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Abstract: In this research, active carbon-based catalyst synthesis and characterization were tested for 

potential catalysts to be used in dye removal of methylene blue (MB). Water hyacinth is one of the 

major problems that is facing humankind and especially here in Egypt. One of the implications of 

industrial activities is environmental pollution. Dyes used in the production of textiles, paper, and 

clothes are one of the major pollutants. The waste of those dyes discharged into water supplies without 

treatment or with ineffective treatment harmfully impacts the environment. In this research, the 

treatment is implemented using active carbon-based catalysts using embedded nanoparticles. This leads 

to a huge increase in the adsorbent's surface area, also increasing the adsorbent efficiency. The activated 

carbon was derived from water hyacinth that grows near the Nile River. Water hyacinth has many 

practical uses as it can absorb heavy metals like lead and dyes. Water hyacinth was converted into 

activated carbon through carbonization. Different dyes were used with different contact times in fixed 

conditions.  

Keywords: dye removal; metal oxides; catalyst; wastewater treatment; active carbon; water hyacinth. 

© 2021 by the authors. This article is an open-access article distributed under the terms and conditions of the Creative 
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1. Introduction 

Industrial pollution is more dangerous than the generation of power. Industrial dye 

waste must be treated well not to affect the water and aquatic life [1-5]. Then, chemical 

engineers and chemistry scientists cooperate in several research pieces to figure out easy and 

applicable ways to treat the water with organic and synthetic compounds. Dyes are substances 

used to add color to several things, such as textiles, papers, leather, and other materials. Like 

that, the coloring is not changed or impacted by washing, light, heat, or any other factor to 

which the colored material may be exposed. Dyes are different from pigments, which are finely 

ground solids dispersed in a liquid, such as paint or ink, or blended with other materials [6-14].  
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Most dyes are organic compounds that contain carbon, but pigments may be inorganic 

and do not contain carbon or organic compounds.  

Water pollution is a serious issue, where dye ions from dyeing industries have been 

emerged as a severe threat to human beings and the aquatic ecosystem due to their toxicity and 

persistence after being released in natural water. Therefore, discharge regulations are 

progressively becoming more stringent [15-22]. Many recent studies have been focused on 

developing efficient processes for the recovery of these organic contaminants from the 

effluents of textile industries. Usually, conventional techniques such as precipitation, 

coagulation, and flocculation have been used in wastewater treatment. Photo-oxidation has also 

been proposed for the treatment of dye-containing effluents. However, this process is relatively 

expensive and not appropriate for the treatment of large flows. Biological degradation has been 

cited as an alternative process for decolorizing the reactive dye [7-9, 23-26]. 

On the other hand, the adsorption process remains the most common and useful 

technique for the decontamination of the effluents of textile and dyeing industries. Many 

studies have been made on the possibility of adsorbents using mineral sorbents, activated 

carbon, peat, rice husk, soy meal hull, and agro wastes. However, the adsorption capacity of 

the adsorbents is not very effective in improving adsorption performance, and new adsorbents 

are still under development [27-30]. The attention has been placed on understanding kinetics, 

mechanisms, and equilibrium processes involved in the adsorption of MB onto chitosan. The 

effects of pH, initial dye concentration, and adsorbent dosages on the adsorption phenomena 

have been studied. Methylene blue, also known as methylthioninium chloride, is a medication 

and dye [15-22, 31-36]. Many industries' effluent water, such as textiles, leather, paper, 

printing, cosmetics, etc., contains a large amount of hazardous dye. After colorization, it is 

disposed of as waste with water then going to the aquatic life. Treatment of wastewater is 

needed before its disposal. Activated carbon adsorption is one such method that has great 

potential for removing dyes from aqueous waste. The efficiency of adsorption of carbon-based 

materials like activated carbon depends on several factors, including the surface area, the 

distribution of the pore size, solution pH, other ions in solution, and so on. 

The most widely used activated carbons are microporous and have high surface areas, 

and as a consequence, they show high efficiency for the adsorption of low molecular weight 

compounds and larger molecules. Zhi-yuan carried out an adsorption study of methylene blue 

on activated carbon fiber (ACF) [11-18]. It has been used in adsorption systems, including 

removing noxious gases because of its extensive specific surface area, high adsorption 

capacity, well-developed microspores, reproducibility, and processability. Several effects of 

experimental parameters were tested, including the initial methylene blue (MB) concentration 

and the adsorption rates. Equilibrium data were fit well by a Freundlich isotherm equation. 

