathology and vascular damage are co-pathologies

contributing to the AD process.4

Inobservational studies, increases inWMHareassociatedwithboth

cumulative and longitudinal Aβ burden, even in healthy controls.5 In

contrast, WMH presence is less associated with cerebrospinal fluid

t-tauorp-tau. In theATNframework, amyloid accumulationoccurs ear-

lier in the disease suggesting thatWMH changesmight occur earlier in

the AD process.6 A known genetic risk factor for AD, the apolipopro-

tein (APOE) ε4 allele, is often associated with both elevated WMH

presence and increased levels of Aβ supporting a related mechanism.7

Prior works have shown that the presence of at least one APOE ε4
allele can promote cerebrovascular injury and is associated with ear-

lier cognitive loss.8,9 While the role of WMH in AD remains unclear,

the aforementioned studies implicateWMH occurrence as potentially

related to biomarkers and the severity of risk for AD.10–12

Growing evidence in neurodegenerative diseases has shown that

WMH are heterogeneous and that the spatial location of WMH is

more important than the cumulative WMH global burden for deter-

mining disease severity.13,14 Global WMH summary metrics ignore

specific regional effects and may undermine the sensitivity for detect-

ing AD-specific WMH patterns. Prior strategies have focused on

anatomical boundaries to evaluate regional specificity rather than spa-

tially defined regions of interest (ROIs) based on WMH relationships

with pathological markers.12,15 A growing trend is to identify data-

drivenWMHspatial patterns in both healthy16 and neurodegenerative

populations.17 Evaluating WMH patterns in AD has shown that cer-

tain patterns are distinct for vascular and amyloid risk factors.17 WMH

within the posterior whitematter regions are uniquely associatedwith

AD biomarkers implying the importance of analyzing location-specific

WMH burden cross-sectionally. This demonstrates location-specific

WMH that are associated with unique pathologies including AD and

AD-related disorders. However, these findings are based on cross-

sectional findings and it remains unclear whether these patterns

persist for longitudinal analyses across AD severity.

Measurement of WMH volume has been the standard approach to

quantifying lesion burden, but shape irregularity creates challenges for

volume-based comparisons of location-specificWMHvolume changes,

particularly for longitudinal data. However, the evaluation of WMH

shape changes that quantify changes of the lesion boundary across

time are not restricted by these limitations. We propose a novel

approach—white matter hyperintensity longitudinal morphometric

analysis (WLMA)—for quantifying longitudinal WMH expansion to

identify AD-specific longitudinal WMH change. Within each of the

previously identified etiology-specificWM regions (juxtacortical, deep

frontal, periventricular, parietal, and posterior),17 we evaluatedWMH

change using WLMA compared to traditional volume for cognitively

normal, preclinical, and symptomatic AD individuals. We further eval-

uated the contribution of APOE ε4 and amyloid on observed WMH

change.

2 METHODS

2.1 Participants

Data utilized in this study were obtained from the Alzheimer’s Dis-

easeNeuroimaging Initiative (ADNI) database (www.adni.loni.usc.edu),

a private-public partnership established in 2003, led by the prin-

cipal investigator Michael W. Weiner, MD. ADNI is a longitudinal

multi-center study designed to develop clinical, imaging, genetic, and

biochemical biomarkers for detection and prognosis of AD. Appropri-

ate Institutional Review Board approvals occurred at each ADNI site

and informed consent in accordance with the Declaration of Helsinki

was obtained from each participant or authorized representative. All

ADNI participants were between 55 and 90 years old, had at least 6

years of education, and were free of any significant neurological dis-

ease or systemic illness. We included only participants with baseline

and follow-up 3.0-Tesla 2D FLAIR images obtained at least 2 years

apart from the ADNI-GO and ADNI 2 studies in the present analyses

(n= 368).

