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Abstract: Ship detection and tracking is an important task in video surveillance in inland waterways.
However, ships in inland navigation are faced with accidents such as collisions. For collision
avoidance, we should strengthen the monitoring of navigation and the robustness of the entire
system. Hence, this paper presents ship detection and tracking of ships using the improved You Only
Look Once version 3 (YOLOv3) detection algorithm and Deep Simple Online and Real-time Tracking
(Deep SORT) tracking algorithm. Three improvements are made to the YOLOv3 target detection
algorithm. Firstly, the Kmeans clustering algorithm is used to optimize the initial value of the anchor
frame to make it more suitable for ship application scenarios. Secondly, the output classifier is
modified to a single Softmax classifier to suit our ship dataset which has three ship categories and
mutual exclusion. Finally, Soft Non-Maximum Suppression (Soft-NMS) is introduced to solve the
deficiencies of the Non-Maximum Suppression (NMS) algorithm when screening candidate frames.
Results showed the mean Average Precision (mAP) and Frame Per Second (FPS) of the improved
algorithm are increased by about 5% and 2, respectively, compared with the existing YOLOv3
detecting Algorithm. Then the improved YOLOv3 is applied in Deep Sort and the performance
result of Deep Sort showed that, it has greater performance in complex scenes, and is robust to
interference such as occlusion and camera movement, compared to state of art algorithms such as
KCF, MIL, MOSSE, TLD, and Median Flow. With this improvement, it will help in the safety of inland
navigation and protection from collisions and accidents.

Keywords: ship detection; inland waterways; real-time detection; YOLOv3; Deep SORT

1. Introduction

In recent years, with the rapid development of computer vision and artificial intel-
ligence, the intelligent video surveillance system has been gradually applied in various
fields including in inland waterways. However, most inland navigations are still faced
with accidents and ship collisions, hence it is important to detect and track ships in inland
waterways in order to improve the safety of navigation. The core of an intelligent video
surveillance system is the moving object detection algorithm and tracking algorithm.

There are many traditional detection methods proposed by researchers. These algo-
rithms have three common processes, including region selection [1], feature extraction [2]
and classification [3]. Region selection generally uses a sliding window method to traverse
the image globally. This causes a lot of detection redundancy and has high time complexity.
Feature extraction plays an important part in object detection [2]. After region selection,
features are extracted from the target. Thus classical features such as scale-invariant fea-
ture transformations (SIFT) [4] and a histogram of oriented gradients (HOG) [5] need to
be designed to represent the target. The last step is to map and classify features. The
main classifiers include support vector machines (SVM) [6] and Adaboost [7]. In 2016,
Kaido et al. [8] used support vector machine (SVM) and edge detection in the detecting of
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ships [9]. The author proposed a vessel number plate identification by using two cameras
and identification of various vessels passing through the port. However, even with all the
proposed algorithms, they still encountered drawbacks of efficiency and accuracy. To solve
these problems, the use of machine vision and deep neural networks were proposed to
increase efficiency and accuracy of object detection algorithms.

Using Convolutional Neural Network (CNN) as the basis of the algorithm has be-
come the mainstream trend of classification and detection tasks. It is mainly divided
into two routes—a two-step algorithm based on regional recommendations. It includes
R-CNN [10], Fast R-CNN [11], and Faster R-CNN [12]. This route essentially inherits the
ideas of traditional detection algorithms, firstly screening areas that may have targets and
then performing feature extraction and classification; the other is end-to-end, that is, a
one-step algorithm. It includes YOLO [13], YOLOv2 [14], YOLOv3 [15], and SSD [16].This
route transforms the target detection problem into a regression problem, that is, the re-
gression algorithm outputs both the probability of each category and the target location
information [11]. A comparison is shown in Table 1 below.

Table 1. Comparison of various object detection algorithms.

Object Detection Algorithm Advantage Limitation

Region with CNN features(R-CNN) [10]
In 2014, Ross Girshick suggested R-CNN
and acquired a mean average precision
(mAP) of 53.3%with improvement more
than 30% over the prior best outcome on
PASCAL VOC 2012.

It improves the quality of candidate
bounding boxes and take a deep
architecture to extract high-level
features [10].

Training of R-CNN is expensive because the
features are extracted from different region
proposals and stored on the disk. Also it
takes much time to process relatively small
training set such as VGG16.

Fast Region with CNN features (Fast
R-CNN) [11]
In 2015, Ross Girshick suggested Fast
R-CNN that uses bounding boxes and
multiple task on classification [11].

It saves the extra expense on storage
space.
The Fast R-CNN is faster than R-CNN
because the convolution process is
completed once per image and a
feature map is produced from it.

It’s also slow and time consuming because it
uses selective search algorithm to find the
regional proposal, hence affects the
performance of the network.

