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ABSTRACT 

The application of machine learning techniques in microscopic image restoration has shown 

superior performance. However, the development of such techniques has been hindered by the 

demand for large datasets and the lack of ground truth. To address these challenges, this study 

introduces a computer simulation model that accurately captures the neural anatomic volume, 

fluorescence light transportation within the tissue volume, and the photon collection process of 

microscopic imaging sensors. The primary goal of this simulation is to generate realistic image 

data for training and validating machine learning models. One notable aspect of this study is the 

incorporation of a machine learning denoiser into the simulation, which accelerates the 

computational efficiency of the entire process. By reducing noise levels in the generated images, 

the denoiser significantly enhances the simulation's performance, allowing for faster and more 

accurate modeling and analysis of microscopy images. This approach addresses the limitations of 

data availability and ground truth annotation, offering a practical and efficient solution for 

microscopic image restoration. The integration of a machine learning denoiser within the 

simulation significantly accelerates the overall simulation process, while improving the quality 

of the generated images. This advancement opens new possibilities for training and validating 

machine learning models in microscopic image restoration, overcoming the challenges of large 

datasets and the lack of ground truth.



1 

 

CHAPTER 1  INTRODUCTION 

In the dynamic landscape of modern science, the confluence of fluorescence microscopy and 

computational image restoration stands as a potent force, opening up new dimensions in the 

realm of visualization and analysis. Fluorescence microscopy, with its ability to illuminate 

specific cellular components, has unlocked a microscopic universe once hidden from human 

eyes. However, the raw images captured by even advanced microscopy techniques often suffer 

from inherent noise, degradation, and other imperfections. This is where computational image 

restoration, empowered by machine learning algorithms, steps in as a transformative technology 

that breathes new life into these blurry, distorted, and obscured images. This chapter embarks on 

a voyage that explores the intricate interplay between fluorescence microscopy and 

computational image restoration alongside related research. 

1.1 Background 

Calcium fluorescence microscopy has emerged as a powerful tool in neuroscience 

enabling researchers to investigate the dynamic activities of calcium ions (Ca2+) within living 

cells. Calcium ions play a fundamental role in various biological processes, including neuronal 

signaling, muscle contraction, and cellular communication. Genetically encoded calcium 

indicators (GECIs) have profoundly transformed microscopic imaging techniques. These GECIs, 

such as GCaMP and chameleon, are fluorescent proteins that change in fluorescence intensity or 

wavelength in response to changes in calcium ion concentration. The fluorescence emission 

enables the visualization and quantification of calcium dynamics with high spatiotemporal 

resolution in a wide variety of cell types and tissues (Fig. 1-1., left panel, [1]). By monitoring 

changes in intracellular calcium concentrations, fluorescence microscopy offers a non-invasive 



2 

 

and real-time approach to studying these dynamic events at the cellular and subcellular levels. 

Discover a more elaborate depiction of fluorescence microscopy in Chapter 2, Section 1. 

 

Fig. 1-1. Examples fluorescence images. Left: Structural fluorescence image of two types of 

brain cells dyed in distinct colors: green for neurons and red for astrocytes [1]. Right: Functional 

fluorescence imaging of brain activities of mouse striatum with simultaneous recording of 

behavior by a miniature fluorescence microscope, adapted from [2]. The two sub-images on the 

top illustrate the neuronal activities (top-left corner) and temporal dynamics (top-right corner) of 

the brain neurons. The actual and track for the movement of the mouse are demonstrated in the 

two sub-images at the bottom. Striatum is believed to play a prominent role in motor control, and 

miniscope provides a means to investigate the neural-behavioral relationship with minimal 

disruption.  

One of the crucial advantages of calcium fluorescence microscopy is its ability to provide 

insights into the functional activity of individual cells within complex biological systems. 

Targeting specific cell populations or subcellular compartments with fluorescent calcium 

indicators allows calcium dynamics to be observed in real time, permitting the investigation of 

cellular processes. Most importantly, calcium fluorescence microscopy has empowered the study 

of calcium dynamics in intact, living organisms, furnishing an effective means to understand the 

functional organization of neural circuits and the mechanisms underlying complex behaviors. 

Along with advanced imaging techniques like confocal and light-sheet microscopy, calcium 
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fluorescence imaging captures neuronal activities across large tissue volumes, offering a 

comprehensive view of neural network dynamics in vivo.  

