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FEATURE ARTICLE

Unifying Threats Against Information
Integrity in Participatory Crowd Sensing
Shameek Bhattacharjee ,Western Michigan University, Kalamazoo, MI, 49008, USA

Sajal K. Das ,Missouri University of Science and Technology, Rolla, MO, 65409, USA

This article proposes a unified threat landscape for participatory crowd sensing
(P-CS) systems. Specifically, it focuses on attacks from organized malicious actors
that may use the knowledge of P-CS platform’s operations and exploit algorithmic
weaknesses in AI-based methods of event trust, user reputation, decision-making,
or recommendation models deployed to preserve information integrity in P-CS. We
emphasize on intent driven malicious behaviors by advanced adversaries and how
attacks are crafted to achieve those attack impacts. Three directions of the threat
model are introduced, such as attack goals, types, and strategies. We expand on
how various strategies are linked with different attack types and goals,
underscoring formal definition, their relevance, and impact on the P-CS platform.

With the growing penetration of smart
hand-held devices and smartphone apps,
various forms of crowd sensing (CS)

applications have emerged. In CS applications, human
users are involved in providing reports or sensed data
that improve civic well-being via pervasive smart serv-
ices. The goal of the CS application is to identify the
correct event based on the reports/data and disburse
incentives to those users helping in event identifica-
tion. The incentive disbursement is critical in keeping
the churn under control in such commercial
applications.

TYPES OF CS PLATFORMS
The CS paradigm is classified into two subdomains—
Opportunistic and Participatory—as described
below.

Opportunistic or Passive CS (O-CS): In O-CS,
users agree to the usage of their personal devices
as a sensor. The O-CS app submits data automati-
cally “without” explicit human involvement. In this
scenario, the report is an analog signal and thus
similar to sensor networks. Therefore, many

research works involving O-CS setting borrow meth-
ods from statistics (e.g., maximum likelihood esti-
mates) and statistical machine learning (e.g.,
expectation maximization algorithms) for computing
truthful aggregate value of a sensed quantity for sit-
uational event inference. Each participant’s report is
compared with the output of truth discovery to
assign and update users’ long-term reputation score.

Participatory CS (P-CS): The P-CS subdomain, in
contrast, requires explicit human involvement,
where some users (called “reporters”) manually con-
tributes observations in the form of reports, or any
piece of information that is not an analog signal. In
such scenario, the approaches used in O-CS for find-
ing truthfulness of events or assigning user reputa-
tion do not always apply. The “Participatory sensing”
is analogous to Social Media (where the users offer
voluntary posts on public groups and pages); hence
many works use the broader term of social sensing.
Nonetheless, the following differences exist with
pure social media: 1) a dedicated crowd reporting
app (e.g., Google’s Waze App,a Yelp) is used instead
of a social media app, and 2) one usually cannot
share/forward other’s reports but can only provide a
feedback/reaction. Thus, lessons learnt from P-CS
vulnerabilities can partially help systematize social
sensing vulnerabilities as well.
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INFORMATION INTEGRITY
CHALLENGES IN P-CS

While the incentives attached to the contribution of
reports encourage participation, it also motivates
rogue reports from selfish users. Furthermore, orches-
trated false reports may cause incorrect events to be
published in P-CS, thus having civilian and economic
impacts, which motivates organized malicious adver-
saries. Nonetheless, one critical challenge in CS appli-
cations is event trustworthiness or truthfulness.
Furthermore, determining which participants are hon-
est or dishonest via a reputation scoring model is
another typical challenge. In the literature, artificial
intelligence enabled computational trust and reputa-
tion models have been proposed to solve both chal-
lenges. However, these models have weaknesses in
the design principles and P-CS operation design loop-
holes, which keep the door open for organized mali-
cious intent to harm the P-CS platform’s integrity.

WHY A FORMAL P-CS THREAT
LANDSCAPE?

In the O-CS domain, the threat model is similar to
those in cyber-physical systems and sensor net-
works, and does not require much leap of faith.
Hence, we do not discuss O-CS in this work. How-
ever, our analysis of existing security literature in
the P-CS domain revealed a lack of unified discus-
sion on strong and elaborate threat models specific
to P-CS. Those threats arise from the complex
cyber-physical-human couplings, and design weak-
nesses in trust, reputation, and decision-making
models in P-CS. Thus, an important motivation of
this article is to consolidate various possible tar-
geted threats, specifically relevant to P-CS. We aim
to provide a guide for future designers wishing to
build secure and robust-by-design P-CS platforms.