Faster R-CNN [12]
In 2016, Ren et al. introduced Faster
R-CNN which uses a separate network to
predict regional proposals instead of
using selective search algorithm.

Ability of an object to be trained in an
end to end way. Also, a frame rate of
5 FPS (FramePer Second) on a GPU is
achieved with state-of-the-art object
detection accuracy on PASCAL VOC
2007 and 2012 [12].

Its time consuming.
It is not trained to deal with objects with
extreme shapes.
It does not produce object instaces instead
produce objects with background.

YOLO (You Only Look Once) [13]
In 2016, Redmon et al. proposed You
Only Look Once (YOLO) in this, instead
of using regions to localize object it uses
convolution neural network to suggest
bounding boxes and probability of those
boxes.

It is fast compared to prior algorithms
because it uses only one step for
object detection.

It has spatial constraints which result in
difficulty with dealing with small objects in
groups.
Because of many downsampling operations
it result to difficulty in generating
configuration.
Sometime shows less accuracy.

Single Shot Detector(SSD) [16]
In 2016, Liu et al. suggested Single Shot
MultiBox Detector (SSD).It uses default
anchor boxes with different aspect ratios
and scales to generate the output space of
bounding boxes instead of fixed grid
used in YOLO [16].

It is fast It has less accuracy

Table 1 above shows different existing object detection CNN algorithms with their
advantages and limitations. YOLO algorithm and SSD algorithm are observed to have
more advantages compared with R-CNN family algorithms. YOLO [13] uses a single
convolution neural network to calculate bounding boxes and the probability of these boxes.
Improvements of YOLO algorithm have recently been released: YOLOv2 and YOLOv3, as
proposed by [14,15] respectively.
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Researchers have also proposed different ship detection algorithms using various
CNN algorithms. Dong and Lin [17] improved Faster-RCNN (Faster Region Based Con-
volutional Neural Network) and introduced the box-based rotation device for detecting
high resolution ship images. Fan et al. [18] Suggested ship detection by improving Faster
R-CNN to detect Polarization Synthetic Aperture Radar (PSAR) ship images. Jiao et al. [19]
proposed a densely connected multiscale neural network based on Faster-RCNN to de-
tect multiscene SAR images. An et al. [20] suggested an improved RBox-based target
detection framework to obtain accuracy recall rate and precision of the detection. Qi
et al. [21] Improved Faster-RCNN by completing image downscaling to obtain useful
information of ship images, which helps in the accurate and timely detection of ship im-
ages. Zhang et al. [22] Proposed a lightweight optimization network LFO net based on
SSD for ship detection in SAR images. For ship detection, this method designed a simple
lightweight network, proposing a bidirectional feature fusion module including semantic
aggregation and feature reuse blocks, and used an attention mechanism to optimize fea-
tures. They achieved better detection results than the SAR ship dataset, but some weak
small targets and false alarms on land are difficult to eliminate. Song et al. [23] Proposed a
sophisticated and automatic methodology to generate verified and robust training data by
employing synthetic aperture radar (SAR) images and ship automatic identification system
(AIS) data. They used Kalman filter for interpolation followed by recompensing Doppler
frequency shift. They achieved high performance compared to manual training of the
Synthetic Aperture Radar (SAR) images. Imani and Ghoreishi [24] Proposed a multi-fidelity
Bayesian optimization (MFBO) framework that significantly scaled the learning process
of a wide range of existing inverse reinforcement learning techniques. They achieved
high performance in different demonstrated problems, but encountered limitations with
problems associated with inland waterways. Sr et al. [25] Proposed a ship algorithm that
utilized an improved YOLO and multi-feature ship detection method to detect ships. For
this method the SIFT features were reduced by MDS (multi-dimensional scaling), and
RANSAC (random sample consensus) was used to optimize SIFT feature matching and
effectively eliminate mismatching. They achieved high accuracy and robustness but en-
countered limitations in tracking some other targets and reported the process to be time
consuming. Huang et al. [26] Proposed an intelligent ship detection and classification
using improved YOLOv3 algorithm. They produced a high accuracy of detection but
encountered limitations of missing the detection of small ship targets and low accuracy
in complex environments such as fog. Different researchers such as [12,27] proved that
the neural network detection algorithms worked better than traditional object detecting
algorithms.

Different YOLOv3 detection algorithms proposed by researchers have produced good
results, but there exist some limitations still, such as missing targets and low accuracy.
Therefore, it is necessary to conduct ship detection related experiments based on this
algorithm. In this paper, a modified YOLOv3 detection has been proposed to solve the
problem of speed and accuracy, combined with a Deep Sort algorithm [28] to help with
ship detection and tracking.

