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Abstract

We analyze the implications of geographical heterogeneities and externalities on health and macroe-

conomic outcomes by extending a basic epidemiological-macroeconomic model to a spatial dimension.

Because of people’s migration and commuting across different regions, a disease may spread also in areas

far from those in which the outbreak originally occurs and thus the health status (i.e., disease prevalence)

in specific regions may depend on the health status in other regions as well. We show that neglecting the

existence of cross-regional effects may lead to misleading conclusions about the long run outcome not only

in single regions but also in the entire economy, suggesting that single regions need to coordinate their

efforts in order to achieve disease eradication. We analyze such a coordination by focusing on a control

problem in which the social planner determines globally the level of intervention showing that in order to

achieve eradication it is essential to accompany traditional disease control policies (i.e., prevention and

treatment) with regulations limiting people’s movements. Focusing on COVID-19 we present a calibration

based on Italian data showing that, because of the infections generated by cross-regional commuting, even

vaccination may not be enough to achieve disease eradication, and limitations on people’s movements

need to accompany vaccination in order to preclude COVID-19 from reaching an endemic state.

Keywords: Macroeconomic-Epidemiological Model, Externality, Heterogeneity, Public Policy, Social

Distancing; Spatio-Temporal Dynamics
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1 Introduction

Infectious diseases have historically played a major role in shaping the development pattern of different

economies, and also nowadays in certain regions and in particular in developing countries they still do.

Because of their implications on morbidity and mortality, communicable diseases affect the labor market,

individual decisions and public health policies, yielding detrimental consequences on economic prosperity

through a number of different channels (Acemoglu and Johnson, 2007; Adda, 2016; Cervellati et al., 2017;

Klasing and Milionis, 2020). This explains why the United Nations have included among their sustainable

development goals for 2030 a specific target related to ending epidemics of HIV, tuberculosis, malaria and

neglected tropical diseases, along with fighting hepatitis, water-borne diseases and other communicable
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diseases (UN, 2015). Indeed, the World Health Organization estimates that even today communicable

diseases determine 30% of deaths and account for 51% of the related years of life lost worldwide. Despite

the large variability in these statistics between high and low income countries (WHO, 2009), due to the

high degree of integration achieved in modern economies, and in particular through international trade and

migration channels, the disease prevalence in specific regions is likely to affect the development process in

other regions as well, thus health outcomes in developed and developing countries are likely to be strictly

related. For example, despite the outbreak of the SARS (Severe Acute Respiratory Syndrome) firstly

occurred in China in 2002 the disease rapidly spread well beyond Chinese national borders and in few

months SARS cases were found in more than 30 countries and regions all over the world (Guan et al., 2003);

such a geographical diffusion was largely due to the fast movements of international tourists and business

travelers favored by the modern transport technologies (Kimball, 2006). Even more striking is the recent

coronavirus (COVID-19) outbreak which, after its first diffusion in China in late 2019, has rapidly spread all

over the world in a matter of weeks to reach a pandemic status in March 2020, generating thus far (at the

time of writing, in September 2021) more than 220,000,000 cases globally, reported in almost every country

(Dong et al., 2020; WHO, 2020a); individual countries’ response to such a pandemic has been very variable,

ranging from a complete lockdown of either the entire country or some regions to mandatory or voluntary

quarantines, with important implications on the effectiveness of the implemented control measures both at

global and local levels (Cheng et al., 2020). Understanding thus the extent to which the health conditions

in an individual economy depend not only on its specific characteristics and policies, but also on health

conditions and policies implemented in other economies as well, is essential to effectively design policies

allowing to eventually achieve the health-related sustainable development goal. This is exactly the goal of

this paper which wishes thus to shed some light on how geographical externalities, due to traveling and

commuting, and geographical heterogeneities, related to the effectiveness of health policies and the initial

spread of the disease, interact in determining the health status in single regions and in the entire economy.

In order to discuss such geographical effects in the simplest possible way we focus on a basic epidemio-

logical model, in which the population is divided in two groups: the healthy individuals who are susceptible

to infection and the already infected individuals who can transmit the disease to the healthy ones; since

infectives recover from the infection at a certain speed, there are continuous flows between the two popu-

lation subgroups. Such a formulation lies at the basis of the simplest mathematical epidemiology model,

namely the susceptible-infected-susceptible (SIS) model, finding its origin in the seminal work by Kermack

and McKendrick (1927). Its possible outcomes have been extensively discussed in literature and are now

well known: if a certain parameter (the basic reproduction number) is small the disease will be completely

eradicated, otherwise it will persist even in the long run (Hethcote, 2000). SIS-type frameworks have re-

cently been analyzed in a growing economic epidemiology literature, which mainly wishes to understand how

public policy and individual actions may combine to determine long run health outcomes (Philipson, 2000;

Klein et al., 2007). Several works try to understand the optimal determination of different health programs,

broadly categorized in either treatment or preventive measures, by analyzing an optimal control problem in

which policymakers aim to maximize the social welfare or minimize the social cost associated with public

policy (Gersovitz and Hammer, 2004; Goldman and Lightwood, 2002; Anderson et al, 2010; La Torre et al.,

2020). For example, by focusing on a traditional SIS model, Gersovitz and Hammer (2004) show that several

factors, including the biology of the disease and the relative costs of intervention, determine the optimal im-

plementation of treatment and prevention. Most of the papers focus on a microeconomic partial equilibrium

perspective, and only few of them adopt a macroeconomic point of view to characterize the mutual relation

between health and macroeconomic outcomes (Chakraborty et al., 2010; Goenka and Liu, 2012: Goenka et

al., 2014; La Torre et al., 2020; Gori et al., 2021a). For example, by analyzing a macroeconomic-extended

SIS setup to account for the health-income feedback effects, La Torre et al. (2020) show that prevention is

most desirable whenever the infectivity rate is low while treatment becomes most desirable whenever the

infectivity rate is high. Following the recent COVID-19 experience which has shown the possible dramatic
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macroeconomic consequences of infectious diseases, we relate to this macroeconomic-epidemiological litera-

ture to introduce a SIS model into a stylized macroeconomic framework in which only healthy individuals

work, households entirely consume their disposable income and income taxes are employed to finance health

policy measures (i.e., prevention and treatment) which by reducing disease prevalence allow to improve eco-

nomic production capabilities and so macroeconomic outcomes. Different from all the extant works which

completely abstract from a geographical dimension to characterize the spatio-temporal disease dynamics and

the policy measures implemented to contrast its diffusion, we do introduce a spatial framework to quantify

the implications of geographical externalities and heterogeneities on optimal policymaking.

In order to move in this direction we embed the basic SIS model with a spatial characterization. In

our spatial framework the economy develops along a line and different points represent different locations;

different locations differ both in the initial spread of the disease and in the degree of effectiveness of the

provided health services affecting thus the basic reproduction number, which ultimately determines the long

run health outcome achieved in that specific location (geographic heterogeneity). However, each location is

not completely independent from others since people move from one location to the next within the spatial

economy due to migration and commuting motives (captured by the presence of diffusion and local terms,

respectively), and this implies that health outcomes in single locations depend also on health outcomes in

others (geographical externality). This spatial structure allows us to capture well the variability in health

conditions which we can observe in the real world both within a single economy and between economies.

Indeed, several studies document the existence of a wide regional heterogeneity in health care across regions,

states and countries (see Skinner, 2012, and references therein). Such heterogeneity involves both differences

in health outcomes (i.e., substantial variation in life expectancy) and in health services provision (i.e., large

variation in the quantity and quality of services provided), which are largely due to factors significantly dif-

fering across regions and countries including income, financial incentives, capacity, constraints, access, price

and risk (Skinner, 2012). Our spatial analysis allows us to show that neglecting the existence of geograph-

ical externalities may lead to misleading conclusions about the health outcome achieved not only in single

regions but also in the entire economy. This suggests that in order to eventually achieve disease eradication,

as aimed for by the UN’ sustainable development goals, a certain degree of coordination across different re-

gions may be needed. This result confirms what found by earlier studies in completely different contexts but

similarly stressing the importance of cooperation across regions or economies to effectively achieve disease

eradication (Barrett, 2003), and suggests another possible explanation of why eradication has never been

achieved thus far with the only exception of smallpox (World Bank, 1993). Since coordination is essential

to achieve desirable health outcomes, we analyze cross-regional coordination by analyzing a spatial control

problem in which the global social planner, given the availability of resources determined at macroeconomic

level, determines the level of intervention in each single location by accounting for geographical externalities

and heterogeneities within the spatial economy. By focusing on a calibration based on a widely spread

infectious disease (i.e., the seasonal flu), we show that at global level it may not always be possible to

achieve complete eradication through traditional control measures (i.e., prevention and treatment) because

of people’s movements. However, the introduction of economic regulations limiting such movements, like

those aimed at imposing travel restrictions (i.e., local or global travel bans), can help to ensure long run

eradication, representing thus an important tool to complement health policy measures.

