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This study employs the limit analysis method to evaluate the seismic stability of anisotropic and nonhomogeneous slopes stabilized
with anti-slide piles. The pseudo-static approach is used to simplify the earthquake load. The yield seismic acceleration factor
is obtained from the optimization procedure and the results are verified with the published data. Then, the seismically-unstable
slope is reinforced with anti-slide piles, and the seismic stability of the reinforced slope is explored. The results show that the
anisotropy and nonhomogeneity of soils have significant effects on the stabilizing force required from the anti-slide piles and the
optimal location of the pile is near the toe of the slope.
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1       Introduction

Slopes can lose stability during earthquakes. Unstable slopes
are usually stabilized by either reducing the driving force
for failure (e.g. flattening slopes) or increasing the resisting
force against failure (e.g. installing piles or retaining walls).
Anti-slide piles are found effective for stabilizing slopes un-
der static conditions [1–6]. However, to the best of authors’
knowledge, the effectiveness of anti-slide piles for stabiliz-
ing seismic slopes remains unclear. Moreover, owning to
the effects of consolidation pressures, stress history, cemen-
tation bonds and overconsolidation, natural soils exhibit re-
markable anisotropy [7–9] and unneglectable nonhomogene-
ity [10]. Therefore, it seems more appropriate to incorporate
the anisotropy and nonhomogeneity into the analysis of the
stability of slopes with anti-slide piles.
The methods for analyzing the stability of slopes mainly

*Corresponding author (email: lijp2773@163.com)

fall into three categories: (1) the limit equilibrium method;
(2) the numerical analysis method and (3) the limit analysis
method. All these methods are useful for assessing the effect
of seismic loads though with various degrees of approxima-
tion. The limit equilibrium method has been the dominant
approach used for examining slope stability over the past sev-
eral decades [11]. This method can be used for a variety of
conditions, such as loading and seepage, without requiring
additional computational efforts. However, owning to its ar-
bitrary assumptions, the results produced by this method can
represent neither the lower bound nor the upper bound of the
true solution. Alternatively, the numerical approach such as
the finite element method is considered, to some extent, as the
most comprehensive means at present, because it allows for
rather complex conditions and keeping track of progressive
slope failures. However, the demand of high computational
cost and intensive effort required formodel calibration largely
restricts its wide application and makes it less attractive in the
routine practice of geotechnical engineering.
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The limit analysis method, based on the plasticity limit the-
orems, can provide rigorous lower and upper bounds that
bracket the true solution. Although the kinematic method
of the limit analysis is an approximate approach, the results
obtained from reasonably assumed failure mechanisms have
been proven credible [10]. Furthermore, the limit analysis
method is much simpler to use under certain assumptions than
the limit equilibrium method [1]. Recently, the limit analy-
sis method is still popularly adopted to analyze slope stabil-
ity. For example, Zhao et al. [12] explored the safety factors
of homogeneous slopes under a general nonlinear failure cri-
terion, where three shear strength reduction strategies were
adopted; Tang et al. [13] developed stability charts of slopes
under horizontal seismic force, surcharge load and pore water
pressure in order to help geotechnical engineers quickly de-
termine slope safety factors; Yang and Xu [14] investigated
the influence of soil nonhomogeneity on the static and seis-
mic three-dimensional stability of two-stage slopes; Subse-
quently, they [15] extended their nonhomogeneous solutions
to nonhomogeneous and anisotropic solutions to explore the
effects of either pore water pressure or seismic force on the
stability of three-dimensional slopes. The above mentioned
literature substantiates that the limit analysis is a vary effec-
tive method for analyzing slope stability. Hence, this method
is also adopted in this study to investigate the seismic stabil-
ity of anisotropic and nonhomogeneous slopes with anti-slide
piles. The stability factor of anisotropic and nonhomoge-
neous slopes is first developed under the static condition, and
then extended to the seismic condition. The effect and op-
timal location of anti-slide piles are finally studied to reach
a desired level of seismic stability. Since it is prohibitive
to consider every detail of earthquake loading in analytical
analyses, the pseudo-static method is used. This method sim-
plifies the earthquake-induced inertial force as the equivalent
concentrated force acting on the center of gravity of the slid-
ing soil mass. While this simplification has drawn some crit-
icisms, it is widely accepted in practice as an economic solu-
tion with adequate accuracy for the analysis of seismic stabil-
ity of slopes [16–19].

