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Preserving Privacy in Image Database through
Bit-planes Obfuscation

Vishesh K. Tanwar, Ashish Gupta, Sanjay Madria, Sajal K. Das

Department of Computer Science, Missouri University of Science and Technology, Rolla, USA

{vktgtd, ashish.gupta, madrias, sdas}@mst.edu

Abstract—The recent surge in computer vision applications
has caused visual privacy concerns to people who are either
users or exposed to an underlying surveillance system. To
preserve their privacy, image obfuscation lays out a strong road
through which the usability of images can also be maintained
without revealing any visual private information. However, prior
solutions are susceptible to reconstruction attacks or produce
non-trainable images even by leveraging the obfuscation ways.
This paper proposes a novel bit-planes-based image obfuscation
scheme, called Bimof, to protect the visual privacy of the user
in the images that are input into a recognition-based system.
By incorporating the chaotic system for non-invertible noise
with matrix decomposition, Bimof offers strong security and
usability for creating a secure image database. In Bimof, it is
hard for an adversary to recover the original image, withstanding
a malicious server. We conduct experiments on two standard
activity recognition datasets, UCF101 and HMDB51, to validate
the effectiveness and usability of our scheme. We provide a
rigorous quantitative security analysis through pixel frequency
attacks and differential analysis to support our findings.

Index Terms—Image obfuscation, Secure image database, Us-
ability, Visual privacy

I. INTRODUCTION

Recently, an unprecedented surge has been seen in the

usage of surveillance cameras [1] due to security concerns,

causing an explosion of image and video data on cloud servers.

Such data are leveraged for identification-related tasks and

thus uploaded in plain form, which raises privacy concerns

to the users as the data may be exploited to gain private

visual information either by legitimate image retrieval or by

adversaries from database [2]. Consider a scenario of airport

surveillance security in which multiple CCTV cameras are

deployed to detect suspicious human activities and objects.

The recorded images are continuously uploaded to the cloud,

inviting adversaries to steal passengers’ visual personal iden-

tification information (V-PII), such as their face, gender, race,

and so on. To protect V-PII, a privacy assurance scheme

should be integrated with cloud data aggregation services with-

out compromising the utility of the underlying applications.

A naive approach towards preserving V-PII is via obfus-

cation such as face blurring [3] while uploading on a cloud

database. By scaling this idea from face to entire image, prior

studies adopted down-sampling [4], [5] and pixelation [6] to

conceal V-PII which otherwise is apparent in high-resolution

images. Rajput et al. [7] added Gaussian noise into the under-

lying image before applying down-sampling for obfuscation.

Another method, scrambling [8], makes the resultant image

visually indiscriminate by disrupting pixels’ inter-correlation.

A comprehensive survey of image obfuscation techniques is

presented in [9]. On a different track, though the cryptography-

based approaches such as differential privacy (DP) [10] and

fully homomorphic encryption (FHE) [11] can offer strong

visual privacy, their effectiveness is limited under machine

learning and deep learning algorithms.

Our research is motivated by the following limitations of

the current literature. First, though the prior privacy-preserving

schemes [8], [11] offer good security by minimizing or break-

ing the pixels’ inter-correlation, the generated obfuscated im-

ages do not contain enough information for training deep neu-

ral networks (DNNs) to achieve adequate accuracy. Second,

the blurred [3], down-sampled images [5] have high usability

to train highly DNNs, but they are vulnerable to reconstruction
and de-identification attacks. Third, the obfuscation schemes

such as [5] assume that the server is trustworthy because the

server designs the underlying obfuscation function for the user,

using data-driven DNNs prone to reverse training, thus posing

a risk of image reconstruction [12] by the server.

Major Contributions: While addressing the above limita-

tions, we make the following contributions:

• We propose a novel Bit-planes based Image Obfuscation

scheme, abbreviated as Bimof, to preserve V-PII for cre-

ating a secure image database. Unlike the above discussed

prior approaches, Bimof offers stronger security against

reconstruction and de-identification attacks by injecting

non-invertible noise (generated using Lorenz’s chaotic

system [13]) at a bit-planes level.

• In Bimof, the obfuscation function may not be known to

the server, thereby making it independent of the server’s

intention and robust against adversarial image retrieval

from a cloud database.