2.2 Clinical Dementia Rating (CDR)

Experienced clinicians conducted semi-structured interviews with

each participant and a knowledgeable collateral source. The Clinical

Dementia Rating (CDR) scale was used to evaluate a participant’s

degree of impairment. A score of CDR 0 indicates that the individual

is cognitively normal, CDR 0.5 corresponds to very mild dementia,
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STRAIN ET AL. 3

and CDR ≥ 1 specifies mild-to-moderate dementia. Participants

with a score of CDR > 0 had a clinical diagnosis of dementia due

to AD. Individuals were considered symptomatic if they had a CDR

score> 0.

2.3 APOE Status

APOE genotyping for all participants was extracted from the ADNI

database as previously described.18 For APOE analyses, individuals

were grouped according to the number of ε4 alleles (none, one, or two).

2.4 Positron emission tomography (PET)
processing

Florbetapir positron emission tomography (PET) scan date was

matched to the closest baselinemagnetic resonance (MR) imaging date

for each participant, and the summary values were extracted from

the ADNI database derived from a post-reconstruction processed for-

mat. Processing steps included co-registration and averaging of the

individual PET frames and orientation to the anterior commissure-

posterior commissure-PC line. Full details of the processing steps

can be found online (https://adni.loni.usc.edu/methods/pet-analysis-

method/pet-analysis/#pet-pre-processing-container). For this study,

we used the global cortical standardized uptake value ratios (SUVRs)

with the cerebellum serving as a reference region (https://adni.loni.

usc.edu/methods/pet-analysis). Global amyloid-positivity was defined

and downloaded from the ADNI database using the cutoff value

SUVR> 1.19,20

2.5 White matter hyperintensity regional volume

All detailed acquisition steps for the FLAIR and MR images are avail-

able at the ADNI website (https://adni.loni.usc.edu/methods/). FLAIR

images were brain extracted, bias field corrected, and were subse-

quently normalized using amodified Z-score transformationwith 2*SD

for intensity standardization across all participant images. Further pre-

processing details and methodologies regarding the automatedWMH

segmentation pipeline have been previously described.17 Following

WMHsegmentation, each individual’s T1-weightedmapwaswarped to

the corresponding FLAIR timepoint. A mid-space was then made with

halfwaywarps created fromavariation of siena_flirt in theOxfordCen-

tre for Functional Magnetic Resonance Imaging of the Brain (FMRIB)’s

Software Library (FSL) using the linear warp matrix and inverse warp

matrix between the two FLAIR timepoints. After aligning the T1-

weighted timepoints together in a halfway space we averaged the

two T1-weighted timepoints together and then proceeded to cre-

ate the registration matrix to the International Consortium of Brain

Mapping (ICBM) template space. This was performed with both lin-

ear and nonlinear registration tools from FSL.21,22 The corresponding

halfway space and template warp matrices generated from the aver-

RESEARCH INCONTEXT

1. Systematic review: The following keywordswere used to

determine the bulk of the background literature: “WMH”,

“longitudinal”, “AD”, “aging”, “ADNI”, “amyloid”, and “tau”.

The lead author JS perused all literature prior to citation.

2. Interpretation: We describe a new technique for evalu-

ating longitudinal WMH data and present new findings

pertaining toWMHgrowth in an AD cohort.

3. Future directions: Replication studies with the shape

analyses proposed in this study are needed for vali-

dation. Additionally, further research with longitudinal

biomarkers for amyloid and tau would better address

the underlying correlates of AD-specific WMH shape

changes over time.

age T1-weighted image in halfway space were then applied to the

corresponding FLAIR and WMH segmentation images. We derived

region-based longitudinal WMH volume change for each of the five

etiology-specific WMH spatial patterns by subtracting WMH burden

for timepoint 1 (TP1) from timepoint 2 (TP2) within regions demar-

cated by each WMH spatial pattern (Supplemental F1). This provided

a metric of WMH volume change, and this term will be used through-

out the paper to refer to the output for the standard longitudinal

WMH methodology (evaluation of WMH volume vs shape change in

predicting AD for further details). WMH volumes were not normally

distributed andwere log transformed for both TP1 and TP2.

