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Abstract
High viscosity friction reducers (HVFRs) have been recently gaining more attention and increasing in use,
not only as friction-reducing agents but also as proppant carriers. The settling velocity of the proppant is one
of the key outputs to describe their proppant transport capability. However, it is influenced by many factors
such as fluid properties, proppant properties, and fracture properties. Many empirical/physics-based models
and correlations to predict particle settling velocity have been developed. However, they are usually based
on certain assumptions and have applicable limits. In contrast, machine learning models can be considered
as a black box. The objective of this study is to use machine learning models to find the relationship between
the multiple factors mentioned above and particle settling velocity in order to correctly predict it. Two of the
most popular and powerful machine learning algorithms, Artificial neural networks (ANN) and XGBoost,
were comparatively investigated with standard data processing and training procedures. Mean Absolute
Errors (MAEs) for ANNs and XGBoost were 0.010379 and 0.004253 respectively. The XGBoost learning
algorithm had overall better prediction performance than the ANN model in terms of the data sets used for
this study and had the potential to properly handle missing values by itself.

Introduction
Understanding proppant transport behaviors in fractures plays a significant role in hydraulic fracturing
design. Proppant settling velocity is a key parameter to evaluate proppant transport performance, which
is affected by three main factors including fluid properties, proppant properties, and fracture properties.
For fluid properties, they may include density, viscosity, and elasticity. For proppant properties, they may
include density, size, non-uniformity, surface wettability, and concentration. For fracture properties, they
may include fracture width, smoothness, and complexity. From the practical viewpoint of field applications,
the settling velocity of proppant is usually controlled by monitoring fluid properties and proppant properties
(McCabe et al. 2004; Arnipally and Kuru 2018; Biheri and Imqam 2021a, 2021b; Ge and Imqam 2022;
Yao et al. 2022).

Empirical correlations are commonly used to predict the particle-settling velocity in complex fluids. The
correlation was first developed to determine particle settling velocity in a creeping flow of a Newtonian
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fluid by Stokes (1851). However, most industrial applications required the use of non-Newtonian fluids.
Therefore, a lot of models were developed for purely viscous non-Newtonian shear-thinning fluids to predict
particle settling velocity without considering the fluid elasticity effect. According to Acharya (1988), the
settling velocity of a single particle in unconfined inelastic fluids can be described the following Equations:

For ReINEL < 2:

(1)

F(n) is the drag correction factor given by:

(2)

For 2 < ReINEL < 500:

(3)

(4)

(5)

(6)

To further consider the fluid-elasticity effect, the correlation between settling velocity in elastic fluids
and inelastic fluids was introduced by Malhotra and Sharma (2011) as Equations below:

(7)

(8)

(9)

However, the correlation above was only applicable in the following range of variables:

Besides elasticity effect, the correlation for fracture wall retardation effect was also introduced by
Malhotra and Sharma (2011) as the following Equations:

(10)

(11)

(12)

The correlation was only valid in the following range of variables:

As shown above, the empirical/physics-based models for predicting settling velocity are usually based
on certain assumptions and have applicable limits. In contrast, machine learning models usually lack the
fundamental physics behind the phenomenon and can be considered as a black box (Lu 2020; Abdullah et
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al. 2023). In this study, we explored using machine learning as an alternative to these models to predict
single proppant settling velocity in HVFRs. Two of the most popular and powerful learning algorithms,
ANN and XGBoosting, were comparatively investigated.

Approach and Model Development

Dataset Collection and Quality Control
In this work, single particle settling velocity data were collected from both literature and experimental
works conducted by our research group (Kelessidis 2003; Kelessidis and Mpandelis 2004; Malhotra 2010;
Arnipally and Kuru 2018; Biheri and Imqam 2022; Ge and Imqam 2022). To ensure the quality of the
data, we mined them from their original literature instead of the papers they were cited. It was highly
recommended to do so because the original data might not be like they were cited as.