• By employing two benchmark activity recognition

datasets, UCF101 and HMDB51, we evaluate the ef-

fectiveness of Bimof through rigorous qualitative and

quantitative security analysis and further demonstrate its

superiority over the state-of-the-art approaches.

Paper organization: Section II discusses the related work

followed by our proposed image obfuscation scheme, Bimof,

in Section III. Section IV, we presented the qualitative security

analysis using different block sizes and reported the recogni-

132

2023 IEEE 39th International Conference on Data Engineering Workshops (ICDEW)

2473-3490/23/$31.00 ©2023 IEEE
DOI 10.1109/ICDEW58674.2023.00027

20
23

 IE
EE

 3
9t

h 
In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 D
at

a 
En

gi
ne

er
in

g 
W

or
ks

ho
ps

 (I
C

D
EW

) |
 9

79
-8

-3
50

3-
22

44
-6

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

IC
D

EW
58

67
4.

20
23

.0
00

27

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on August 16,2023 at 16:46:27 UTC from IEEE Xplore.  Restrictions apply. 



tion accuracies over UCF101 and HMDB51 datasets. Finally,

Section V concludes the paper with future directions.

II. RELATED WORK

This section presents the current status of the literature on

obfuscation methods. The prior works can be broadly divided

into two categories based on the underlying process.

A. Learning-based obfuscation methods

By introducing a privacy-preserving system to access the

users’ images stored over the online social media database, Ilia

et al. [3] focused on blurring the users’ faces to prevent leakage

of V-PII. In another study [4], a privacy-preserving camera

system is presented for patrol robots to detect human faces

from extremely low-resolution (eLR) images and then enhance

the resolution of the image background (except face pixels) to

improve the model accuracy. However, these schemes fail to

protect other privacy attributes like gender, race, location, etc.
Li and Choi [5] proposed an image obfuscation scheme named

DeepBlur to prevent face re-identification attacks by humans

and to invert data-driven DNNs. The authors synthesized the

photo-realistic facial image by obfuscating the latent feature

space of the unconditional GANs. The qualitative analysis

shows the preservation of gender and race when the scheme

is evaluated for face datasets. Ryoo et al. [14] introduced a

learning-based anonymization scheme to develop an activity

recognition system by transforming images into eLR forms.

For DNNs training, they aimed to exploit multiple LR videos

respective to a single high-resolution (HR) video and embed

them with the same representation used for classification.

Ren et al. [15] proposed an adversarial training encoder-

decoder-based video anonymizer while maintaining the

model’s usability. Unlike down-sampling-based approaches,

Bai et al. [16] combined HR and eLR videos, utilizing spatial-

temporal attention information to improve activity recognition.

Purwanto et al. [17] presented a multi-head activity recognition

model using self-attention by exploiting the Spatiotemporal

information. The authors argue that the model training with

super-resolution images and incorporating a teacher-student

knowledge distillation approach to eLR images enhances vi-

sual privacy. A coupled convolutional neural network using

anonymous LR videos and exploiting the optical flow of

LR and HR videos is presented in [18] for indoor activity.

Recently, in [19], a multi-stream DNN has been proposed for

activity recognition on eLR videos, exploiting RGB images

and slack mask data. You et al. [20] proposed a reversible

privacy-preserving face mosaicing scheme via training an

encoder to obtain a protected image and the original facial

features. Further, a decoder is used to recover the original

face with protected images as input.

B. Non-learning based obfuscation methods

Rajput et al. [7] utilized position-based superpixel trans-

formation and Gaussian noise for RGB-depth video database

to train a DNN for human activity recognition system over

the cloud server. Jeevitha and Prabha [8] proposed a block-

based image scrambling technique by decomposing a secret

image into multiple discrete wavelet transform planes. Knott et

al. [21] developed secure software under a semi-honest threat

model to perform common operations in ML frameworks for

image classification and speech recognition.