SCOPE OF THREAT MODEL
There exists a lot of research in securing the P-CS
domain that deals with traditional well-known attacks
common to any networked system, such as Sybil
attacks, privacy attacks, unauthorized access, etc.
Our goal is to add and formalize a targeted threat
model of information integrity specific to P-CS. There-
fore, we do not discuss commonly reported threats
that do not directly relate to algorithmic weaknesses
of trust, reputation scoring, decision models, or proce-
dural loopholes in P-CS operations. Additionally, our
threat model focuses on attacks that originate from
organized malicious intent rather than individual self-
ish intent.

ARTICLE CONTRIBUTIONS
Our novel contributions are as follows:

› We propose a threat landscape spanning three
main directions: 1) attack goals, 2) attack types,
and 3) attack strategies. To achieve an attack
goal, the attacker may need one or more attack
types that depend on the stage of P-CS informa-
tion integrity being targeted. Furthermore,
depending on the intended impact and the
adversary’s level of prior knowledge, the attack
types can be launched using one or more attack
strategies that belong to a certain attack type to
attain an attack goal.

› To specify the attacker’s intent, we propose five
possible attack goals: 1) induce false events, 2)
suppress true events, 3) alter event types, 4) poi-
son user reputation model, and 5) steal the event
publishing model.

› We propose three attack types: 1) sensory
manipulation targeting weakness in the report-
ing stage, 2) feedback weaponizing attack
strategies targeting weakness in the rating
feedback stage, and 3) belief manipulation
attacks targeting weakness in the decision-
making phase.

› For each attack type, we propose multiple attack
strategies, their relevance, and impact.

› We highlight how our proposed strategies are
linked to different goals and what types of attack
strategies require more research.

UNDERSTANDING THE
INFORMATION INTEGRITY
PIPELINE IN P-CS

This section describes typical design stages of P-CS
platform and gives examples of CS Apps. such as
Waze and Yelp to illustrate how the design features
are seen in real-life apps. This will enable readers to
relate to the threat landscape that has a more generic
treatment.

Stages of P-CS Operation
As explained below, a typical P-CS platform consists of
three operational stages—Reporting or contributions,
decision-making, and feedback monitoring.

Reporting: This stage involves voluntary contribu-
tions from the crowd indicating a particular event or
response to task.

Decision-Making: The reports are collected by a P-
CS server and a recommendation is made based on
an event decision-making model running on the P-CS
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server that decides how to process various reports
into a publishing a recommendation or event.

Feedback Monitoring: The published events can be
rated based on the perceived usefulness (e.g., yes/no)
by other users, called raters, with respect to that event.

Real-Life Example of P-CS: Figure 1 illustrates an
abstraction of a P-CS application for vehicular event
CS, such as Google Waze app, where the reporters
submit location tagged “reports” by clicking one out of
the following events—road closure, jam, accident,
weather hazard, police presence, gas station pricing,
etc. The P-CS server decides whether and how long to
publish this event on the Waze app; there is also an
option for consumers to rate the perceived usefulness
of the events published. A similar abstraction exists in
social sensing apps, such as Yelp,b where reports are
submitted in the form of a review on a business. Each
report is visible separately on the app that can be
rated by other users. For example, Yelp allows three
feedbacks to each post/comment while Waze allows
two feedbacks. The reports and feedbacks are com-
bined to form an opinion on the business, and Yelp
sorts them to recommend a business.

Different User Roles
The users in a CS paradigm can be classified into vari-
ous roles, such as reporters, raters, and passive con-
sumers. From the perspective of an event or entity
which needs reporting, the users that contribute infor-
mation on that event are reporters with respect to
that event (or entity). A subset of the remaining user
base, known as raters, can give feedback on the use-
fulness of the published event. The user base which

neither reports nor rates a given event is a passive
consumer with respect to that event.

Across different events, however, a user of a P-CS
app can act as a reporter, rater, or passive consumer
based on their roles with respect to that event. It is
assumed that the system does not allow the same
user to rate its own report. If the attacker recruits a
user or hacks apps to work for his attack goals, then a
malicious user can perform all three roles with respect
to an event in P-CS.