2       Anisotropy and nonhomogeneity of natural
soils

The Mohr-Coulomb’s failure criterion, which describes the
strength of soils with two parameters, i.e. the cohesion, c,
and the internal friction angle, φ, is employed. The reported
studies [3,10] show that the anisotropy and nonhomogene-
ity of cohesion are more prominent than those of the internal
friction angle. Hence, a constant internal friction angle is as-
sumed and only anisotropy and nonhomogeneity of cohesion
are considered in this study.
The anisotropy of soils is reflected by the cohesion vari-

ation along the shearing direction (see Figure 1(a)), and the

cohesion in any direction is expressed as [3,10]

c c c c= + ( )cos ,h v h
2 (1)

where ch and cv are the cohesions in the horizontal and ver-
tical directions, respectively; and ψ is an angle at which the
major stress is inclined to the vertical direction; assuming the
anisotropic coefficient k=ch/cv, eq. (1) can be written as:

c c k
k

= 1 1 cos .h
2 (2)

For isotropic soil, k=1 (i.e. cψ=ch=cv).
Because of the nonhomogeneity of soils, the cohesion

can be assumed to increase linearly with the depth (see
Figure 1(b)) [10,20]. The notation n in the figure is the
nonhomogeneous coefficient. Under the particular case with
n0=n1=n2=1, the soils are homogenous and the cohesion
remains constant with respect to the depth.

3       Stability of slopes subjected to seismic loads

3.1       Limit analysis and objective function

The kinematic method of the limit analysis states that the rate
of the work done by external loads must equal the dissipation
rate of internal energy at the critical state of slope collapse.
The external loads include the slope weight, the seismic load
and the surcharge load. The internal energy includes the en-
ergy generated along the assumed failure surface and by the
anti-slide piles. By equating the external work rate to the in-
ternal energy dissipation rate, the upper bound of the true so-
lution can be obtained. In this study, the classical log-spiral
failure mechanism (see Figure 2) is adopted and the log-spi-
ral function is expressed as:

( )r r= exp tan .0 0 (3)

The definitions of the variable θ, θ0 and r0 are referred to
Figure 2. From the geometric relation shown in Figure 2, the
ratio of the slope height, H, to the length of OB, r0, and the
ratio of the length of AB, L, to the length of  OB,  r0,  can  be

Figure 1         (a) Anisotropy of soils with direction; (b) nonhomogeneity of soils
with depth.
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Figure 2         Log-spiral failure mechanism of slope under seismic and sur-
charge loads.

expressed, respectively, as:
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It is difficult to directly calculate the work rate by the
weight of the moving mass represented by area ACC B.
Alternatively, it can be obtained by subtracting the work rate
by the weight of mass represented by areas OAB, OAC and
AC C from that of mass of area OBC , i.e.

( )W r f f f f= ,G
ext 0

3
1 2 3 4 (6)

where γ is the unit weight of soil; ω is the angular velocity;
and the expressions of the functions f1, f2, f3 and f4 can be
found in the reference [10].
The rate of the internal energy dissipation taking place

along the failure surface C B can be calculated as:
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where the expressions of cψ1 and cψ2 are
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where θm can be determined by the following:

( ) ( )sin exp tan =sin exp tan .h h m m (10)

Note that the angle ψ can be obtained based on the follow-
ing simple geometric relation shown in Figure 2:

= +
2

= + , (11)

where δ=π/4+φ/2 represents the angle between the tangential
direction of the failure surface and the minor stress direction.
Equating eq. (6) to eq. (7) yields

r c f
f f f f

= ,c
0

1 2 3 4
(12)

where the function fc is the bracket part in eq. (7).
Assuming

( )f H
r

f
f f f f

, , = ,h
c

0
0 1 2 3 4

(13)

eq. (12) can be rewritten as:

( )H c f= , , .h0 (14)

The stability factor, Ns, is defined as the minimum value of
the function f(θ0, θh, β' ), i.e. Ns=min f(θ0, θh, β' ). However,
due to the complexity of the implicit function eq. (13), it is
difficult to directly find the stability factor, Ns. Alternatively,
the optimization method is used to determine the stability fac-
tor by defining the objective function and the constraint con-
ditions as follows:

