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ABSTRACT 
 
     Mathematica is a powerful program for computing both 
numeric and algebraic calculations as well as graphing two 
and three dimensional curves and surfaces. It is used 
increasingly in many fields of science now such as physics, 
engineering, chemistry and even biology because of the fast 
interaction of mathematics with almost the fields of science 
nowadays. Synthesis of Cyclotetramethylene Tetramine 
through the action of nitrating mixture formed of ammonium 
nitrate and fuming nitric acid on hexamine in presence of 
acetic acid, acetic anhydride and p-formaldehyde has been 
proven. The pathway is relatively long and Hexamine 
Dinitrate and Dinitro Pentamethylene Tetramine (DPT) are 
two of the main intermediate compounds. The former was 
prepared, purified, and then characterized. Conversion of this 
compound into the latter has been followed up 
experimentally. Herein, we report the Preparation of Dinitro 
Pentamethylene Tetramine (DPT) from Hexamine Dinitrate - 
as an alternative synthetic route - which is an important 
intermediate appears through preparation of DPT from 
Hexamine directly. DPT was prepared at different 
temperatures. The variation of some factors like: temperature 
and time has been investigated. The obtained results were 
reliable and consistent with the literature. The conversion of 
Hexamine Dinitrate to HMX as another synthetic route was 
not fully studied from the point of view of kinetics. In this 
paper, it is intended to study the effect of time and 
temperature on the conversion rate of hexamine dinitrate to 
DPT. This scientific approach is considered as a bridge 
through which we aim to initiate a complete kinetic study of 
an important intermediate in the synthesis route of one of the 
most powerful energetic materials.  
We report here, optimizing the kinetic data for the synthesis 
of DPT via using Mathematica.  
 
Key words: Mathematica, DPT; Kinetics, Optimization. 
 
1.INTRODUCTION 
 

Energetic materials such as explosives, propellants and 
pyrotechnics are widely used for both civilian and military 
applications. Design of future defense systems requires the 
use of energetic material formulations having enhanced 
performance (energy output) and reduced vulnerability 
during manufacturing, handling, storage and transportation. 
Several important design considerations for such 
formulations include improved mechanical properties, 
extended service life and reduced environmental impact in 
manufacture, use and disposal [1]. Energetic materials are 
substances or mixtures that react chemically to release energy 
required for their intended application.  
Bachmann and Sheehan [2] developed a method of preparing 
DPT. This method involved nitrolysis of hexamine with 
ammonium nitrate – nitric acid solution and acetic 
anhydride.. [1-19]  
Hexamine Dinitrate is an important raw material in 
production of DPT, hexogen (RDX) and HMX as a source of 
the methylene base and the simultaneously bound 
“anhydrous” nitric acid in an advantageous crystalline and 
relatively stable form [20-28]  
HMX is considered as a powerful military explosive, but it has 
a limited use due to its high cost. Reported manufacturing 
processes for HMX involves the nitration of hexamine. It is 
well known that HMX can be prepared from DPT, which has 
been identified as a key intermediate in the formation of HMX 
from the nitration of hexamine, which is also known as the 
modified Bachmann process as previously mentioned.  
The alteration of those previously mentioned parameters will 
lead to optimized process and hence obtain better 
results.[29-37] 
Direct nitrolysis of 3,7-dinitro-1,3,5,7-tetraazabicyclo[38-45] 
nonane (DPT) is a feasible way to synthesize HMX, and it has 
multiple practical applications. A new nitrolysis process 
involving the use of an N2O5-HNO3 system catalyzed by 
acidic ionic liquids (AILs) was developed The effect of 
metallic ions on the nitrolysis of DAPT 
[3,7-diacetyl-1,3,5,7-tetraazabicyclo(3.3.1) nonane] and HA 
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(hexamine) was investigated by experimental and theoretical 
approaches [45-69] 
 