Unified View of Information Integrity
Pipeline
Regardless of the actual application, the architecture
of assuring information integrity has the following
overarching abstraction.

Upon launching a new P-CS, the initial stages are
known as the cold start phase, where the user reputa-
tions are not known. Usually, in the cold start phase,
the events are published by the decision-making
model based on the contextual correlations among
reports (e.g., event type, time, location, threshold num-
ber of reports) in an area.12

In many practical systems as well as novel
research,2 the P-CS implements a mechanism known
as feedback monitoring that asks the crowd to rate or
give a feedback on their perception of how truthful an
event is. The data acquired as part of the feedback
monitoring are used to verify, in retrospect, the event’s
truthfulness or trustworthiness. The event’s veracity is
indicative of the honesty levels (reputation) of ’those
users who submitted the reports corresponding to
this event. Intuitively, if the event truthfulness is high,
the reputation of users reporting highly truthful event,
gets their reputation increased, and vice versa.

FIGURE 1. Abstraction of participatory crowd sensing (P-CS).

b[Online]. Available: yelp.com
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Once a reliable user reputation base is established,
the P-CS enters the steady-state phase of operation.
In this phase, the decision-making model takes into
account three major factors: 1) prior reputation of
users submitting a report; 2) contextual probability of
that event occurring, and 3) contextual correlations
and quantities deciding whether or not to publish an
event. For in-depth discussions on this unified view,
refer to Restuccia et al.5 and Bhattacharjee et al.2

Note that in the steady-state phase, the P-CS still
keeps the feedback/rating mechanism since new
users join and old users may become inactive.

Models for Information Integrity in P-CS
Following the aforementioned pipeline, there exist
four types of modeling tools aiming to preserve infor-
mation integrity in P-CS. A detailed survey of these
models can be found in Restuccia et al.5

1) Event Truthfulness Models: These are AI-based
models that use feedbacks received against
each event, and assign an event truthfulness
score. Depending on how many options are
available in the rating mechanism, well-known
methods include Beta Reputation Model,8

Josang’s Belief Model,7 and our recently pro-
posed QnQ model,2 which improves upon these
models.

2) User Reputation Models: These AI-based models
assign an aggregate reputation to the users
(entities) based on a history of interactions that
use the perceived truthfulness per event contrib-
uted by that user. Popular methods include var-
iations of Dempster–Shafer Belief,11 Dirichlet
reputation systems,9 and the recently proposed
QnQ model2 improving upon these models.

3) Aggregation-Based Decision-Making: These
models use weighted prior reputation aggrega-
tion,2,13 prior knowledge of event occurrences,2

and optionally current similarities in reports; and
then combine them to calculate a trust level of
an event and then decide whether or not to pub-
lish the event. This is only feasible in the steady-
state phase.

4) Similarity-Based Decision-Making: These models
use only contextual similarities and correlation
in the reports to decide whether to publish an
event or not.12

THREAT LANDSCAPE OVERVIEW
The threat landscape consists of key features charac-
terizing various aspects of the P-CS threat model. The

features include attacker intent, goals, types, and
strategies.

Categories of Attacker Intent
The following types of intent can undermine the infor-
mation integrity of P-CS platforms.

› Honest Errors—These users report and rate hon-
estly, although there may be occasional errors in
their reporting.

› Malicious—These users provide misleading
reports whenever they choose to report or rate,
because their only gain is to inflict maximum
operational damage.

› Selfish—These users provide false report or rat-
ing but only when there is an individual benefit
(e.g., incentives) in return for their dishonest act.
This threat model is put forward by considering
malicious intent.

Categories of Attack Goals
For an active adversary model, the attack impacts
determine the attack types. Broadly, we identify three
types of adversarial goals motivated by their potential
(civilian or economic) impacts:

Induce False Event
The objective of the adversary is to induce the CS
server into believing the existence of a “false event” or
“false information,” when in reality no such event had
occurred. As a result, the CS will be tempted to take
“unwarranted actions” that negatively affect the oper-
ations and having an immediate civilian impact. For
example, inducing a false traffic congestion event at a
key intersection, may create traffic blocks in other
parts of a city due to multiple undue traffic reroutes.
Finally, when combined with certain feedback manipu-
lation attacks, such a goal can trigger undue incentive
disbursement to malicious users instead of honest
reporters.

