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Research Article

Microwave-assisted synthesis
of palladium nanoparticles
supported on copper oxide
in aqueous medium as an
efficient catalyst for Suzuki
cross-coupling reaction

Hany A Elazab and M.A. Sadek
Department of Chemical Engineering, Faculty of Engineering,

The British University in Egypt, Egypt

Tamer T El-Idreesy
Department of Chemistry, Faculty of Science, Cairo University, Egypt.

Department of Chemistry, School of Sciences and Engineering,

The American University in Cairo, Egypt

Abstract

We report here a reliable green method for the synthesis of palladium nanoparticles supported

on copper oxide as a highly active and efficient catalyst for Suzuki cross-coupling reaction. The

experimental synthetic approach is based on microwave-assisted chemical reduction of an aque-

ous mixture of palladium and copper salt simultaneously using hydrazine hydrate as reducing

agent. The catalyst was fully characterized using various techniques showing well-dispersed pal-

ladium nanoparticles. The catalytic activity and recyclability of the prepared catalyst were exper-

imentally explored in the ligand-free Suzuki cross-coupling reaction with a diverse series of

functionalized substrates. The synthesized Pd/CuO catalyst shows many advantages beside its

high catalytic efficiency such as the recyclability of up to five times with negligible loss of catalytic

activity, short reaction times, use of environmentally benign solvent systems, and mild reac-

tion conditions.
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Introduction

Catalysis research based on transition metal nanoparticles has been extensively investigated as
potentially advanced route in several catalytic applications due to their promising properties
(Beckert et al., 2015; Elazab et al., 2014, 2017a; Kumar et al., 2015; Mankarious et al., 2017;
Mohsen et al., 2017; Neri et al., 2015; Radwan et al., 2017). The nanostructured materials play
a vital role in the field of heterogeneous catalysis through its huge impact on several related
applications especially in the few recent years (Atarod et al., 2016; Nasrollahzadeh et al., 2017,
2014a, 2014b; Nasrollahzadeh and Sajadi, 2016) The precise design of an overall particle size
distribution through controlling particle size is one of the decisive key points to obtain new
unique physical and chemical properties (Xie and Shen, 2009; Xu et al., 2009; Yan et al.,
2009). Recently, the palladium-based nanoparticles have attracted tremendous efforts in the
field of catalysis research due to its broad range of potential applications in the chemical,
biochemical, and pharmaceutical industries. Palladium-catalyzed cross-coupling reactions
play a crucial role in organic synthesis as they are widely used in assembly of complex organic
molecules (Abdelsayed et al., 2009; El-Shall et al., 2009; Fouad and El-Shall, 2012). Those
reactions also simply represent the optimum chemical route for carbon–carbon bond forma-
tion. Those types of cross-coupling reactions have been mostly adopted under homogeneous
reaction conditions via using a ligand in order to achieve a remarkable enhancement of the
catalytic activity and selectivity for specific reactions. Copper-based catalysts have been also
tested in some sorts of important reactions such as Suzuki–Miyaura cross-coupling (Bondioli
et al., 2008; Glasnov et al., 2009). Palladium has a unique ability to catalyze several chemical
reactions under both homogeneous and heterogeneous reaction conditions (Chen et al., 2012;
Iglesias-Juez et al., 2011; Ivanova et al., 2010; Kim and Henkelman, 2012). Recently, research
developments have been reported using both metallic and bimetallic nanoparticle catalysts for
a variety of several chemical transformations (Fouad and El-Shall, 2012; Moussa et al., 2011,
2012; Zedan et al., 2010). The previously mentioned research studies have revealed superior
catalytic activity for both metallic and bimetallic nanoparticles using copper oxide as an ideal
support (Chattopadhyay et al., 2009; Fouad and El-Shall, 2012; Nicolaou et al., 2005). The
importance of this focused scientific research approach is due to the fact that C–C cross-
coupling reactions are considered as one of the most relevant processes in organic synthesis
(Nicolaou et al., 2005). The importance of those nanomaterials is not only covering the
research area of cross-coupling reactions which are widely used in many such as cosmetic,
pharmacy, agriculture, and natural products, but also covers other potential applications in
sensors, catalysis, and energy conversion (Gaikwad et al., 2007; Tsvelikhovsky et al., 2008).