Gilad et al. [11] proposed an FHE scheme for encrypting

gray-scale images to train a feed-forward neural network and

validated it for the MNIST dataset only. Bost et al. [22] also

proposed an FHE-based scheme for naive Bayes, decision

trees, and hyperplane decision classifiers. The authors com-

bined FHE without bootstrapping, Quadratic Residuosity, and

Paillier cryptosystems [23] for data encryption. Chamikara

et al. [10] leveraged the local differential privacy (LDP)

to develop a privacy-preserving face recognition protocol to

prevent biometric features while authenticating the individ-

ual. Wang and Chang [24] proposed a two-party privacy-

preserving image classification scheme by perturbating the

image information using LDP. They analyzed perturbation’s

effect satisfying ε-LDP on data utility regarding distance and

count-based machine learning algorithms. Chen et al. [25]

presented a secure multi-classification scheme to address the

privacy leakage in robot systems using DNN. The authors used

homomorphic encryption for secure calculation protocols to

adopt two activation and cost function pairs.

Contrasting existing work that protects pre-defined visual

attributes like faces and gender, our proposed scheme performs

obfuscation over the image to protect the complete image, not

some specific privacy attributes. However, our extended ver-

sion will contain privacy experiments showing the preservation

of specific attributes.

III. PROPOSED OBFUSCATION SCHEME

In this section, we propose an image obfuscation scheme,

Bimof, to conceal users’ V-PII when the data are stored

on the cloud database. Unlike prior schemes [26], [27] that

obfuscate images by pixel permutation, Bimof follows a novel

idea in which each pixel of the input image is obfuscated

without altering its location. Specifically, we add randomness

and non-invertible noise to each pixel intensity value while

preserving useful features for DNN model training. Bimof

produces non-invertible image, i.e., the original image cannot

be reconstructed from its obfuscated form, thereby protecting

it from gradient reconstruction, model inversion, and de-

identification attacks.

A. Random noise generation

As Bimof aims to insert a non-invertible noise into the

input image, we reviewed the related literature. We found

that chaotic structures [13] are a favorable choice for securing

image information as they are unpredictable, non-reproducible,

and intrinsically coherent. Following [13], we utilize Lorenz’s

chaotic structures on three variables x, y, z, defined as

dx

dt
= α(y − x),

dy

dt
= βx− y − xz,

dz

dt
= xy − γz (1)
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Fig. 1: The proposed image obfuscation scheme (Bimof).

where α, β, γ are the system parameters. Solution

hyperplane of the system 1 has chaotic nature for

(α = 10, β = 28, γ = 8/3) [13]. Let S ∈ R
numsol×3 denote

a solution matrix for system 1, where numsol is total number

of solutions. Bimof leverages these vectors to perturbating

the QR components of a bit-plane in Section III-B.

B. Bimof Scheme

Bimof obfuscates the input image through block-based bit-
planes obfuscation. Fig. 1 demonstrates the overall obfuscation

process of our scheme. For a given input gray-scale image I ,

Bimof divides it into blocks, incorporates the non-invertible

DP noise mechanism to each block, and then performs recon-

struction to obtain the obfuscated image Iobs. Intuitively, the

assimilated noise would spread and accumulate to each pixel

intensity value during reconstruction while keeping its location

unaltered in the obfuscated image Iobs.

Let the dimension of I is m× n which we partition into L
non-overlapping blocks, each of dimension τ1×τ2, denoted as{
I1b , I

2
b , · · · ILb

}
, where L = m×n

τ1×τ2
is a positive integer. Each

block may be perceived as a gray-scale image of dimension

τ1 × τ2. Utilizing the property that a gray-scale image can

be decomposed exactly into eight bit-planes, our obfuscation

scheme for each of the L blocks is as follows.

Forward step: For lth gray-scale block I lb, Bimof first

partitions it into eight bit-planes, which are denoted as

BP l
1,BP l

2, · · · ,BP l
8, 1 ≤ l ≤ L, where BP l

k contains only

binary values obtained via decimal to binary conversion,

defined as

BP l
k = � [I lb]

2k−1
� mod 2 ∀ k = 1, 2, .., 8 (2)

where �·� represents the floor function.

It is well established in the literature that the first four least-

significant bit-planes contain nearly 6%−7%, and the last four

most significant bit-planes carry 93% − 94% of total image

information (For the information percentage, please refer the

Table 1 in [28]). Mathematically, the percentage of information

that an ith bit-plane contains is

P (i) =
2i∑7
j=0 2

j
∀ i = 0, 1, .., 7 (3)

Now, we compute QR-decomposition of kth bit-plane of I lb as

BP l
k =

[BP l
k

]Q × [BP l
k

]R
, (4)

where
[BP l

k

]Q
and

[BP l
k

]R
are orthogonal and upper-

triangular feature maps of dimensions τ1 × τ2. The QR-

decomposition technique is empathetic with small perturba-

tion, i.e., a small perturbation in QR components makes a

significant variance in the original bit-plane upon reconstruc-

tion, thereby introducing the desired level of randomness in

the generated obfuscated image during reconstruction [29].

