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S U M M A R Y 

Geodetic velocity data provide first-order constraints on crustal surface strain rates, which 

in turn are linked to seismic hazard. Estimating the 2-D surface strain tensor everywhere 
requires knowledge of the surface velocity field everyw here, w hile geodetic data such as 
Global Navigation Satellite System (GNSS) only have spatially scattered measurements on 

the surface of the Earth. To use these data to estimate strain rates, some type of interpolation is 
required. In this study, we re vie w methodolo gies for strain rate estimation and compare a suite 
of methods, including a new implementation based on the geostatistical method of kriging, to 

compare variation between methods with uncertainty based on one method. We estimate the 
velocity field and calculate strain rates in southern California using a GNSS velocity field and 

five different interpolation methods to understand the sources of variability in inferred strain 

rates. Uncertainty related to data noise and station spacing (aleatoric uncertainty) is minimal 
where station spacing is dense and maximum far from observ ations. Dif ferences between 

methods, related to epistemic uncertainty, are usually highest in areas of high strain rate due 
to differences in how gradients in the velocity field are handled by different interpolation 

methods. P arameter choices, unsurprisingly, hav e a strong influence on strain rate field, and we 
propose the traditional L -curve approach as one method for quantifying the inherent trade-off 
between fit to the data and models that are reflective of tectonic strain rates. Doing so, we find 

total variability between five representative strain rate models to be roughly 40 per cent, a much 

lower value than roughly 100 per cent that was found in previous studies (Hearn et al. ). Using 

multiple methods to tune parameters and calculate strain rates provides a better understanding 

of the range of acceptable models for a given velocity field. Finally, we present an open-source 
Python package (Materna et al. ) for calculating strain rates, Strain 2D, which allows for the 
same data and model grid to be used in multiple strain rate methods, can be extended with 

other methods from the community, and provides an interface for comparing strain rate models, 
calculating statistics and estimating strain rate uncertainty for a given GNSS data set. 

Key words: Plate motions; Satellite geodesy; Seismic cycle; Statistical methods; Earthquake 
hazards; Kinematics of crustal and mantle deformation. 

1  I N T RO D U C T I O N  

Space geodesy has transformed the study of tectonic processes by 
providing direct measurement of surface strain rates (e.g. Ward 
1994 ; Shen et al. 1996 ; Shen-Tu et al. 1999 ; Kreemer et al. 2000 ; 
Beavan & Haines 2001 ; Shen et al. 2007 ; Wu et al. 2011 ; Haines 
& Wallace 2020 ). Strain rate has been linked to seismicity rate and 
moment accumulation rate (e.g. K ostrov 1974 ; Sa vage & Simpson 
1997 ; Stevens & Avouac 2016 ; Wu et al. 2021 ); thus, robust estima- 
tion of the surface strain rate tensor provides valuable constraints 
on seismic hazard. 

Despite the growing availability of surface velocity data from 

geodetic data such as Global Navigation Satellite Systems (GNSS), 
uncertainty still exists when computing surface strain rates that are 
related to tectonic deformation. This is because station locations 
are not distributed uniformly in space, and in many places are 
sparse relative to deformation wavelengths. The result is that some 
form of interpolation is required to calculate surface strain rate 
at every point in space. Numerous methods and algorithms have 
been proposed for this purpose, but few published studies to date 
have systematically explored the differences between methods and 
the consequent implications for quantifying crustal strain rate and 
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seismic hazard. Approaches can be broken into several broad classes 
of methods: 

(i) Direct calculation of strain from baselines, typically involving 
some type of triangulation like Delaunay (e.g. Savage et al. 2001 ; 
Cai & Grafarend 2007 ). This method was the first method developed 
for strain rate calculation (e.g. Savage & Burford 1970 ). 

(ii) Fitting the velocity field using various basis functions such 
as polynomials, splines, wavelets, etc. (e.g. Feigl 1993 ; Haines & 

Holt 1993 ; Beavan & Haines 2001 ; Hackl 2009 ; Tape et al. 2009 ; 
Wang & Wright 2012 ; Weiss et al. 2020 ; Okazaki et al. 2021 ). 

(iii) Fitting based on elasticity theory (e.g. Noda & Matsu’ura 
2010 ; Haines et al. 2015 ; Sandwell & Wessel 2016 ). This class of 
methods could be considered a subset of (2), using the elasticity 
functions (ln( r ), 1/ r 2 ) as basis functions. The log functions do not 
have compact support like the other methods in (3), which can 
lead to growing solutions outside the domain of the data, similar to 
polynomial interpolators. 

(iv) Neighbourhood methods that use either a locally weighted 
mean or local regression around an estimation point (e.g. Shen et al. 
1996 , 2015 ; Tara youn et al. 2018 ; Handw erger et al. 2019 ; Huang 
et al. 2022 ). This includes methods that weight based on spatial 
covariance (e.g. least-squares collocation, LSC, El-Fiky et al. 1998 ; 
Kato et al. 1998 ; Goudarzi et al. 2015 ; Qu et al. 2019 ). 

Any method for spatial interpolation requires a decision about at 
least three factors (Fig. 1 ): (1) how to handle measurement noise or 
error in the observations; that is, the ‘point-wise’ uncertainty, (2) 
the maximum spatial length scale over which observations are cor- 
related, which in general could vary in direction and space and (3) 
the behaviour of the interpolated velocity field at short distances; 
that is, degree of smoothness. Note that (2) and (3) represent the 
endmember behaviours; that is, (2) is the length scale beyond which 
observations are not correlated, while (3) relates to near-field be- 
haviour (Fig. 1 ). Many published methods require an ad hoc decision 
about these parameters, and/or do not report how they decided on 
a particular set of parameters. The non-uniqueness of the interpo- 
lated velocity field implies a trade-off between higher smoothness, 
which is often more consistent with tectonic strain rates, and fit to 
the data. Methods for determining model parameters that produce 
a reasonable range of these metrics include the so-called ‘ L -curve’ 
(Hansen 1992 ), cross-validation and Akaike’s Information Criterion 
(Sakamoto et al. 1986 ), among others, but are not often employed 
in studies of strain rate. 