The bimetallic Pd-based nanoparticles were designed using several other transition metals
such as Co, Ag, Pt, Au, Ni, and Cu (El-Shall, 2009). We have recently developed a series of
iron, cobalt, and nickel metal oxide supported palladium nanoparticles with high catalytic
activity (Elazab et al., 2014, 2017b, 2015). Currently, we are working on the development of
similar catalytic systems through using one of the most promising transition metals which is
copper due to its unique several advantages like abundant reserve, low cost, versatility, less
harmful to the environment, and wide use in different applications (Nasrollahzadeh et al.,
2015a, 2015b). There is also a main advantage of using copper oxide as a support for

Elazab et al. 1353



palladium-based catalysts which is preventing the potential agglomeration of palladium
nanoparticles.

The main advantage of using those types of nano-sized particles is that they largely increase

the surface area of the active ingredient of the used catalyst, hence causing a huge enhancement
of the contact between reactants and catalyst to be nearly like that of the homogeneous catalysts

(Chattopadhyay et al., 2009; Hoseini et al., 2017; Hosseini-Sarvari and Razmi, 2015; Mandali
and Chand, 2013). This also led to some innovative ideas regarding the use of nanocatalysis for

green chemistry development including the possibility of using the concept of microwave-
assisted synthesis combined with nanocatalysis (Bondioli et al., 2008; Ceylan et al., 2011;

Fukui et al., 2012; Glasnov et al., 2009; Gupta et al., 2011; Kirschning et al., 2012; Malewicz
et al., 2009; Nishioka et al., 2011; Pourmortazavi et al., 2012; Shviro and Zitoun, 2013).

The current research efforts in most catalysis research groups concerned with this hot

topic are focused mainly on how to avoid the issues associated with homogeneous catalysis.
Those issues are considered as the main challenge to pharmaceutical applications due to the

lack of recyclability and potential contamination from residual metals in the reaction prod-
uct. Several research efforts have been reported that discuss the preparation of palladium

nanoparticles supported on copper oxide in cross-coupling reactions through different syn-
thetic routes including wet-chemical strategy, electrodeposition, and oleylamine synthesis

(Nasrollahzadeh et al., 2015). Our research efforts are focused on eliminating the product
contamination through investigating new catalytic systems using ligand-free heterogeneous

palladium catalysis. The aim of this work is to make an enhancement to the current research
efforts by development of highly active heterogeneous Pd nanocatalysts that can be easily

separated from the reaction medium and recycled. The adopted microwave irradiation
method in this research is simple, reliable, versatile, and rapid. It allows the synthesis of

the nanoparticles with controlled size. The important remarkable advantage of the micro-
wave dielectric heating over the convective heating is that the reactants can be added at

room temperature (or slightly higher temperatures) without the need for high-temperature

injection (Bondioli et al., 2008; Fukui et al., 2012; Glasnov et al., 2009; Kirschning et al.,
2012; Malewicz et al., 2009). In this manuscript, we report on a green efficient method to

prepare highly active palladium nanoparticles supported on copper oxide as a highly effi-
cient catalyst for Suzuki cross-coupling. The high performance of the catalyst including both

catalytic activity and recyclability of the synthesized catalytic nanoparticles is experimen-
tally investigated in ligand-free Suzuki cross-coupling reaction using a series of substrates.

Experimental

All chemicals were used as received without any purification. Absolute ethanol (99.9%) and

deionized water (D.I. H2O) were used for all experiments. Palladium nitrate (10wt% in
10wt% HNO3, 99.999%), copper (II) nitrate hemipentahydrate, hydrazine hydrate (80%),

bromobenzene, all other aryl halides, and potassium carbonate were obtained from Sigma
Aldrich. A CEMDiscover microwave instrument was used for cross-coupling reactions. The

reactions were performed at operator selectable power output of 250W, 2.45MHz.