For HVFRs, they usually exhibit shear-thinning behaviors with high viscosity and elasticity under DI
water conditions. However, they become more Newtonian-like with low viscosity and negligible elasticity
under high-TDS and high-temperature conditions (Ge and Imqam 2022; Ge et al. 2022). Therefore, the
data contain particle settling in Newtonian, non-Newtonian, elastic, and inelastic four different fluids. To
predict single particle settling velocity in HVFRs, 7 input features were selected based on physics-based
models and empirical correlations mentioned in the introduction section, which included flow consistency
index (K), flow behavior index (n), particle diameter (dp), density of the particle (ρp), density of the fluid
(ρf), relaxation time of the fluid (T), and width of the fracture (W). K and n were used to describe fluid
behavior and viscosity. The reason for not using apparent viscosity (μ) directly was that it was changing with
the shear rate. T was used to describe the fluid elastic property. W was used to count the wall retardation
effect. All these inputs were independent of each other based on their physical meanings, which prevented
multicollinearity problems even though complex learning algorithms, such as ANN and XGBoost, could
easily handle this. Redundant features were also prevented from feature selection, which could decrease the
learning efficiency and cause over-fitting problems (Yu and Liu 2004). For example, the Reynolds number
(Re) was not selected as an input feature because it was dependent on other features as shown in Equations
(6) and (9). Totally 184 data sets were used for this study, which were shown in Table A-1 in Appendix A.

Data Preprocessing
Before constructing machine learning models to predict particle settling velocity, the original data sets
were preprocessed. Firstly, missing values should be checked and properly handled. The original data sets
contained certain missing values. For example, some literature did not mention fluid density and relaxation
time. Since the data sets were small, these missing values were manually imputed based on the information
provided within literature. However, if the data set is large, statistical measures such as mean, median, or
mode can be used for imputation or interpolation can be applied. In general, it is important to choose the
best imputation method based on the specific requirements of the machine learning task. Besides, some
learning algorithms like XGBoost can automatically handle missing values by themselves. The training
results for data with and without missing values by using XGBoost were comparatively investigated in this
study. Table A-1 in Appendix A was actually the modified data sets with missing values manually imputed
by the best approximation based on the information provided within literature.

Secondly, the distribution of the data sets for both input and output features was visualized as shown
in Figs. 1 and 2. By looking at Fig. 1, data sparsity occurred for some features due to small data sets. By
looking at Fig. 2, there were two significant outliers observed. Therefore, the data whose measured values
were greater than 0.4 were regarded as outliers and removed.
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Figure 1—The frequency distribution of the input features.

Figure 2—The frequency distribution of the output feature.

Thirdly, The Spearman correlation coefficient heat map for input and output features was shown in Fig.
3 to identify any collinearity problem. As mentioned above, it might be harmful to simple learning models,
while complex learning algorithms like ANN and XGBoost can easily handle this. The relaxation time (T)
showed a large negative Spearman correlation coefficient (−0.67) to flow behavior index (n). However, they
are independent of each other by their physical meanings. It might be the result of small data sets.
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Figure 3—The Spearman correlation coefficient heat map for input and output features.

Fourthly, the data sets were divided into two parts, training data and test data, and training data accounted
for 80% of the total data.

Finally, data normalization was implemented to each input feature to scale them to have comparable
ranges of values to each other, which reduced the influence of the scale of different features and eliminated
the bias towards features with large magnitude values.

Training Methods and Model Optimization
Two of the most popular and powerful learning algorithms, ANN and XGBoost, were comparatively
investigated in this study.

ANN is a machine learning technique that is primarily inspired by the structure and function of biological
neurons. It is particularly well-suited for addressing complex, nonlinear problems with multiple parameters
(Zhu et al. 2021). For this study, the number of hidden layers was set to one. During the training process,
parameters, including the number of neurons in the hidden layer, number of epochs, batch size, activation
function, optimizer, learning rate, and momentum, were tuned and determined by the grid search technique
to obtain the best model performance.

XGBoost is another powerful machine learning algorithm by implementing gradient boosting, which can
make predictions by using boosting of the ensemble of weak prediction models, typically decision trees,
to form a stronger and more accurate model (Rao et al. 2019). Compared to the ANN model, XGBoost
works well on tabular data but is not recommended for unstructured data like images, audio, and text. The
parameters tuned for XGBoost by using grid search techniques included the number of decision trees, the
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depth of decision trees, learning rate, row subsampling, column subsampling by trees, column subsampling
by levels, and column subsampling by nodes.