The different assumptions used by different strain rate meth- 
ods present a challenge for side-by-side comparison. Few studies 
present side-by-side comparison of methods, and as different studies 
use different data sets, it is difficult to construct a consistent pic- 
ture of method performance. Wu et al. ( 2011 ) compared LSC with 
Delaunay triangulation and spline fitting and found that LSC per- 
formed best in synthetic tests. Delaunay suffers from noise artefacts 
if the input data contain outliers, since strain is calculated directly 
from baselines between stations (Savage et al. 2001 ). Hearn et al. 
( 2010 ) and Sandwell et al. ( 2016 ) compared a suite of 17 strain 
rate methods in southern California and found that variability be- 
tween methods was up to 100 per cent of the signal in some places; 
ho wever , in that case, the data sets used in each method were dif- 
ferent. A follow-up analysis of the same 17 models by Xu et al. 
( 2021 ) showed that on average all models were highly correlated at 
long wavelengths ( > 100 km) and approached a correlation of zero 
at lengths scales of roughly 30 km. These studies compared both 
model-based and data-based methods for calculating strain rates; 

ho wever , model-based strain rates are usually limited to explain- 
ing strain accumulating on faults, and the presence of significant 
off-fault strain (e.g. Johnson 2013 ) could result in a bias between 
model- and data-based methods. 

Not only do different methods make different assumptions about 
how data are correlated, but they also estimate the interpolated field 
dif ferentl y. As discussed further in the next section, some of the 
methods listed abov e solv e a weighted least-squares problem for a 
locally linear velocity field, others use a weighted average of the 
existing data and solve for optimal weights based on the spatial 
structure function (Fig. 1 ), and others solve an even-determined 
problem for body force magnitude at each GNSS station. These 
lead to further differences in how data noise, sparse data areas and 
strong velocity gradients (i.e. high strain rates) are handled in the in- 
terpolation scheme. A completely different approach was proposed 
by Pagani et al. ( 2021 ) to constrain strain rate uncertainties using 
a hierarchical Bayesian approach. They use the Delaunay method 
and sample over many possible data grid node configurations, and 
by averaging over many thousands of models they obtain smooth 
strain rate fields. Ho wever , this approach is extremely computation- 
ally demanding (Pagani et al. 2021 ), and may lose short wavelength 
information due to averaging many thousands of models. 

In this study, we present a side-by-side comparison of several rep- 
resentative strain rate methods, including representatives for each 
of the broad classes listed above, for the well-studied region of 
souther n Califor nia. We use a consistent set of velocity data for 
souther n Califor nia (see Data and Resources) to highlight the sim- 
ilarities and differences between methods. In this study, we restrict 
our analysis to data-centred methods that do not rely on specifying 
a fault model. We discuss issues related to differentiating between 
tectonic and non-tectonic strain rate, comparing methods using dif- 
ferent parametrizations and how methodological differences impact 
the estimated strain rate field and propose some best practices. We 
present a new open-source software tool, Strain 2D (Materna et al. 
2021 ), and sho w ho w it can be used for consistent strain rate calcu- 
lation and comparison. 

2  M E T H O D O L O G Y  

2.1 Strain rate for seismic hazard 

The surface strain rate tensor is a symmetric, positive-definite tensor 
with three independent components represented by 

ε̇ i j = 0 . 5 

(
∂ v i 

∂ x j 
+ 

∂ v j 

∂ x i 

)
(1) 

where i and j represent components of coordinates x and velocities 
v , respecti vel y. Here, we focus on surface strain rates, so i , j = 1,2. 
The principal strain rates ε̇ 1 and ε̇ 2 are given by the eigenvalues of 
the strain rate tensor : 

ε̇ 1 , ̇ε 2 = 

( ε̇ 11 + ̇ε 22 ) 

2 
±

√ (
ε̇ 11 − ε̇ 22 

2 

)2 

+ 

( ε̇ 12 ) 
2 (2) 

Because strain rate is a tensor , in variants are often used for plot- 
ting. Of par ticular impor tance are the trace of the strain rate tensor, 
which is defined as the areal strain rate or dilatation rate (rate of 
change in area): 

�̇ A = 

( ε̇ 11 + ̇ε 22 ) = ε̇ 1 + ̇ε 2 (3) 

the maximum shear strain rate: 

τ̇ = 

1 

2 

√ 

( ε̇ 11 − ε̇ 22 ) 
2 + 4 ̇ε 2 12 = 

1 

2 
( ε̇ 1 − ε̇ 2 ) (4) 
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Figure 1. Parameters and/or decisions required for spatial interpolation. The different covariance models represent different weight functions that can be used 
to estimate a velocity at a new location. Several of the covariance models are used in the strain-rate methods considered in this study (see Table 1 for details). 
Specifically, Gaussian model: geostats / visr ; quadratic model: visr ; Exponential model: geostats ; thin-plate model: gpsgridder ; boxcar model: Local average 
gradient . 

and the second invariant, a measure of the overall magnitude of 
strain: 

I 2 = 

1 

2 

[
( ε̇ 11 ∗ ε̇ 22 ) − ε̇ 2 12 

]
(5) 

With the goal of relating strain rate to seismic hazard, Sav- 
age & Simpson ( 1997 ) derived a relation between the strain rate 
and the minimum seismic moment accumulation rate assuming a 
fixed seismogenic depth H and shear modulus G based on Kostrov 
( 1974 ): 

Ṁ d ≥ 2 G H A s | ε̇ max | (6) 

where A s is the area at the surface of the crustal volume considered 
and | ̇ε max | = max { | ̇ε 1 | , | ̇ε 2 | , | ̇ε 1 + ̇ε 2 | } is the so-called ‘maximum 

principal strain rate.’ Eq. ( 6 ) provides a lower bound on the seismic 
moment accumulation rate (Savage & Simpson 1997 ). Note that if 
detailed spatial information on G and H over the region of interest is 
available, eq. ( 6 ) can be extended to a volume integral to use these 
data. 

2.2 Strain rate estimation methods 

2.2.1 Strain 2D pac ka ge 

We implement several strain rate methods in the open-source pack- 
age Strain 2D (Materna et al. 2021 ). The package is designed to 
be able to easily interpolate the same velocity field and produce 
strain rate outputs on the same geographic grid for any of the imple- 
mented methods. Outputs of the code include a NETCDF file (Rew 

& Davis 1990 ) containing the interpolated velocity field, strain rate 
components and invariants and corresponding plots. We can also di- 
rectly calculate the mean, residual, and standard deviation of strain 
rate fields derived using different methods. Below we further de- 
scribe each class of methods in general and the specific methods we 
implement in Strain 2D. 