1.1. Problem Statement

With the limitations and current state of the above-mentioned approaches and increase
of collisions in inland waterways, there is a demand and need for more efficient solutions
based on new technologies for ship detection and tracking in inland waterways. Although
the model trained by the original algorithm of YOLOv3 works well, there are still many
missing and wrong detection phenomena. In this context, the improvement of the original
YOLOv3 algorithm to further improve the index, reduce false detections, enhance the
ability of missing detections to resist the interference of shore objects, and the detection
efficiency must be studied.
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1.2. Motivation

Inland waterways have become major means of transportation in many parts of the
world as reported by different researchers [8,17,21]. However, transportation in these
waterways is faced with different challenges—such as collisions—which can result in
accidents and death of people. Therefore, it is necessary to have a good detection and track-
ing algorithm to solve the existing problem. Deep Sort tracking algorithm and YOLOv3
detection algorithm are seen as good tracking algorithms, but they have some limitations
such as missing detections of small target ships and less detection efficiency. Therefore, this
article aims to solve this knowledge gap in order to create a more effective detection and
tracking algorithm.

1.3. Contribution

Based on the discussion, this paper intends to achieve the following objectives. Im-
provement was made in YOLOv3 detection algorithm as follows.

1. Optimize the initial value of the anchor frame based on the Kmeans algorithm
2. Choice of classifier depending on dataset used
3. NMS algorithm optimization, Soft NMS algorithm is introduced.

After this improvement on the YOLOv3 detection algorithm, we used Deep Sort
tracking algorithm to track ships in inland waterways. We also made some modifications
to enable the extraction of features present on ship datasets.

1.4. Paper Organization

The other sections of the paper are arranged as follows; Section 2 describes the
current methodology used, including the architecture and related principles of algorithm.
Section 3 presents the result and discussion, and finally Section 4 presents the conclusion
of the entire work.

2. Methods
2.1. Object Detection Method
2.1.1. Basic Principle of Existing YOLOv3 Algorithm

The YOLOv3 model draws on the concept of residual networks, which enables the
model to be effectively deepened. The connection module connects the up-sampled feature
map with the previous layer of the same dimension, and after multi-layer mapping, it
outputs three feature maps of different sizes, which are output under different receptive
field areas. The reason for this is to enhance the robustness of the model’s target scale
change. The model adopts a fully convolutional network (FCN) structure [29], and does
not have a pooling layer and a fully connected layer. Such a structure can not only adapt to
image inputs of different sizes, but also reduces the loss of underlying features caused by
the pooling layer.

There are three main stages involved in the YOLOv3 algorithm: area division, non-
maximum suppression, and multi-scale prediction.

1. Area division

As shown in Figure 1, for area division, if the input of YOLOv3 is in the form of
416 × 416 × 3, the final output is a feature map similar to the form of 13 × 13 × 255, where
255 means that there are three candidate frames for each depth. Each box contains four
box coordinate values, a target score, and the probability of each category. The final depth
dimension of (3 × (5 + C)) can be obtained, where C represents the number of categories,
and is set to 80 by default. The algorithm divides the image area according to a certain step
size, for example, 32. Each depth of the final map corresponds to a grid. The width and
height of the candidate frame are calculated from the offset of the anchor frame, as shown
in Equations (1)–(4).

bx = σ(tx) + cx (1)

by = σ(ty) + cy (2)
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bw = pwetw (3)

bh = pheth (4)

where bx, by are the detection results, bw, bh presents the width and height of the detected
box respectively, tx, ty are the predicted target center coordinates, tw, th presents the width
and height of the bounding box respectively. cx, cy is the upper left coordinate of the grid
and Pw, Ph presents the width and height of the anchor box respectively.

2. Multi-scale prediction
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Figure 1. Schematic diagram of YOLOv3 model structure.

For multi-scale prediction, YOLOv3 draws on the idea of the FPN algorithm [29] to
predict in three scales, that is, the detection layer is used to detect on three feature maps of
different sizes, and the step size is 32, 16, and 8. This means that if the input is 416× 416, the
detection scales are 13× 13, 26× 26, and 52× 52, respectively. The network down-samples
the input image before the first detection layer. After one detection, the up-sampling with
a factor of 2 is applied for expansion, it is connected with the layer with the same feature
map size before the first detection, and then the first detection is performed. The second
detection is the same as the third detection, which helps to detect small targets. A total of
three candidate boxes are predicted on each grid output at each scale, and each candidate
box is based on an anchor box, so there are a total of 9 size anchor boxes.

3. Non-maximum suppression

Non-Maximum Suppression (NMS) is a key algorithm for target detection. It is used
for the secondary screening detection frame during model prediction. The first screening
removes the frames whose target score is lower than the target score threshold Ot. Accord-
ing to the above theory, there are 10,647 candidate frames (13× 13 + 26 × 26 + 52 × 52) × 3,
so there must be a large number of redundant detection frames.