The COVID-19 outbreak has renewed the interest in understanding the consequences of communicable

diseases on both macroeconomic and health outcomes. A growing number of works have recently analyzed

how macroeconomic activity is related to epidemic diseases by investigating the role of the most commonly

used form of control strategy, that is social distancing policies, to limit the spread of the epidemic (Brodeur

et al., 2021; Boucekkine et al., 2021). Several papers discuss the effects of different social distancing mea-

sures in the short (Acemoglu et al., 2021; La Torre et al., 2021a) and long run (Alvarez et al., 2021; Gori

et al., 2021b), in centralized (Gollier, 2020; Caulkins et al., 2021) and decentralized settings (Eichenbaum

et al., 2021; Rothert, 2021), in the contexts of delays in disease transmissions and policy implementation
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(Aspri et al., 2021 Hritonenko et al., 2021). However, none of them accounts for the spatial implications of

the disease dynamics,1 thus we contribute to this literature by discussing how the presence of geographical

effects may modify our conclusions regarding the effectiveness of different health policy and the design of

the most appropriate policy-mix to control the (local and global) spread of the disease. Different from other

epidemic management programs in the past when social distancing measures have been only seldom used,

in the fight against the novel COVID-19 numerous forms of social distancing policies have been employed in

most countries, including quarantines, voluntary isolations, lockdowns, the requirements to wear face masks

and to maintain a certain physical distance from others. By limiting individual behavior and interactions be-

tween individuals such policy measures have led to an important reduction in the utilization of the workforce

and in labor productivity resulting in dramatic economic effects, such as a large number of job losses and

a large drop in GDP. Therefore, social distancing represents a specific type of preventive tool affecting not

only health outcomes but also economic activities through its effects on production capabilities. In order to

assess the effectiveness of the real world policy response to the recent coronavirus pandemic, including social

distancing, treatment and lately vaccination, we develop an extension of our baseline model to account for

the peculiarities of COVID-19 and quantify the effects of social distancing on both disease dynamics and eco-

nomic activity and its interaction with vaccination. Since reinfections from COVID-19 are rare (but possible)

we need to allow for the possibility that a part of the individuals recovering from the disease gain temporary

immunity. As immunity (which can be acquired also through vaccination) vanishes individuals return to be

susceptible to the disease again. Such a setting requires to introduce a further subpopulation group, the re-

covereds, transforming our framework into a SIRS (susceptibles-infectives-recovereds-susceptibles) setup. In

this context we present a calibration of our extended model to the Italian COVID-19 experience in order to

analyze whether optimal vaccination and social distancing policies, combined with optimal treatment efforts,

may allow for disease eradication. Our analysis surprisingly shows that, because of the infections generated

by cross-regional commuting, vaccination per se is not enough to achieve disease eradication. Regulations

limiting people’s movements need to accompany vaccination in order to preclude COVID-19 from reaching

an endemic state and eradicate the disease.

The paper proceeds as follows. Section 2 briefly summarizes the basic structure of the SIS epidemiological

model, by focusing in particular on the role played by the basic reproduction number in determining the

long run health outcome and on how traditional public health policies (through prevention and treatment

measures) can affect such a basic reproduction number and thus be used to effectively achieve complete

eradication. Section 3 presents our extension to a purely dynamic spatial framework in order to account for

both geographical heterogeneities and geographical externalities; we show that the predictions based on the

basic reproduction number (and thus on the role of prevention and treatment) are likely to no longer hold true

in the presence of geographical externalities since the spatial spread of the disease tends to alter substantially

the long run health outcome. This allows us to stress the policy implications of our model since designing

public health policies aiming at eradicating a disease without taking into account the policies implemented in

other regions as well is likely to lead to undesirable outcomes. Section 4 focuses on optimal policymaking by

analyzing a spatially-structured optimal control macroeconomic-epidemiological problem in which prevention

and treatment are determined globally in order to maximize social welfare. This setup allows us to stress

that, even if internalizing geographical externalities and heterogeneities, traditional disease control policies

may not be enough to achieve disease eradication, which instead may require the introduction of economic

regulations limiting people’s movements through travel restrictions. Section 5 extends our baseline model

to a SIRS context in order to account for the peculiarities of COVID-19 and of the main policy measures

implemented to fight it (i.e., social distancing and vaccinations), presenting a calibration to the Italian

experience to understand the effectiveness of real world policies and their implications on both economic

1Despite the issue has not been discussed in economic epidemiology yet, few studies in mathematical epidemiology have

recently introduced a spatial framework in traditional epidemiological models to characterize the spatial spread of COVID-19

(Wu et al., 2020; Tsori and Granek, 2021).
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and health outcomes. Section 6 as usual presents concluding remarks and proposes directions of future

research.

2 The Basic Model

The susceptible-infected-susceptible (SIS) epidemiological model represents one of the simplest frameworks

to analyze disease dynamics. It is best suited to discuss the implications of infectious diseases which do

not confer immunity, including sexually transmitted diseases or diseases caused by bacteria (Feng et al.,

2005), seasonal influenza and other diseases characterized by seasonal patterns (Martcheva, 2009). The

demographic structure in the SIS model is extremely simple and this allows to characterize the evolution

and the eventual spread of a certain disease across the population in a very intuitive way.

The population, N , which is assumed to be constant, is composed by two groups: individuals who

are infected, It, and individuals who are not infected but susceptible to infection, St. Infected individuals

spontaneously recover from the disease at a speed δ > 0, while susceptible individuals contract the disease

at rate α > 0 by interacting through random matching with infected ones (α measures both the number

of interactions between infectives and suceptibles and the probability with which an interaction gives rise

to a new infection), and the probability with which matching occurs depends on the actual spread of the

disease across the population. In order to keep the analysis as simple as possible, for the time being, we

assume that public health policy is exogenously given and affects the speed of transmission and recovery

from the disease; specifically, the prevention (or prophylactic intervention) rate, denoted with 0 ≤ p ≤ 1

reduces the probability of infection, while the treatment (or therapeutic intervention) rate, 0 ≤ v ≤ 1,

speeds the recovery up. At any moment in time disease-specific (α and δ) characteristics, along with public

policies (p and v), determine the flow of individuals between the two population subgroups. Given the initial

conditions, S0 ≥ 0, I0 ≥ 0, and N = S0 + I0 ≥ 0, the evolution of the number of infectives and susceptibles

is described by the following differential equations:

Ṡt = δ(1 + vβ)It − α(1− pω)
StIt
N

(1)

İt = α(1− pω)
StIt
N
− δ(1 + vβ)It, (2)

where 0 < ω < 1 and 0 < β < 1 measures the elasticity of prevention and treatment respectively, which affect

the dynamics of infectives and susceptibles less than linearly because both forms of health policy exhibit

diminishing marginal products (Gersovitz and Hammer, 2004). The system above can be straightforwardly

recast in terms of the share of infectives, it = It
N , and the share of susceptibles, st = St

N , as follows:

ṡt = δ(1 + vβ)it − α(1− pω)itst (3)

i̇t = α(1− pω)itst − δ(1 + vβ)it. (4)

Since 1 = st + it, the epidemic dynamics can be completely characterized by focusing simply on one of the

two equations as follows:

i̇t = α(1− pω)it(1− it)− [δ(1 + vβ) + b]it. (5)

The above equation conveniently describes the evolution of the disease prevalence in the entire population

and analyzing its equilibria is straightforward. As discussed in the epidemiology literature, the long run

outcome crucially depends on the “basic reproduction number” (Hethcote, 2000), R0, given by:

R0 =
α(1− pω)

δ(1 + vβ)
. (6)

This term measures the average number of secondary infections produced by a typical infectious individual

introduced into a completely susceptible population, and clearly the disease prevalence will tend to increase
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(decrease) over time as long as this is larger (smaller) than unity, suggesting that the epidemic outcome in the

long run completely depends upon the size of the basic reproduction number. Indeed, according to whether

R0 is larger or lower than one, a different health outcome, entirely quantified by the disease prevalence,

will be achieved in the long run. Whenever R0 ≤ 1 the disease prevalence will necessarily shrink over time

and in the long run the economy will reach a disease-free equilibrium in which i1 = 0 (and thus s1 = 1).