2.2.2 Direct strain rate calculation through baselines 

This class of methods uses baselines (changes in length between 
two stations) to directly calculate strain. The Delaunay triangulation 
method directly calculates strain rates using baselines between three 
adjacent GNSS stations. Although simple to compute, this method 
is highly sensitive to noise in the observations, because of the lack of 
data redundancy (Kreemer et al. 2018 ). Strain rate is constant within 
each triangle, so strain rate maps have a discretized appearance 
that reflects the station geometry. Wu et al. ( 2011 ) showed that 
without noise this method can have similar results to others, but with 
random noise can result in complete loss of the underlying signal. In 
the Strain 2D library, we implement both flat- and spherical-earth 
versions of Delaunay. 

A variation of the Delaunay method was developed by Kreemer 
et al. ( 2018 ), using a kind of hierarchy of triangles around an es- 
timation point, and keeping only those triangles that have good 
geometric properties (e.g. not overly skinny or skewed) and located 
such that the estimation point lies within the inscribed circle of the 
triangle. Strain rate is calculated for each triangle and the median 
taken of the resulting suite of strain rates to determine the final 
strain rate at the estimation point. This method benefits from robust 
strain rate estimation and automatically reflects the network resolu- 
tion above a threshold based on the degree of noise allowed in each 
triangle. 

2.2.3 Spatial basis functions 

This class of methods is typically formulated as solving a least- 
squares problem for determining optimal coefficients to basis func- 
tions to fit the velocity field (e.g. Haines & Holt 1993 ; Kreemer et al. 
2000 ; Beaven & Haines 2001 ; Tape et al. 2009 ; 2014 ). Interpolation 
is applied to a regular grid, and numerical or anal ytic deri v ati ves are 
then used to calculate strain rates. Constraints other than GNSS data 
such as Interferometric Synthetic Aperture Radar (InSAR; Wang & 

Wright 2012 ) or seismic moment tensors (Kreemer et al. 2000 ) 
can be easily incorporated due to the least-squares formulation. 
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The equations to solve can be written in the following example 
form: ⎡ 

⎣ 

d GPS 

d InSAR 

0 

⎤ 

⎦ = 

⎡ 

⎣ 

G GPS 0 
G InSAR G p 

G R 0 

⎤ 

⎦ 

[
v 

α

]
(7) 

where G GPS and G InSAR represent the operators relating the data to 
surface velocities, G p represents a reference frame correction for 
InSAR, G R is a regularization operator, d GPS and d InSAR are the 
observations, and v and α are the velocities and/or coefficients to 
be estimated. For example, in Wang & Wright ( 2012 ) both GNSS 

and InSAR velocities are used, G p with parameters α rotates the 
InSAR observations into the GNSS reference frame, and G R im- 
poses Laplacian smoothing on the estimated velocities v . Using 
the v ariance–cov ariance matrix of the errors allows residual tropo- 
spheric noise in InSAR to be accounted for (Wang & Wright 2012 ; 
Weiss et al. 2020 ). 

Another example is the approach originally proposed by Haines 
& Holt ( 1993 ) and more recently developed by Okazaki et al. 
( 2021 ), which solves for coefficients to bicubic splines instead of 
the velocities directly. In this case, v are the spline coefficients, 
and the strain rates can be computed anal yticall y b y multipl ying 
the coef ficients b y the spatial deri v ati ves of the basis functions. 
G p and the α coefficients are not needed when only GNSS obser- 
vations are used. The system is solved using linear least squares. 
Regularization through G R (e.g. Laplacian smoothing) is typically 
used to suppress high-frequency noise and provide a smooth field 
by some metric. There is a trade-off between fitting the observa- 
tions and having a smoother field (e.g. Shen et al. 2015 ), so a 
decision must be made about how strongly to regularize. For tec- 
tonic studies of strain rate, the specific strength of regularization 
is often not quantitati vel y justified. We will explore the so-called 
‘L-curve’ below as one option for how to choose the strength of 
regularization. 

From this class of methods, the Strain 2D package imple- 
ments the Tape et al. ( 2009 ) wavelets method through a Python 
wrapper of the code surfacevel2strain , written in MATLAB 

and publicl y av ailable (Tape et al. 2009 ). This method uses a 
suite of wavelets of varying degree as basis functions; the pa- 
rameters to specify include the maximum degree of wavelet 
to use. 

2.2.4 Elasticity-based methods 

This class of methods uses constraints from elasticity, using a 2-D 

thin-plate approximation to interpolate 2-D vector data (Haines et al. 
2015 ; Sandwell & Wessel 2016 ; Haines & Wallace 2020 ). The elas- 
ticity constraint provides a physical basis for the spatial correlation 
length scale and couples the two horizontal velocity components 
(depending on the Poisson’s ratio). Horizontal body forces applied 
at specified locations deform the surface and are optimized to match 
the surface velocities. Haines et al. ( 2015 ) developed an approach 
called ‘Vertical Deri v ati ves of Horizontal Stress’ (VDoHS) that 
uses a finite element model to solve for the body forces using the 
governing equations, while Sandwell & Wessel ( 2016 ) calculated 
Green’s functions for a point source. Both methods co-locate the 
body forces with the stations, which results in an even-determined 
problem that can be solved exactly for the body force magnitudes. 
Strain 2D implements the gpsgridder method of Sandwell & Wes- 
sel ( 2016 ) by wrapping the built-in functionality in GMT (Wessel 
et al. 2019 ). 

2.2.5 Weighted neighbourhood methods 

This class of methods defines a local neighborhood around an esti- 
mation location and uses either a weighted mean or locally weighted 
linear least squares to estimate the velocity at the query point. The 
w eighted a verage approach can be written as: 

v ∗ ( x i ) = 

∑ 

j 

w j v 
(
x j 

)
(8) 

where v(x j ) are the observed velocities, w j are weights assigned to 
each velocity, and v ∗( x i ) is the estimated velocity at the unobserved 
location x i . The goal is to calculate the weights w j such that the 
estimated velocities reflect the spatial correlations in the observa- 
tions. This general class of methods has many common forms; for 
example, nearest-neighbour sets all weights equal to zero except for 
the closest point, which takes a weight of one. Another common 
approach is to use weights proportional to inverse distance to some 
po wer (In verse Distance Weighting): w j ∝ (1/ r ij ) p , where r ij are the 
distances between each observation at x j and the unobserved loca- 
tion x i . The exponent p can be adjusted based on desired properties 
of the interpolating surface (e.g. Shepard 1968 ). 