2.1.2. Improved YOLOv3

Although the model trained by the original algorithm of YOLOv3 works well, there are
still many missing and wrong detection phenomena. Hence improvement of the original
YOLOv3 algorithm to further improve the index, reduce false detections, enhance the
ability of missing detections to resist the interference of shore objects, and the detection
efficiency should be done. Figure 2 shows the schematic diagram of Improved YOLOv3
detection process.
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Three improvements have been made to the YOLOv3 detection algorithm for the
inland ship sector.

1. Optimize the initial value of the anchor frame based on the Kmeans algorithm

The original YOLOv3 algorithm uses 9 anchor frames, and each detection frame of
each detection layer was offset based on a different anchor frame. The width and height
values of each anchor frame were obtained based on the VOC data set. The VOC data set
has various types of detection objects, including people, cattle, etc., and is not suitable for
the ship data set used in this paper. The shape of the ship has larger width than its height,
so it is not suitable to use the original width and height of the anchor frame.

Based on the shape characteristics of the ship, the Kmeans algorithm was used to
optimize the initial value of the anchor box, which shortened the training time. Different
cluster numbers, that is, the total number of anchor frames are shown in Table 2 below.
Among them, the calculation method of average Intersection over union (avg IoU) was
done by calculating IoU for each training set label and the center obtained by clustering,
taking the largest IoU value as the value of this label, and finally average all the label values
to get avg IoU.

Table 2. Avg IoU with different cluster numbers.

No of Clusters 3 5 6 7 9 10 11 12

avg IoU(%) 66.98 70.39 73.70 75.01 78.64 79.01 79.12 79.15

We see that when the number of clusters reaches 9, the increase in avg IoU value has
almost stagnated. And as the number of clusters increases, the risk of model over fitting
also increases. Therefore, after weighing, we decided to still use 9 cluster centers.

Table 3 shows the specific width and height of the anchor frame. That the width of the
anchor frame obtained by clustering is 1.1 to 3.5 times the height, which is in line with the
actual ship situation.

2. Choice of classifier

Table 3. The width and height of the anchor frame obtained by K-means clustering.

Width 75 109 123 130 142 200 232 235 308

Height 31 55 84 119 42 57 129 71 103

In the target detection based on deep learning, the classifier usually uses Softmax or
Sigmoid [13,18]. YOLOv3 chose Sigmoid as the classifier based on multi-level categories.
For example, the two categories of human and woman are not mutually exclusive, therefore
Softmax could not be used. However, the ship data set used in this paper only has three
categories, and there are no mutually exclusive categories. At the same time, considering
that Sigmoid needs to build three classifiers in three categories, it theoretically causes
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redundancy, so the classification in the algorithm was replaced with Softmax as shown in
Equation (5).

σ(z)j =
ezj

∑K
k=1 ezk

(5)

where σ(z)j represents the normalized value of the j-th component of the output Z vector,
and K represents the length of the output vector.

3. NMS algorithm optimization

In the original NMS algorithm, the threshold was set according to whether the in-
tersection ratio of the candidate box and the box with the highest current target score is
greater than or equal to the threshold. If it is greater than or equal to the threshold, the
candidate boxes will be deleted directly. This method is too simple and direct, which can
easily lead to the phenomenon of false detection and missing detection. For example, when
two objects are covered with each other, the prediction box of the covered object is easily
screened out by NMS algorithm.

Therefore, for the shortcomings of the non-maximum suppression algorithm, the
Soft-NMS algorithm was introduced. The improvement idea of Soft-NMS is to smooth
the rougher scoring function of the original NMS, instead of using the strategy of direct
filtering. Table 4 shows the algorithm steps. Two smoothing functions are proposed in this
paper, namely linear weighting function and Gaussian weighting. The specific formulas
are shown in Equations (6) and (7) respectively.

si =

{
si, IoU(M, bi) < Nt
si(1− IoU(M, bi)), IoU(M, bi) ≥ Nt

(6)

si = sie−
IoU(M,bi)

2

σ , ∀bi /∈ D (7)

where Nt is the set IoU threshold, si is the target score of the candidate box bi.

Table 4. Soft-NMS algorithm steps.

Soft-NMS Algorithm

Algorithm: Candidate box B = {b1, . . . , bN}, Target score corresponding to the candidate box
S = {s1, . . . , sN}
Set IoU threshold Nt
Output: D, S

1. Initialize the selected candidate frame set D
2. while B 6= ∅ do
3. m← argmaxS
4. M← bm
5. D ← D ∪M ; B ← B −M
6. for bi in B do
7. si ← si f (IoU(M, bi))
8. end
9. end

2.2. Objects Tracking Method

Deep Sort algorithm was chosen as the tracking algorithm in this research, to help in
tracking of objects. It adds apparent feature information matching to improve tracking
performance. This extension enables the algorithm to track the target within a longer
period of occlusion, effectively reducing the number of ID transformations.