2.6 White matter hyperintensity (WMH) regional
expansion

Figure 1 is a visual schematic that demonstrates the overall con-

cept of quantifying WMH expansion with regard to distance. As the

white matter lesion expands over time, regardless of uniformity, the

distance between the ROI and lesion boundaries would shrink rep-

resenting WMH expansion. WLMA was conducted on each of the

etiology-specific WMH spatial patterns in template space (Montreal

Neurological Institute). First, the pattern boundary is created from the

voxels that reside on the outer edge of eachWMHspatial pattern (Sup-

plemental F1). Distance maps were then generated for each of the

WMH spatial patterns across all participants and for both time points.

The intensity values for the pattern boundary voxels were defined as

the Euclidean distance from each boundary voxel to the first lesion

voxel within the confines of the corresponding pattern. This opera-

tion was performed using distancemap as part of FMRIB’s Integrated

Registration and Segmentation Tool (FIRST), a package for graymatter

shape analysis.23 It should be emphasized that throughout the paper

wewill only refer toWMHexpansion/reduction as the output from the
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4 STRAIN ET AL.

F IGURE 1 Example schematic of the white matter hyperintensity
(WMH) longitudinal morphometric analysis (WLMA) technique for
capturingWMHexpansion. The blue translucent box (region)
represents aWMH cluster. As theWMH (teal structure) expands from
timepoint 1 to timepoint 2, that change is reflected along the box’s
outer edge as a change in distance visually depicted as the
transformation from blue to yellow.

WLMA methodology (evaluation of WMH volume vs shape change in

predicting AD for further details).

Distance difference (DD)mapswere created by subtracting the TP2

from TP1WMHmaps where greater positivity represented increased

WMH expansion (Figure 2C). Average DD maps were constructed at

the voxel level for each of the fiveWMHspatial patterns and combined

qualitatively to observe localized patterns of expansion or reduction

across all participants. This process allows the distance measurements

to be spatially fixed by performing the analyses on the boundaries with

subject specific intensity values rather than spatially distinct WMH

clusters.

2.7 WMH association with AD process

Participants were classified based on their baseline status as either

cognitively normal controls (CN), principal component (PC), or AD for

a voxel-wise analysis of variance (ANOVA) across each WMH spa-

tial pattern. CN individuals were defined as CDR = 0 with low levels

of amyloid-PET (amyloid SUVR < 1.1). PC individuals were defined

as CDR = 0 with elevated PET amyloid (amyloid SUVR > 1.1). AD

individuals were defined as CDR> 0with amyloid SUVR> 1.1.

WMH volume change for eachWMH pattern was compared across

the three groups with an omnibus ANOVA. Bonferroni correction was

used to addressmultiple comparisons yielding a P< 0.01 as our thresh-

old for significance. Subsequently, t-tests were performed for any

pattern that survived our statistical threshold for the ANOVA.

The WLMA-based DD maps (WMH expansion) were evaluated

across groups at the voxel-level pattern boundary. The voxel-wise

ANOVA was performed to assess WMH expansion across the three

groups. This analysis was conducted with Randomise,24,25 the sta-

tistical toolbox in FSL. A statistical threshold of P < 0.05 corrected

for multiple comparisons was performed using 5000 Monte Carlo

permutations and threshold-free clustering. For significant patterns,

voxel-wise t-tests were performed to determine the group or groups

driving the effect using the same statistical parameters as described in

the ANOVA.

2.8 DD regional map association with amyloid
and APOE

Voxel-wise correlations were performed between the WMH spatial

patterns’ DD maps and baseline PET amyloid summary values. APOE

status was evaluated with voxel-wise ANOVA for each WMH pat-

tern comparing WMH expansion and APOE ε4 allele frequency. Both

the correlation and ANOVA were performed on the DD maps for all

patterns analyzed with Randomise. All comparisons used a statistical

threshold of P< 0.05 corrected formultiple comparisonswith the false

discovery rate and performed using 5000 Monte Carlo permutations

and threshold-free clustering.