Suppress True Event
The adversary’s objective is to make the CS server “fail
in the timely discovery of a true event or information,”
by giving an impression of the absence of an event. As
an impact, the CS will “refrain from taking a legitimate
intervening action” that lead to negative civilian con-
sequences, creating an impact on the CS platform’s
passive consumers. Furthermore, the incentive mech-
anism will not reward the participants who reported
truthfully, which will thus discourage honest reporters
to participate in the future.
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Alter Event Type
The objective is to make the CS arrive at the wrong
event type, even if an event did happen. In this case,
the adversaries induce an “incorrect action” to exacer-
bate the consequences of the event that did happen.
For example, let there be a congestion in a certain
part of the city, but the malicious reporters falsely
report low gas prices in the same area. By combining
strategies, such as false category flagging and concur-
rent cross feedback strategies (discussed later), the
CS server can be triggered into having sufficient confi-
dence on publishing the event of low gas prices. This
may cause many passive consumers of CS to reach
this area of the city, worsening the civilian impact of
the congestion already present.

Poison User Reputation Model
Since all methods learn the reputation of users to infer
truthfulness of events, an adversary can poison the
reputation learning model such that the CS server is
unable to accurately classify malicious versus honest
behaviors. The economic impact is that the honest
reporters will be eventually discouraged from partici-
pating due to lack of incentives, leaving mostly mali-
cious users active in the CS system. The civilian
impact will be that events from the CS will no longer
be perceived as reliable.

Steal Event Publishing Model
The goal of the adversary is to learn a surrogate model
of how the CS server decides whether to publish an

event or not (especially in the cold start phase), to
improve the efficiency of attack budget allocation
across a wider area of the P-CS network. Since the
adversary can now use its budget more efficiently, a
wider civilian and economic impact of previous attack
goals can be achieved.

To achieve the above objectives, different catego-
ries attack types can be developed as discussed next.
The attack types depend on which stage of the P-CS
operating cycle the attacker wants to realize its goal.
Each attack type can have multiple attack strategies
classified under it. Note that the attack goals are com-
plex and the attacker may require a combination of
strategies to achieve them, as illustrated in Figure 2.

Categories of Attack Types
The “attack goals” can be achieved through various
“attack types” depending on which stage of the P-CS
operation life cycle, the attacks are launched. The cat-
egories of attack type include 1) sensory manipulation,
2) feedback weaponizing manipulation, and 3) belief
manipulation.

An attack type can be realized via multiple attack
strategies belonging to a particular attack type. The
attack strategies formalize the implementation issues
of an attack type and how they help realize a certain
attack goal even in the presence of trust and reputa-
tion scoring models (e.g., the QnQ model2), and why
the vulnerability exists.

First, we formally define each category of attack
type, followed by enumerating different attack

FIGURE 2. Unified attack landscape in P-CS systems.
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strategies under each attack type. The attack strate-
gies under each attack type depend on the level of
prior knowledge the attacker has. The level of knowl-
edge is: 1) complete (white box attack); 2) partial (gray
box), and 3) no knowledge (black box). The strategies
also depend on the attack goal, and there is a goal to
strategy mapping as described in Figure 2.

Sensory Manipulation
These attacks exploit weaknesses in the event report-
ing phase of P-CS operations. The adversary compro-
mises (recruits) a set of malicious reporters who
submit fake reports strategically. We propose three
targeted attack strategies to launch sensory manipu-
lation: 1) Gray Box Probe, 2) Black Box Probe, and 3)
False Category Flagging.

FeedbackWeaponizing Manipulation
These attacks exploit weaknesses in the feedback
monitoring phase that collects evidence to quantify
the truthfulness of events contributed by the report-
ers. Formally, these attacks involve submitting a
dishonest feedback by a rating user recruited/compro-
mised by the adversary for different events. The feed-
back weaponizing includes specific attack strategies
such as 1) targeted ballot stuffing, 2) targeted bad
mouthing, 3) targeted obfuscation stuffing, 4) orches-
trated sequential toggle feedback, and 5) concurrent
cross feedback.