Whenever R0 > 1 the disease prevalence will tend to reach a strictly positive level and in the long run the

economy will reach an endemic equilibrium in which i2 = α(1−pω)−δ(1+vβ)
α(1−pω) (and thus s2 = δ(1+vβ)

α(1−pω)). Note

that while the disease-free equilibrium exists for all parameter values, the endemic equilibrium is well defined

and exists only if α(1 − pω) > δ(1 + vβ), that is if the effective transmission rate (inclusive of prevention),

α(1 − pω), is larger than the effective recovery rate (inclusive of treatment), δ(1 + vβ). By analyzing the

(local) stability properties of the equilibria, it is possible to show that ∂i̇t
∂it
|it=i1 = α(1− pω)− δ(1 + vβ) and

∂i̇t
∂it
|it=i2 = −[α(1−pω)−δ(1+vβ)], which implies that when only the disease-free equilibrium exists this will

be asymptotically stable, while when also the endemic equilibrium exists this will be asymptotically stable

and the disease-free equilibrium will become unstable.

The basic reproduction number plays thus a crucial role in understanding what will effectively happen

to the disease in the long run, independently of the initial level of prevalence. Only whenever R0 is lower

than one, that is whenever the effective recovery rate is higher than the effective transmission rate, complete

eradication will be possible. Since traditional public health policy is able to affect the basic reproduction

number (which falls with both prevention and treatment), it can be effectively used in order to achieve a

disease-free equilibrium characterized by complete eradication, and both prevention and treatment can be

equivalently used in order to achieve such an outcome. This suggests that, independently of disease-specific

characteristics (captured by α and δ), the disease can be effectively eliminated from the population provided

that the basic reproduction number, R0, is brought to (or maintained at) a value less than unity through

public policy tools.

3 The Spatial Model

We now focus on an extension of the basic SIS model to allow for geographical heterogeneities and external-

ities by introducing a spatial dimension. A similar setup has been recently used to discuss the geographical

implications of economic growth (Boucekkine et al., 2009; La Torre et al., 2015; Bucci et al., 2019) and

environmental problems (Brock and Xepapadeas, 2010; Camacho and Pérez–Barahona, 2015; La Torre et

al., 2019, 2021b). We assume a continuous spatial structure to represent that the spatial economy develops

along a linear city (see Hotelling, 1929; La Torre et al., 2021b), where the population is mobile across dif-

ferent locations and thus the infectious diseases may diffuse across the spatial economy as well (Dietz and

Sattenespiel, 1995; Wang, 2014).

We denote with Sx,t and Ix,t, respectively the susceptibles and infectives in the position x at date t,

in a compact interval [xa, xb] ⊂ R, and we assume that the so-called Neumann boundary conditions hold

true, that is there are no migration flows through the borders of [xa, xb] namely the directional derivatives

are null,
∂Sx,t
∂x =

∂Ix,t
∂x = 0, at x = xa and x = xb. In this framework, any position x may be interpreted

as a specific location while a set of adjacent locations as a region in the spatial economy (La Torre et al.,

2019). Different from what discussed earlier for the a-spatial model, the epidemic dynamics cannot be fully

characterized by focusing only on the evolution of the share of infectives, since the population is spatially

distributed, N =
∫ xb
xa
Nx,tdx with Nx,t = Sx,t + Ix,t, and thus it is not necessarily true that the shares of

infectives and susceptibles sum to one in each location x (i.e., they do sum to one over the whole spatial

domain). In particular, the share of infectives, ix,t =
Ix,t
N , and the share of suscetibles, sx,t =

Sx,t
N , in each

location x jointly determine the share of the total population residing in that specific location, nx,t with

nx,t = sx,t + ix,t, while the sum of the shares of the total population residing in all locations sum to one,
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∫ xb
xa
nx,tdx = 1. Therefore, we need to analyze the evolution of the share of infectives and suscetibles over

time and across space, and the spatial model can be represented though a system of partial differential

equations as follows:

∂sx,t
∂t

= d
∂2sx,t
∂x2

+ δ(1 + vβx )ix,t − α(1− pωx )

∫ xb

xa

sx′,tix′,tϕx′,xdx
′ (7)

∂ix,t
∂t

= d
∂2ix,t
∂x2

+ α(1− pωx )

∫ xb

xa

sx′,tix′,tϕx′,xdx
′ − δ(1 + vβx )ix,t. (8)

However, by recalling that nx,t = sx,t + ix,t, it follows that nx,t solves the summation of equations (7) and

(8), that is:

∂nx,t
∂t

= d
∂2nx,t
∂x2

, (9)

with Neumann boundary conditions and initial conditions directly determined from those related to sx,t and

ix,t. This allows us to consider nx,t as a known exogenous variable, which thus can be substituted in (7) and

(8) by writing sx,t = nx,t − ix,t.

∂nx,t
∂t

= d
∂2nx,t
∂x2

(10)

∂ix,t
∂t

= d
∂2ix,t
∂x2

+ α(1− pωx )

∫ xb

xa

(nx′,t − ix′,t)ix′,tϕx′,xdx′ − δ(1 + vβx )ix,t. (11)

The expression of nx,t is known in closed-form as it is the solution to the classical heat equation with

Neumann condition and it reads as follows:

nx,t =
∑
n≥0

Bne
−
(

nπ
xb−xa

)2
dt

cos

[
nπ(x− xa)
xb − xa

]
(12)

where B0 = 1
xb−xa

∫ xb
xa
nx,0dx and Bn = 2

xb−xa
∫ xb
xa
nx,0 cos

[
nπ(x−xa)
xb−xa

]
dx. In order to understand the disease

dynamics, we can thus analyze the system of of partial differential equations (PDEs) given by (10) and

(11), which generalizes to a spatial dimension the a-spatial model discussed in the previous section (see

equation (5)) to account for population mobility across locations. In particular, equation (10) states that

the population diffuses across space, from locations more populated to locations less populated, and since

the population is composed by susceptibles and infectives also the two sub-population groups follow a similar

diffusion pattern (see equations (7) and (8)).2 As people move towards locations less densely populated,

their individual probability of infection decreases but at the same time the degree of infection in locations

receiving inflows of individuals from surrounding locations increases, meaning that individuals’ attempts to

reduce their disease exposure generates an externality which increases infection also in locations initially

characterized by low population density and low disease prevalence. The use of similar reaction-diffusion

systems to characterize the spatial spread of infectious diseases has been extensively used in mathematical

epidemiology (Martcheva, 2015; Anita and Capasso, 2017).3

2Note that our epidemiological setting describes at the aggregate macro level the behavior of the population, and such an

aggregative behavior derives from the behavior at the micro level of the different individuals in the population. Specifically,

our setup implicitly assumes that individuals move randomly within the spatial domain following a Brownian motion, and this

is reflected by the Laplacian terms in the PDEs while the diffusion parameters (assumed to coincide between the different

population subgroups) measure the amplitude of the Brownian motions characterizing individuals’ spatial movements (Ducasse,

2020).
3Apart from the use of reaction-diffusion partial differential equations, another approach frequently employed in mathematical

epidemiology to capture the spatial dimension consists of adopting a network-based or a patch structure. When a patch

framework is viewed on a sufficiently large scale it can be very-well approximated by a reaction-diffusion model which allows

to characterize the spread of an infectious disease in a continuous spatial domain. Therefore, our setup can be interpreted as

a limit version of a patch model in which individuals’ mobility across a discrete number of locations determines the epidemic

dynamics across space and over time (Dietz and Sattenespiel, 1995).
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Therefore, the spatial structure of our framework allows us to characterize geographical externalities

and heterogeneities. Geographical externalities are captured by two terms, the diffusion, d ∂2