2.9 Evaluation of WMH volume versus shape
change in predicting AD

Wehypothesized that voxel-wiseWLMA,which incorporates etiology-

specific WMH spatial pattern information, is more sensitive and

specific for AD-related WMH changes. We implemented two differ-

ent machine-learning (ML) classifier algorithms using Python library

Scikit-learn.We applied support vectormachine (SVM) and random for-

est (RF) classifiers to test whether WLMA is a more selective feature

compared to longitudinal changes in total and regional WMH volumes

for predicting AD versus CN. We made comparisons across different

ML algorithms to demonstrate if WLMA was more robust for pre-

dicting AD. The ML experiments were performed on only the AD and

control study cohort (n = 230), and consisted of two steps: feature

selection, followed by the actual classification. For feature selection,

we considered a total of 28,872 voxels with longitudinal WMH mor-

phometric changes as potential features for WLMA, identified 274

principal components using principal component analysis, then utilized

Kruskal-Wallis feature selection with a threshold of P < 0.10 to select

22 principal components as discriminative input features of WLMA. In

a separate region-based analysis, we performed similar feature selec-

tion as above restricted to voxels within the boundaries of each of the

five previously-defined WMH spatial patterns resulting in 21 to 30

principal components representing longitudinal WMH morphometric

changes for each WMH spatial pattern. In contrast, six input features
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STRAIN ET AL. 5

F IGURE 2 (A) Shows the difference frequencymap, created by subtracting the timepoint 1 (TP1) from timepoint 2 (TP2) white matter
hyperintensity (WMH)maps, with a range ofWMHoverlap from 0% tomaximum of 25%. Increased intensity represents greater overlap. (B)
Isolation of the robust maximum overlap forWMHvolume. (C)WMHdistribution across all five clusters. (D) Average difference distancemap.
Units are in mm.

were selected as representative of longitudinalWMH volume changes

(global and regionalWMHbased on the etiology-specificWMH spatial

patterns). We utilized a 70%–30% train–test split with 160 individuals

randomly selected as the training and validation dataset, whereas 68

individuals formed the test dataset that was later used to test the abil-

ity of the finalMLmodels to predict AD.Model training, validation, and

testing were performed using repeated fivefold cross validation with

10 iterations. Hyperparameter optimizationwas performedwithin val-

idation sets for SVM (kernel type, and regularization strength), and

for RF (the number of trees, the depth of each tree, and the num-

ber of features selected for determining tree split), usingGridSearchCV

to obtain the combination of hyperparameters that maximizes model

performance. Model performance was evaluated on the test sets by

measuring performance indices of accuracy (percent correctly clas-

sified), recall (sensitivity), precision (positive predictive value), and

F1-Score (harmonic mean of precision and recall) for SVM- and RF-

based models using WLMA and volumetric-based features separately.

McNemar’s test was applied to explore for significant differences

in prediction accuracies between different feature types (WLMA vs

volumetry-based) and differentML classifier algorithms.

3 RESULTS

3.1 Demographics

A total of 368 individuals with a baseline assessment plus at least one

follow-up assessment >2 years later were included in our study. Of

these, 98 individuals were excluded from analyses for exhibiting non-

AD pathology (n = 93), poor registration (n = 4), and poor scan quality

(n = 1). This yielded a total of 270 individuals that were included into

the following analyses (n = 270: 98 CN, 42 PC, and 130 AD) (Supple-

mental F2). Further details are provided in Table 1. The average time

period between TP1 and TP2 was 3 years with a standard deviation

of 1.02 years. For this analysis cohort, no group differences across all

three groups were observed for age, education, or race. There were

differences in sex distribution by diagnosis group: more females were

CN, whereas the PC group had a greater proportion of males. The ML

analysis was only performed on the AD and CN groups resulting in

228 individuals. Baseline demographic and clinical variables including

APOE ε4 genotype and years of educationwere extracted for our study
cohort.
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6 STRAIN ET AL.

TABLE 1 Demographics table for each of the disease stages and
the non-AD group.