3- and 5-fold cross-validations were implemented to the ANN and XGBoost models respectively. Mean
Absolute Error (MAE) was used to evaluate the performance of both models.

Results and Discussion
In general, selecting a machine learning model is a balancing act between model variance and bias. Simple
models usually have a higher bias and lower variance, whereas more complex models have a lower bias
and higher variance (Abdullah et al. 2023). Therefore, different models from the simplest ones like linear
regression to more complex ones like XGBoost and RF were sequentially tested by using default parameters
to observe the baseline performance. 10-fold cross-validation was implemented for each model and MAE
results were presented in Fig. 4. As it showed, XGBoost (XGB) had the best initial performance with the
lowest MAE. Then, parameters for XGBoost were further tuned with the grid search technique to obtain
optimized performance.

Figure 4—The Baseline performance evaluation for varies machine learning models.

Table 1 showed the parameters of the XGBoost model determined after using the grid search technique.
With these determined parameters, the trained model was fit into the test datasets to reveal the predictions
vs. target values as shown in Fig. 5 (a). Most of the points were closely aligned with the identity line and
the MAE was 0.004253, which indicated this model performed well on predicting single proppant settling
velocity. The model trained with data having missing values also fit into the test datasets as shown in Fig.
5 (b). This model also performed well on predicting settling velocity with a MAE of 0.005034, which
was close to the model trained with manually imputed data. XGBoost had the potential to properly handle
missing values by itself.
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Table 1—Grid search ranges and results for XGBoost model parameters.

Parameter Gird Search Ranges Grid Search Result

Number of decision trees 100, 200, 300, 400, 500, 600, 700, 800, 900, 950, 1000 1000

Depth of decision trees 2, 3, 4, 5, 6 3

Learning rate 0.0001, 0.001, 0.01, 0.1, 0.2, 0.3 0.1

Row subsampling 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 0.7

Column subsampling by trees 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 1

Column subsampling by levels 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 0.8

Column subsampling by nodes 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 0.4

Figure 5—Plots of predictions vs. target values with (a) manually
imputed data and (b) missing-value data by using the XGBoost model.

Similarly, Table 2 showed the parameters of the ANN model determined after using the grid search
technique. With these determined parameters, the trained model was fit into the test datasets to reveal the
predictions vs. target values as shown in Fig. 6. When target values were small (i.e., less than 0.05), residuals
were relatively small and most of the points were closely aligned with the identity line. However, when
target values were large (i.e., greater than 0.05), residuals became relatively large, and points were far away
from the identity line. The main reason for this was that the outputs of datasets were right skewed as shown in
Fig. 2. The model could not fully reveal the pattern for large-output datasets. The MAE for the ANN model
was 0.010379, which was higher than the MAE of XGBoost. Therefore, XGBoost had better performance
than ANN with one hidden layer in terms of selected datasets in this study.
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8 SPE-212964-MS

Table 2—Grid search ranges and results for ANN model parameters.

Parameter Gird Search Ranges Grid Search Result

Number of neurons 7, 8, 12, 13, 14 7

Number of epochs range (start = 100, stop = 1100, step = 100) 600

Batch size 2, 4, 8 2

Activation function ‘sigmoid’, ‘relu’, ‘tanh’ ‘relu’

Optimizer ‘SGD’, ‘RMSprop’, ‘Adam’,
‘Adamax’, ‘Nadam’, ‘AdamW’

‘Nadam’

Learning rate 0.0001, 0.001, 0.01, 0.1, 0.2 0.01

Momentum 0.0, 0.2, 0.4, 0.6, 0.8, 0.9 0.9

Figure 6—Plots of predictions vs. target values by using the ANN model.

Conclusions
In this study, two popular and powerful machine learning algorithms were comparatively investigated for
small data sets with considering fluids properties, proppant properties, and wall retardation effect to predict
single proppant settling velocity in HVFRs. Based on the results, the following conclusions can be drawn:

• Expert (or domain) knowledge to conduct preprocessing and quality control of mined data sets in
building machine learning models is very important. It is highly recommended to mine training
examples from their original literature instead of the papers they are cited.

• An ANN model and an XGBoost model of the settling velocity for single proppant settling in
HVFRs are established with the mean absolute errors of 0.010379 and 0.004253 respectively.
XGBoost has better performance than ANN with only one hidden layer in terms of selected datasets
and has the potential to properly handle missing values by itself.