The algorithm uses the classic Kalman filter algorithm to predict the position of the
tracking target in the current frame and update the tracker parameters. [30] Proposed the
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Kalman filter in 1960, and it was used to solve many practical problems because of its
high efficiency.

x̂−k = Ax̂k−1 (8)

P−k = APk−1 AT + Q (9)

Equations (8) and (9) are used to predict the current position of the target, where x̂k−1 is
the shape information of the target k−1 frame, including eight components (u, v, γ, h,

.
x,

.
y,

.
γ,

.
h),

u and v are the center coordinates of the detection frame, γ is the length ratio, h is the height of
the frame, and the remaining four components represent the velocity information of the first
four components respectively. A is the state transition matrix, Pk−1 is the estimation deviation
of the target, and Q is the system noise.

Kk = P−k HT(HP−k HT + R)
−1

(10)

x̂k = x̂−k + Kk(yk − Hx̂−k ) (11)

Pk = (I − Kk H)P−k (12)

Equations (10)–(12) are used to update the state of the target, where Kk is the Kalman
gain, P−k estimate covariance at time k, H is the transformation matrix between the mea-
sured value and the state variable, and covariance of the measurement noise. The algorithm
uses a constant velocity motion and a linear observation mode filter to obtain the updated
(u, v, γ, h).

Deep Sort solves the matching problem by introducing the linear combination of
motion information and feature information. Mahalanobis distance is used to calculate the
distance between the prediction result and the detection result of Kalman filter to correlate
the motion information, as shown in Equation (13).

d(1)(i, j) = (dj − yi)
TS−1

i (dj − yi) (13)

where dj the position information of the j-th detection frame is, yi is the position prediction
information of the i-th tracker by Kalman filter, and Si is the covariance matrix between
the detection and tracking positions. When the calculated Mahalanobis distance is less
than the set threshold, the association is considered successful, as shown in Equation (14),
where χ is the indicator function and t(1) is the specified threshold.

b(1)i,j = χ
[
d(1)(i, j) ≤ t(1)

]
(14)

During movement, rapid displacement is introduced in the image plane, which makes
the Mahalanobis distance unsatisfactory in the case of tracking and occlusion, and ID
conversion is prone to frequent phenomenon. Therefore, Deep Sort introduces a second
indicator in the matching problem. It calculates the minimum cosine distance between the
feature set and the feature descriptor of the detection result, as shown in Equation (15).

d(2)(i, j) = min
{

1− rT
j r(i)k

∣∣∣r(i)k ∈ Ri

}
(15)

where rj is the feature descriptor of the jth detection-result. The two indicators complement
each other by providing different aspects of the matching problem.

Mahalanobis distance provides information about possible object positions based
on motion, which is particularly useful for short-term prediction. On the other hand,
cosine distance considers the appearance information, which is very effective in the case of
long-term occlusion. At this time, the motion is not so discriminative.
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The linear combination of the last measurement methods is the final measurement, as
shown in Equation (16).

ci,j = λd(1)(i, j) + (1− λ)d(2)(i, j) (16)

Lastly, Deep Sort introduces cascade matching, giving priority to tracking targets that
appear more frequently. This means, for objects with same occlusion time can be allocated
each time.

Furthermore, the feature extraction module of the Deep Sort algorithm was improved
for inland river scenes. Fusion features based on HOG, SIFT (Scale-Invariant Feature Trans-
form) and gray histogram features were extracted for ships. PCA (Principal Component
Analysis) algorithm is considered to reduce the dimension of SIFT features resulting in less
redundancy. PCA is mainly based on the idea of maximum variance, that is, the greater the
variance of a certain dimension of data, the more useful information the dimension package
contains. Deleting the dimension with less information will not result in less information.

Figure 3 below shows the cumulative ratio of variance under different principal
components. When the number of principal components reaches 55, the cumulative
variance ratio is higher than 95%, and the length of the one-dimensional vector after the
feature matrix expansion is reduced by 57%, so 55 principal components were selected to
represent each feature point.
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The three extracted features are respectively expanded into one-dimensional vectors
and then spliced as the extracted features of Deep Sort. Figure 4 shows the flowchart of
ship detection and tracking. It uses the improved YOLOv3 detection method and Deep
Sort algorithm.
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3. Results and Discussion

The experimental environment was a 64-bit Win10 Pro, the CPU is i5- 3230 M, the
frequency is 2.60 GHz, and the memory is 6 GB. When experimenting with Deep Sort, an
NVIDIA GeForce GTX 1070Ti GPU was used for acceleration.

3.1. Data Training

The dataset was collected from the Yangtze River which is found in Wuhan, China.
Yangtze River is a waterway for a large number of domestic ships. The presence of many
navigating ships is useful for taking images and video data for data sets. Therefore, different
images and video were shot on both sides of the Yangtze River to create our dataset.