Control Preclinical AD P-value

N 98 42 130 NA

Age (years) 71 (6.0) 74 (6.05) 73 (6.83) 0.07

Gender (M/F) 46/52 23/16 73/58 0.014

Education (years) 17 (2.43) 16 (2.7) 16 (2.65) 0.17

Race

Amyloid 1.02 (0.05) 1.32 (0.19) 1.36 (0.17) <0.001

Hypertension 4.1 (2.63) 4.2 (3.36) 4.2 (3.67) 0.84

APOE e4 status (0,1,2) 76/20/2 23/17/2 47/62/21 <0.001

Time gap (years) 3 (1.07) 2.9 (1.14) 3 (1.05) 0.88

Note: Statistics are reported as mean (SD). Hypertension was based on

binary clinical classification. The P-values represent the findings from an

ANOVA between each disease stage not including the non-AD group.

Abbreviation: AD, Alzheimer’s disease.

3.2 Changes in regional WMH volume versus
expansion

At the group level, traditional approaches at quantifying WMH data

rely on the frequency overlap of lesions and can be insensitive to spa-

tially specificWMHchanges. This canbe challenging asWMHareoften

spatially distinct and small deviations in location can result in no over-

lap despite similar spatial localization. This issue for determiningWMH

spatial patterns is compounded for longitudinal data as region-based

WMH analyses have greater reliance on lesion overlap across time

(Figure2A,B). Figure2A is a frequencyoverlapmapbasedonWMHvol-

ume change. The intensity maximum threshold was observed at 25%

across the entire cohort (Figure 2B) with very little overlap in WMH

volume change. Although individually, WMH volume change is dif-

fusely present across the entire brain (Figure 2A), analyses restricted

by lesion frequency aremore limited in group comparisons (Figure 2B).

WMH expansion was observed across all participants from TP1 to

TP2 (Supplemental F3). Unlike WMH volume, WLMA does not rely on

lesion voxel overlap to evaluate WMH spatial information. Although

brain structures are aligned based on the registration matrices to

template space the WMH clusters among individuals can be innately

distinct at the voxel level. Spatial information is preserved without

sacrificing statistical power because WLMA quantifies shifts in WMH

boundaries at the individual level that we refer to as WMH expan-

sion. Analyzing the data in this manner incorporates the changes in

individual level WMH morphometrics across timepoints allowing for

evaluation at the voxel level (Figure 2C,D). Figure 2C is the sameWMH

frequency overlap map as seen in Figure 2A but organized by the five

WMH patterns. The main point is the distinction between Figure 2B

and Figure 2D which highlights the benefit of evaluatingWMH expan-

sion as opposed to WMH volume. When considering differences in

WMH volume 86% of individuals are not represented in Figure 2B

whereas all participants contributed to the statistical analysesofWMH

expansion.

F IGURE 3 Average difference distancemaps across all clusters
for each disease stage. Units are in mm. AD, Alzheimer’s disease.

3.3 WLMA with AD process

The average DD maps for each group (AD, PC, CN) are represented

across all WMH spatial patterns in Figure 3. The quantitative ANOVA

revealed that only the periventricularWMH patterns had significantly

different rates of change in WMH expansion across all three groups

(CN, PC, AD). Paired t-tests revealed this difference was driven by

greater expansion of WMH for the preclinical compared to the CN

group but not the AD group (Supplemental F4). The AD groupwas also

not significantly different frompreclinical group for thisWMHpattern.

3.4 DD regional map association with amyloid
and APOE

Amyloid accumulation associated with WMH expansion in the poste-

rior WMH pattern (Figure 4) and in the deep frontal WMH pattern

across all subjects. Reanalyzing the voxel-wise correlations for the

posterior and deep frontal WMH patterns within the groups indi-

vidually revealed a significant association with amyloid in the deep

frontal but only for the AD group (Figure 4). There was no difference

observed between groups for individuals with a single APOE ε4 allele

but 75% of the individuals with two ε4 alleles were designated as AD.