• The data sets are small in this study due to the availability of some input features, especially for the
density of the fluid and relaxation time. More experimental works or data mining from literature
are required to increase the size of training examples to fix potential high variance problems. More
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features, such as proppant shape and concentration, can be added to training examples to lower
bias and increase predicting accuracy.

Nomenclature
dp = Particle diameter, m

F(n) = Drag correction factor
f2(n) = Dimensionless function dependent on the flow behavior index
f3(n) = Dimensionless function dependent on the flow behavior index

g = Acceleration due to gravity, m/s2

K = Flow consistency index, Pa·Sn

n = Flow behavior index
p = Dimensionless coefficient dependent on the particle Weissenberg number
r = Ration of the particle diameter to the fracture spacing

Re = Reynolds number
ReINEL = Reynold number for inelastic power-law fluids

T = Relaxation time, s
V = Settling velocity, m/s

VEL = Settling velocity in unbounded elastic fluids, m/s
VELConfined = Settling velocity in confined elastic fluids, m/s

VINEL = Settling velocity in unbounded inelastic fluids, m/s
W = Fracture width, m

WeEL = Weissenberg number of the particle settling in unbounded elastic fluids
WeINEL = Weissenberg number of the particle settling in unbounded inelastic fluids

ρf = Density of the fluid, kg/m3

ρp = Density of the particle, kg/m3

μ = Apparent viscosity of the fluid, Pa·S
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Appendix A
Table A-1 presents modified data sets used for this study with missing values manually imputed by the best
approximation based on the information provided within literatures.

Table A-1—Data sets used for this study with missing values manually imputed.

Input features Output
features

K (Pa·Sn) n dp (m) ρs (kg/m3) ρf (kg/m3) Relaxation
time, T(s)

Fracture
width,
W (m)

Velocity,
V (m/s)

Kelessidis (2003)

0.2648 0.7529 0.0015 2260 1000 0 0.1 0.0119

0.2648 0.7529 0.0021 2727 1000 0 0.1 0.0361

0.2648 0.7529 0.0023 2449 1000 0 0.1 0.0409

0.2648 0.7529 0.003 2609 1000 0 0.1 0.0664

0.2648 0.7529 0.0035 2572 1000 0 0.1 0.0802

0.0353 0.8724 0.0015 2260 1000 0 0.1 0.044

0.0165 0.9198 0.0015 2260 1000 0 0.1 0.0597

0.0353 0.8724 0.0021 2727 1000 0 0.1 0.1008

0.0353 0.8724 0.0023 2449 1000 0 0.1 0.1119

0.0165 0.9198 0.0021 2727 1000 0 0.1 0.1275

0.0353 0.8724 0.003 2609 1000 0 0.1 0.1592

0.0165 0.9198 0.0023 2449 1000 0 0.1 0.1403

0.0353 0.8724 0.0035 2572 1000 0 0.1 0.1825

0.0165 0.9198 0.003 2609 1000 0 0.1 0.195

0.0165 0.9198 0.0035 2572 1000 0 0.1 0.2196

Kelessidis and Mpandelis (2004)

0.001 1 0.0032 2506 1000 0 0.1 0.3692

0.001 1 0.0022 2668 1000 0 0.1 0.2935

0.001 1 0.0012 2314 1000 0 0.1 0.1763

0.001 1 0.0026 11444 1000 0 0.1 1.066

0.135 1 0.0032 2506 1000 0 0.1 0.042

0.135 1 0.0022 2668 1000 0 0.1 0.0232

0.135 1 0.0012 2314 1000 0 0.1 0.0072

0.135 1 0.0026 11444 1000 0 0.1 0.1848
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12 SPE-212964-MS