Synthesis of Pd, CuO nanoparticles, and Pd supported on CuO nanoparticles

Synthesis of Pd supported on CuO nanoparticles (Pd/CuO). In this experimental procedure, cata-
lysts with different weight percents of 5, 10, 20, 30wt% palladium loading on copper oxide
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were prepared. In a 250ml beaker, a solution containing 20ml deionized water and the

relevant weight of copper (II) nitrate hemipentahydrate (347, 329, 292, 256mg, respectively)

were sonicated at room temperature for approximately 1.5 h. Then the volume 97, 194, 388,

582 ml, respectively, of the palladium nitrate solution corresponding to the previously men-

tioned loading percents were added using a micropipette to that previously sonicated solu-

tion and stirring was continued for another 1.5 h. At room temperature, hydrazine hydrate

(1200 ml) was then added and the solution was heated in a microwave of selected power

output of 250W at 95�C for 30 s, filtered, washed with deionized water and then ethanol,

and finally, the catalyst is dried in oven till constant weight of catalyst.

Synthesis of Pd nanoparticles. Palladium nitrate (1940 ml) was added using a micropipette to

50ml deionized water, and then the solution was sonicated for 1 h. Then, the mixture was

stirred for another hour. After finishing the step of stirring, 1200ml hydrazine hydrate was

added using a micropipette to the entire mixture. Then, it is heated using a microwave oven

of selected power output of 250W at 95�C for 20 s, filtered, washed with deionized water and

then ethanol, and finally, dried in oven till constant weight of catalyst.

Synthesis of copper oxide nanoparticles. A total of 366mg of copper (II) nitrate hemipentahy-

drate Cu(NO3)2�2.5H2O was added to 50ml deionized water and then sonicated for 1 h.

Then, the mixture was stirred for another 1 h. After finishing the step of stirring, 1200 ml
hydrazine hydrate was added using a micropipette to the entire mixture. Then, it is heated

using a microwave oven of selected power output of 250W at 95�C for 20 s, filtered, washed

with deionized water and then ethanol, finally, dried in oven till constant weight of catalyst.

Catalyst characterization

A JEOL JEM-1230 electron microscope was used for TEM images. GC–MS analyses were

used to monitor the catalytic activity of the catalyst in selected reactions. The X-ray pho-

toelectron spectroscopy (XPS) analysis was performed on a Thermo Fisher Scientific

ESCALAB. The X-ray diffraction patterns were measured at room temperature using an

X’Pert PRO PAN analytical X-ray diffraction unit.

General procedure for Suzuki cross-coupling reactions

In this experimental procedure, aryl halide (0.32mmol, 1 eq.) was dissolved in a mixture of

4ml H2O:EtOH (1:1) as an environmentally benign solvent system. The aryl boronic acid

(0.382mmol, 1.2 eq.) and potassium carbonate (0.96mmol, 3 eq.) were added to this mix-

ture. The Pd/CuO (1mol%) was then added; then heating under microwave irradiation took

place in microwave of selected power output of 250W at different temperatures of 80, 120,

and 150�C for 10min. It was reported by Ying-Jie Zhu et al. that most of the alcohols with

low molecular weights are usually with relatively low boiling points, so implementing the

reactions in closed systems is the key to overcome the problem associated with the open

reaction systems. This is our case in this research study as a mixed solvent system composed

of water and alcohols will allow only low-temperature chemical reactions. So, using micro-

wave assisted-synthesis approach in a closed system will allow using higher reaction temper-

atures. The use of this automated and calibrated microwave reactor makes it possible to

obtain reliable and reproducible experimental results. After the reaction was completed, the
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reaction mixture was extracted and the solvent in the filtrate was removed and the solid

product was further purified (Elazab et al., 2017b, 2015).

General procedure for catalyst recycling

In this typical experimental procedure, aryl halide (0.32mmol, 1 eq.) was dissolved in a

mixture of 6ml H2O:EtOH (1:1). The aryl boronic acid (0.382mmol, 1.2 eq.) and potassium

carbonate (0.96mmol, 3 eq.) and finally the palladium–copper oxide nanoparticles Pd/CuO

(1mol%) were then added. The test tube was then sealed with a cap and heated under

microwave irradiation (250W, 2.45MHz) at the required temperature and time. After the

reaction completed, the progress of the reaction was monitored using GC–MS analysis to an

aliquot of the reaction mixture. Then, the mixture was diluted with ethanol and shaken.