By considering a bit-plane of size 3 × 3, Fig. 2 illustrates

the perturbation in the bit-plane values by altering the QR

components of the original bit-plane. Here, Bimof leverages

the vectors [n1
1, n

2
1] and [n1

2, n
2
2], generated by Lorenz’s chaotic

structures in Section III-A, to produce an non-invertible noise

for pixel location (i, j) as

noiseQij = n1
1 + (n1

2 − n1
1)× randQij

noiseRij = n1
2 + (n2

2 − n2
1)× randRij , (5)

where randQij and randRij are differentially private values

obtained over Gaussian distribution N (0, 1), 1 ≤ i ≤ τ1 and

1 ≤ j ≤ τ2. Now, we obfuscate each of the QR components

of the bit-plane BP l
k by[BP l

k

]Q
obs

(i, j) =
[BP l

k

]Q
(i, j) + noiseQij[BP l

k

]R
obs

(i, j) =
[BP l

k

]R
(i, j) + noiseRij . (6)

It is important to note that independent randomness is

injected at every pixel. In addition, as noiseQij and noiseRij
incorporate the chaotic noise vectors and DP Gaussian mech-

anism, projecting the planes Q and R planes over the random

and non-invertible obfuscated planes,
[BP l

k

]Q
obs

and
[BP l

k

]R
obs

.

Backward step: We perform inverse QR-decomposition, using

Eq. 4, followed by normalization and thresholding to ob-

tain obfuscated bit-planes. Since the results of inverse QR-

decomposition contains non-binary real values, Bimof per-

forms normalization over the range [0, 1] and then applies

binary thresholding at the mean value of the normalized form,

which in turn generates the obfuscated bit-plane
[BP l

k

]
obs.

It is important to note that the normalization and threshold-

ing make our scheme a non-invertible obfuscation scheme

protecting users’ V-PII from malicious reconstruction and

de-identification attacks from the image database. Later, we

construct the obfuscated block by

[I lb]obs =
8∑

k=1

[BP l
k]obs × 2k−1, 1 ≤ l ≤ L (7)

After performing obfuscation over all L blocks, we con-

catenate all the obfuscated blocks
{[

I1b
]
,
[
I2b
]
, ...

[
ILb

]}
at the
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Fig. 2: Intermediate outputs of bit-plane obfuscation. (a) Original bit-plane, (b) QR-components, (c) Noise matrices as defined in Eq. 5, (d) Noisy QR
components (Eq. 6), (e) Resultant of inverse QR-decomposition, and (f) Obfuscated bit-plane obtained by normalizing and thresholding (e).

corresponding locations of
{
I

1
b , I

2
b , ...I

L
b

}
to obtain our final

obfuscated image Iobs. We independently perform Bimof to

all color channels for an RGB-color image.

IV. EXPERIMENTS AND RESULTS DISCUSSION

We validate the effectiveness of the proposed scheme

over the activity recognition system using benchmark video

datasets, namely HMDB51 [30] and UCF101 [31]. This sec-

tion reports and critically analyses the results obtained after

conducting an extensive set of experiments.

A. Dataset Description

1) HMDB51 dataset [30] consists of 6849 realistic video

clips with 51 classes of human activities, and there exist

more than 100 clips for each category; some of the

activities are “throw”, “pull-ups,” “pick,” , etc.
2) UCF101 [31] is also a standard dataset for evaluating

HAR systems. It consists of 13320 video clips divided

into 101 classes, like “blow dry hair”, “push-ups,” , etc.
Experimental setting: We implemented the proposed

scheme in Python language on Ubuntu 20.14 64-bit, over

HP workstation with Nvidia Quadro P5000 graphic card

and Intel Xeon(R) 5120 CPU @2.20×56 GHz. Four state-

of-the-art DCNNs, namely ResNet18, ResNet34, ResNet50,

and VGG16 are employed for activity recognition system.