Input features Output
features

0.135 1 0.0031 7859 1000 0 0.1 0.1656

0.1152 0.7449 0.0032 2506 1000 0 0.1 0.1282

0.1152 0.7449 0.0022 2668 1000 0 0.1 0.0835

0.1152 0.7449 0.0012 2314 1000 0 0.1 0.0321

0.1152 0.7449 0.0026 11444 1000 0 0.1 0.4657

0.0865 0.861 0.0032 2506 1000 0 0.1 0.1031

0.0865 0.861 0.0022 2668 1000 0 0.1 0.0637

0.0865 0.861 0.0012 2314 1000 0 0.1 0.0225

0.0865 0.861 0.0026 11444 1000 0 0.1 0.3855

0.0865 0.861 0.0031 7859 1000 0 0.1 0.3399

0.0849 0.9099 0.0032 2506 1000 0 0.1 0.082

0.0849 0.9099 0.0022 2668 1000 0 0.1 0.0493

0.0849 0.9099 0.0012 2314 1000 0 0.1 0.0164

0.0849 0.9099 0.0026 11444 1000 0 0.1 0.3286

0.0849 0.9099 0.0031 7859 1000 0 0.1 0.2828

Molhotra (2010)

0.363 0.484 0.00174 2510 1000 0.171 0.11 0.02

0.363 0.484 0.00203 2510 1000 0.171 0.11 0.025

0.363 0.484 0.00294 2510 1000 0.171 0.11 0.045

0.363 0.484 0.00363 2510 1000 0.171 0.11 0.055

0.363 0.484 0.00417 2510 1000 0.171 0.11 0.06

0.363 0.484 0.00174 2510 1000 0.171 0.008 0.018

0.363 0.484 0.00203 2510 1000 0.171 0.008 0.02

0.363 0.484 0.00294 2510 1000 0.171 0.008 0.036

0.363 0.484 0.00363 2510 1000 0.171 0.008 0.0451

0.363 0.484 0.00417 2510 1000 0.171 0.008 0.054

0.363 0.484 0.00174 2510 1000 0.171 0.0036 0.015

0.363 0.484 0.00203 2510 1000 0.171 0.0036 0.01775

0.363 0.484 0.00294 2510 1000 0.171 0.0036 0.02925

0.472 0.389 0.00174 2510 1000 0.389 0.11 0.015

0.472 0.389 0.00203 2510 1000 0.389 0.11 0.019

0.472 0.389 0.00294 2510 1000 0.389 0.11 0.036
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SPE-212964-MS 13

Input features Output
features

0.472 0.389 0.00363 2510 1000 0.389 0.11 0.045

0.472 0.389 0.00417 2510 1000 0.389 0.11 0.051

0.472 0.389 0.00174 2510 1000 0.389 0.008 0.0135

0.472 0.389 0.00203 2510 1000 0.389 0.008 0.01615

0.472 0.389 0.00294 2510 1000 0.389 0.008 0.0288

0.472 0.389 0.00363 2510 1000 0.389 0.008 0.03645

0.472 0.389 0.00417 2510 1000 0.389 0.008 0.0408

0.472 0.389 0.00174 2510 1000 0.389 0.0036 0.01125

0.472 0.389 0.00203 2510 1000 0.389 0.0036 0.01425

0.472 0.389 0.00294 2510 1000 0.389 0.0036 0.0234

0.336 0.579 0.00171 2510 1000 0.555 0.11 0.0075

0.336 0.579 0.00198 2510 1000 0.555 0.11 0.0085

0.336 0.579 0.00297 2510 1000 0.555 0.11 0.0175

0.336 0.579 0.00363 2510 1000 0.555 0.11 0.0225

0.336 0.579 0.00417 2510 1000 0.555 0.11 0.0265

0.336 0.579 0.00171 2510 1000 0.555 0.008 0.006825

0.336 0.579 0.00198 2510 1000 0.555 0.008 0.008415

0.336 0.579 0.00297 2510 1000 0.555 0.008 0.015925

0.336 0.579 0.00363 2510 1000 0.555 0.008 0.019125

0.336 0.579 0.00417 2510 1000 0.555 0.008 0.021465

0.336 0.579 0.00171 2510 1000 0.555 0.0036 0.005925

0.336 0.579 0.00198 2510 1000 0.555 0.0036 0.006885

0.336 0.579 0.00297 2510 1000 0.555 0.0036 0.01225

0.785 0.771 0.00171 2510 1000 0.31 0.11 0.005

0.785 0.771 0.00198 2510 1000 0.31 0.11 0.0065

0.785 0.771 0.00297 2510 1000 0.31 0.11 0.0145

0.785 0.771 0.00363 2510 1000 0.31 0.11 0.021

0.785 0.771 0.00417 2510 1000 0.31 0.11 0.0275

0.785 0.771 0.00198 2510 1000 0.31 0.008 0.005265

0.785 0.771 0.00297 2510 1000 0.31 0.008 0.012325

0.785 0.771 0.00363 2510 1000 0.31 0.008 0.0168

0.785 0.771 0.00417 2510 1000 0.31 0.008 0.022
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14 SPE-212964-MS