∂x2
, and the

integral term,
∫
sx′,tix′,tϕx′,xdx

′, which describe how infectives and susceptibles tend to move across the

spatial economy and which thus imply that the infection even if originated in a specific location can spread

also to other locations as well. Specifically, the former term describes movements due to migrations and

relocations which take place over time and lead individuals to permanently move from one location to

an adjacent one; the coefficient d = dI = dS ≥ 0 represents the diffusion parameter, assumed to be the

same for both infectives and susceptibles, which measures the speed at which such cross-regional effects

take place. The latter term describes instead movements due to commuting and business trips which take

place on a daily basis and lead individuals to move for a short period of time to locations even far away

from their original venues; independently of their origin x′, because of such types of movements on a daily

basis individuals get in contact with a number of individuals originally located even far away, thus all

the contacts between infectives and susceptibles contribute to determine the spread of the disease in the

location x; the kernel ϕx′,x measures the extent to which these contacts between individuals originated from

different locations matter for the disease prevalence in one specific location, quantifying the magnitude of

such effects. While the diffusion term describes a “dynamic externality” whose effects are generated over

time, the integral term describes a “static externality” with effects occurring instantaneously (La Torre et al.,

2015); the diffusion and integral effects jointly characterize the geographical externalities which determine

the evolution of the disease prevalence across the entire spatial economy. Geographical heterogeneities are

captured by the two factors: the different level of disease prevalence across space, described by the non-

homogenous initial spatial distribution of susceptibles sx,0 and infectives ix,0, and the eventual variability

in epidemic and policy characteristics across space, described by the spatial-dependance of the preventive,

px, and treatment measures, vx. Differences in the initial conditions reflect the disease history in specific

locations which may lead some regions to experience higher disease prevalence than others; for example, an

outbreak is typically well localized initially and only over time the disease may spread in other locations.

Differences in epidemic and policy characteristics reflect the situation that in each single venue the rates

of prophylactic or therapeutic interventions may be different from those in others, because of their specific

availability of resources (i.e., hospital beds, hospital personnel) or the local effectiveness of the implemented

measures (i.e., individual attitude towards the adoption of preventive behavior).

Formally analyzing partial differential equations and their short run and long run outcomes is not

straightforward from a mathematical point of view and goes well beyond the scope of this paper (see

Polyanin, 2002, for a rigorous presentation and discussion). Therefore, we proceed in our analysis by il-

lustrating the implications of geographical heterogeneities and externalities graphically. We perform some

numerical simulations based on a calibration of our model to the specific case of the seasonal flu; it is how-

ever possible to show that our qualitative results are robust even when calibrating the model to consider the

peculiarities of other diseases (such as the common cold). The seasonal flu is a common and widely spread

disease resulting every year in about 3 to 5 million cases of severe illness and about 250,000 to 500,000

deaths at world level (WHO, 2018). Epidemiological studies provide accurate estimates of the main biolog-

ical characteristics of different diseases, which allow to calibrate the relevant parameters. Specifically, the

recovery rate can be computed as the inverse of the average number of days to recover which, combined with

the basic reproduction number, from (6) allows us to compute the infectivity rate (in the absence of health

policy measures) as α = δR0. Estimates for the seasonal flu suggest that R0 = 1.5, and people generally

recover in about seven days, which implies δ = 0.14 and α = 0.21 (La Torre et al., 2021a). Without loss of

generality, we set the initial condition for the share of infectives to 0.05 and the diffusion parameter to 0.01,

namely ix,0 = 0.05 and d = 0.01, but it is possible to show that results do not qualitatively change with

different values of the parameters (La Torre et al., 2021a). To the best of our knowledge, estimates of the

elasticities of preventive and treatment measures are not available to calibrate the relevant parameters, thus

in the following we shall arbitrarily set β = ω = 0.5 (but also in this case changing these parameter values
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will not alter our qualitative conclusions) while we shall change the values of p and v to show how different

policy intensities may affect our analysis. In particular, in order to make the figures as clear as possible in

the lateral regions (x ∈ [−1,−1/3) and x ∈ (1/3, 1]) we shall set p = v = 0.6, while in the central region

(x ∈ [−1/3, 1/3]) either p = v = 0.04 (in case I) or p = v = 0.001 (in case II).

In order to isolate the effects due to heterogeneity in the health status and heterogeneity in the provision

of health services, for the time being we assume that the spatial economy is characterized by the same initial

level of disease prevalence (initial same health status) but regions within the spatial economy differ in terms

of the effectiveness of the health services (different provision of heath services) which may reflect differences

in income, capacity, or access (Skinner, 2012). Specifically, in order to make a comparison with the a-spatial

model earlier described, in this section we focus only on the implications of spatial variability in the health

services effectiveness by assuming that there are no differences in the initial health status, which will be

introduced in the next section when we analyze optimal policymaking in our spatial context. In order to

make our arguments as intuitive as possible, we also assume that biological factors characterizing the spread

of the disease are the same in the entire spatial economy, meaning that geographical factors do not influence

the speed of recovery and the probability of transmission4. Such heterogeneity in the effectiveness of public

policy implies that the basic reproduction number R0 (see equation (6)) may be spatially heterogeneous as

well. By relying on our analysis from the previous section we can predict the health outcome in different

regions: regions characterized by high effectiveness of health services will achieve a disease-free equilibrium

(i.e., R0 may be lower than one), while those characterized by low effectiveness will achieve an endemic

equilibrium (i.e., R0 may be higher than one). We wish thus to understand whether such conclusions hold

true even in the presence of geographical externalities and, if they do not, what role geographical externalities

may play in shaping the evolution of the disease prevalence in the spatial economy. In order to look at this,

we consider a framework in which health policy measures (prevention and treatment rates) are low in the

central region (thus R0 is high) and high in the lateral ones (R0 is low), but there is some difference in the

policy levels in the central region; specifically, in case I policy measures are relative higher than in case II.

In order to distinguish between the implications of the dynamic and static externalities, we first abstract

from the static externality by setting the Dirac’s delta function as the kernel, and we reintroduce such a

static effect later by changing our specification of the kernel. By choosing the Dirac’s delta function as the

kernel, that is ϕx′,x =

{
∞ x = x′

0 x 6= x′
, the above system of PDEs reads as follows:

∂nx,t
∂t

= d
∂2nx,t
∂x2

(13)

∂ix,t
∂t

= d
∂2ix,t
∂x2

+ α(1− pωx )(nx,t − ix,t)ix,t − δ(1 + vβx )ix,t, (14)

clearly suggesting that the disease is transmitted only by interactions between susceptibles and infectives

located in the same venue x (i.e., in the absence of commuting and business trips, the spread of the disease

takes place slowly due to the infections generated by migration and relocations). This allows us to focus

only the effects of diffusion (dynamic externality) on the disease prevalence in different regions and in the

entire economy. The outcome of our analysis based on (13) and (14) is illustrated in Figure 1 (case I) and

Figure 2 (case II).

The result of our simulations from case I is shown in Figure 1. In the left panel we represent the spatio-

temporal epidemic dynamics in the absence of diffusion which perfectly confirms our predictions from the

previous a-spatial section: the central region converges towards an endemic equilibrium while the lateral

regions to a disease-free equilibrium. In the right panel we represent the dynamics in the presence of diffusion

which clearly shows that the long run health outcome is substantially different from what we would expect

4Heterogeneity in disease characteristics can be equivalently interpreted as heterogeneity in the effectiveness of the health

services provided, thus we believe that such an additional source of heterogeneity can be ignored with no loss of generality.
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relying on a completely a-spatial approach as in the previous section: the spatial economy converges overall

towards a disease-free equilibrium, since even the central region which is meant to achieve an endemic

equilibrium with no dynamic externalities achieves a disease-free equilibrium thanks to such cross-regional

effects. This suggests that while geographic heterogeneity in the long run health outcome of different regions

exists with no externalities, in the presence of externalities such heterogeneity completely disappears and

disease eradication can be achieved in each single location.

Figure 1: Evolution of the share of infectives in the spatial economy, with no diffusion (left) and with

diffusion (right), in case I (prevention relatively high in the central region). No static externality.