Adsorption measurement shows that the process is very fast. Nakagawa et al. attempted to 

evaluate the porous properties and hydrophobicity of activated carbons obtained from several 

solid wastes, namely, waste PET, waste tires, refuse-derived fuel, and wastes generated during 

lactic acid fermentation from the garbage. Activated carbons with various pore size 

distributions were obtained by the conventional steam-activation method via the pretreatment 

method (i.e., a mixture of raw materials with a metal salt, carbonization, and acid treatment 

before steam activation) [37-44]. 

Authors reported that the activated carbons with plentiful mesopores prepared from 

PET and waste tires had quite a high adsorption capacity for large molecules. Therefore, they 

are useful for wastewater treatment, especially for removing bulky adsorbates [14-20, 45-47]. 
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Li et al. reported the displacement of atrazine by the strongly competing fraction of natural 

organic matter (NOM) in batch and continuous flow powdered activated carbon (PAC) 

adsorption system. During the combined hollow fiber membrane microfiltration operated in 

dead-end mode, it was found that membrane was effective for removing PAC particles from 

water suspensions and PAC tendency for irreversible membrane fouling was extremely low. 

The presented combined adsorption-membrane process has a potential application for organic 

dye removal [30-36, 49]. Tapered bed adsorption columns, using activated carbon, have been 

used by McKay et al. [22-28, 44-49]. Several other authors have also tested activated carbon 

for various dyes' adsorption [11-22, 31-37, 44-49]. Pereira et al. reported that the surface 

chemistry of a commercially activated carbon had been selectively modified without changing 

its textural properties significantly, employing chemical treatments. The results obtained 

confirmed through color removal from a real textile process effluent. [8-12, 22-26, 33-49]. 

2. Materials and Methods 

2.1. Materials. 

Chemicals were used as received without any modification or further steps of 

purification. The water hyacinth plant was procured from Giza on the west bank of the Nile 

River in Egypt. The plant's roots were removed, and only the stems and leaves were used in 

the experimentation process. The stems and leaves were meticulously washed and submerged 

in distilled water to ensure the removal of dirt and contaminants. The stems and leaves were 

subsequently dried in an oven at 100°C for 90 minutes. The dried stems and leaves were 

fragmented into smaller pieces and are permeated 3 times their weight with concentrated 

phosphoric acid (H3PO4) at room temperature for 48 hours; H3PO4 was added to enhance the 

channels amongst the particles. The samples were then placed in a ceramic oven for 3 hours at 

a temperature of 600°C for carbonization to transpire.  

The samples were left for 2 hours to cool down after ignition at room temperature. 

Afterward, the samples were washed with distilled water several times to ensure no remaining 

amounts of phosphoric acid were left. The samples were filtered and dried in an oven for 1 

hour at a temperature of 110°C. Lastly, the samples were finely ground into a delicate powder, 

as shown in Figure 1.  

 
Figure 1. Water hyacinth after drying. 

2.2. Preparation of dye stock solutions. 

The obtained activated carbon, which amounted to 3.1 g, was added to 200 ml of 

distilled water and placed on a magnetic stirrer for 30 minutes at 450 rpm. After stirring, the 

cobalt metal salt was added to the solution and stirred for an additional 30 minutes. While 

stirring, 250-μl of Hydrazine hydrate was added as a reducing agent to the solution. Afterward, 
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the magnetic stirrer was taken out of the solution and placed in a microwave to be heated for 5 

minutes at 10-second intervals to avert the solution from gushing out of the beaker. Henceforth, 

the solution was filtered and washed with water and ethanol and is left to dry overnight. 

Methylene blue is a cationic compound that comprises crystals that exhibit a dark green 

hue, as shown in Figure 2. When dissolved in an aqueous solution, the sample manifests a deep 

blue color shown in Figure 3. The methylene blue used in experimentation is 82% pure. Three 

various dye concentrations were prepared, respectively,4x10−6 6𝑥10−6and 8𝑥10−6. 

 
Figure 2. Methylene blue powder. 

 
Figure 3. Methylene blue after the addition of water. 

A UV/VIS spectrophotometer, as shown in Figure 4, was used to measure the 

absorbance of dye before and after the addition of activated carbon and activated nickel 

nanoparticles at a wavelength of 665. A UV/VIS spectrophotometer measures the absorbance 

of material on an ultraviolet region. 

 
Figure 4. UV-vis spectrophotometer. 

3. Results and Discussion 

Table 1. Comparison between using activated carbon alone and with cobalt nanoparticles. 