2. EXPERIMENTAL 
 
Samples were prepared and filtered in a special fuming hood 
equipped with glass shelter and a powerful air suction system 
for ventilation. Safety regulations have been strictly applied. 
The preparation setup consisted of a flat-bottom 0.5L flask 
equipped with a mechanical stirrer, three dropping funnels, 
and a thermometer. Filtration of the prepared samples was 
done using Buchner funnel - pump system. To handle these 
kinds of energetic materials, best safety practices (leather 
gloves, face shield) are strongly recommended. [45] 
DPT was also prepared starting from the hexamine dinitrate. 
To a mixture formed of glacial acetic acid (5ml, 0.0874mol) 
and acetic anhydride (2ml, 0.0212mol), hexamine dinitrate 
(1g, 0.00375mol) was added as one portion. Then the reaction 
mixture was left, for a fifteen minute period, at a temperature 
of (44+1 ̊ C) which was also maintained throughout this 
procedure. The reaction mixture was then quenched by 
chilling it to 12 ̊ C. Rapid separation of the solid phase was 
then carried out. 
 
3. RESULTS AND DISCUSSION 
 
Mathematica is used to obtain more accurate and optimized 
results.  

Table 1: DPT and hexamine dinitrate concentrations and 
concentration terms at different reaction times at 15 C. 

Time 
(min.) 0 5 10 15 120 240 360 480 600 

Hexamine 
dinitrate 

(mg / ml ) 
0.592 0.589 0.587 0.583 0.541 0.480 0.44791 0.385 0.355 

DPT (mg / 
ml ) 0 0.001 0.002 0.005 0.032 0.072 0.10200 0.126 0.135 

 

 
 

Figure. 1: Representation of the hexamine dinitrate 
concentration-time data at 15  - First Order, R2=0.997832. 

The arte constant is simply calculated from the obtained 
concentration results as shown in Figure 1 based on the 
calculated results from Table 1. [45] 
The reaction is generally very slow. 600 minutes were 
sufficient to convert about 40% only from hexamine dinitrate 
into DPT as shown in Table 1. 

 
Figure 2: Representation of the hexamine dinitrate 

concentration-time data at 15  - Second Order, 
R2=0.994147. 

 

 
 

Figure 3: Representation of the hexamine dinitrate 
concentration-time data at 25  - First Order, R2=0.997851. 

 
Similarly, The rate of conversion of hexamine dinitrate into 
DPT at 25 οC was found relatively higher than that at 15 οC. 
Depletion of about 60% of hexamine dinitrate was achieved 
after 600 minutes as shown in Table 2. 

 
Table 2: DPT and hexamine dinitrate concentrations and 
concentration terms at different reaction times at 25 C. 

Time 
(min.) 0 5 10 15 120 240 360 480 600 

Hexamine 
dinitrate  

(mg / ml ) 
0.597 0.586 0.585 0.581 0.488 0.400 0.327 0.296 0.235 
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DPT (mg / 
ml ) 0 0.005 0.007 0.009 0.087 0.162 0.215 0.231 0.235 

 
 

Figure 4: Representation of the hexamine dinitrate 
concentration-time data at 25  - Second Order, 

R2=0.992881. 

 
 

Figure 5: Representation of the hexamine dinitrate 
concentration-time data at 35  - First Order, R2=0.99773. 

The reaction rate was appreciably higher than that found 
below this temperature. About 90% conversion was recorded 
after 600 minutes. 
 
Table 3: DPT and hexamine dinitrate concentrations and 
concentration terms at different reaction times at 35 C 

Time 

(min.) 
0 5 10 15 120 240 360 480 600 

Hexamine 

dinitrate 

(mg / ml ) 

0.588 0.532 0.521 0.458 0.369 0.202 0.134 0.086 0.052 

DPT (mg / 

ml ) 
0 0.034 0.050 0.102 0.178 0.315 0.368 0.401 0.438 

 
Decomposition of hexamine dinitrate became faster than that 
found below this temperature. About two thirds of the 
hexamine dinitrate were depleted during the first fifteen 
minutes. This temperature has been already recommended by 
many authors 
 
 

 
 

 
 
Figure 6: Representation of the hexamine dinitrate 
concentration-time data at 35  - Second Order, 
R2=0.953836 
 