Because YOLOv3 model is trained based on VOC data set and has 80 categories, it was
necessary to modify the convolution kernel depth of three detection layers when loading
the model, that is, the original one was changed to 24. At the same time, when using
transfer learning to load the pre-training model, we ignored the parameters detected in the
pre-training model, and used the random initialization method to assign values separately.

For ship image preprocessing, guided filtering was used to eliminate any noise that
could result from the captured video.

Due to the small number of pictures in the self-made data set used in this experiment,
it was easy to over fit the training model. Therefore, the data amplification methods such
as translation, rotation, shear, zoom, flip, HSV saturation and brightness were used to
multiply the size of the training set. The flow chart of the training process is shown in
Figure 5.
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3.2. Validation

To evaluate the effectiveness of the proposed algorithm, the same data set was used in
all proposed and classical algorithms to provide proper judgement.

Different evaluation parameters such as the Intersection over Union (IoU) and mAP
were calculated to see the effectiveness and accuracy of improved YOLOv3 algorithm.
Intersection over Union (IoU) is a measure based on the Jaccard similarity efficient. It is
used to evaluate the overlap between the label box Bgt and the predicted bounding box Bp,
as shown in Equation (17). The effectiveness of the predicted bounding box is determined
according to whether the overlap area is greater than the specified threshold [31].

IoU =
area(Bp ∩ Bgt)

area(Bp ∪ Bgt)
(17)

Precision and recall rate are common evaluation indicators to measure target detectors.
They are shown in Equation (18) below. Where TP means true positive, FP is false positive,
FN is false negative. The sum of TP and FP samples is all the samples predicted to be
positive, and the sum of TP and FN samples is all the samples that are labeled as positive.

Precision = TP
TP+FP

Recall = TP
TP+FN

(18)

mAP is an evaluation indicator used to detect the precision of the target detection
algorithm by setting IoU threshold [15].

For tracking analysis three indicators are used, namely the center offset CE, the
regional overlap rate RO, and FPS. The center offset index measures the center point of
the tracking frame and the real frame of the algorithm, as shown in Equation (19), where
(xm

n , ym
n ), (xm

gn, ym
gn) represent the center point of the nth tracking frame of the video and

the center point of the real frame respectively, and N and M are the target number of the
video frame respectively.

CE =
1

MN

N

∑
n=1

M

∑
m=1

√
(xm

n − xm
gn)

2 + (ym
n − ym

gn)
2 (19)
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Regional overlap rate (RO) calculates the average IoU of each valid frame, as in
formula (20) to solve the problem of ship scale changing. Due to the consideration of the
area factor, the center offset of this index is insufficient.

RO =
1

MN

N

∑
n=1

M

∑
m=1

IoU( f m
n , f m

gn) (20)

FPS is the number of frames processed per second, used to measure the real-time
performance of the algorithm.

The loss value of training set and the change of map index of test set with iteration
times in the process of model training for original and improved YOLOv3 algorithm are
shown in Figures 6a,b respectively. The mAP index of test set is calculated based on the
image input size of 608 × 608, IOU threshold of 0.45, and target score threshold of 0.4. It is
observed in Figure 6b, that the change of loss value during the training process is basically
the same, which rapidly drops to about 0.5 in the first few iterations and then decreases.
mAP was also performed under the same hyper parameter settings, and the maximum
value reached was about 0.8.
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3.3. Experimental Result and Analysis
3.3.1. Contrast Experiment of Ship Detection in Real Time

The experiment was done to detect the ships in real time using the original YOLOv3
algorithm and proposed ship YOLOv3 algorithm as shown in the Figure 7 below. The
first frame in Figure 7a, mistakes the background for a passenger ship. The background
interference in the first frame of Figure 7b is further reduced, and the improved algorithm
successfully avoids background false detection. It can also can be seen from third frame
of Figure 7a that the algorithm still missed detection, and two of the three ships were
detected. At the same time, due to the small size of the container ships in the training set,
the algorithm has poor recognition capabilities. The third frame in Figure 7b accurately
detected 3 ships, and there was no mutual influence when the targets were very close. Only
one container ship was detected in the last frame in Figure 7a, and the confidence level was
low, only 0.24. However, the last frame in Figure 7b shows the algorithm’s enhancement of
the ability to identify container ships.