The result from case II is instead shown in Figure 2. On the left we represent the spatio-temporal

epidemic dynamics in the absence of diffusion which is qualitatively identical to what discussed for the case

I, apart from the fact that the endemic equilibrium which the central region converges to is characterized

by a higher level of prevalence. On the right we represent the dynamics in the presence of diffusion which

shows that also in this case the long run health outcome is substantially different from what we would

expect: the spatial economy converges overall towards an endemic equilibrium, since even the lateral regions

which are meant to achieve a disease-free equilibrium with no dynamic externalities achieve an endemic

equilibrium thanks to such cross-regional spillovers. In this case geographical heterogeneity in the long run

health outcome of different regions exists both in the absence and in the presence of externalities; however,

geographical externalities tend to smooth this heterogeneity out.

Figure 2: Evolution of the share of infectives in the spatial economy, with no diffusion (left) and with

diffusion (right), in case II (prevention relatively low in the central region). No static externality.

By comparing Figure 1 and 2 we can derive some interesting conclusions. Because of geographical
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externalities single regions are mutually related and thus the long run health outcome in a specific region

does not depend only on its own public health choices but also on those in other regions as well. This

implies that geographical heterogeneities in long run health outcomes of different regions may tend to be

smoothed out. Moreover, it is possible that regions meant to achieve a good (bad) health outcome will

experience a deterioration (improvement) in their health status in the long run because of geographical

spillovers. Which of these two alternative situations is most likely to occur crucially depends on the overall

level of prevalence in the spatial economy; indeed, while spatial diffusion will tend to improve the outcome

in the central region (characterized by an endemic equilibrium in the absence of diffusion), what happens to

the lateral regions (characterized by a disease-free equilibrium) is uncertain, and in particular if the share

of infectives in the entire spatial economy is too high the outcome in lateral regions will tend to deteriorate.

Neglecting to account for geographical externalities is likely thus to distort our predictions about long run

health outcomes, potentially leading to sub-optimal policies; for example, by considering such externalities

in case II the lateral regions could realize that it might be enough to increase the effectiveness of their health

services (by increasing either prevention or treatment measures) in order to achieve complete eradication as

in case I. These results clearly suggest that in order to effectively achieve disease eradication in a specific

region or in the entire spatial economy single regions need to take into account the policies implemented in

other regions as well and eventually coordinate their efforts to reach a common goal.

After discussing the effects of the dynamic externality, we now focus on the implications of the static

externality by setting the kernel as follows: ϕx′,x = 1√
2π
e−

(x−x′)2
2 , suggesting that the static effects are

stronger between adjacent locations and become weaker as the distance between locations increases (i.e.,

commuting and business trips typically take place not too far away from the origin). Such a specification of

the kernel reintroduces the integral term as in (7) and (8), which now read as follows:

∂nx,t
∂t

= d
∂2nx,t
∂x2

, (15)

∂ix,t
∂t

= d
∂2ix,t
∂x2

+ α(1− pωx )

∫ xb

xa

1√
2π

(nx′,t − ix′,t)ix′,te−
(x−x′)2

2 dx′ − δ(1 + vβx )ix,t. (16)

The implications of the static externality are illustrated in Figure 3, where in the left panel we represent

the spatio-temporal epidemic dynamics in case I, while in the right panel the dynamics in case II. It is

straightforward to realize that the disease prevalence with static effects is higher in each location than the

corresponding level in the absence of static effects, both for case I (compare the left panel in Figure 3 with

the right panel in Figure 1) and case II (compare the right panel in Figure 3 with the right panel in Figure

2). The result is extremely intuitive: since the static externality introduces an additional means of disease

transmission (i.e., commuting and business trips), the health outcome tends to be always poorer than what

we would experience in the absence of static externalities. In particular we can note that both in case

I and case II each region in the spatial economy converges to an endemic equilibrium and geographical

heterogeneity in their long run health outcome arises.

The analysis of the above results allows us to derive another interesting conclusion. Geographic exter-

nalities do not only imply that different regions are connected and thus they need to coordinate their efforts

to achieve eradication, but they also suggest that quantifying the speed at which a disease propagates is

not simple at all. Indeed, the potential existence of static externalities implies that assessing the level of

prevention and treatment needed in the overall economy to achieve complete eradication may be extremely

difficult. In order to see why this might be the case, focus on case I: if it is true that in the absence of static

externalities the spatial economy can achieve complete eradication, when such externalities are taken into

account this is no longer true and the entire economy converges to an endemic equilibrium. This suggests

that policymakers need to carefully consider all the potential means by which a certain disease may be

transmitted and quantify their effects in order to determine the required level of prevention and treatment

to effectively achieve disease eradication. It may even be possible that simply relying on traditional health
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Figure 3: Evolution of the share of infectives in the spatial economy with diffusion and integral term, in

case I (left) and in case II (right).

policies in the form of preventive and treatment measures is not enough to achieve disease eradication. If this

is the case economic policies in the form of the introduction of regulations imposing travel restrictions and

thus limiting the effects of geographical externalities (i.e., travel bans within the spatial economy precluding

cross-regional movements), may be the only possibility to effectively achieve eradication. We shall analyze

this argument with more depth in the next section when we discuss the determination of optimal epidemic

control policies in a macroeconomic-epidemiological setting.

4 Optimal Spatial Policymaking

Thus far we have discussed health policies in a completely exogenous fashion, while we now endogeneize them

by optimally determining the level of health expenditure to be allocated to either prevention or treatment

at macroeconomic level. As epidemic management programs tend naturally to be short-lived, we focus on

a finite time horizon framework in which the social planner tries to maximize social welfare by choosing

the optimal level of preventive, px,t and therapeutic, vx,t, treatment. Similar to La Torre et al. (2020,

2021a), health policy measures are completely publicly funded, and the government levies lump sum taxes

on individuals’ income in order to finance prevention and treatment by maintaining a balanced budget at

any moment in time. Over a short time frame saving and capital accumulation play only a marginal role

and so we assume that individuals entirely consume their disposable income, which equals the difference

between income and the taxes employed to finance public health policies: cx,t = yx,t − px,t − vx,t, where

cx,t denotes consumption and yx,t income. Output is produced through a linear technology employing

only healthy individuals: yx,t = sx,t = nx,t − ix,t. Social welfare is the weighted sum of two terms: the

discounted sum of utilities (ρ > 0 is the discount factor) and end-of-planning horizon utility, with φ ≥ 0

representing the relative weight of the latter term in terms of the former. As in Boucekkine et al. (2009), the

instantaneous utility function is linear and depends on consumption, which at the end-of-planning horizon

perfectly coincides with income as health policy measures and so taxes are null at the end of the epidemic

management program. Given the initial conditions sx,0 > 0, ix,0 > 0, and nx,0 = ix,0 + sx,0 the global social
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planner’s optimization problem reads as follows:

max
px,t,vx,t

W =

∫ T

0

∫ xb

xa

(nx,t − ix,t − px,t − vx,t) e−ρtdxdt+ φ

∫ xb

xa

(nx,T − ix,T )e−ρTdx

s.t.
∂nx,t
∂t

= d
∂2nx,t
∂x2

(17)

∂ix,t
∂t

= d
∂2ix,t
∂x2

+ α(1− pωx,t)
∫ xb

xa

(nx′,t − ix′,t)ix′,tϕx′,xdx′ − δ(1 + vβx,t)ix,t

nx,0, ix,0 > 0 given

and, similar to what seen in section 2, the expression of nx,t is known and provided by (12). In our above

formulation, since the economy is spatially structured social welfare is defined as the sum of utilities across

all locations within the entire spatial economy, represented by the spatial integral in the objective function.

By removing the spatial dimension and the macroeconomic considerations in the above problem, our model

boils down to a simplified version of Gersovitz and Hammer’s (2004). Other formulations to analyze optimal

control policies in SIS-type epidemiological models have been proposed (Anderson et al, 2010; Goldman

and Lightwood, 2002; Rowthorn and Toxvard, 2012; La Torre et al., 2020, 2021a), but to the best of our

knowledge none has ever considered how the introduction of a spatial dimension and eventual geographical

heterogeneities affect optimal policymaking. Our spatially-structured optimal control formulation allows

us to understand how the presence of such geographical externalities affect policymaking in single regions

within the entire spatial economy, analyzing eventual free-riding effects.