( )f fmin  = , , , s.t.
0 < < /2,

< < ,

0 < < .
h h0

0

0 (15)

3.2       Pseudo-static analysis
As shown in Figure 2, the seismic load is replaced with an
equivalent static distributed horizontal load pointing outward.
Here, vertical shaking is not considered because it has little
influence on slopes [19]. Although, this simplification is un-
able to reflect the true effect of the seismic action, it can pro-
vide a simple and useful tool to quantitatively assess the seis-
mic stability of slopes. The value of the horizontal load is the
product of the seismic acceleration factor, K, and the weight
of the potential sliding soil mass. Hence, the work rate done
by the seismic load can be calculated as

( )W K r f f f f= ,S
ext 0

3
5 6 7 8 (16)

in which the expressions of the functions f5, f6, f7 and f8 are

}
{

( ) ( )

f = 1
3(1 + 9tan ) cos 3tan sin

+ 3tan sin cos exp 3 tan ,h h h

5 0 0

0

2

(17)
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Similarly, the work rate done by the surcharge load can be
calculated as:

( )W p r f xKf= + ,p
v hext 0

2 (21)

where the parameter x is the ratio of the seismic acceleration
factor of the surcharge load to the seismic acceleration factor
of the soil weight, and the value of x varies from 0 to 1. The
functions fv and fh are given by

f L
r

L
r

= cos 1
2

cos ,v
0

0
0

(22)

f L
r

L
r

= sin + 1
2

sin .h
0

0
0

(23)

Equating the external work rate to the internal energy dis-
sipation rate, and with the substitution of eq. (4), an upper
bound value of the seismic acceleration factor can be obtained
as:

( )
( )K

cf H H f f f f pf
H H f f f f xpf

=
/

/ +
,c 1 2 3 4 v

5 6 7 8 h

(24)

where the expression of H is

}
{ ( )

( ) ( )

H = sin
sin( ) sin +

            +sin + exp tan .h h

0

0 (25)

When eq. (24) reaches itsminimumvalue, the yield seismic
acceleration factor, Kc, is obtained, i.e. Kc=min K(θ0, θh, β' ).

3.3       Verifications
There are few documented studies on slope stability consider-
ing both anisotropy and nonhomogeneity of soils. The studies
available to verify the proposed solution were presented by
the literature [3,10]. In their studies, the cohesion increases
linearly with depth and passes through the coordinate origin.
Therefore, the values of the nonhomogeneous coefficients are
n0=0, n1=1 and n2=1+N/H (i.e. n=z/H). By substituting these
nonhomogeneous coefficients into eqs. (8) and (9), the func-
tion fc can be simply expressed as

}
( )

( )

f H r

k
k

= 1
( / )exp(3 tan )

       { ( ) ( )sin exp tan

       + 1 ( ) ( )sin exp tan ,

c

0 0

0 0
h

0 0

0
(26)

where the expressions of the functions ζ(θ), ξ(θ), Ψ(θ) and
Θ(θ) are as follows:

( ) =
exp(2 tan )

2tan
, (27)

( ) =
(3tan sin cos )exp(3 tan )

1 + 9tan
,

2 (28)
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tan tan

( ) = exp(3 tan )
2 cos2 cos 3tan sin

2(1 + 9tan )

+ sin3 cos3
6(1 + tan )

sin + 3tan cos
2(1 + 9tan )

cos3 + sin3
6(1 + tan ) sin2 cos 3 sin
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2

2 2

2 2

(29)

( ) = cos2 tan cos2 + sin2
2(1 + tan )

sin2 tan sin2 cos2
2(1 + tan )

exp(2 tan )
2

   + exp(2 tan )
4tan .

   

2

2

(30)

Substituting eq. (26) into eq. (13), the stability factor, Ns,
that considers both the anisotropy and nonhomogeneity of
soils, can be obtained by the optimization method. The calcu-
lated results and the published data are tabulated in Table 1.
A good agreement is found between them.
In order to verify the present solution for slopes subjected

to seismic loads, the results of the yield seismic accelera-
tion factors are compared with those reported by the litera-
ture [16]. With the optimization method, the minimum val-
ues of eq. (24), i.e. the yield seismic acceleration factors, Kc,
are obtained. The results without considering the anisotropy
and nonhomogeneity of soils are summarized in Table 2. The
comparison demonstrates a good agreement.
To further investigate the effects of anisotropy and nonho-

mogeneity of soils on the yield seismic acceleration factors,
the calculated values of Kc considering only anisotropy and
considering both anisotropy and nonhomogeneity (n=z/H) are
shown in Figures 3 and 4, respectively. It is found that the
anisotropy of soils has significant effects on Kc. The yield
seismic acceleration factor decreases  with  the  decrease  of
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Table 1        Comparison of stability factors Ns for anisotropic and nonhomogeneous slopes