An improvement on Inverse Distance Weighting can be had by 
solving for the optimal weights in eq. ( 8 ) given some constraints. 
Using spatial covariance, this becomes the classic geostatistical 
problem of kriging. First, v ario gram anal ysis or some other method 
is used to determine the spatial structure function for calculating 
covariance between pairs of observations (e.g. Matheron et al. 1962 ; 
and Fig. 1 ). This structure function is then used to determine the 
covariance matrix of the observations ( 

∑ 

) and the covariance be- 
tween the observations and the unsampled estimation locations ( σ ). 
Then one can solve directly for the optimal weights w using these 
covariances. We use the ordinary kriging equations (e.g. Wacker- 
nagel 2003 ; Chil ès & Delfiner 2012 ) to find the optimal weights 
given an unknown mean: [

� 1 
1 T 0 

] [
λ

ν

]
= 

[
σ0 

1 

]
(9) 

where here we use the conventional symbol λ for the vector of 
kriging weights, and ν is a Lagrange multiplier. Eq. ( 9 ) is derived by 
assuming a solution in the form of eq. ( 8 ) and requiring unbiasedness 
and minimum estimation variance. Because � is a positive semi- 
definite square matrix, (9) can be directly inverted to solve for λ
and ν. The weights are substituted into eq. ( 8 ) and used to calculate 
the prediction at the new location x i . In its simplest form, this 
method assumes no long-wavelength trends (homogeneous) and no 
directional variations (isotropic). For GNSS velocities, two separate 
systems are solved for the two horizontal velocity components. 

Shen et al. ( 2015 ) use a slightly modified version of these 
w eighted-a verage type methods, but instead of calculating the inter- 
polated velocity directly from weights they solve a locally weighted 
least-squares problem assuming a locally bilinear field, using the 
covariance and spatial data coverage as w eights. Handw erger et al. 
( 2019 ) and Huang et al. ( 2022 ) take a similar approach and perform 

a local linear regression in a moving window with fixed radius, but 
without any additional weights on the data. 

In Strain 2D, we implement a standard ordinary kriging ap- 
proach, separately interpolating each velocity component, as the 
geostats method. Shen et al. ( 2015 ) made their code visr publicly 
available as a Fortran executable, so we also provide a Python wrap- 
per to visr in Strain 2D. Finally, we implement the Huang et al. 
( 2022 ) moving window algorithm in Python, called ‘Local average 
gradient.’ 
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2.3 Strain 2D implementation and moment rate 
calculation 

The open-source Strain 2D program (Materna et al. 2021 ; see 
Data and Resources) provides the ‘strain rate compute.py’ and 
‘strain rate comparison.py’ command-line programs for use in cal- 
culating strain rates. Explanations of the parameters for each 
method, any external codes required, and how to get started are 
available on the code repository page. Strain 2D has been set up 
using a modular approach to facilitate adding new models. The 
‘Strain 2D’ base class includes a description of how to set up a new 

strain rate model to use with the code, so users can add their own 
methods and submit them back to the main repository. 

3  A P P L I C AT I O N  T O  S O U T H E R N  

C A L I F O R N I A  

3.1 GNSS velocity data set 

For this study, we merge two publicly available GNSS velocity data 
sets together for the purposes of generating a dense velocity field 
in souther n Califor nia (Fig. 2 ). The first velocity field is derived 
from the processing of continuous and semi-continuous GNSS data 
at University of Nevada Reno (UNR, Blewitt et al. 2018 ) and using 
the Median Interannual Difference Adjusted for Skewness (MIDAS) 
algorithm for estimating velocities (Blewitt et al. 2016 ). We take 
stations in the geographic domain [ −121 ◦, −114 ◦, 32 ◦, 36.5 ◦] that 
have more than 2 yr of time-series duration, giving us 778 station 
velocities in the southern California domain. 

The second velocity field is an update of the Southern California 
Earthquake Center (SCEC) Community Geodetic Model (CGM) 
version 1.0 (Sandwell et al. 2016 ), containing 1585 GNSS veloci- 
ties from both continuous and campaign GNSS stations. We retain 
1496 stations that have formal horizontal uncertainties less than 
10 mm yr −1 and remove the rest. 

We combine the two velocity fields and their uncertainties by 
determining a seven-parameter Helmert transformation based upon 
the 549 common stations, and then applying the transformation to 
con vert the MID AS velocities into the reference frame of the SCEC 

velocity field (Fig. S1 and Table S1, Supporting Information). The 
resulting velocity field has 1688 total velocities across southern Cal- 
ifornia in the reference frame of the SCEC velocity field (Fig. 2 a). 
Fig. 2 (b) shows station spacing in the region as colour by taking the 
length scale of a Delaunay-type grid of the station locations. 

3.2 Strain rate calculations 

We used the merged GNSS data set described above and applied five 
of the methods ( visr , gpsgridder , local aver age gr adient , wavelets 
and geostats ) that are implemented in the Strain 2D package to 
calculate velocities and strain rates on a regular grid in southern 
California and generate max shear, dilatation, and second invariant 
(I2) maps. GNSS velocities contain some level of noise, which is 
not accounted for by the direct baseline approach. Therefore, we do 
not use direct triangulation in the strain rate comparisons below but 
we provide the figures in the Supporting Information (Fig. S2). 

3.2.1 Parameter selection by L-curve method 

Parameter values for each method must be determined, as each 
method can be adjusted by its parameters to produce smoother and 

rougher models. One traditional approach for parameter tuning in 
tectonic studies is to use an ‘ L -curve,’ that is, a curve that shows 
the trade-off between model fit to the observations and some norm 

of the model, for example, a smoothness norm (Hansen 1992 ). The 
problem is underdetermined; we do not have enough observations to 
uniquely determine the strain rate at all points in space. In general, 
we expect strain rates due to tectonic processes (fault locking or 
fault slip) to be relati vel y smooth and act over relati vel y long spatial 
wavelengths. Thus, rougher solutions tend to fit better (have lower 
misfit) but likely correspond to noisier strain rate maps, while overly 
smooth solutions will likely not fit the data well. 