The generalized current value Hamiltonian function, H(ix,t, nx,t, px,t, vx,t), where nx,t acts as a mere

auxiliary variable, reads as:

H = nx,t − ix,t − px,t − vx,t + λx,t

[
d
∂2ix,t
∂x2

+ α(1− pωx,t)
∫ xb

xa

(nx′,t − ix′,t)ix′,tϕx′,xdx′ − δ(1 + vβx,t)ix,t

]
,

with λx,t being the costate variable. The optimality condition is given by the following expression:

∂λx,t
∂t

= ρλx,t − d
∂2λx,t
∂x2

+ 1− α(1− pωx,t)(nx,t − 2ix,t)

∫ xb

xa

λx′,tϕx′,xdx
′ + λx,tδ(1 + vβx,t), (18)

while for the control variables, the maximum principle reads as:

max
px,t,vx,t

H(ix,t, nx,t, px,t, vx,t), (19)

which implies:

px,t =

[
−αωλx,t

∫ xb

xa

(nx′,t − ix′,t)ix′,tϕx′,xdx′
] 1

1−ω
(20)

vx,t =

[
1

−δβλx,tix,t

] 1
β−1

(21)

We need thus to solve the following system of two backward-forward partial differential equations where the

control variables px,t and vx,t are selected via the maximum principle, while the initial conditions on the

state variable ix,t, the final conditions on the costate variable λx,t and the Neumann conditions on the first
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derivatives are given below:

∂ix,t
∂t

= d
∂2ix,t
∂x2

+ α(1− pωx,t)
∫ xb

xa

(nx′,t − ix′,t)ix′,tϕx′,xdx′ − δ(1 + vβx,t)ix,t

∂λx,t
∂t

= ρλx,t − d
∂2λx,t
∂x2

+ 1− α(1− pωx,t)(nx,t − 2ix,t)

∫ xb

xa

λx′,tϕx′,xdx
′ + λx,tδ(1 + vβx,t)

px,t =

[
−αωλx,t

∫ xb

xa

(nx′,t − ix′,t)ix′,tϕx′,xdx′
] 1

1−ω

vx,t =

[
1

−δβλx,tix,t

] 1
β−1

i0,x = i0(x)

λx,T = −φ
∂ix,t
∂x

∣∣∣∣
x=xa

=
∂ix,t
∂x

∣∣∣∣
x=xa

= 0

∂λx,t
∂x

∣∣∣∣
x=xa

=
∂λx,t
∂x

∣∣∣∣
x=xa

= 0

As in the previous section, we proceed with numerical simulations to analyze the implications of our spa-

tial framework, and we keep relying on the parameter values earlier employed in our seasonal flu calibration.

Moreover, following the macroeconomic literature the rate of time preference is assumed to about 4% on a

yearly basis, which on a daily basis implies ρ = 0.04/365, and the weight attached to diseases prevalence at

the end of the planning horizon has been normalized to 1, that is φ = 1 (La Torre et al., 2021a; 2021b). Dif-

ferent from the previous section in which we have focused on the geographical heterogeneity associated with

variability in the effectiveness of health services, we now focus on the optimal provision of health services

along with the effects of geographical heterogeneity related to differences in the health status. In order to

do so we assume that the initial conditions of the share of infectives and population are respectively given

by ix,0 = 3
4 i0 + 1

4 i0e
−20x2 where i0 = 0.05 and nx,0 = 1

2 , with x ∈ [−1, 1], representing a situation in which

the disease prevalence is initially higher in the central than in the lateral regions.

The results of our numerical analysis (bases on an approach similar to La Torre et al.’s, 2015) are

presented in Figure 4, where we show the spatio-temporal dynamics of prevention (left panel), treatment

(middle panel) and the share of infectives (right panel), in the absence (top panels) and in the presence

(bottom panels) of the static externality. From a qualitative point of view the dynamics is similar in the

two scenarios, but from a quantitative point of view the results are substantially different: the evolution

of prevention and treatment are non-monotonic, increasing initially and decreasing later (with prevention

and treatment increasing again at the end of the planning horizon in the presence of the static externality),

and while the intensity of the policy tools is large enough to allow for a monotonic decrease in the share of

infectives in the absence of the static externality, this is not the case in the presence of the integral term where

the share of infectives monotonically increases over time. The behavior of the optimal policies and disease

prevalence at the end of the epidemic management program are strikingly different: in the absence of the

static externality, that is in the presence of travel restriction regulations, it is optimal to completely eradicate

the disease globally (both in the central than in the lateral regions) by optimally determining traditional

health policies (i.e., prevention and treatment). By contrast, in the presence of the static externality, that is

in situations in which travel restriction regulations are not applicable, it is optimal not to achieve complete

eradication maintaining a positive share of infectives along with a positive preventive effort in the central

region. This means that the optimal long run outcome significantly changes according to the policies the

policymakers have at their disposal, and thus from a social planner’s perspective it is convenient to achieve

an endemic equilibrium in some region if only traditional health policies are available, while it is convenient

to achieve a disease-free equilibrium everywhere in the spatial economy if also economic policies affecting
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Figure 4: Evolution of prevention (left), treatment (center) and the share of infectives (right), in the absence

(top) and in the presence (bottom) of the static externality.

individuals’ travel possibilities can be employed. This type of result supports what discussed in the previous

section about the importance of economic regulations limiting people’s movements in order to achieve disease

eradication at global level.

It may be useful to compare our results with La Torre et al.’s (2021a) who, by analyzing an epidemic

management program over a finite time horizon in a setting without a spatial dimensions and so without

geographical implications, show that it may be optimal to allow a disease to reach an endemic state. Our

geography-extended analysis instead suggests that: (i) if there is no static externality then the process

of disease diffusion may reverse their conclusions as in this case it would be optimal to achieve disease

eradication everywhere in the spatial economy; (ii) if the static externality exists then the extra incidence

caused by individual movements within the spatial economy may prevent a disease-free outcome to be

attained, confirming their conclusions regarding the optimality of an endemic state. Therefore, exactly as

we have already discussed in a purely dynamic context without optimal policymaking, we can conclude that

neglecting the existence of cross-regional effects may lead to misleading conclusions about local and global

epidemiological outcomes.

5 A COVID-19 Extended Model

The recent coronavirus epidemic has renewed the interest in understanding the implications of disease control

measures on both macroeconomic and health outcomes. The most commonly health policy tools worldwide

employed in order to reduce the spread of COVID-19 have taken the form of social distancing measures

(i.e., maintaining physical distancing between people, avoiding gatherings, wearing face masks, imposing

local or global lockdowns), which have, on the one hand, the effect to reduce the new infectious contacts

(lowering disease incidence) and, on the other hand, to reduce productivity (lowering economic activity).

For example, the requirement to maintain physical distance between others or to avoid gatherings may

make the performing of normal daily tasks on the workplace particularly complicated negatively affecting

economic production (La Torre et al., 2021a). Therefore, social distancing policy represents a specific form

of preventive measure which, different from traditional ones such as prophylactic interventions, deteriorates
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further the trade off between macroeconomic and health outcomes. Moreover, the ongoing promotion of

massive vaccination campaigns everywhere in the world has raised growing concerns regarding the need to

continue relying on social distancing to reduce disease incidence and prevalence. Therefore, in order to

assess the effectiveness of the policy measures currently implemented in the fight of COVID-19, we need to

extend our baseline model to account for social distancing and vaccination, along with the peculiarities of

COVID-19. Indeed, our SIS framework suggests that upon recovery individuals do not acquire immunity

and return to be susceptible, meaning that they can get infected again. Whether infection from COVID-19

grants any form of immunity is currently debated: despite as to date there is no evidence that “people who

have recovered from COVID-19 and have antibodies are protected from a second infection” (WHO, 2020b),

recent epidemiological studies show that reinfections are rare and estimate the protection against repeat

infection to be about 80% and to last for five to six months (Hansen, 2021; Ledford, 2021). Therefore, in

order to better describe the epidemiology of COVID-19 it seems convenient to rely on a SIRS framework

in which a part of the individuals who have recovered from the disease acquires temporary immunity while

the remaining part does not and thus it returns immediately to be susceptible. Since immunity is only

temporary, it vanishes over time and after a certain period of time also vaccinated individuals returns to be

susceptible again.

5.1 The Epidemiological Setting

Before analyzing the spatial implications of optimal policymaking in the context of COVID-19, it may be

useful to introduce the epidemiological setup in a completely a-spatial framework to allow for a comparison

with section 2. The population is composed by susceptibles, infectives and recovereds, Rt. Upon recovery, a

share 0 < µ < 1 of the infectives acquires immunity and the remaining share 1−µ returns to be susceptible.