φ=10°, β=50°, α=0° φ=30°, β=50°, α=0°

k=1 k=0.8 k=0.5 k=1 k=0.8 k=0.5

Chen [10] 5.44 5.26 4.95 15.50 14.96 14.09

Nian et al. [3] 5.44 5.27 4.96 15.51 14.98 14.11

Present study 5.44 5.26 4.95 15.45 14.90 14.06

Table 2        Comparison of the yield seismic acceleration factors Kc for isotropic and homogeneous slopes with H=30.48 m and α=0°

p=5.75 kPa, x=0 p=5.75 kPa, x=0.5

β=45° β=60° β=75° β=45° β=60° β=75°

Chang et al. [16] 0.677 0.513 0.324 0.671 0.506 0.320

Present study 0.678 0.513 0.325 0.671 0.506 0.320

Figure 3         Effects of anisotropy and nonhomogeneity of soils on yield seis-
mic acceleration factor, Kc, with p=5.75, x=0.

Figure 4         Effects of anisotropy and nonhomogeneity of soils on yield seis-
mic acceleration factor, Kc, with p=5.75, x=0.5.

anisotropic coefficient. In other words, when soils show
stronger anisotropy, the slope can only resist a weaker
earthquake. Moreover, the yield seismic acceleration factor
of gentle slopes decreases faster than that of steep slopes.
This indicates that the anisotropy of soils has a stronger
impact on the stability of gentler slopes subjected to seismic
loads. From the figures, it is noted that the yield seismic

acceleration factors of slopes considering both anisotropy
and nonhomogeneity are less than those only considering
anisotropy, but the difference between them is small. In
Table 2, the difference between the results with x=0 and
those with x=0.5 is small, but the difference between the
results shown in Figures 3 and 4 is quite large. The yield
seismic acceleration factors of slopes with inclined angle
β=75° are not included in Figure 4. This is because the
yield seismic acceleration factors of such slopes subjected
to both seismic and surcharge loads are very small and even
close to zero. However, the value of Kc of the isotropic and
homogenous slope is 0.320. Hence, it can be concluded that
neglecting the effects of anisotropy and nonhomogeneity of
soils could largely overestimate the earthquake resistance
of slopes. This conclusion further supports the necessity
for considering the anisotropy and nonhomogeneity of soils
when evaluating the seismic stability of slopes.

4       Stability of slopes reinforced by piles

4.1       Required stabilizing forces provided by piles and
optimal location of piles

When the yield seismic acceleration factor of a slope is
smaller than the actual seismic acceleration factor of possible
earthquakes, the slope needs engineering reinforcement by,
for instance, installing piles to increase the yield seismic
acceleration factor to a desired value. Figure 5 illustrates a
pile-stabilized slope. The reinforced effect of a row of piles
on the slope can be equivalent to a lateral force and a moment
applied at the potential sliding surface [1,3]. The lateral
force can be assumed to act in the horizontal direction [1] or
parallel to the tangent direction of the log-spiral surface [3].
From the literature [3], there is little difference between  the
lateral forces obtained from these two directions. Hence, a
horizontal force is assumed to arise from the piles. Accord-
ingly, the internal energy dissipation rate  generated  by  the
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Figure 5         Log-spiral failure mechanism of pile-stabilized slope under seis-
mic and surcharge loads.

piles can be obtained as:

W F r F mh= sin ,int
p

p p p p (31)

where Fp is the stabilizing force provided by the piles; h is
the height of the piles above the sliding surface; and m is a
coefficient that represents the ratio of the height of Fp above
the sliding surface to h. When the force is assumed to be lin-
early distributed between the ground surface and the sliding
surface, m is equal to 1/3. The height, h, can be expressed in
terms of the abscissa, Xp, measured from the slope toe as

h X r r
X H

= tan + sin sin ,
0 cot ,

h hp p p

p
(32)

where Xp, is given by

X r D r= cos cos ,h hp p p (33)

where D is referred to Figure 5 and given by

D
H

=
sin( )
sin sin

. (34)