Hence, the solvent above the catalyst was decanted and the catalyst was removed. Ethanol

washing for the catalyst was repeated for five times to make sure that all products were

removed from catalyst surface. The catalyst was then transferred directly to another micro-

wave tube and fresh reagents were added in order to start the next run. This experimental

procedure of recycling the catalyst was repeated for every run and the GC–MS was used to

determine the percent conversion of the product (Elazab et al., 2017b, 2015).

Results and discussion

The Suzuki cross-coupling reaction of bromobenzene and phenyl boronic acid in 50 vol%

aqueous ethanol under various reaction conditions was investigated using microwave reac-

tor of selected power output of 250W (Scheme 1). In order to study the effect of temperature

on the catalytic activity, the cross-coupling reaction was carried out in microwave of selected

power output of 250W at constant reaction time (10min) and different temperatures (80,

120, 150�C) using the nanoparticles catalyst (1mol%). After the reaction was completed, the

mixture was diluted with ethanol and shaken. Then, the solvent above the catalyst was

decanted and the catalyst was removed. Ethanol washing for the catalyst was repeated

for five times to make sure that all products were removed from catalyst surface. The

catalyst was then transferred directly to another microwave tube and fresh reagents were

added for next run. This procedure of recycling the catalyst was repeated for every run.
The results reveal that the temperature has a great influence on the reaction yield where

increasing the temperature of the reaction mixture favors higher conversion to the product

with maximum conversion obtained at 150�C. This behavior was identical for all

prepared Pd/CuO catalysts having different Pd loading percents on the solid support

(5, 10, and 20wt%) as seen in Table 1.
Also, it was found that increasing the catalyst weight percent on the solid support from

5–10 to 20wt% enhances product conversion (at all studied temperatures) with maximum

Scheme 1. Suzuki cross-coupling reactions using Pd/CuO catalyst.

1356 Adsorption Science & Technology 36(5–6)



product conversion reaching 100% for 20wt% Pd-loaded catalyst at 150�C. Surprisingly,
further increase in the Pd content on the solid support (30wt%) led to a sharp drop in the

catalytic performance and lower conversion (about 65%) to the desired product was

observed in Table 2.
It is also noteworthy to mention that repeating the cross-coupling reaction under the

optimized conditions (10min and 150�C) and replacing the 1mol% Pd/CuO catalyst with

either 1mol% CuO nanoparticles or 1mol% Pd nanoparticles only resulted in very low

conversion to the desired cross-coupling product (less than 30%). These findings reflect on

one hand the superiority of Pd metal over copper catalyzing such reactions. On the other

hand, it shows the crucial role played by the copper oxide solid support (found in Pd/CuO

catalyst and not in Pd nanoparticles catalyst) in minimizing the agglomeration effect of the

Pd nanoparticles which is responsible for the reduction in the catalyst activity. The versa-

tility of substrates that can be used in Suzuki cross-coupling reaction using the synthesized

catalyst is explored in Tables 3 and 4.
From the TEM images in Figure 1, the well dispersion of palladium nanoparticles of

average size (20–40 nm) is obviously noticed as in Figure 1(a) and the histogram shown in

Figure 2. The TEM images here can be used as an evidence of the high catalytic activity in

case of prepared Pd/CuO when compared with the same catalyst after the fifth run which is

probably due to the negative effect of the agglomeration of the particles that took place after

reaction as shown in Figure 1(b).
Figure 3 displays the XRD diffraction pattern of palladium supported on copper oxide

that was prepared by microwave method. The exact palladium content in microwave

Table 2. Conversion percentage for different ratios of Pd/CuO.

Catalysts mol% Temp (�C) Time (min.) Conversion% Base

5wt% Pd/CuO 1 150 10 86 K2CO3

10wt% Pd/CuO 1 150 10 94

20wt% Pd/CuO 1 150 10 100

30wt% Pd/CuO 1 150 10 65

Table 1. Conversion percentage for different ratios of Pd/CuO.