We explored the parameter space for each strain rate method and 
quantified the results in a series of L -curves. We used the same 
input velocity field and grid spacing (0.02 ◦×0.02 ◦) in each model 
run. Fig. 3 shows L -curve plots of misfit (eq. 10 ) versus total mo- 
ment (eq. 6 ) for the strain rate methods considered. Note that the 
wavelets method does not have a well-defined L -curve due to its 
parametrization so we plot those results as points rather than a line. 

σ = median 

{ (
v obs − v pred 

σobs 

)2 
} 

(10) 

For Fig. 3 , total moment rate on the x -axis is calculated from 

eq. ( 6 ) assuming a shear modulus of 30 GPa, seismogenic depth of 
11 km, and only including strain on land. On the y -axis, we calculate 
misfit by using nearest-neighbor interpolation from the gridded 
velocity field to the data locations. The data contain some obvious 
outliers, so we use the median reduced chi-square of the misfits in 
the east and north components. We also excluded the largest outliers 
(with > 10 mm yr −1 residuals), a process that removed less than 3 
per cent of the data. 

3.2.2 Modelling results and comparison 

Based on the L -curve analysis, we can select a subset of models 
(highlighted by black squares in Fig. 3 ) as representative models 
from each method (Fig. 4 ) and compare their similarities and differ- 
ences. Table 1 shows the final parameter values for each method 
used in Fig. 4 . Table 2 shows the total moment calculated us- 
ing Kostrov summation (eq. 6, Kostrov 1974 ; Savage & Simpson 
1997 ) and misfit to the observations for each of the highlighted 
models. 

Maximum shear strain rates are high all along the San Andreas 
fault (SAF) and San Jacinto fault systems. Low levels of shear 
strain rate are present in the entire Easter n Califor nia Shear Zone, 
the Garlock Fault and faults in the Transverse Ranges. A hotspot of 
shear strain rate in the vicinity of Landers–Hector mine shows up in 
all models, so may be related to residual post-seismic strain in the 
GNSS velocity field (e.g. Pollitz et al. 2000 ). Dilatation rates are 
consistent with contraction across Transverse Ranges. Extension 
occurs almost e xclusiv ely east of the SAF except for north-central 
Baja California and near the central SAF. The largest dilatation fea- 
ture in all the maps is the contraction–dilatation pattern in nor ther n 
Baja California that is spatially associated with the Cerro Prieto 
Geothermal Field (CPGF); comparison to vertical GNSS velocities 
shows widespread subsidence surrounded by uplift. This large-scale 
signal could be due to geothermal fluid extraction (e.g. Sarychikhina 
et al. 2011 ) or potentially to cooling of a shallow magma body (e.g. 
Hamling et al. 2022 ). 

The mean and standard deviation of the strain rate invariants 
across all five methods are shown in Fig. 5 , with strain rates masked 
where they do not exceed the standard deviation across all methods. 
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Figure 2. (a) GNSS horizontal velocities used in this study with respect to North America, showing 1688 velocities and their 98 per cent confidence intervals. 
Holocene fault traces from the USGS Quater nar y Faults and Folds Database are shown in dark grey. SAF: San Andreas fault; ECSZ: Eastern California Shear 
Zone and SJC: San Jacinto fault. (b) Station spacing shown by using Voronoi polygons with stations at cell centres and colouring the pol ygons b y the square 
root of their area, that is, the interstation length scale. 

Figure 3. Data misfit metric versus total moment for various model parameter choices in each of the strain rate methods considered in this study (Table 1 ). 
Models near the corners of each method’s L -curve, outlined by black boxes, were selected for subsequent analysis. The grey oval represents the region in 
roughness/misfit space containing all the representative models. 

The residuals from the mean are shown in Fig. 6 . Maximum shear 
strain rates are generally consistent across all models, with differ- 
ences mainly in the degree of smoothness of the estimated field. 
The two principal exceptions are the northwest corner of the map 
near Parkfield and the area south of the Imperial Valley in southern 
California, where the SAF transitions to the Baja California spread- 
ing ridge. These two areas show large variability between methods 
ev en though the y hav e high observation density. In comparison to 
the max shear strain rate, dilatation and I2 rates are much more vari- 
able between methods. The standard deviation of the dilatation rate 
is as large or larger than the signal in many places. Figs S3 and S4 

(Suppor ting Infor mation) show scatter cross-plots and histograms 
for maximum shear and dilatation across all methods. 

Fig. 7 shows how strain rate varies along three profiles across 
the SAF. Max shear strain rates are highest in the south in the 
Imperial Valley profile, with lower and broader shear strain rates 
occurring in the two nor ther n profiles. The profile plots are in- 
structive because (1) they show that the variability between meth- 
ods is less than the strain signal in many places, (2) they demon- 
strate the range of behaviours of the different methods and (3) 
they clearly show that strain rates from some methods are not 
smooth, at least for the choice of parameters reflected in Figs 3 
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Figure 4: Dilatation, maximum shear strain rate and second invariant from five strain rate techniques using the same interpolation grid (0.02 ◦ × 0.02 ◦) and 
same input GNSS velocities. The maps are not ordered by any metric. Ne gativ e dilatation (red colours) corresponds to shortening. 

and 4 . geostats- Gaussian and visr are relati vel y smooth, geostats- 
Exponential and local average gradient are relati vel y rough, and 
gpsgridder and wavelets are somewhat intermediate. Strain rates are 
highest south of the Salton Sea, highlighting the critical seismic haz- 

ard of this region. Note that we included the geostats- Exponential 
model to show how the geostats method can produce a range of be- 
haviours that encompass the other methods depending on parameter 
choices. 
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Table 1. Parameters selected for each of the strain rate methods shown in the black boxes in Fig. 3 . The ‘Value’ column shows 
the parameter choices for the five strain rate methods used to calculate the strain rate maps shown in Fig. 4 . 

Method Class Parameter Value 

Āll methods range strain −121/ −114/31/37 
range data −122/ −113/30.5/37.5 
xinc/yinc 0.02 ◦/0.02 ◦

gpsgridder (Sandwell& Wessel 2016 ) Elasticity Poisson 0.5 
Fd 0.01 
eigenvalue 0.0001 

VISR (Shen et al. 2015 ) Neighbourhood distance weighting Gaussian 
spatial weighting Voronoi 
min max inc smooth 5/80/5 
weighting threshold 10 
uncertainty threshold 0.5 

Local avg. grad. (Huang et al. 2022 ) Neighbourhood EstimateRadiusKm 120 
nstations 22 

wavelets (Tape et al. 2009 ) Basis functions qmin 3 
qmax 8 
qsec 8 

geostats (This publication) Neighbourhood Model type Gaussian 
Sill east 1.1 
Range east 0.55 ◦
Nugget east 0.18 
Sill north 1.1 
Range north 0.55 ◦
Nugget north 0.18 
trend 0 

Table 2. Total moment rate computed from each strain rate model in b lack bo xes in Fig. 3 . Median deviation of the modelled 
velocities with respect to the observ ed v elocities is computed using eq. ( 10 ) from a trimmed velocity data set that does not consider 
misfits > 10 mm yr −1 , to remove outliers from stations on islands, etc. 