Immunity is only temporary such that after some time also the recovereds get back being susceptibles,

and ε > 0 measures the speed of immunity loss. Apart from treatment and prenventive measures, where

prevention takes the form of social distancing, also a vaccine is available which allows to grant temporary

immunity, exactly as with natural recovery. Given S0 ≥ 0, I0 ≥ 0 and R0 ≥ 0, with N = S0 + I0 + R0, the

evolution of the number of susceptibles, infectives and recovereds is described by the following differential

equations:

Ṡt = δ(1 + vβ)(1− µ)It − α(1− pω)
StIt
N

+ εRt − uθSt (22)

İt = α(1− pω)
StIt
N
− δ(1 + vβ)It, (23)

Ṙt = δ(1 + vβ)µIt − εRt + uθSt, (24)

where 0 < u < 1 is the vaccination rate and 0 < θ < 1 measures the elasticity of vaccination, which is

assumed to affect the dynamics of recovereds and susceptibles less than linearly because vaccination exhibits

diminishing marginal product, exactly as prevention (social distancing) and treatment. Vaccination allows to

make susceptible individuals immune, reducing the possible interactions between infectives and susceptibles,

lowering thus disease incidence. Note that if µ = 0 the model simplifies into a SIS setting extended for

vaccination granting temporary immunity. If also ε = u = 0 then it boils down to our baseline SIS.

By defining also the share of recovereds as rt = Rt
N and since 1 = st + it + rt, the epidemic dynamics can

be characterized by analyzing the following planar system of differential equations:

ṡt = δ(1 + vβ)(1− µ)it − α(1− pω)stit + ε(1− st − it)− uθst (25)

i̇t = α(1− pω)stit − δ(1 + vβ)it (26)

In this case the model’s outcome depends on the magnitude of the following basic reproduction number:

R0 =
εα(1− pω)

δ(1 + vβ)(ε+ uθ)
(27)
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With respect to the basic reproduction number that we have introduced in our baseline SIS model (see

equation (6)), also the parameters ε and u affect the size of R0. Intuitively, a higher vaccination rate

reduces R0 while a higher immunization loss rate increases it. Exactly as in our baseline SIS model,

whenever R0 ≤ 1 the economy will converge to a disease-free equilibrium, which now is characterized by

ī1 = 0 and s̄1 = ε
ε+uθ

(and thus r̄1 = 1 − s̄1 − ī1), while whenever R0 > 1, it will converge to an endemic

equilibrium characterized by ī2 = εα(1−pω)−δ(1+vβ)(ε+uθ)
α(1−pω)[δ(1+vβ)µ+ε] and s̄2 = δ(1+vβ)

α(1−pω) (and thus r̄2 = 1− s̄2− ī2).5 Apart

from the different equilibrium value of the shares of susceptibles and infectives and the presence of a positive

share of recoverereds, along with the role of vaccinations in reducing the basic reproduction number, from

a qualitative point of view the results are identical to those earlier discussed in our baseline SIS model.

5.2 Optimal Spatial Policymaking

We now extend our purely a-spatial model to a spatial context in which the health policy, in terms of

prevention (social distancing), treatment and vaccination, is optimally determined. By relying on the same

spatial framework and following the same approach as in section 3, and exploiting the fact that nx,t =

sx,t + ix,t + rx,t where rx,t denotes the share of recovereds in location x, the spatio-temporal epidemic

dynamics can be described by the following system of PDEs:

∂nx,t
∂t

= d
∂2nx,t
∂x2

(28)

∂ix,t
∂t

= d
∂2ix,t
∂x2

+ α(1− pωx,t)
∫ xb

xa

sx′,tix′,tϕx′,xdx
′ − δ(1 + vβx,t)ix,t (29)

∂sx,t
∂t

= d
∂2sx,t
∂x2

+ δ(1 + vβx,t)(1− µ)ix,t − α(1− pωx,t)
∫ xb

xa

sx′,tix′,tϕx′,xdx
′ + ε(nx,t − sx,t − ix,t)− uθx,tsx,t

(30)

The economic setting is identical to what we have earlier discussed in section 4, but the peculiarity of

social distancing as a form of prevention requires us to partly modify our baseline model in order to account

for the fact the social distancing does not only affect the disease dynamics by diverting resources from

consumption activities, but also reduces output by lowering the productivity of (healthy) labor. Specifically,

similar to La Torre et al. (2021a), under social distancing net (of policy effects) output is given by qx,t =

(1 − ξpx,t)yx,t = (1 − ξpx,t)(nx,t − ix,t), where ξ ≥ 0 measures the output lost due to the reliance upon

preventive (i.e., social distancing) measures. If ξ = 0 the health policy tool does not affect output and

thus we are back to our baseline setting characterizing the effects of prophylactic interventions. If ξ > 0

the effects on output are negative describing the implications of social distancing, which overall reduces the

availability of resources to finance the epidemic management program. Consumption equals the difference

between income (net of the effects of social distancing) and the taxes employed to finance public health

policies in the form of social distancing, treatment and vaccination: cx,t = (1− ξpx,t)yx,t − px,t − vx,t − ux,t.
Different from other forms of health policies, the effect of social distancing on consumption, is twofold:

the need to finance preventive measures diverts resources away from consumption possibilities, and the

detrimental effects induced on production reduces output and disposable income. It follows that our global

5It is straightforward to show that, if R0 < 1 only the equilibrium (s1, i1) exists and the Jacobian matrix associated with (25)

- (26) evaluated at the disease-free equilibrium presents two negative eigenvalues such that (s1, i1) is a stable node; if R0 > 1

also equilibrium (s2, i2) exists and the analysis of the eigenvalues of the Jacobian matrix suggests that in this case (s1, i1) is

unstable while (s2, i2) is a stable node.
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social planner’s optimization problem becomes:

max
px,t,vx,t,ux,t

W =

∫ T

0

∫ xb

xa

[(1− ξpx,t)(nx,t − ix,t)− px,t − vx,t − ux,t] e−ρtdxdt+ φ

∫ xb

xa

(nx,T − ix,T )e−ρTdx

s.t.
∂nx,t
∂t

= d
∂2nx,t
∂x2

∂ix,t
∂t

= d
∂2ix,t
∂x2

+ α(1− pωx,t)
∫ xb

xa

sx′,tix′,tϕx′,xdx
′ − δ(1 + vβx,t)ix,t (31)

∂sx,t
∂t

= d
∂2sx,t
∂x2

+ δ(1 + vβx,t)(1− µ)ix,t − α(1− pωx,t)
∫ xb

xa

sx′,tix′,tϕx′,xdx
′+

+ε(nx,t − sx,t − ix,t)− uθx,tsx,t
nx,0, ix,0 > 0, sx,0 > 0 given

By following the same approach as in the previous section and denoting the costate variables with λx,t and

ηx,t, after some algebra the optimality conditions can be written as follows:

∂nx,t
∂t

= d
∂2nx,t
∂x2

∂ix,t
∂t

= d
∂2ix,t
∂x2

+ α(1− pωx,t)
∫ xb

xa

sx′,tix′,tϕx′,xdx
′ − δ(1 + vβx,t)ix,t

∂sx,t
∂t

= d
∂2sx,t
∂x2

+ δ(1 + vβx,t)(1− µ)ix,t − α(1− pωx,t)
∫ xb

xa

sx′,tix′,tϕx′,xdx
′ − uθx,tsx,t + ε(nx,t − sx,t − ix,t)

∂λx,t
∂t

= ρλx,t − d
∂2λx,t
∂x2

+ 1− ξpx,t − α(1− pωx,t)sx,t
∫ xb

xa

λx′,tϕx′,xdx
′ + λx,tδ(1 + vβx,t)

−δ(1 + vβx,t)(1− µ)ηx,t + α(1− pωx,t)sx,t
∫ xb

xa

ηx′,tϕx′,xdx
′ + εηx,t

∂ηx,t
∂t

= ρηx,t − d
∂2ηx,t
∂x2

− α(1− pωx,t)ix,t
∫ xb

xa

λx′,tϕx′,xdx
′ + α(1− pωx,t)ix,t

∫ xb

xa

ηx′,tϕx′,xdx
′ +

+ηx,tu
θ
x,t + εηx,t

px,t =

[
ξ(nx,t − ix,t) + 1

(ηx,t − λx,t)αω
∫ xb
xa
sx′,tix′,tϕx′,xdx′

] 1
ω−1

vx,t =

[
1

−λx,tδβix,t + (1− µ)ηx,tδβix,t

] 1
β−1

ux,t =

[
− 1

ηx,tθsx,t

] 1
θ−1

λx,T = −φ
ηx,T = 0

As in the previous section, we proceed with numerical simulations to analyze the implications of our spa-

tial framework on the optimal determination of the health policy measures to face the COVID-19 epidemic.