Belief Manipulation
These attacks exploit algorithmic biases that originate
from the use of “prior event likelihoods” and “prior
user reputation” that act as weights in most truth dis-
covery and decision-making schemes, post the cold
start training phase. Formally, belief manipulation
attack type involve strategies that exploit the depen-
dence on learnt beliefs and in turn utilize such beliefs
to craft attacks that nudge P-CS into taking wrong
decisions. Analogically, they are similar to evasion in
machine learning, where a sample input in the test
phase is incorrectly classified by a model. The belief
manipulation includes specific attack strategies: 1)
reputation stuffing, 2) bias stuffing, and 3) exclusion
stuffing.

SPECIFIC ATTACK STRATEGIES IN
P-CS

In this section, we put forward various possible attack
strategies under each category of attack type and dis-
cuss how they achieve various attack goals given the
malicious intent.

Sensory Manipulation Strategies
The false reports can be intelligently submitted in the
cold start phase by the following approaches:

Grey Box Ghosting
Many research solutions use “context” similarity
among reports5,12 to compute the event trust or infer
the correct event. Some methods known as “truth dis-
covery” incorporate correlation, maximum likelihood
estimate, and expectation maximization (first pro-
posed by Wang et al.17) from the received reports to
find the correct event. Regardless of the techniques,
the common assumption is that the majority of the
participant reporters are honest except some unreli-
able participants with isolated selfish objectives;
therefore, this method works. While the above
assumption may sound reasonable in theory, a com-
mon practical feature in P-CS is that “the honest par-
ticipants need not report anything in the absence of
an event.” Hence, high correlation and similarity
among false reports from an adversary is implicitly
guaranteed regardless of the method used to com-
pute such similarity or truth discovery, making this
attack relevant.

The attacker submits a number of fake reports
when there is no event, and ensures that all fake
events agree on the event type and in the same spatial
or temporal context.

Hence, methods based on correlation, similarity,
truth discovery, and voting cannot prevent against
such collusive sensory manipulation attacks in P-CS.
Such methods can only help find the correct event
type, if an event did occur. The above exploit is a grey
box strategy since it requires some knowledge of the
design philosophy that context similarity or correla-
tion in reports are used to quantify truthfulness of
events.

Black Box Probing
The gray box ghosting is simple in itself, but has one
flaw in the sense that the adversary does not know
how many fake reports are sufficient to actually trig-
ger a fake event to be published. The adversary needs
to steal the above information of the event publishing
model, to make its sensory manipulation attacks (like
gray box ghosting) very effective.

To achieve the above, the attacker launches a
black box probe strategy: During the reporting phase,
the adversary recruits (or deploys) a set of participant
users and blends itself in the user population. This
malicious reporter base tries different candidate num-
bers of false reports and false event categories, and
monitors which combinations were successful in
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inducing a false event and which ones failed to induce
a false event.

Note that, since P-CS is an open paradigm, an
event’s presence or absence on the mobile app are
visible to all the users. The absence of the fake
event on the app proves that the input attack com-
bination was invalid. Thus, the adversary can learn
an input–output relationship between the candi-
date attack inputs and the boundary between suc-
cessful and failed false events triggered in the app.
This allows the adversary to learn the lowest quan-
tity of false reports in order to induce a false event.
By preventing local overprovisioning of its total
attack budget, the adversary can improve its net-
work wide spatial attack coverage or save the
remaining budget for other attack types (e.g., feed-
back weaponizing.)

False Category Flagging
This strategy is relevant because different categories
of events are possible at the same spatial/temporal or
some other context; and it is equally important for the
P-CS to know the type of event that happened exactly
under conflicting reports.

During the reporting phase, the malicious reporter
base gives false reports only if an event actually
occurs, but chooses a different event category than
the actual event type, to mislead the response to the
event.

The response is misled since the inferred event
type can potentially be altered. Most of the existing
approaches to similarity, correlation, and truth dis-
covery5 offer some protection against this particular
attack type, but these works do not explicitly differ-
entiate between the ghost event and false category
flagging. Later we show that such attack can be
made effective using concurrent cross feedback
strategy to maximize the probability of altering
event type.