The ANOVA for APOE status across the genetic profile revealed no

significant associations with anyWMH spatial pattern.

3.5 WMH morphometric change is more
predictive of AD

We compared the selectivity of WLMA and volumetric WMH change

as features for different ML classifiers in predicting AD. SVM- and RF-

based classifiers using WLMA features were able to more effectively

and robustly identify individuals with AD compared to volumetric
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STRAIN ET AL. 7

F IGURE 4 The images show the 3D rendering of where significant associations between amyloid andwhite matter hyperintensities (WMH)
expansion were observed across all three disease stages. The deep frontal regions were driven by the dementia group that revealed a significant
association within the group. The posterior region relationship betweenWMHexpansion and amyloid was only observed across the entire group.

TABLE 2 Machine learning output comparing the prediction
capabilities ofWLMA and volumetrics with twomachine learning
methods.

WLMA Volumetrics

MLModel SVM RF SVM RF

Accuracy 0.70 0.67 0.55 0.59

Sensitivity for AD (Recall) 0.67 0.74 0.37 0.70

Precision for AD 0.81 0.73 0.80 0.67

F1 score (AD) 0.73 0.74 0.51 0.68

Abbreviations: AD, Alzheimer’s disease; ML, machine learning; SVM, sup-

port vector machine; RF, random forest; WLMA, white matter hyperinten-

sity longitudinal morphometric analysis.

WMH changes across all classification performance metrics (Table 2).

The McNemar’s test confirmed that WMH expansion quantified with

WLMA classified AD individuals with significantly greater accuracy

than WMH volume (SVM, P = 0.02; RF, P = 0.04). No statistical differ-

encewasobserved inpredictionaccuracybetweenMLmodels (WLMA:

SVM vs RF, P = 0.15; Volume: SVM: SVM vs RF, P = 0.68). The con-

fusion matrices evaluating the performance of both classifiers using

WLMA and volumetric features are shown in Supplemental F5. On

average, SVMandRFmodels usingWLMA features correctly classified

70.0% and 67.0% of AD individuals, with sensitivity of 0.67 and 0.74,

and specificity of 0.81 and 0.73, respectively. For the region-based

WMH analysis, WMH morphometric change for both periventricular

and parietal WMH patterns had the highest sensitivity for predicting

AD for both SVM (0.88 and 0.81) and RF (0.88 and 0.84) classification

models.

4 DISCUSSION

In this study, we assessed a novel application of lesion shape analy-

sis to evaluate WMH expansion in AD over an average 3-year period.

Compared to standard WMH volume metrics, WLMA repeatedly out-

performed classical approaches for identifying unique WMH changes

over time in our PC group and in distinguishing controls from AD

with ML-based prediction models. The preclinical (CDR = 0) individu-

als demonstratedWMHexpansion in distinct posterior periventricular

WM regions but increasing amyloid burden in the AD individuals was

associated with greaterWMHexpansion in frontal regions.

The literature is divided on the role of WMH in AD and some have

postulated that this WMH initialization process is entirely indepen-

dent butmayhave additive effects on the process to early symptomatic

stages in AD.26 Postmortem work has found that the periventricu-

lar posterior WM region contains underlying, gliosis, and axonal loss

specifically in AD individuals.27 Conversely, WMH of non-presumed

AD origin are predominantly more prevalent in frontal areas impli-

cating spatial location as disease specific.17,28 Evidence to support

separate mechanisms is based on a lack of evidence supporting a

longitudinal link with betweenWMH and AD biomarkers.29 This mini-

mizes the role ofWMHdevelopment inAD, despite strong associations

with cognition and neurodegeneration.30,31 This infers that WMH

changes associate with amyloid accumulation in AD pathology but

can be overlooked with methods that fail to incorporate the spatial

topography.