We calibrate our model on the Italian experience during the first epidemic wave during which the basic re-

production number (in the absence of vaccination) has been estimated to be equal to 2.29 (R0 = 2.79), while

the time of recovery has been estimated to be about three weeks (Remuzzi and Remuzzi, 2020), and from

this information we can compute the recovery rate and the infectivity rate as δ = 0.0476 and α = 0.1328,

respectively (La Torre et al., 2021a). Recent studies suggest that upon recovery about 80% of the infec-

tives acquire transitory immunity along with the fact that the duration of immunity granted by recovery
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or vaccination is about six months, which imply that µ = 0.8 and ε = 0.0056 (Hansen, 2021; Ledford,

2021). Some studies measure the impact of social distancing on workers’ productivity estimating the size of

the productivity loss to be about 5% in the short run, which suggests that ξ = 0.05 (Bloom et al., 2020).

As in the previous section, following the macroeconomic literature, the rate of time preference is assumed

to be about 4% on a yearly basis, the weight attached to diseases prevalence at the end of the planning

horizon is normalized to unity and the diffusion parameter is assumed to be 1%, that is we set ρ = 0.04/365,

φ = 1 and d = 0.01 (La Torre et al., 2021a). As also in the case of COVID-19 there are no estimates of

the of elasticities of the policy measures implemented, the parameters ω, β and θ are arbitrarily set and in

particular ω = β = θ = 0.5. However, it is possible to show that changing these parameter values does not

affect our qualitative conclusions but impact quantitatively the intensity of the optimal policy measures and

thus epidemic dynamics. In particular, the higher the elasticities the higher the effectiveness of the epidemic

control policies and the lower the disease prevalence at any moment in time.

The results of our numerical analysis are reported in Figures 5 and 6 where we show the spatio-temporal

dynamics of the control (top panels) and state (bottom panels) variables. In the top panels we represent

social distancing (left panel), treatment (middle panel) and vaccination (right panel), while in the bottom

panels we represent the share of infectives (left panel) and the share of susceptibles (right panel). Figure 5

Figure 5: Evolution of the control variables (top) – prevention (left), treatment (center) and vaccination

(right) – and state variables (bottom) – share of infectives (left) and share of susceptibles (right) – in the

absence of the static externality.

visualizes our results in the absence of the static externality, while Figure 6 those in the presence of such

a static externality. From a qualitative point of view the dynamics is similar in the two scenarios and

comparable with that shown in Figure 4. With respect to our previous seasonal flu calibration, the roles

of social distancing and vaccination deserve some explanation. By affecting the epidemiological dynamics

exactly as prevention, the evolution of social distancing closely resembles what seen in Figure 4. Vaccination

instead is initially higher in the central region in which prevalence is higher at the beginning of the epidemic

management program, and then it monotonically decreases to zero towards the end of the program. Despite

social distancing entails an important reduction in output which makes the eradication goal (both at local

and global levels) substantially costly, in the absence of the static externality, that is in the presence of travel

restriction regulations, vaccination allows to prevent new infections to occur and thus to achieve eradication
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everywhere in the spatial economy by quickly reducing the size of the susceptible population. However, in

Figure 6: Evolution of the control variables (top) – prevention (left), treatment (center) and vaccination

(right) – and state variables (bottom) – share of infectives (left) and share of susceptibles (right) – in the

presence of the static externality.

the presence of the static externality, that is in the absence of travel restriction regulations, vaccination

is not enough to counteract the new infections caused by the movements due to commuting and business

trips from and to the lateral regions and thus eradication is not possible anywhere in the spatial economy.

Consistent with what earlier discussed for the seasonal flu case, our analysis suggests that without the

possibility to impose stringent travel restrictions it might be optimal to allow COVID-19 to become endemic

in the Italian population. La Torre et al. (2021a) have achieved a similar conclusion in a framework without

spatial effects and without considering immunity due to vaccination, and our results show that the existence

of geographical externalities (in particular the movements due to the commuting needs) will not change this

type of conclusion. In order not to excessively damage macroeconomic outcomes it might be convenient to

tolerate the disease to persist indefinitely in our society.

Note that the results of our model applied to COVID-19 need to be taken with some grain of salt as some

of its underlying assumptions may not entirely reflect the true consequences of the disease. In particular,

the absence of vital dynamics precludes us from accounting for the effects associated with disease-induced

mortality, which in reality represents an essential aspect of the recent coronavirus epidemic experience, as

deaths counts exceed one million and half worldwide (Dong et al., 2020). Therefore, we may expect that in

our analysis the optimal level of policy intervention results to be more lenient than in other frameworks in

which mortality effects are effectively taken into account, and thus our conclusions can only be considered

as a stylized benchmark for real world policymaking.

6 Conclusions

This paper analyzes the implications of geographical heterogeneities and externalities on health outcomes

by focusing on the dynamics of infectious diseases. Understanding the evolution of communicable diseases

and how policies can be used to control them is an important actual problem, as suggested by the fact

that the UN in its sustainable development goals for 2030 have specifically included the eradication of
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HIV, tuberculosis, malaria and other communicable diseases. In order to understand the role of growing

economic integration and human movements (i.e., migration and commuting) in this context, we develop

a spatial epidemiological model to account for differences in the effectiveness of health services and in

the initial spread of the disease across regions, along with the implications of geographical externalities.

We distinguish between static and dynamic externalities, where the former type represents the effects of

migration while the latter those of commuting and business trips. We show that the presence of only the

dynamic externality leads in the long run to a geographically homogeneous health outcome, while the static

externality allows some geographical heterogeneity to persist also in the long run. Moreover, we show that

neglecting the existence of geographical externalities may lead to misleading conclusions about the long run

health outcome not only in single regions but also in the entire economy, suggesting thus that in order to

achieve disease eradication single regions need to carefully account for the policies implemented in other

regions and eventually promote cross-regional coordination. We analyze such a coordination by analyzing

a macroeconomic-epidemiological control problem in which the social planner determines at global level

the health policy measures by considering the availability of resources determined at macroeconomic level,

showing that in order to achieve long run eradication globally it is essential to accompany traditional

health policies (i.e., prevention and treatment) with economic regulations limiting people’s movements (i.e.,

imposing travel bans). Focusing on the specific case of COVID-19 we develop an extension of our baseline

model to account for the peculiarities of the disease and of the policy measures employed to fight it (social

distancing and vaccination), and present a calibration of such an extended model based on Italian data,

showing that, because of the infections generated by cross-regional commuting, even vaccination may not be

enough to achieve disease eradication, and limitations on people’s movements need to accompany vaccination

in order to preclude COVID-19 from reaching an endemic state.

To the best of our knowledge, no other study has tried to analyze the geographical implications of

infectious diseases in a way comparable to ours. Therefore, our modeling framework has been quite simplistic

in order to show in the most intuitive way the importance of taking into account geographical characteristics

to effectively achieve desired health goals. As a result, some of the assumptions underlying our basic

spatial SIS model would need to be relaxed in order to improve its ability to effectively describe real

world experiences. Specifically, the movements of individuals from one region to the next is assumed to

be completely exogenous but with the outbreak of new diseases people may try to escape the disease

moving towards healthier regions; endogeneizing the speed of spatial diffusion to account for this potential

effect may provide us with a more rigorous characterization of the geographical implications of epidemics

(Ramalingaswami, 2001). Also, the time horizon has been assumed to be finite such that saving and capital

accumulation do not play any role, however the outbreak of certain diseases may require several decades to

be brought under control; introducing capital accumulation may be important to characterize the medium-

long run consequences of epidemics and their geographical effects (Goenka et al., 2014). These further issues

are left for future research.
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