Input features Output
features

0.785 0.771 0.00171 2510 1000 0.31 0.0036 0.00335

0.785 0.771 0.00198 2510 1000 0.31 0.0036 0.004485

0.785 0.771 0.00297 2510 1000 0.31 0.0036 0.006815

0.876 0.7395 0.00174 2510 1000 0.284 0.11 0.0045

0.876 0.7395 0.00203 2510 1000 0.284 0.11 0.0055

0.876 0.7395 0.00294 2510 1000 0.284 0.11 0.0125

0.876 0.7395 0.00363 2510 1000 0.284 0.11 0.018

0.876 0.7395 0.00417 2510 1000 0.284 0.11 0.024

0.876 0.7395 0.00174 2510 1000 0.284 0.008 0.00396

0.876 0.7395 0.00203 2510 1000 0.284 0.008 0.004455

0.876 0.7395 0.00294 2510 1000 0.284 0.008 0.01075

0.876 0.7395 0.00363 2510 1000 0.284 0.008 0.01458

0.876 0.7395 0.00417 2510 1000 0.284 0.008 0.01968

0.876 0.7395 0.00174 2510 1000 0.284 0.0036 0.00288

0.876 0.7395 0.00203 2510 1000 0.284 0.0036 0.003355

0.876 0.7395 0.00294 2510 1000 0.284 0.0036 0.005875

2.83 0.9805 0.00171 2510 1000 0.212 0.11 0.001

2.83 0.9805 0.00198 2510 1000 0.212 0.11 0.0013

2.83 0.9805 0.00297 2510 1000 0.212 0.11 0.0027

2.83 0.9805 0.00363 2510 1000 0.212 0.11 0.0036

2.83 0.9805 0.00417 2510 1000 0.212 0.11 0.0046

2.83 0.9805 0.00171 2510 1000 0.212 0.008 0.0009

2.83 0.9805 0.00198 2510 1000 0.212 0.008 0.001235

2.83 0.9805 0.00297 2510 1000 0.212 0.008 0.002295

2.83 0.9805 0.00363 2510 1000 0.212 0.008 0.002736

2.83 0.9805 0.00417 2510 1000 0.212 0.008 0.003726

2.83 0.9805 0.00171 2510 1000 0.212 0.0036 0.00074

2.83 0.9805 0.00198 2510 1000 0.212 0.0036 0.000819

2.83 0.9805 0.00297 2510 1000 0.212 0.0036 0.00207

2.792 0.9755 0.00174 2510 1000 0.227 0.11 0.0012

2.792 0.9755 0.00203 2510 1000 0.227 0.11 0.0015

2.792 0.9755 0.00294 2510 1000 0.227 0.11 0.0031
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SPE-212964-MS 15

Input features Output
features

2.792 0.9755 0.00363 2510 1000 0.227 0.11 0.0041

2.792 0.9755 0.00417 2510 1000 0.227 0.11 0.0053

2.792 0.9755 0.00174 2510 1000 0.227 0.008 0.00108

2.792 0.9755 0.00203 2510 1000 0.227 0.008 0.00138

2.792 0.9755 0.00294 2510 1000 0.227 0.008 0.002573

2.792 0.9755 0.00363 2510 1000 0.227 0.008 0.00287

2.792 0.9755 0.00417 2510 1000 0.227 0.008 0.003445

2.792 0.9755 0.00174 2510 1000 0.227 0.0036 0.00072

2.792 0.9755 0.00203 2510 1000 0.227 0.0036 0.00087

2.792 0.9755 0.00294 2510 1000 0.227 0.0036 0.001395

23.75 0.9645 0.00174 2510 1000 2.245 0.11 0.00009

23.75 0.9645 0.00203 2510 1000 2.245 0.11 0.00012

23.75 0.9645 0.00294 2510 1000 2.245 0.11 0.00022

23.75 0.9645 0.00363 2510 1000 2.245 0.11 0.00028

23.75 0.9645 0.00417 2510 1000 2.245 0.11 0.00035

Arnipally and Kuru (2018)