Adsorbent Tests Initial concentration Absorbance Final concentration 

Water hyacinth 

activated carbon 

1 minute shaking  4x10-6 0.0634 7.0455x10-9 

6x10-6 0.0639 7.0742x10-9 

8x10-6 0.0397 5.68x10-9 

10 seconds 

shaking 

4x10-6 0.0668 7.241x10-9 

6x10-6 0.0889 8.511x10-9 

8x10-6 0.0781 7.890x10-9 
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Adsorbent Tests Initial concentration Absorbance Final concentration 

Instant contact  4x10-6 0.0391 5.648x10-9 

6x10-6 0.01148 1.0001x10-8 

8x10-6 0.0794 7.9655x10-9 

Water hyacinth 

activated carbon with 

cobalt nanoparticles  

1 minute shaking  4x10-6 0.0475 6.1312x10-9 

6x10-6 0.0862 8.3565x10-9 

8x10-6 0.0332 5.309x10-9 

10 seconds 

shaking 

4x10-6 0.0559 6.6142x10-9 

6x10-6 0.0658 7.1835x10-3 

8x10-6 0.0532 6.459x10-9 

Instant contact 4x10-6 0.0565 6.6487x10-9 

6x10-6 0.0514 6.355x10-9 

8x10-6 0.0530 6.4475x10-9 

Table 1 is typically summarizing and illustrating the values of absorbance projected 

from the UV/VIS spectrophotometer. Table 1 represents the values taken at wavelength 665 of 

the tests conducted with activated cobalt nanoparticles on three different dyes concentrations 

by adding 0.01 g activated cobalt nanoparticles on 30 ml dye concentration. The aim is to test 

the effect of time and motion utilizing a mechanical shaker on both 1-minute and 10 seconds. 

It represents a comparative study between the same parameters of testing on activated carbon 

alone and using cobalt nanoparticles as well. It simply gives an overview of the impact of using 

different concentrations on absorbance. The effect of initial dye concentration was the first 

effect studied in this work. A series of dye solutions with 4x10-6 M, 6x10-6 M, and 8x10-6 M 

initial dye concentrations were used in this study. It also illustrates the values of absorbance 

projected from the UV/VIS spectrophotometer. Results represent the values taken at 

wavelength 665 of the tests conducted with activated nickel nanoparticles on three different 

dyes concentrations by adding 0.005 g activated nickel nanoparticles on 30 ml dye 

concentration. The aim is to test the effect of concentration and the extent of adsorption through 

funnel precipitation.  

We investigated several series of the selected solutions with 4x10-6 M, 6x10-6 M, and 

8x10-6 M initial dye concentrations. This study has a different removal percentage. It was found 

that the carbon-based adsobent based on water hyacinth is the best and efficient concentration 

in removal percentage. However, increasing the concentration could not enhance the removal 

efficiency as it keeps decreasing until the minimum removal percentage was recorded. 

 
Figure 6. Calibration curve (concentration vs. absorbance). 
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Based on the spectrophotometry results and mathematical calculations, it can be 

concluded that activated carbon is comparatively and highly efficient on its own in the removal 

of dye. The activated cobalt nanoparticles exhibit, more or less, the same adsorption percentage 

of activated carbon; this infers that nickel is not a highly efficient metal in the process of dye 

removal. Both activated carbon and activated cobalt nanoparticles were tested by adding 0.01 

g on 30 ml of different dye concentrations and subjected to mechanical shaking at a constant 

rpm of 150; once for 1 minute and once for 10 seconds. Furthermore, both activated carbon 

and activated nanoparticles were also tested by adding 0.005 g in a funnel and adding 30 ml of 

dye. Experimentation was conducted by those means to establish the effect of kinetic motion 

on the rate of adsorption. It is concluded that kinetic energy has a relatively small effect on the 

degree of adsorption. The activated carbon and activated cobalt nanoparticles were highly 

potent in adsorbing the dye while being in a stationary or precipitation phase. Additionally, the 

effect of concentration was relatively negligible given that 0.005 g were able to absorb the 

same amount of dye as 0.01. 

4. Conclusions 

 In conclusion, by comparing activated cobalt nanoparticles and activated carbon, water 

hyacinth-derived activated carbon is highly successful and efficient in adsorbing methylene 

blue dye. On the other hand, to enhance the effectiveness and rate of absorbance of water 

hyacinth-derived activated carbon, further investigation of other metals, aside from cobalt, is 

needed to conclude a suitable metal oxide catalyst efficient enough to couple with the water 

hyacinth derived activated carbon. 
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