Catalysts mol% Temp (�C) Time (min.) Conversion%

5wt% Pd/CuO 1 80 10 40

1 120 10 72

1 150 10 86

10wt% Pd/CuO 1 80 10 57

1 120 10 82

1 150 10 94

20wt% Pd/CuO 1 80 10 66

1 120 10 93

1 150 10 100

Pd nanoparticles 1 150 10 <30

CuO nanoparticles 1 150 10 <30
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synthesized Pd/CuO catalysts prepared with different palladium loading weight percent was

determined by means of inductively coupled plasma optical emission spectrometry (ICP-

OES) and it was found to be 3.5, 6.5, 10, 18wt% Pd corresponding to prepared 5, 10, 20,

30wt% of Pd/CuO catalysts, respectively. Further characterization of the microwave syn-

thesized palladium supported on copper oxide catalyst (Pd/CuO) was achieved by XRD

pattern of catalyst sample as seen in Figure 2. A sharp diffraction peak was also easily

noticed at 2h¼ 40� which is characteristic to palladium. The XRD reflections of CuO match

that of JCPDS no. 48-1548 corresponding to monoclinic structure (Nasrollahzadeh et al.,

2015a, 2015b). The diffraction peaks are ascribed to the (110), (111), (112), (202), (112), and

(113) planes of copper oxide NPs as shown in Figure 2 (Elazab et al., 2014, 2017b, 2015).
The XPS technique is widely used as a more accurate and reliable technique for the

chemical analysis of surface oxides than XRD. In Figure 4(a) and (b), samples reveal the

existence of copper oxide. The XPS shows that the binding energy of Cu 2P3/2 was located at

933.1 eV and the binding energy of Cu 2P1/2 was located at 953.1 eV, showing that copper

was found as Cu2þ. There is also shake-up satellite peaks located at 941.9 and 961.7 eV.

Also, the binding energy of Pd 3d3/2 was 340.1 eV and Pd 3d5/2 was 334.8 eV, as evidence

that the Pd was present as Pd0. Also, the binding energy of Pd 3d5/2 was 336.23 eV and

Table 3. Suzuki cross-coupling reactions with various substrates using Pd/CuO catalyst.

I

I

MeO

I

NC

I

NC

I

H

O

B(OH)2

B(OH)2

N

B(OH)2

O

B(OH)2

S

O
B(OH)2

MeO

N

S

NC

O

O

NC

H

O

Entry Aryl halide Boronic acid Product % Conversion

1

2

3

4

5

90%

86%

85%

82%

88%

aAryl halide (0.32mmol, 1 eq.), aryl boronic acid (0.382mmol, 1.2 eq.), potassium carbonate (0.96mmol, 3 eq.),

and Pd/CuO (1mol%) in 4ml (H2O:EtOH) (1:1) were heated at 150�C (MWI) for 10 min.
bConversions were determined by GC–MS.
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Table 4. Diversity of the Suzuki cross-coupling reactions using Pd/CuO catalyst.

Br

Br

O2N

Br

NC

Br

Cl

B(OH)2

B(OH)2

B(OH)2

O

B(OH)2

Entry Aryl halide Boronic acid Conversion (%)

1

2

3

4

5

Br B(OH)2

6

90%

87%

91%

60%

88%

82%

S

N

H

O

O

O2N

O

O

H2N

O

B(OH)2O

O

S

O2N

N

NC

O2N

O

O

O

H

O

O
O

O

NH2

O
O

O

Product

aAryl halide (0.32mmol), aryl boronic acid (0.382mmol, 1.2 eq.), potassium carbonate (0.96mmol, 3 eq.), and Pd/

CuO (1mol%) in 4ml (H2O:EtOH) (1:1) were heated at 150�C (MWI) for 10min.
bConversions were determined by GC–MS.

Figure 1. TEM images of Pd/CuO. (a) Before the reaction, (b) after fifth run of the reaction.