FeedbackWeaponizingManipulation
Strategies
The feedback monitoring apparatus behaves like a
voting system. It is highly sensitive to variations in
legitimate participation of the user base in the rating
process and the attacker’s recruitment/attack budget.
This tradeoff can be exploited by an intelligent adver-
sary to circumvent the event trust models and user
reputation models, such as Josang’s,7 Dempster-Sha-
fer,11 and our previous work on the QnQ method.2

Below we provide details of different types of feed-
back weaponizing attacks in P-CS.

Orchestrated Ballot Stuffing
In ballot stuffing attacks, false events are given posi-
tive feedbacks by the adversary.2,7 The goal is to make
a false event to be inferred by the P-CS as truthful and
boost reputations of malicious reporting users. While
the QnQ method2 provides a defense to mitigate such
attacks, orchestrated versions of this can be success-
ful when there is 1) sparseness of rating population
(new app or spatial sparseness), and 2) lack of incen-
tives in the honest population to rate an event.

The strategy works as follows:When or where there
is low participation in the rating process, the adver-
sary focuses his budget in those contexts, to ensure a
high proportion of fake positive ratings given to false
events, even with a seemingly low attack budget.
Therefore, a false event ends up with a high event
truthfulness score and incorrectly appears to be true
to the P-CS.

The impact of strategy is that the false events persist
on the P-CS platform as a result of the high truthfulness
score. Consequently, those malicious participants who
were originally involved in the orchestration of the
bogus false event, improve their reputation, since their
reports produced a seemingly truthful event. Such
attacks in the cold start phase help themalicious partic-
ipants start building an edge in terms of their reputation
scores compared to the honest participants, which
achieve the goal of poisoning the user reputation learn-
ing model. Finally, high biased reputation to malicious
users also causes incentives to be given out to mali-
cious participants causing economic loss.

Orchestrated Obfuscation Stuffing
In such attacks, the adversary deliberately gives false
events a large number of uncertain ratings. Since in all
established trust models (e.g., Josang’s, Dempster
Shafer, Dirichlet Reputation, QnQ), the uncertainty
contributes to the trust score, malicious users creat-
ing a spike in the number of uncertain ratings will
cause the false events a high truthfulness score, mak-
ing this strategy relevant.

In the orchestrated form, the attack strategy is
exactly the same as the orchestrated ballot stuffing,
but instead of giving positive ratings, all uncertain rat-
ings are provided to the false event.

The impact of this strategy is similar to the orches-
trated ballot stuffing, but can be less obvious to the
detection mechanisms like Josang’s and Dempster
Shafer due to null invariance as detailed in.2,3

Orchestrated Bad Mouthing
In bad mouthing attacks, the true events are provided
with negative ratings by the adversary. The goal of
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adversary is to suppress or recall a true event as well
as degrade the reputation scores of truthful reporting
users. While the QnQ method2 mitigates bad mouth-
ing attacks, it suffers from the same vulnerabilities as
low participation in ratings and lack of incentives
attached to the ratings.

The strategy works as follows: In contexts with low
participation in the rating process, the adversary puts
its budget in those contexts, to ensure a high propor-
tion of fake negative ratingsto the true events, even
with a seemingly low attack budget. Therefore, true
events end up with a low event truthfulness score and
incorrectly appears as a false event to the P-CS.

Consequently, the P-CS platform withdraws these
published events, resulting in the suppression of true
events. Then, the user reputation system will penalize
those honest users reporting this event (since truth-
fulness of events is key to improving reputations).
After repeating this attack multiple times, the honest
participants end up with lower reputation scores hav-
ing the following impacts: Honest participants with
low reputation will not get a high weight during the
test phase decision-making and will also get progres-
sively lower or no incentives, thereby discouraging
them and new users to participate truthfully. Thus, a
P-CS will be left with a user base that consists of par-
ticipants largely controlled by the adversary.

Orchestrated Sequential Toggle Feedback
This kind of attack strategy is relevant if the adversary
has a long-term objective of poisoning the user reputa-
tion learning process. The attack happens as follows:
Orchestrated bad mouthing and ballot stuffing are
launched in alternating manner to different events
over time. First, targeted bad mouthing will slowly dis-
courage the honest user base to refrain from participa-
tion. Then, via targeted ballot stuffing, the user base
will be simultaneously replaced with compromised par-
ticipants having artificially boosted reputations.