Method Type of method 

Moment accumulation rate, 
in 1e18 N ·m yr −1 and 
equi v alent Mw yr −1 

Median absolute deviation 
(mm yr −1 ) 

gpsgridder Elasticity 17.24 ( M w = 6.79) 1.5 
VISR Weighted neighbourhood 15.39 ( M w = 6.76) 2.1 
Local avg grad Weighted neighbourhood 20.96 ( M w = 6.85) 3.1 
wavelets Spatial basis function 16.28 ( M w = 6.77) 2.1 
geostats —Gaussian covariance Weighted neighbourhood 22.33 ( M w = 6.87) 3.0 

4  D I S C U S S I O N  

4.1 Characterizing uncertainty in geodetic strain rate 

Part of the epistemic uncertainty in strain rate can be represented by 
the centre column of panels in Fig. 5 , which is calculated by taking 
the standard deviation of the models shown in Fig. 4 . An additional 
source of epistemic uncertainty is the range of reasonable values for 
the parameters chosen for a given method, which can be constrained 
based on the L -curve. In our case of multiple types of strain rate 
methods, w e ha v e multiple L -curv es, and by comparing all the L - 
curves together we chose the models highlighted by boxes in Fig. 3 . 

We can also approximate aleatoric strain rate uncertainties by 
propagating the uncertainties in the velocity field obtained from 

the geostats method through the strain rate calculation, recognizing 
that the aleatoric uncertainty estimate depends upon selecting rea- 
sonable model parameters (see below). We then use a linear Taylor 
expansion to obtain uncertainties in the shear strain rate from un- 
certainties in velocity (see Supporting Information). Fig. 8 shows 
this aleatoric uncertainty as well as the estimate of epistemic uncer- 
tainty described above. As expected, aleatoric uncertainty is high 
where there is no data and low in areas of dense station spacing. In 
contrast, epistemic uncertainty is high where strain rates are high 

and station spacing is either higher or lower than average across the 
scene. Epistemic uncertainty is slightly higher for dilatation rate, 
while aleatoric uncertainty is slightly higher for max shear strain 
rate. Note that the colour pattern artefacts in the lower-right panel 
in Fig. 8 are due to the linearization of the max shear strain rate to 
estimate uncertainty. 

There is a trade-off between epistemic and aleatoric uncertainty 
that is related to the parameter choice made for each model using 
the L -curve (Fig. 3 ). With reference to Figs 1 and 3 , models that 
assume a longer correlation length scale and/or a lower total vari- 
ability would tend to have lower aleatoric uncertainty because the 
observations impose stronger constraints on the unknown estimates 
(i.e. results in a smoother model, which by definition has a lower 
aleatoric uncer tainty). A shor ter length scale implies that the data 
provide weaker constraints on the models. In other words, ‘dense’ 
station spacing versus ‘sparse’ station spacing is a function of the 
distance over which observations are correlated; a 5-km station 
spacing is sparse if observations are only correlated over 1 km. For 
tectonic problems and assuming elasticity, the rele v ant length scale 
is the fault locking depth, which varies in southern California but is 
in the range 5–25 km (e.g. Smith-Konter et al. 2011 ; Johnson 2013 ; 
Maurer et al. 2018 ). Thus, in souther n Califor nia, station spacing 
< 10 km is relati vel y ‘dense’ and aleatoric uncertainty is low, while 
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Figure 5: Mean and standard deviation of derived quantities from the five strain rate models shown in Fig. 4 . Features such as the Transv erse Ranges, P arkfield, 
CA, the Coso GF and the CPGF are labelled. The right-hand column (Nonzero) shows the mean strain rates (left-hand column: mean) that have been masked 
where the standard deviations from the central column are larger than the mean values themselves, making them statistically indistinguishable from zero. 

> 25 km spacing is ‘sparse’ and aleatoric uncertainty is high (cf. 
Figs 2 b, 6 and 8 ). 

Fig. 3 and Table 2 show that, in comparison to the L -curve for 
each individual method, when comparing between different methods 
moment and misfit do not systematically trade-off. For example, 
the visr method is the smoothest (in the sense of having lowest 
total Kostrov moment) but has a higher misfit than the gpsgridder 
method. Both the local average gradient and the Geostats- Gaussian 
methods have high moment and high misfit. Moment varies ∼40 
per cent between all methods (15.4–22.3 × 10 18 N ·m yr −1 ) and 
the misfit varies by ∼50 per cent. With reference to Fig. 3 , these 
characteristics are due to systematic shifts in the location of the 
L -curve in misfit-moment space, which are related to the strain rate 
and/or velocity field parametrizations used by each method. This 
is illustrated by comparing the geostats- Gaussian model with the 
geostats -exponential model (Fig. 3 ); the two methods are the same 
but in one case parametrizes the velocity field using an exponential 
spatial structure function (spatial covariance) versus the Gaussian 
structure function. Fig. 7 shows how the different assumptions of 
each method get reflected in profiles of strain rate and suggests 
that epistemic uncertainty for strain rate will depend in part on the 
degree of roughness considered to be plausible by the practitioner. 