1.1.1 Miniature Fluorescence Microscope 

Fluorescence microscopy comprises various types based on illumination process and light 

collection techniques, such as widefield and confocal. The miniature fluorescence microscope is 

a compact version of widefield microscopy, known as miniscope, has ushered in a new era in 

calcium fluorescence microscopy. This groundbreaking device revolutionized neuroscience 

research by permitting the recording and analysis of neural dynamics in real-time while animals 

freely engage in natural behaviors (Fig. 1-1., right panel, [2]). Its compact size and lightweight 

design made it possible to be mounted directly onto the head of an animal, minimizing 

disruptions to the animal’s movements and enabling long-term experiments in a relatively natural 

environment. Its capability of imaging fluorescently labeled neurons deep in the brain facilitates 

tracking individual or group of neurons over extended periods, unveiling critical insights into the 

relationship between neural circuitry and behavior. The miniscope is the primary focus of the 

present study.  

1.1.1a Main sources of image degradation 

Despite its remarkable advantages, the miniscope is not exempt from limitations. First, 

owing to its simple lens and poor optical components alignment due to its compact size 

miniscope suffers from severe optical aberrations that lead to image degradation. Second, 

blurring is one of the prominent challenges associated with all widefield imaging as a direct 

consequence of the indiscriminate collection of both in-focus and out-of-focus light. In widefield 

imaging, the entire sample is illuminated and the image is formed not only by the light from the 



4 

 

focal plane but also from areas above and below the focal plane (Fig. 1-2., left panel). 

 

Fig. 1-2. Sources of degradation. Left: Schematic of fluorescence imaging system illustrating the 

regions of in-focus and out-of-focus [3]. Right: Simulated photon propagation inside brain tissue 

[4]. The distance of MFP for brain tissue is about 0.1mm, this is the ballistic region. After this 

distance light experiences increasing number of scattering events, maintaining its initial direction 

of propagation becomes increasingly difficult. 

Another source of blurring is the scattering effect of the tissue. Most microscopy techniques are 

susceptible to depth limitation resulting from tissue scattering, and widefield is especially 

vulnerable due to its inability to depth discrimination. The mean free path (MFP) is the average 

distance a photon moves between two consecutive scattering occurrences inside a scattering 

medium (e.g., tissue). It defines a ballistic region of light propagation inside the tissue. As the 

distance approaches the transport mean free path (TMFP), which is the mean distance light 

maintains relatively in its initial direction, penetration progressively diffuses and results in 

blurring. The MFP is wavelength dependent and varies across different tissues. Scattering is 

especially strong in the visible spectral regions where fluorescence lies. For brain tissue, the 

MFP is typically about the order of 100μm, meaning a photon experiences at least one scattering 

event while traveling through a tissue of 100μm thickness [4] (Fig. 1-2, right panel). The 

scattering property of a specific tissue sets the practical depth limit for widefield imaging, and 
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the thicker the tissue the blurrier the image. This scattering effect will be further uncovered in 

Chapter 2.  

1.1.1b Strategies for image quality improvement 

Extensive endeavors have been dedicated to enhancing the quality of fluorescence images 

via two primary strategies: hardware optimization and computational solution. By leveraging 

state-of-the-art optical components and cutting-edge techniques, the hardware approach aims to 

achieve superior image quality by maximizing hardware performance. Adaptive optics is one 

example that utilizes a wavefront sensor and corrector to minimize optical aberrations caused by 

tissue scattering [5]. Nevertheless, this approach requires incorporating sophisticated optical 

elements that exceed the size constraints of a miniscope. Consequently, computational 

methodology is a more feasible alternative.  

1.1.2 Computational Image Enhancement 

The computational approach for image improvement involves mathematically modeling 

the image formation process. An observed image is assumed to result from convolving an 

observed image results from convolving an object’s true image with a blurring function. 

Computational algorithms are formulated to approximate the true image from observed one by 

deconvolving the blurring effects. This approach enables the restoration of lost details, noise 

reduction, and overall image quality enhancement.  

1.1.2a Image formation 

Physically an image is formed by lenses through the process of refraction, which occurs 

when light traverses through lenses due to the change of speed and direction caused by the 

curvature of the lenses. The convergence of light rays resulting from refraction creates a focused 
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image onto an image sensor. However, an optical system’s ability to resolve fine details in an 

image is limited by diffraction.  

Because of the wave nature of light, diffraction happens when the light comes across small 

openings like aperture, and the interferences among waves generate a characteristic pattern: an 

Airy disk. Two closely spaced point sources are separable only if the peak of one Airy disk falls 

on the first minimum of the other. Rayleigh’s criterion describes the least distance (r) between 

two resolvable points as r = 0.61λ/NA, where λ is the wavelength and NA the numerical aperture. 

The diffraction limit directly dictates the shape and characteristics of the point spread function 

(PSF). The PSF is defined as the impulse response of an imaging system to a point source of 

light and determines how the system blurs the point source. 

 

Fig. 1-3., Fluorescence images formed by convolving the same object with different blurry 

functions (PSFs), adapted from [6]. 
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Mathematically the PSF is the blurring function in the image formation process, and the 

observed image (I) can be expressed as the convolution result of the true image in object space 

(O) and the PSF, I = O ⊗ PSF, illustrated in Fig. 1-3. An undistorted image can thus be obtained 

by solving the inverse of convolution, called deconvolution.  