Combining eqs. (33) and (34) yields the value of θp, for a
given value of Xp.
Therefore, equating the internal energy dissipation rate to

the external work rate, the stabilizing forceFp can be obtained
as:

( )
( )
( ) ( )

F
r mh

K r f f f f cr f

pr f xK f r f f f f

= 1
exp tan sin

      

     + + + .

c

c

p

0
3

5 6 7 8 0
2

0
2

v h 0
3

1 2 3 4

0 p 0 p

(35)

When the slope is at the instant failure state, the stabilizing
force Fp reaches its maximum value, namely

{ }( ) ( )F F f X= max , , = .hp 0 p ppmax (36)

This can be solved with the optimization method.
The optimal location of piles can be determined when the

stabilizing force provided by piles reaches the minimum

value as the pile location changes between the toe and the
crest of slopes. When both the optimal location and the sta-
bilizing force of the piles are determined, the stabilizing piles
used to prevent slope failure can be designed economically
based on the corresponding design procedure.

4.2       Example
As shown in Table 2, the yield seismic acceleration factor of
a slope (with β=45° and x=0.5) is 0.671. This is considered
inadequate. Therefore, piles are used to increase the seismic
acceleration factor to the desired value, for instance, 0.8 in
this example. To facilitate the analysis, the dimensionless
stabilizing force as F=Fp/(γH2/2) [1] and the relative location
as ζ=Xp/(H cotβ) are defined.
Figure 6 shows the increasing dimensionless stabilizing

force with the decrease of anisotropic coefficient for ho-
mogenous and nonhomogeneous slopes. The dimensionless
stabilizing force of the nonhomogeneous slope is much larger
than that of homogenous slope. However, the increase rate
of the homogeneous slope is larger than that of nonhomoge-
neous one. These phenomena illustrate that the anisotropy
and nonhomogeneity of soils have significant effects on the
stabilizing force required from piles to meet a pre-defined
level of stability. Hence, if the anisotropic and nonhomoge-
neous properties of soils are neglected, the stabilizing force
required from piles will be largely underestimated and the
stabilized slope may still suffer from an expected earthquake.
The stabilizing force required from piles at different loca-

tions is also explored. As shown in Figure 7, the stabilizing
force considering both anisotropy and nonhomogeneity of the
soil is much larger than that only considering anisotropy or
ignoring both. More importantly, the dimensionless stabiliz-
ing force increases with the increase of the relative location
of piles. The closer to the crest of the slope is, the larger of
the dimensionless stabilizing force is required. The dimen-
sionless stabilizing force reaches its minimum value when the
piles are placed near the toe of the slope. In another word, the
optimal location for piles to reinforce the slope is near the toe

Figure 6         Effect of anisotropy and nonhomogeneity on dimensionless sta-
bilizing force when relative location ζ=0.2.
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Figure 7         Effect of pile location on dimensionless stabilizing force.

of slope. Similar results have also been obtained by Ausilio
et al. [1] and Nian et al. [3], but the effect of seismic loads
on slope stability has not been incorporated in their studies.

5       Conclusions

The limit analysis method was employed to evaluate the
seismic stability of anisotropic and nonhomogeneous slopes.
The procedure was verified with the published studies for
isotropic and homogeneous slopes. The results show that
the anisotropy and nonhomogeneity of the soil greatly affect
the magnitude of the yield seismic acceleration factor; the
increase of the anisotropic coefficient reduces the yield
seismic acceleration factor.
The study demonstrates that installing anti-slide piles is an

effective means to stabilize slopes subjected to seismic loads
by increasing the yield seismic acceleration factor to the de-
sired level. Anisotropy and nonhomogeneity of the soil have
significant effects on the stabilizing force required from the
anti-slide pile. The larger the anisotropic coefficient is, the
larger the stabilizing force the anti-slide pile needs to provide.
In addition, the results show that the optimal location of the
pile is near the toe of the slope, where the required stabiliz-
ing force is minimal for raising the yield seismic acceleration
factor to a sufficient level.

This work was supported by the National Natural Science Foundation of
China (Grant No. 41272288).
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