0.27 0.35 0.002 2510 998 12 0.11 0.0307

0.27 0.35 0.0025 8050 998 12 0.11 0.18

0.27 0.35 0.00118 2510 998 12 0.11 0.0052

0.27 0.35 0.0015 2510 998 12 0.11 0.0163

0.27 0.35 0.003 2510 998 12 0.11 0.0788

0.25 0.36 0.002 2510 997 50 0.11 0.0144

0.25 0.36 0.0025 8050 997 50 0.11 0.06

0.25 0.36 0.00118 2510 997 50 0.11 0.0034

0.25 0.36 0.0015 2510 997 50 0.11 0.0093

0.25 0.36 0.003 2510 997 50 0.11 0.0353

0.26 0.35 0.002 2510 997 110 0.11 0.0084

0.26 0.35 0.0025 8050 997 110 0.11 0.04

0.26 0.35 0.00118 2510 997 110 0.11 0.0025

0.26 0.35 0.0015 2510 997 110 0.11 0.0058

0.26 0.35 0.003 2510 997 110 0.11 0.022

0.16 0.38 0.002 2510 998 12 0.11 0.039
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16 SPE-212964-MS

Input features Output
features

0.16 0.38 0.00118 2510 998 12 0.11 0.0114

0.16 0.38 0.0015 2510 998 12 0.11 0.0245

0.16 0.38 0.003 2510 998 12 0.11 0.0916

0.27 0.35 0.002 2510 998 12 0.11 0.0307

0.27 0.35 0.00118 2510 998 12 0.11 0.0052

0.27 0.35 0.0015 2510 998 12 0.11 0.0163

0.27 0.35 0.003 2510 998 12 0.11 0.0788

0.35 0.38 0.002 2510 1005 12 0.11 0.011

0.35 0.38 0.00118 2510 1005 12 0.11 0.0017

0.35 0.38 0.0015 2510 1005 12 0.11 0.0049

0.35 0.38 0.003 2510 1005 12 0.11 0.0294

Biheri and Imqam 2022

0.79 0.31 0.006 2626 1000 21.32 0.01 0.042

0.79 0.31 0.006 2626 1000 21.32 0.007 0.031

0.79 0.31 0.004 2626 1000 21.32 0.01 0.026

0.79 0.31 0.002 2626 1000 21.32 0.01 0.0012

0.71 0.28 0.006 2626 1000 5.95 0.01 0.16

0.41 0.31 0.006 2626 1000 0.2 0.01 0.19

0.09 0.74 0.006 2626 1000 0.044 0.01 0.21

0.09 0.74 0.006 2626 1000 0.044 0.007 0.16

0.09 0.74 0.004 2626 1000 0.044 0.01 0.16

0.09 0.74 0.002 2626 1000 0.044 0.01 0.05

0.05 0.78 0.006 2626 1000 0.02 0.01 0.24

0.02 0.86 0.006 2626 1000 0 0.01 0.28

Ge and Imqam 2022

0.84875 0.302 0.000455 3270 1200 12.077 0.03 0

0.84875 0.302 0.000455 3270 1200 12.077 0.0035 0

0.24193 0.409 0.000455 3270 1200 2.695 0.03 0.0008

0.24193 0.409 0.000455 3270 1200 2.695 0.0035 0.0006

0.032252 0.671 0.000455 3270 1200 0.08 0.03 0.012

0.016433 0.764 0.000455 3270 1200 0.272 0.03 0.021

0.017547 0.763 0.000455 3270 1200 0 0.03 0.019
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SPE-212964-MS 17

Input features Output
features

0.017547 0.763 0.000455 3270 1200 0 0.0035 0.012

0.015389 0.742 0.000455 3270 1200 0 0.03 0.029

0.015389 0.742 0.000455 3270 1200 0 0.0035 0.024

0.016722 0.793 0.000455 3270 1200 0 0.03 0.024

0.022713 0.754 0.000455 3270 1200 0 0.03 0.019
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