4.2 Contributions to uncertainty in geodetic strain rate 
related to data and interpolation errors 

What is the source of uncertainty shown in Fig. 8 and discussed 
above? Comparing Fig. 2 (b) with Figs 6 and 8 highlights that much 
of the variability between methods occurs at length scales roughly 
at or below the station spacing. As noted in the Introduction, every 
method for interpolation must implicitly or explicitly make three 
assumptions about the underlying field: how to handle measurement 
noise in the observations, the interpolated field’s behavior at short 
wavelengths and the length scale over which the observations are 
correlated. Every strain rate method makes different choices for 
these three characteristics. Not surprisingly, in our experiments, 
some of the large epistemic strain rate discrepancies occur in areas 
with sparse station spacing and highl y v ariable or noisy data (e.g. 
Cerro Prieto in nor ther n Me xico). Howev er, sev eral of the large 
discrepancies in modelled strain rate are co-located with regions 
with dense station spacing, such as Parkfield and the SAF south of 
the Salton Sea (cf. Fig. 2 b with Figs 4 –6 ), some of which represent 
velocities from GNSS campaigns. Higher station density occurs 
along the SAF north of the Salton Sea, the Imperial Valley in CA, 
the San Jacinto fault, the Parkfield section of the SAF, the region 
between Los Angeles and Ventura, the Coso GF and the Highway 
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Figure 6: Residual strain rates (i.e. mean in Fig. 5 minus individual solution in Fig. 4 ) for dilatation (top row) and max shear (bottom row). 

1 corridor near Lompoc, CA (Fig. 2 b). Each of these regions is 
characterized by higher discrepancy between the strain rate models 
in maximum shear strain rate and/or dilatation rate. Many, but not 
all, of these regions have high strain rates. 

The locations of these discrepancies and their correspondence 
to non-random station placement suggests that locally densifying 
stations to improve resolution of strain rate in one small part of a 
larger area will not improve the calculation of strain rate without 
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Figure 7. Three max shear strain rate profiles across the SAF across the five representative models from Fig. 4 and also including the geostats -Exponential 
model. Top: cross-section along the central SAF; middle: cross-section at about 34 ◦ N across the Los Angeles (LA) basin and bottom: cross-section across the 
Imperial Valley region. Inset map shows the maximum shear strain rate from the average of the five representative models (same as in Fig. 5 ). 

Figure 8. Top row: epistemic uncertainty (1 σ le vel) deri v ed from fiv e methods of strain calculation from Fig. 4 . Bottom row: uncertainty in dilatation rate and 
maximum shear strain rate obtained by propagating velocity interpolation uncertainties derived from the geostatistical method presented in this paper. Black 
dots show GNSS station locations. 
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consideration of the different spatial wavelengths able to be targeted 
with the method used. In other words, the addition of data without 
the ability to adjust the spatial parameters corresponding to the 
local station density is a limitation in many of the strain methods 
presented here. 

Many of the methods implemented in Strain 2D use a single 
set of parameters to describe the spatial variability in the observa- 
tions; regions with denser station spacing need different parameter 
choices based on the local variability than is appropriate for the 
whole model domain. One way to do this would be to use targeted 
strain rate calculations on smaller domains, or to use a multiscale 
method like wavelets (Tape et al. 2009 ) or visr (Shen et al. 2015 ). 
Ho wever , the multiscale parametrization in these existing methods 
is not fully automatic; it requires some hand-tuning. The median 
filter-based method of Kreemer et al. ( 2018 ) does automatically 
adjust resolution for the region, but with a limited minimum reso- 
lution much larger than the rele v ant spatial length scale in southern 
California. 

In summary, these findings suggest that (1) computational meth- 
ods generally agree at long wavelengths, consistent with Xu et al. 
( 2021 ), and also in areas with low overall strain rates, and (2) strong 
gradients in strain rate and/or noisy data are handled dif ferentl y b y 
the different methods, resulting in larger epistemic uncertainties in 
those areas. Importantly, more data do not automatically improve 
the resolution of strain rate, because the strain rate methods do 
not automatically account for a changing spatial correlation length 
scale. 

4.3 Implications for using strain rates to constrain seismic 
hazard 

Numerous studies have applied strain rates to estimate seismic haz- 
ard (e.g. Ward 1994 ; Shen et al. 2007 ; Bird et al. 2010 ; Bird & 

Kreemer 2014 ; D’Agostino 2014 , 2015 ; Zeng et al. 2018 ; Zheng 
et al. 2018 ; Stevens & Avouac 2021 ), often using eq. ( 6 ) or equi v a- 
lent to convert strain rates to moment rates (Kostrov 1974 ; Savage 
& Simpson 1997 ). Variability in total moment rate across the study 
area v aries b y roughl y 40 per cent across the five models selected 
for inclusion in Fig. 5 . Over 150 yr, roughly the time since the 
1857 Fort Tejon earthquake, this difference accumulates to an M w 

8 earthquake. In comparison, Xu et al. ( 2021 ) reported strain rate 
uncertainties from different models approaching 100 per cent of 
the strain signal in high-strain areas such as along the SAF. This 
larger uncertainty could be due in part to different underlying GNSS 

velocity fields, the inclusion of strain rate models based on elastic 
fault models (Hearn et al. 2010 ), or to independent parameter tun- 
ing by each individual researcher who produced the models. Our 
results in Fig. 3 suggest that comparing multiple methods together 
provides additional insight into parameter selection that would be 
missed using only a single method. 

Clearly, quantifying and, if possible, reducing strain rate uncer- 
tainty are critical for seismic and geodetic moment rate estimates 
(e.g. Mazzotti et al. 2011 ; D’Agostino 2014 ; Stevens & Avouac 
2016 ) and could have a major impact on seismic hazard forecasts 
based on strain rates. A single quantitative metric for determining 
the ‘best’ strain rate model does not account for the fact that some 
real strain may be unrelated to tectonic deformation processes; a 
practitioner may therefore prefer a smoother model with less small- 
scale variability that fits the data worse than a better-fitting model, 

and the L -curve approach provides one method for selecting rea- 
sonable model parameters given such preferences. Strain 2D pro- 
vides the information needed for practitioners to e v aluate the in- 
herent trade-off between fit to the observations and model norm 

for different strain rate methods and to decide the range of pa- 
rameters that makes the most sense given their particular research 
questions. 

Our results show a way to quantify strain rate uncertainty arising 
from data and inter polation er rors; ho wever , we have not addressed 
a potential third source of epistemic uncertainty in strain rates, that 
related to signals that are not of interest to the practitioner. Strain 
rates in southern California include contributions from tectonics, 
hydrology, and magmatic systems and small-scale signals such as 
landslides. Practitioners using strain rates to estimate seismic hazard 
could try to remove non-tectonic signals prior to hazard analysis; 
ho wever , it is unclear how best to do so. For example, magmatic 
systems result in strain rate that are not related to tectonic plate 
motion, but could result in seismicity (e.g. Hamling et al. 2022 ). 
The same might be true of hydrologic signals in some cases (e.g. 
Johnson et al. 2017 ; Hsu et al. 2021 ). In this case, what signals 
can or should be removed will be a case-by-case basis and, for 
seismic hazard, will need to reflect the rele v ant timescales involved; 
that is, over what time period is seismic hazard of interest? Studies 
focused solely on the long-term loading of faults will of course 
want to remove as many other types of signals as possib le, w hile 
studies of shor t-ter m seismic hazard may want to retain some non- 
tectonic strain sources. Currently there are no systematic methods 
for dealing with such a decision process; this is an area ripe for 
additional research. 