Increased dysfunction and damage in the brain’s blood vessels asso-

ciateswith increasedAβ formation.32 The resultant damage to cerebral

vasculature can potentially promote formation of diffuse plaques and

phosphorylated tangles.33–35 This feedforward process may explain

the associations between amyloid and WMH expansion that were

observed within the deep frontal and posterior WM across the entire

group. However, the deep frontal association was uniquely associated

with the AD group. Individuals with AD have demonstrated reduced

vascular reactivity primarily in the rostral frontal cortex compared to

controls independent of cardiovascular factors.36 Similarly, patholog-

ical findings reveal frontal WMH associates with both small vessel

disease and disease specific AD neurodegenerative mechanisms.37

Our data suggest that AD individuals with greater amyloid accumula-

tion at baseline associate with fasterWMHexpansion of frontalWMH

within individuals with AD.

Most of the prior work involvingWMH in AD only evaluatedWMH

as a global score, whereas regional WMH measurements may allow

for more accurate interpretation.12,15 We argue that analyzing the

data as a global score, or via similar strategies like voxel-based lesion
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8 STRAIN ET AL.

symptom mapping, often rely on voxel-based overlap and are inca-

pable of producing significant findings longitudinally across groups.38

Additionally, the spatial information obtained by the aforementioned

techniques cannot be applied at the voxel level effectively. However,

WLMA spatially fixes the data within a given region, thereby allow-

ing greater spatial specificity for detecting subtle changes in WMH

expansion (Figure 2). This point was clearly emphasized in Figure 2,

which showedvery limited change in lesionoverlap at25%even though

WMH expansion was diffusely prominent. WLMA allowed for more

sensitive localized findings when analyzing disease stages with healthy

aging or increased disease severity by identifying spatially specific

changes at the voxel level.

Our study has several limitations. WLMA is not a lesion segmenta-

tion technique and we did not assess how the segmentation technique

can influence the outcome of WLMA. However, the segmentation

technique utilized has been shown to be reliable with manual seg-

mentations and employs deep learning to differentiate lesions from

non-lesions voxel-by-voxel.17 The WMH patterns used to define our

longitudinal region-based WMH analysis were determined from a

larger cross-sectional cohort but WLMA is not restricted to these

regions. Although no longitudinal information was used in the pattern

calculations for deriving the WMH regions, all baseline images were

involved in the original study albeit as a subset. This study focused only

on global baseline levels of amyloid but longitudinal PET studies that

assess regional changes would improve our understanding of WMH

expansion. Although the findings from this study suggest amechanistic

link between spatially specific WMH expansion and AD, further stud-

ies that incorporate biomarkers related to other non-AD sources of

variance are needed to bolster this claim. Replication of this work in

another large longitudinal cohort with more detailed stroke history

is necessary to validate these findings. For this study we utilized the

ADNI cohort due to its large cohort size of AD-focused longitudinal

data. However, the ADNI cohort is limited due to the acquisition of

2D FLAIR sequences as opposed to 3D sequences that are recently

growing in popularity. Therefore, future longitudinal studies within

large cohorts using 3D sequences are warranted. The focus of this

study was to determine whether we could detect subtle changes in

WMH expansion, and we therefore did not evaluate other stages that

make up traditional ATNmodels to fully understandWMH’s role in AD

process. Acquiring longitudinal data for each stage of the ATN hypoth-

esis in conjunction with longitudinal FLAIR would greatly improve the

interpretations of the findings presented here. Lastly, this is the first

application of this technique and external validation would improve its

validity to the scientific community.

5 CONCLUSION

In conclusion, we introduced a novel approach to evaluating regional

WMH expansion. We demonstrated that WLMA provides similar

information asWMHvolume but is alsomore sensitive to spatial infor-

mation that we demonstrate to be clinically relevant. Our analyses of

individuals with AD yielded distinct localized regions of WMH expan-

sion for cognitively impaired AD individuals and individuals at the

preclinical stage without cognitive symptoms. This strongly supports

the view that WMH changes continue to evolve morphometrically

throughout the disease and can precede cognitive changes. There-

fore, the development of WMH may play an undervalued role in AD

pathogenesis and offer alternative treatment strategies.
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