Table 4: DPT and hexamine dinitrate concentrations and 
concentration terms at different reaction times at 45 C 
 
Time 

(min.) 
0 1 2 3 5 6 8 10 12 15 

Hexamine 

dinitrate 

(mg / ml ) 

0.59 0.56 0.54 0.52 0.44 0.40 0.35 0.33 0.28 0.20 

DPT (mg / 

ml ) 
0 0.02 0.03 0.05 0.12 0.14 0.19 0.20 0.25 0.32 

 

 
 
Figure 7: Representation of the hexamine dinitrate 
concentration-time data at 45  - First Order, R2=0.990814. 
 
The concentrations and concentration terms found at 55 C 
were neither fitting tightly to the first order nor to the 
second order ordinary kinetic models. The reaction at this 
temperature was faster. About 74% of the hexamine 
dinitrate were depleted during the first fifteen minutes. The 
formed DPT was somewhat less than the theoretical. This 
may be attributed to some sort of the side reactions. This 
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may also explain the recommendation given by many 
authors which limit the reaction temperature to 45 C. 
 
 
 

 
 
Figure 8: Representation of the hexamine dinitrate 
concentration-time data at 45  - Second Order, 
R2=0.960295. 
 
Table 5: DPT and hexamine dinitrate concentrations and 
concentration terms at different reaction times at 55 C 
 

Time (min.) 0 5 10 15 

Hexamine dinitrate (mg / ml ) 
0.5969

8 

0.4082

5 

0.3254

0 

0.1552

2 

DPT (mg / ml ) 0 
0.1340

0 

0.1875

0 

0.2764

0 

 

 
 
Figure 9: Representation of the hexamine dinitrate 
concentration-time data at 55  - First Order, R2=0.97128. 
 
The concentrations and concentration terms found at 65 C 
were neither fitting tightly to the first order nor to the 
second order ordinary kinetic models. The reaction was as 
usual faster. About 77% of the hexamine dinitrate were 

depleted in the first fifteen minutes. The DPT yield was less 
than that found in the literature. 
 

 
 
Figure 10: Representation of the hexamine dinitrate 
concentration-time data at 55  - Second Order, 
R2=0.917158. 
 
 
Table 6: DPT and hexamine dinitrate concentrations and 
concentration terms at different reaction times at 65 C 
 

Time (min.) 0 5 10 15 

Hexamine dinitrate (mg / ml ) 0.59780 0.39850 0.28370 0.14048 

DPT (mg / ml ) 0 0.14200 0.19230 0.26235 

 
 

 
 
Figure 11: Representation of the hexamine dinitrate 
concentration-time data at 65  - First Order, R2=0.988583. 
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Figure 12: Representation of the hexamine dinitrate 
concentration-time data at 55  - Second Order, 
R2=0.934405. 
Table 7:  Determined values of reaction rate constant of 
hexamine dinitrate conversion into DPT at different 
temperatures for the first and second order kinetic model. 
Temperatur

e Rate Constant(k) Correlation 
Factor(R2) 

(C) 1-st 
order(s-1) 

2-nd order 
(L.mol-1.sec.-1) 

1-st 
order 

2-nd 
order 

 
15 0.0009 0.0018 0.9956 0.9883 
25 0.0016 0.004 0.995 0.9858 

35 0.0041 0.0247 0.9908 0.9098 

45 0.0645 0.1915 0.9773 0.9222 

55 0.0805 0.2985 0.9386 0.8412 

65 0.0887 0.347 0.9658 0.8731 

 

 
At each temperature, the analysis was done at different 
reaction times. The above mentioned figure shows the 
chromatogram obtained at the end of the investigated 
reaction time at 45°C. By examining the obtained 
chromatograms, the prepared compounds were identified 
and quantified. Concentrations of both unreacted and 
formed species were determined, where CA. and CA are the 
initial and final concentrations of hexamine dinitrate 
respectively. The complete data and calculated results of 
HPLC analysis are summarized in previously mentioned 
Tables. As a first approximation, the reaction may be treated 
as a homogeneous one. From the concentration results, 
namely ln(CA./CA) and (1/CA), shown above, the rate 
constant was calculated for first and second order kinetic 
models respectively as shown in the following Figures 13 

and 14. The obtained values of rate constant are 
summarized in Table 7. 