4.4 Will InSAR solve all these problems? 

One may reasonably wonder whether the rising quantity and qual- 
ity of InSAR data for velocity determination will resolve all the 
problems related to interpolation of sparse geodetic measurements. 
In particular, the high density of surface observations provided by 
InSAR could potentially allow for calculation of strain rates at high 
resolution without interpolation. Ho wever , there are several chal- 
lenges with using InSAR for strain anal ysis: (1) onl y line-of-sight 
velocities are obtained, (2) current satellite geometries limit sensing 
of the north–south component of deformation and (3) the presence 
of residual tropospheric noise results in unreal strain signals that are 
difficult to remove. There have been several successful attempts to 
calculate strain rates using InSAR by combining with GNSS mea- 
surements (e.g. Wang & Wright 2012 ; Tymofy ey e v a & Fialko 2018 ; 
Weiss et al. 2020 ; Xu et al. 2021 ). These approaches all use rela- 
ti vel y dense GNSS observ ations and filtering to correct the InSAR 

velocities for tropospheric noise, and required coherent, high accu- 
rac y InSAR v elocities. Achie ving these conditions may be dif ficult 
in many areas around the world, in particular where GNSS velocities 
are sparse, and also in tropical regions where InSAR decorrelation 
is a significant problem. The use of InSAR for strain rate estima- 
tion is expected to improve strain rate estimation when sufficient 
GNSS data is available, and without GNSS data it is expected to be 
limited. GNSS velocity interpolation for strain rate calculation will 
thus likely remain an important problem for at least the foreseeable 
future. The use of InSAR to improve strain rate calculations in lo- 
cations with spatially sparse GNSS data is a critical future research 
direction that fully takes advantage of the strengths and weaknesses 
of each data set. 
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4.5 Recommendations and future directions 

Considering the above observations, we can make a few practical 
suggestions for practitioners using strain rates: 

• Strain rate uncertainty using the methods presented here will likely 
only be as good as is possible with the average station spacing. 
Regions of higher station density will not be better resolved simply 
because there is more data there. For areas with more data, a separate 
analysis of that smaller region using appropriate parameters may be 
warranted. 
• When determining the parameters for a given method, assessing 
the data fit and smoothness of the model can aid in parameter 
selection. An L -curve provides one means of quantifying the trade- 
off between misfit and model roughness. 
• Comparing several different methods and/or parameter combina- 
tions to quantify the full space of models that represent a reasonable 
trade-off between misfit and roughness and then averaging the re- 
sults together may produce a more robust strain estimate. This is 
most easily done with a consistent way to handle the data and 
gridding such as the open-source Strain 2D package. Differences 
between methods will alert the user to areas that need further atten- 
tion, and the user can decide which suite of models best represents 
the needs of the study. 
• Using the geostatistical method or a similar approach allows for 
estimates of aleatoric uncertainty. 
• Investigations of how to best combine GNSS and InSAR data, in 
particular for scenarios without dense GNSS velocity fields, should 
be pursued. 

Future development of strain rate methods should address auto- 
matic local determination and application of spatial structure pa- 
rameters. Such algorithms exist but need to be further developed 
(Tape et al. 2009 ) or have not been applied to strain rate estimation 
(e.g. Gribov & Krivoruchko 2020 ). Such algorithms also should 
account for spatial anisotropy typical of GNSS velocities (such as 
is currently done in the visr method) and ideally would also easily 
incorporate constraints from elasticity, seismicity or other types of 
strain measurements (e.g. VLBI and InSAR, e.g. Haines & Holt 
1993 ; Sandwell & Wessel 2016 ; Weiss et al. 2020 ). Such a method 
w ould allo w for reliable multiscale estimation of strain rates glob- 
ally while also retaining local details. In addition, better integration 
of InSAR velocities w hen availab le that accounts for the spatially 
correlated uncertainties of both data sets has great potential for 
reducing strain rate uncertainties, both aleatoric and the compo- 
nent of epistemic uncertainty related to interpolation method. The 
Strain 2D code provides a potential platform for these future devel- 
opments through its modular design and use of a consistent input 
for mat. Integ rating additional strain rate calculation methods from 

the scientific community could improve estimates of epistemic un- 
certainties in the Strain 2D w orkflo w. 

5  C O N C LU S I O N S  

We have presented an application of the Strain 2D software package 
(Materna et al. 2021 ) for estimating strain rate and its epistemic and 
aleatoric uncertainties in southern California using a new combined 
GNSS velocity field. We find that maximum shear strain rates are 
highest along the SAF system, as expected, with the overall highest 
strain rates occurring around the Imperial Valley. Dilatation rates 
are generally consistent with strike-slip tectonics except in north- 
er n Baja Califor nia, where dilatation patter ns suggest defor mation 
potentially related to either geothermal development or a shallow 

magmatic system. We construct our mean strain rate model using 
five separate strain rate methods, and for each method, we systemati- 
cally choose appropriate model parameters through the construction 
of an L -curve. By comparing the five representative strain rate mod- 
els, we find epistemic variability to be roughly 40 per cent of the 
strain rate signal, a much lower value than roughly 100 per cent that 
was found in previous studies (e.g. Hearn et al. 2010 ). Comparison 
between the models also suggests that denser geodetic data do not 
automatically improve the resolution of strain rate because most 
strain rate methods do not automatically account for spatially vary- 
ing spatial structure. The Strain 2D package provides a convenient 
means to calculate and average results from multiple strain rate 
methods and can be used to determine both aleatoric and epistemic 
uncertainties to improve understanding of strain rates in new areas. 

DATA  A N D  R E S O U RC E S  

The Strain 2D library and its tutorial and examples is publicly avail- 
able (Materna et al. 2021 ). GNSS velocities from the UNR through 
the MIDAS algorithm were accessed at http://geod esy.unr.ed u/ve 
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