Elazab et al. 1359



Pd 3d3/2 was 341.38 eV, showing that the Pd was found as PdO (Pd2þ) (Elazab et al., 2014,

2017b, 2015).
The results of catalyst recycling were previously discussed in “General procedure for

catalyst recycling” section and are summarized in Table 5. As seen in Table 5 and
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Figure 2. The corresponding histogram of Pd/CuO nanoparticles.
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Figure 3. XRD pattern of Pd/CuO nanoparticles.

1360 Adsorption Science & Technology 36(5–6)



Figure 5, that catalyst has an excellent catalytic activity. For example, a catalyst with
0.5mol% could be recycled up to three times with nearly 100% conversion. Also, by
using 1mol%, the catalyst was recycled up to five times with high conversion near 100%.

TEM images of Pd/CuO can support the opinion that the deactivation process that took
place after the fifth run is clearly due to the negative effect of agglomeration and accumu-
lation of both Pd and CuO nanoparticles on the surface of the catalyst as shown in Figure 1
(b). The leaching of palladium from the catalyst was tested by performing the reaction in the
presence of 0.5mol% catalyst at 150�C for 10min under microwave-assisted synthesis heat-
ing conditions. Once the reaction is completed, the Pd content was determined in the filtrate
to be 184 ppm based on the ICP-MS analysis.

In general, the results reported here are in good agreement with many reported data;
however, our research findings have some advantages including using a simple synthetic
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Figure 4. (a) XPS (Pd3d) and (b) XPS (Cu2p) of Pd/CuO.

Table 5. Recycling experiments for Pd/CuO catalyst using a concentration of
0.5, 1mol%.a

Run

Conversion (%)b

(0.5mol%)

Conversion (%)b

(1mol%)

1 100 100

2 90 96

3 86 93

4 83 90

5 70 88

6 55 60

aBromobenzene (50mg, 0.32mmol), boronic acid (47mg, 0.382mmol, 1.2 eq.), potassium

carbonate (133mg, 0.96mmol, 3 eq.), and Pd/CuO (0.5mol%) or (1mol%) in 4ml (H2O:

EtOH) (1:1) were heated at 150�C (MWI) for 10min.
bConversions were determined by GC–MS.
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protocol, shorter reaction time, mild reaction conditions, and environmentally benign sol-

vent system if compared with other research reports (Chattopadhyay et al., 2009; Hoseini

et al., 2017; Hosseini-Sarvari and Razmi, 2015; Mandali and Chand, 2013; Nasrollahzadeh

et al., 2015a, 2015b).

Conclusions

In summary, we developed a simple and efficient synthetic protocol to highly active Pd

nanoparticle catalysts supported on copper oxide matrix using microwave irradiation. The

adopted MWI approach represents a simple and fast route to implement a smooth syn-

thetic process where no high temperature or high pressure is needed. The synthesis of the

catalyst is based on the chemical reduction of the corresponding aqueous mixture of

palladium nitrate and copper nitrate salts using hydrazine hydrate as reducing agent.

The synthesized Pd/CuO bimetallic catalyst was fully characterized and found to have

average size of 20–40 nm. In addition, its catalytic performance was examined in catalyz-

ing Suzuki cross-coupling reactions in 50% aqueous ethanol as green solvent using micro-

wave heating and the results were compared to that of the unsupported Pd nanoparticles.

The superior catalytic activity of Pd/CuO catalyst emphasizes the crucial role played by

the CuO solid support in preventing nanoparticles agglomeration. The prepared Pd/CuO

catalyst was found to be stable showing excellent conversion percents within 15min at

150�C. Furthermore, it could be simply recovered and recycled up to five times with

negligible loss in performance or catalytic activity under batch reaction.

Figure 5. Recycling experiments of 0.5mol% Pd/CuO catalyst for Suzuki cross-coupling reaction heated at
150�C (MWI) for 10min. Note: Bromobenzene (50mg, 0.32mmol), boronic acid (47mg, 0.382mmol,
1.2 eq.), potassium carbonate (133mg, 0.96mmol, 3 eq.), and Pd/CuO (0.5mol%) in 4ml (H2O:EtOH) (1:1)
were heated at 150�C (MWI) for 10min. Conversions were determined by GC–MS.
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