Training hyperparameters: batch size = 128, epochs = 125,

optimizer = adam, learning rate = 1e−3, cosine annealing lr-

scheduler, and negative log-likelihood loss. While maintaining

the original ratio of the train-test split, we use 10% of training

data for validation. The size of each block is a factor of

200× 200 (the dimension of the original frame).

B. Impact of the block size

As mentioned in our scheme, the input image is divided

into non-overlapping blocks of dimension τ1 × τ2. Here, we

visually show the obfuscated images obtained with varying

block sizes: 5 × 5, 10 × 10, 20 × 20, 25 × 25, and 40 × 40,

for the original image of hair blowing activity of dimension

200×200 in Fig. 3. The level of randomness in an obfuscated

image is proportional to the chosen block size. For instance,

an obfuscated image using block size 5 × 5 reveals a few

edges, activity attributes, and object(s) location, whereas an

Text

Hair Blowing Image Bimof (block 5 x 5) Bimof (block 10 x 10)

Bimof (block 20 x 20) Bimof (block 25 x 25) Bimof (block 40 x 40)

Fig. 3: Comparison of Bimof obfuscated images with varying block size. A
larger block size offers better privacy.

obfuscated image with block size 40×40 conceals such infor-

mation. It is worth mentioning that an adversary cannot extract

sensitive information from the obfuscated images (stored in the

image database in the cloud) for large block sizes; however,

it comes at the cost of degraded accuracy, which we validated

empirically, and the results are reported in the next section.

C. Recognition accuracy analysis

At first, we conducted experiments to evaluate the recog-

nition accuracy of the considered models in the plain and

obfuscated data domain, and the obtained results are reported

in Fig. 4. Our obfuscation scheme is model-agnostic, meaning

it works with different models without requiring any change

in the underlying process/steps, addressing the Model archi-
tecture dependency limitation of the existing scheme. Moving

ahead with the results, all the models lose the accuracy by

an admissible magnitude (approximately 15% − 18%) on

obfuscated data compared to the ones with plain data. The

magnitude of the difference depends on the chosen block size

during obfuscation. For instance, the best-performing model

ResNet50 shows an accuracy drop of ∼ 11.8% from plain data

to least obfuscation block 5× 5 and 14% from block 5× 5 to

40× 40, for HMDB51 dataset. The reason for such a drop is

elevated perturbations in spatial information with larger block

size, breaking the inter-correlation among the neighboring

pixels and eventually affecting the models’ learning, which

solves the limitation of security and usability. Still, it paid off

in terms of stronger protection of visual information. Thus, our
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Fig. 4: Recognition accuracy (%) on plain data and obfuscated data with
varying block sizes.

proposed scheme enables the users to choose an appropriate

block size based on how strong the protection of personal

information they desire is, which finally addresses the final

limitation of the need for trusted server.

D. Security analysis

This section presents the security analysis of the proposed

obfuscation scheme and various standard cryptographic attacks

practiced by an adversary to extract V-PII from an obfuscated

image to de-identify an individual’s identity. The extended ver-

sion of this work will explain the theoretical and information-

based mathematical theorems and proofs.

1) Pixel-frequency based attack: In this attack, an adver-

sary computes the frequency of each pixel intensities of the

obfuscated image (Iobs) and attempts to extract meaningful

information from the original image (I). Though it seems a

trivial attack, the adversary may learn quite a bit of the original

image if an underlying obfuscation scheme does not disrupt

such frequencies. Ideally, the frequencies of Iobs’s pixels must

be uniform and unrelated to I . Figure 5 depicts channel-wise

pixel-frequencies for (a) hair blowing plain image (shown

in Figure 3), (b) encryption [32], (c) noise obfuscation [7],

and (d) proposed scheme using 40 × 40 block. In [32], a

bit-plane-based chaotic image encryption scheme is proposed

with large key space using the SHA-512 Hash function and

dynamic cryptographic properties. We observe that encryption

offers more uniform (almost ideal) pixel frequencies than the

proposed one. Still, the model might not be able to learn

over encrypted images, resulting in bad accuracy. In contrast,

our scheme has uniform frequencies after obfuscation while

securing a usable accuracy.

2) Information entropy: Entropy quantifies the amount of

randomness present in the data. Higher entropy is desirable to

conceal private visual information of an obfuscation image.