Next, the experiment was quantitatively analyzed. YOLOv3 adapts the model struc-
ture of fully convolution, and the size of the input image is not limited. This is also the
reason for the random scaling of the image in the data amplification. At the same time, the
algorithm has hyper parameter IoU threshold Nt and a target score threshold Ot. Prelimi-
nary experiments show that Nt has little effect on the experimental results in normal range,
so it is necessary to compare different image sizes and index changes under Ot.
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The specific results of original YOLOv3 algorithm are shown in Table 5. The value
outside the brackets in the table is the mAP index, and the value inside the brackets is the
FPS. It can be seen that FPS is roughly inversely proportional to the image size. When
Ot equal to 0.5 and the image size is 352, the FPS is the highest, but the mAP is lower.
When Ot equal to 0.1 and the image size is 480, the mAP reaches 0.909, but the FPS is lower.
Therefore, combining two factors, when Ot equal to 0.2, the image size is 480 times higher
detective performance.

Table 5. Test set indicators for original YOLOv3 Algorithm.

Image Size 352 416 480 544 608

Ot

0.1 0.773(17.5) 0.795(17.6) 0.909(15.5) 0.864(16.4) 0.811(14.7)
0.2 0.727(18.7) 0.795(18.4) 0.864(18.6) 0.886(17.1) 0.856(15.7)
0.3 0.750(19.0) 0.750(19.3) 0.841(18.6) 0.727(17.0) 0.750(16.2)
0.4 0.682(19.7) 0.568(19.6) 0.841(18.5) 0.614(17.7) 0.705(16.9)
0.5 0.636(19.9) 0.432(19.4) 0.750(17.8) 0.500(17.3) 0.545(16.9)

Table 6 shows the quantitative result analysis of the Improved YOLOv3 algorithm. It
can be seen that the overall mAP has been improved to a certain extent. When Ot is equal
to 0.1 and the image size is 480 × 480, the mAP reaches 0.955, which is about 0.05 higher
than the highest value before the improvement.

Table 6. Test set indicators for proposed Algorithm.

Image Size 352 416 480 544 608

Ot

0.1 0.826(18.1) 0.909(18.9) 0.955(17.8) 0.864(17.0) 0.841(15.0)
0.2 0.864(19.3) 0.864(19.2) 0.932(17.6) 0.864(14.1) 0.742(14.4)
0.3 0.750(19.4) 0.818(18.8) 0.886(17.0) 0.682(17.2) 0.705(16.5)
0.4 0.659(19.7) 0.750(19.1) 0.705(18.5) 0.727(15.8) 0.568(17.0)
0.5 0.682(20.0) 0.682(19.5) 0.614(18.6) 0.545(17.6) 0.477(13.7)

From the study of this article it can be seen that the proposed YOLOv3 algorithm
compared with the YOLOv3 algorithm, the mAP, and FPS of the improved algorithm are
increased by about 5% and 2, respectively. The specific values are shown in Table 7. The
detection and classification of ship target positions are better than the original YOLOv3
algorithm which proves that the improved algorithm can effectively detect ship targets
from inland river ship images.
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Table 7. Detection algorithm indicators.

Algorithm mAP FPS

YOLOv3 algorithm [15] 0.909 15.5
Proposed Algorithm 0.955 17.8

3.3.2. Experiment of Ship Tracking in Real Time

The conducted experiment involved a combination of an improved YOLOv3 network
detecting algorithm and a Deep Sort tracking algorithm. The Deep Sort original model was
originally used in the field of pedestrian detection. The parameters of the CNN feature
extractor are trained based on the MOT16 data set, and each pedestrian is a category, which
is difficult to achieve in the field of ships. Hence the original feature extractor of Deep Sort
was changed to fit with ship dataset.

In order to measure the tracking effect of the tracking algorithm in various scenes, four
representative ship videos were selected. These videos had the following scenes: partial
occlusion, full occlusion, scale change, midway appearance, multiple targets, and camera
movement. Table 8 lists the interference items in each category.

Table 8. Disturbances in each category.

Video Sequence
Number Partial Occlusion In Middle Multiple Target Camera Shake

1
2 3 3

3 3 3

4 3 3

For each category of video, the Deep Sort algorithm was compared with the classical
algorithms MIL [32], MOSSE [33], KCF [34], TLD [35], and Median Flow [36] respectively.
The classical algorithm needs to locate the real target in the first frame, and considering
that Deep Sort uses the improved YOLOv3, in order to maintain the similar environment
outside the tracking algorithm to a large extent, the improved YOLOv3 algorithm was used
to detect the first frame of each classical algorithm. The experimental results are shown in
Figure 8.

According to the analysis in Figure 8, when there was no interference item in the ship
video, the center offset of the tracking algorithm and the regional overlap rate index value
had little difference due to easier detection and tracking.