1.1.2b Deconvolution 

Computational deconvolution as a technique for image quality enhancement has existed 

for decades. Some of the well-known deconvolution algorithms, like the Wiener filter [7] and 

Richardson-Lucy (RL) iterative methods [8] [9], date back to the 1940s and early 1970s. The 

conventional approach to deconvolution relies on the assumption of a known PSF obtained either 

experimentally or theoretically. In practice, however, PSF varies from system to system; noise 

and unknown aberrations makes it challenging to acquire an accurate PSF either way. 

Subsequently, deconvolved results are sensitive to the inaccuracies in the PSF and potentially 

give rise to artifacts in the restored images. Efforts have been made to perform deconvolution 

without a known PSF, known as blind deconvolution, by simultaneously estimating the PSF and 

deconvolving [10] [11] [12]. But again, the accuracy of the estimation is often questionable and 

blind deconvolution processes are usually slow and unstable.  

In recent years, data driven machine learning approach has achieved remarkable success and is 

gradually overperforming traditional methods. Nevertheless, machine learning has its own 

caveat. It requires a large number of clean images to serve as ground truth during training in 

supervised learning as well as performance evaluation, regardless of the learning paradigm. This 

poses a barrier in applying machine learning methods to microscopic images since ground truth 

images are oftentimes not readily accessible.  
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1.2 Problem Statement 

The miniscope has advanced neuroscience research by enabling concurrent recording of 

brain activities and behavioral data in freely moving animals. However, the compact size 

constrains its lens and optical elements' alignments, resulting in optical aberrations. These 

aberrations distort the PSF from its ideal theoretical shape and introduce image blurring. 

Moreover, the existence of out-of-focus lights and tissue scattering exacerbates image 

degradation. These limitations hinder the accuracy of neural signal estimation, undermining the 

experimental results' reliability and credibility.  

Machine learning deconvolution, especially deep learning using artificial neural networks, has 

demonstrated promising results. But deep learning is data hunger and relies on ground truth 

images; both can be challenging in microscopic imaging. Furthermore, since cells are not 

directly observable by naked eye and the determination of “clean” images depends on the 

subjective perception of clarity by the researchers. What constitutes a clear image could vary 

based on an individual researcher’s prior knowledge and expectations, resulting in biased 

assessment. This subjectivity may further complicate the evaluation process. As a result, there is 

a strong need for an effective computational framework to address these issues and lay the 

foundation for objective analysis of data and deconvolution performance.  

The proposed solution is to create a computer simulation modeling the imaging process of 

miniscope aiming at generating photo-realistic simulated miniscope fluorescence images, clean 

and distorted, to be used in training deep learning networks. In addition, simulated clean images 

can serve as the ground truth for performance assessment. The ultimate goal is to achieve a 

transferable deconvolution scheme, where the deep learning network trained on simulated data 

can effectively generalize and be applied to actual miniscope data. The primary focus of the 
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current study is on developing a reliable simulation that captures the essential characteristics of 

miniscope images while incorporating a deep neural network to accelerate the simulation.  

1.3 Related Works 

Over the last decade research efforts have been centered around machine learning 

methodologies aimed at improving microscopic images. This section explores cutting-edge deep 

learning image restoration techniques relevant to fluorescence microscopy, followed by a brief 

introduction to the Monte Carlo (MC) framework of modeling optics-tissue dynamics. The 

methods employed in these studies are not directly applicable to miniscope images; nonetheless, 

they serve as the source of inspiration for this study. Example deep learning applications in 

fluorescence microscopy are shown in Fig. 1-4.  

 

Fig. 1-4. Applications of deep learning techniques for image quality enhancement in fluorescence 

microscopy, adapted from [13].  
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1.3.1 Deep Learning Deconvolution without Clean Image 

With its superior performance in almost every image processing task Convolution Neural 

Networks (CNNs) quickly gain recognition in the optical correction community. In early times a 

CNN is frequently used in deconvolution as a PSF estimator [14] or feature extractor [15]. Its 

capability of image-to-image deconvolution was not fully realized until a few years ago when the 

Generative Adversarial Network (GAN) [16] and U-Net [17] were introduced.  

One of the earliest image-to-image CNN-based blind deconvolution for confocal fluorescence 

images was proposed in [18]. A vital aspect of this method is eliminating ground truth in training 

by applying self-super-resolution, a technique first appearing in [19]. The idea is to increase 

spatial resolution from information within a dataset, e.g., adjacent pixels of an image or 

neighboring frames of a volumetric or temporal set. Consequently, the need for clean, undistorted 

ground truth during training is eliminated.  