For an N -bit image Iobs with T distinct pixel intensities,

the entropy would stay in range [0, N ], and computed as

−∑T−1
t=0 p(t) log2(p(t)). We compute entropy over the ten

randomly chosen images from both the datasets, including

the one shown in Fig. 3 and report the average channel-wise

results in Table I, which clearly shows the effectiveness of our

scheme by defeating all the existing ones, particularly with

large block sizes. With block 40 × 40, the mean entropy is

7.93, close to a maximum possible value of 8.
3) Differential analysis: Through differential analysis, we

examine the change in two different obfuscated forms of a

plain image I ∈ R
M×N with small perturbations. Specifically,

(a)

(b)

(c)

(d)

Fig. 5: Channel-wise pixel-frequencies for (a) original image, (b) encryption
scheme [32], (c) noise obfuscation scheme [7], and (d) proposed scheme with
block size 40 × 40. x-axis and y-axis indicate the pixel intensity values in
[0, 255] and their frequencies, respectively.

we perturb I with a pixel intensity value and obtain obfuscated

forms before and after perturbation, say Iobs1 and Iobs2 , and

then compute their difference percentage (DP), defined as

DP =

∑M
m=1

∑N
n=1D(m,n)

M ×N
× 100,

where D(m,n) =

{
0, if Iobs2(m,n) = Iobs1(m,n)

1, if Iobs2(m,n) �= Iobs1(m,n).

In Table II, we present the channel-wise scores averaged

over ten randomly chosen images from both datasets. The

obtained mean (over channels) DP lies in the range 87%-

98% (higher is better), signifying sufficient variations in the

pixel intensities of two obfuscated images Iobs1 and Iobs2 . Our

scheme achieved better scores with block sizes 20 × 20 and

above. In contrast, our scheme significantly improves the DP

over noise obfuscation [7], and encryption [32] algorithms.

TABLE I: Entropy results for different obfuscation schemes.

Red Green Blue Mean Use Sec
Original 7.25 7.28 6.84 7.13 � ×
Encryption [32] 7.73 7.77 7.43 7.64 × �
Noise obfuscation [7] 7.47 7.47 7.43 7.64 × �
Bimof (block 5× 5) 7.01 6.96 6.77 6.91 � �
Bimof (block 10× 10) 7.50 7.52 7.36 7.46 � �
Bimof (block 20× 20) 7.83 7.85 7.79 7.82 � �
Bimof (block 25× 25) 7.91 7.91 7.82 7.88 � �
Bimof (block 40× 40) 7.93 7.93 7.86 7.91 � �

Use: Usability and Sec: Security.
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TABLE II: DP for different obfuscation schemes.

Red Green Blue Mean
Encryption [32] 99.63% 99.66% 99.62% 99.64%
Noise obfuscation [7] 93.98% 92.94% 92.54% 93.15%
Bimof (block 5× 5) 86.83% 87.04% 86.38% 86.75%
Bimof (block 10× 10) 91.69% 91.70% 91.34% 91.58%
Bimof (block 20× 20) 96.38% 96.10% 96.03% 96.17%
Bimof (block 25× 25) 97.25% 97.77% 96.91% 97.31%
Bimof (block 40× 40) 98.23% 98.08% 97.73% 98.01%

V. CONCLUSION

We proposed a bit-planes-based scheme, Bimof, for protect-

ing the individual’s private visual information in the images

uploaded on the cloud to store. By incorporating Lorenz’s

chaotic noise over bit-planes followed by QR-decomposition,

we made our scheme robust against the reconstruction attacks

while preserving enough information in the obfuscated data

for model training. Through extensive experiments on UCF101

and HMDB51 datasets, Bimof is evaluated qualitatively and

quantitatively with rigorous analysis of security and usabil-

ity (accuracy). Experimental results demonstrated that Bimof

reveals almost zero V-PII by breaking pixel correlation, dis-

rupting pixel frequency, and adding randomness while signif-

icantly outperforming the prior schemes on accuracy. We also

observed a trade-off between the recognition accuracy and se-

curity level with varying block sizes, enabling users to choose

the appropriate size based on the underlying application. In

the future, we will exploit the correlation between the original

image and its obfuscated version to gain recognition accuracy

along with information-theoretic security analysis.
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