In the case of occlusion, KCF, Deep Sort and median flow are the best, as they tracked
the target successfully even when the target was occluded for a period of time. When there
was a ship entering the picture in the middle of the video, the performance of the classical
algorithms was very poor. This is because they rely on the detection of the first frame and
do not perform the detection again in the subsequent tracking, so they cannot track the
ship entering the picture in the middle of the video. As Deep Sort performs detection in
every frame to correct the tracking result, it can delete the disappeared targets in a timely
manner and add the targets that enter the screen halfway. When the video picture moves,
the performance of MIL, Medium flow, and TLD algorithms is poor. When the target leaves
the picture, the corresponding tracking box continues to exist and does not disappear or
shrink. Figure 9 shows the algorithm tracking the video with partial occlusion and leaving
the screen.
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Next, the performance of the tracking algorithm was analyzed one by one: compared
with other algorithms, MIL performance was slightly mediocre, and there was a certain
gap between the data. It was faced with the problem of occlusion that resulted from the
change of the viewpoints. The MIL tracker tended not to succeed in improving the tracking
target even after the occlusion.

The speed of the MOSSE algorithm is the fastest in the experimental algorithm, and
it performed well when tracking the target without interference, but when there was a
certain interference, the performance dropped seriously, so it is suitable for ship tracking
in simple scenes with high real-time requirements.

KCF has more frame per second (FPS) reduction in the case of more targets, and this is
because of its fixed sized filters. It is suitable for tracking ships where there is no viewpoint
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change, scale change, and deformation. When these characteristics appeared it resulted in
a track loss as seen in Figure 9 below.

Medium flow algorithm was relatively stable, except in the case of midway through
the picture. Median Flow tracker achieved well on constant and slowly moving video
sequences. Nevertheless, occasional occlusion stopped it from making an arrangement in
bidirectional and the tracking failed.

In addition to the simple scene, the TLD algorithm had serious jitter in the tracking
frame, and it easily lost the target or tracked another target by mistake. The FPS is also very
low, so it was difficult to implement in real time. Especially, the TLD algorithm tracker
can be a good choice in tracking a target that can disappear from one place and appear
in another.

Deep Sort algorithm has a great performance advantage in complex scenes, and is
robust to occlusion, camera movement, and other interference, but the performance of the
algorithm depends on the support of GPU to a large extent, and the CPU performance
is poor. Hence it can be used in applications which have a high speed demand and in
complex scenes.

Although our proposed framework confers promising results, it renders complexity
as compared to the existing techniques. First, our framework introduced soft NMS to
the conventional YOLOv3. Second, larger memory usage was detected during execution.
Nevertheless, the processing time was fairly the same with YOLOv3. The two challenges
introduced by our algorithm have been depicted again in the improved Deep Sort; there,
larger processing time of 53 s and memory usage of 1.68 GB was demonstrated contrary to
the existing techniques such as MOSSE and MIL which used about 22 s and 1.4 GB memory
size. However, with the advancement of graphic memory, the increased memory usage is
no longer as much of a challenge.

4. Conclusions

In order to resolve the problem of ship collision in inland waterways, which can result
in dangerous accidents, ship detection and tracking based on improved YOLOv3 detection
and Deep Sort algorithms was proposed to detect and track ship targets. This involved
two processes; the improvement of YOLOv3 detection algorithm, and then the use of Deep
Sort tracking algorithm for the tracking of ship targets. For the YOLOv3 algorithm, it was
improved in three parts.

Firstly, based on the shape characteristics of the ship, the Kmeans algorithm was
used to optimize the initial value of the anchor box, which shortened the training time.
Secondly, based on the characteristics of the ship’s fewer types with mutual exclusion,
several sigmoid classifiers used in the original model were modified into a single Softmax
classifier. Finally, for the shortcomings of the non-maximum suppression algorithm, the
Soft-NMS algorithm was introduced.

The effectiveness of the proposed improved YOLOv3 algorithm in real-time detection
was verified by various experiments. Compared with the YOLOv3 algorithm, the mAP
and FPS of the improved algorithm increased by about 5% and 2, respectively. Hence after
analysis it has proved that the improved detection algorithm has obvious improvement in
detection effect and real-time performance.

For tracking of ships the Deep Sort tracking algorithm was used. Deep Sort uses
the improved YOLOv3 detection algorithm for tracking of the ship. The validity of the
improved algorithm was analyzed by comparing experiments of the improved Deep
Sort and other classical tracking algorithms such as KCF, MIL, MOSSE, Median flow,
TLD in multi-scene. Based on analysis, we see that the Deep Sort algorithm presented
greater performance advantages in complex scenes, and was robust to interference such as
occlusion and camera movement. Hence it can be used in real time performance. However,
the performance of the algorithm depends to a large extent on the support of the GPU.

Despite the proposed algorithm in this paper obtaining sufficient results in real-time
detection and tracking of ships, more work still needs to be carried out to improve the
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performance of our methods. Firstly, the categories of ship need to be increased in future,
and the tracking of ships need to be analyzed more in order to ensure environmental safety
and good port management in inland waterway transport. Secondly, more investigation
should be done to depict the research gap in its mathematical options.
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