The impact will be a P-CS system with a seemingly
high trusted base controlled by a motivated adversary,
and faces little competition from honest users. This
will destroy the credibility of the P-CS provider. The
impact of a sequential toggle feedback attack is
remarkably different compared to just ballot stuffing,
bad mouthing, or obfuscation stuffing. It will create a
completely poisoned reputation base, where the mali-
cious or dishonest users have higher reputation com-
pared to the honest users.

Concurrent Cross Feedback
This attack is relevant only when each user report is
separately visible to the rater population (e.g., social

media plug-ins, Yelp, Yik Yak) and each report indi-
cates an event type. The goal is to allow the P-CS
server make an error in judging the correct event type
using the feedback apparatus.

Using its recruited user base, the adversary con-
currently give positive feedback to the reports with
incorrect event category (from malicious reporters),
and negative feedback to the reports with correct
event category (from honest reporters) for the same
event.

The impact of strategy is that it enhances the
chance of the CS server making an error in judging the
correct event type, inducing a misguided response.

Belief Manipulation Strategies
Three aspects are typically used to take decisions in a
typical P-CS in the steady-state phase: 1) prior reputa-
tion of the reporters,5 2) historical contextual likeli-
hood of the event,12 and 3) quantity of unique reports
indicating an event. Typically a weighted approach is
taken that is some variation of weighted reputation
aggregation13 or decision tree formulation19 to decide
whether or not to publish and report in the steady-
state phase. Below we summarize the type of attacks
that are possible under this category.

Reputation Stuffing
Since decision trees or weighted reputation aggrega-
tion methods give higher importance to the more
reputed participants in the event publishing models, it
would make sense for an adversary to recruit/compro-
mise highly or most reputed users.

The adversary recruits/compromises a fraction of
highly reputed participants and asks them to report a
fake event in the same context; thus the decision-
making module believes in the event.

The event accuracy will drop while the event inac-
curacy will rise with the increase of the fraction of
most highly reputed participants recruited for false
reporting.

Bias Stuffing
A high importance is given to the prior likelihood of
event (given a context) from the cold start phase, in
most event publishing models.

The adversary exploits the bias toward high prior
likelihood of events in decision-making and decision
classification models used in the steady-state phase.
Basically it spoofs a false event report from its
recruited malicious user base strategically in “con-
texts,” where that event type had a high prior likeli-
hood of contextual occurrence in the cold start phase.
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Such attacks are able to convince the decision-
making module of the CS to publish a false event
incorrectly. An implementation of this attack and
how it negatively impacts the accuracy of events
published by a classical decision tree is discussed
in Bhattacharjee et al.2 Furthermore, a prospect the-
ory inspired decision tree approach is proposed in
Bhattacharjee et al.2 to mitigate such attacks.

Exclusion Stuffing
The quantity of reports5 received indicating a particu-
lar event, influences event publishing decisions apart
from the prior likelihood of the event type. In exclusion
stuffing, an adversary suppresses the reception of
true reports from legitimate reporters via a jamming
attack or distributed denial of service (DDoS) attack
between the reporters and the CS server, only in con-
texts with a low prior likelihood of an event. Such
reduction in the number of true reports (thus reducing
the quantity) tilts the odds in favor of inferring that
the event is not true.

Since both the likelihood and the quantity of
support is low, such events although true, do not
get published and the P-CS server misses true
events. Thus, the goal of true event suppression is
achieved by this strategy. An implementation of this
attack and how it negatively impacts the accuracy
of events published by a classical decision tree is
discussed in Bhattacharjee et al.2

CONCLUSION
This article provided a detailed threat model that tar-
gets weaknesses in shared design philosophies with a
goal to improve the security and trustworthiness in
participatory crowd sensing (P-CS) paradigms. We
conclude that some level of cyber deception is
required for feedback manipulation strategies that are
targeted. Furthermore, event publishing in the cold
start phase for a participatory CS application depends
not only on the correlation and similarity of reports,
but also on the additional design considerations that
can mitigate event publishing model stealing via black
box probe strategies. Sequential toggle feedback can
poison the user reputation base when participation in
the rating apparatus is low, and this requires further
research for effective solutions. While false category
flagging has been studied earlier, more research is
required on concurrent cross feedback attacks,
sequential toggle feedback attacks, black box probing,
how event truthfulness or publish decision models are
able to handle this threat.
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