 
Figure 13: Representation of the hexamine dinitrate 
concentration – time data  at 45 C, according to first order 
kinetic models. 
Similarly, Mathematica is used to obtain more accurate and 
optimized results. The arte constant is simply calculated 
from the obtained concentration results as shown in Figure 
13-14 based on the calculated results from Table 7. [45] 

Figure 14: Representation of the hexamine dinitrate 
concentration – time data  at 45 C, according to second 
order kinetic models. 
From Table 7, it is clear that the calculated rate constant, 
according to the first order model, is nearly doubled for each 
decade of temperature rise up to 35 °C. However, at 45°C 
the rate constant increases almost sixteen times.  
Further increase of temperature, nearly 55°C and 65°C, has 
a slight effect on the rate constant. The results confirm the 
reported data in literature [11] that the optimal reaction 
temperature is 45°C. On the other hand, for the second 
order kinetic model, the increase of the rate constant with 
temperature is irregular and unjustifiable, especially at low 
temperatures. Moreover, the correlation factor values for the 
second order are inferior to those obtained for first order 
kinetic model. Arrhenius equation was used to calculate the 
activation energy of the reaction under investigation. The 
relation between ln(k) and (1/T) for both first and second 
order kinetic model is shown in Figures 13-14. 
The activation energy of the reaction was investigated using 
Arrhenius equation. The proposed kinetic model was found to 
be second order kinetic model based on the experimental data 
that were processed in order to find a relation between ln(k) 
and (1/T) as shown in Figure 13-14. 
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The data in Table 7 are linearly interpolated with 
Mathematica 10 to get a relation between the slopes k of the 
reactions with the temperature, and the data with the 
corresponding line are plotted in figure 13-14. 
 
4. CONCLUSION 
In conclusion, Mathematica was used as a powerful program 
for computing both numeric and algebraic calculations in 
many fields of science now such as physics, engineering, 
chemistry and even biology. Mathematica is one of the most 
powerful tools for dealing with data nowadays. It is used 
with any kind of data regardless of its nature whether 
biological, chemical or engineering data. Mathematica 
arrange and summarize the data. It also describe it by 
interpolating for best possible curves and then any kinds of 
graphs can be achieved. Also after the process of 
summarizing and interpolation. It is straight forward 
calculations to get the required statistical parameters of the 
data and also to measure the strength of interaction between 
different sets of data  
We report here, optimizing the kinetic data DPT via using 
Mathematica. It was determined that the order of the reaction 
is a second-order reaction. The work reports the synthesis of 
DPT as an important and key intermediate for the synthesis of 
RDX and HMX. Recently, new research efforts have been 
devoted to increase the performance of energetic materials 
using nanocomposites and nanoparticles due to its unique 
properties not only in the field of energetic materials but also 
in other applications including medical, environmental, and 
industrial applications. [16-41] 
The yield of the DPT prepared was about 65%; while the 
yield of the hexamine dinitrate prepared was about 89%. 
The analysis of the prepared samples using an efficient 
HPLC was a very reliable procedure. Decomposition of 
hexamine dinitrate became faster than that found below this 
temperature. About two thirds of the hexamine dinitrate 
were depleted during the first fifeteen minutes. This 
temperature has been already recommended by many 
authors. The temperature of 45 ± 2 °C is the optimum 
temperature that gives the optimum conversion and yield. 
The analysis of the prepared samples using an efficient 
HPLC was a very reliable procedure. The concentrations and 
concentration terms found at 45°C were not fitting tightly to 
the ordinary second order kinetic model. Decomposition of 
hexamine dinitrate became faster and faster than that found 
below this temperature. About two thirds of the hexamine 
dinitrate were depleted during the first fifteen minutes. This 
temperature has been already recommended by many 
authors [6,10]. The applicability of the first order model 
which gave higher correlation coefficient when compared 
with the second. 
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