The proposed method exploited the fact that optical PSF is elongated along the z-direction, so 

lateral slices of volumetric images exhibit significantly higher resolution and structural contrast 

than axial slices [18]. Features extracted from a stack of lateral slices along the vertical axis can 

therefore be used to reconstruct lateral images. Two CNN-based networks were tested: one with 

basic CNN architecture and the other with a U-Net-like architecture. The networks were trained 

on synthetic confocal and light-sheet data, whereas the test data consisted of synthetic and real 

microscope images. The deconvolution results of the two were compared with those obtained 

through traditional RL algorithms and evaluated using pixelwise peak signal-to-noise ratio 

(PSNR). Not surprisingly, the deep networks outperformed the RL algorithm, with the U-Net-

like model achieving the highest PSNR [18].  
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A similar approach was advocated in [20] to restore 3D two-photon microscopy images in deeper 

tissue without prior knowledge of PSF. It adopted a GAN based architecture named spatial 

constrained cycleGAN (SpCycleGAN). The training data consisted of nuclei-labeled 

fluorescence images of rat kidneys obtained through two-photon microscopy. The original 

volumetric data were sliced in three directions: x-y, x-z, and y-z. The generator was trained on a 

subset of well-defined images selected from the original volume. Restored images were 

compared to the results obtained from a few traditional algorithms, including RL. As expected, 

the SpCycleGAN surpassed all other algorithms according to the three evaluating metrics: 

Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE), the oriented-gradient image 

quality assessment (OG-IQA), and the microscopy image focus quality assessment (Microscopy 

IFQ).   

These studies pioneered end-to-end machine learning deconvolution of fluorescence microscopy 

images attempting to minimize the reliance on ground truth data during training. However, their 

focuses were on the data from more advanced imaging techniques like confocal and light-sheet 

microscopes; thus, the methods do not apply to miniscope. For instance, the self-super-resolution 

technique requires information from the axial direction, which is unavailable for widefield 

images. Although GANs are generally considered unsupervised learning, the training set in [20] 

contains well-defined, clear images deliberately handpicked by the researchers. This option is 

also not available for miniscope data.  

1.3.2 Self-supervised Learning 

Self-supervised learning of signal reconstruction introduced in [21] was built on a simple 

statistical concept: random errors affect variance but not the mean; true values of a physical 

quantity can be acquired through a series of unreliable measurements. Logically, learning the 
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image restoration process by observing corrupted examples without explicit priors or likelihood 

models is possible. The test result with natural images showed that the self-supervised model can 

sometimes outperform its supervised counterpart. A more detailed account of this self-supervised 

learning is given in Chapter 4. One later variation of the same strategy demonstrated that this 

approach applies to single cell gene expression data [22]. According to [23], a self-supervised 

denoising neural network can be trained effectively using a single noisy image, and its denoise 

performance on natural and synthetic images was comparable to the popular denoising algorithm 

BM3D [24]. However, its performance on widefield fluorescence data was far from satisfactory.  

1.3.3 Simple Lens Deconvolution 

While more advanced imaging systems like 3D confocal or two-photon microscopy 

garnered significant attention and research efforts, the less complex devices have been largely 

neglected. One study addressing the optical correction of images captured with simple lenses 

adopted a more traditional deconvolution approach [25]. The method involves matching power-

wise gradients in different color channels to improve the suppression of color fringing artifacts 

caused by chromatic aberration in simple lens systems. The proposed algorithm incorporates a 

convex cross-channel color prior to the deconvolution process, ensuring global convergence. By 

jointly deconvolving multiple channels and leveraging information from other color channels, 

high-quality images comparable to those obtained with sophisticated lens systems can be 

achieved [25]. The idea is similar to the self-super-resolution, except it uses information from 

other color channels. This method can obtain a high-quality image comparable to sophisticated 

lens systems. However, same as most traditional deconvolution algorithms, it requires known 

PSF. Additionally, this method is not directly applicable to miniscope data as it is designed for 

color images, while miniscope images are typically grayscale. 
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1.3.4 Modeling Tissue-Optics Dynamics  

Computer simulation has been a broadly applied technique in microscopy studies to gain an 

in-depth understanding of neural dynamics and generate synthetic data for model evaluation. 

One example is the neural anatomical optical microscopy simulation (NAOMi), which can 

generate simulated two-photon neuronal images [26]. However, as mentioned earlier, the optics 

of two-photon microscopy differs sufficiently from that of widefield. The tissue-optics dynamics 

of widefield are better modeled by the Monte Carlo (MC) model of light propagation [27] [28]. 

This method has been widely accepted as the gold standard for simulating photon-tissue 

interaction in a scattering tissue volume. It was adapted in a 3D fluorescence model to evaluate 

the microvasculature geometry of data acquired from two-photon microscopy [29]. Another 

variation was devised to characterize the performance of different aperture configurations of 

confocal microscopy in the human brain [30]. These studies shed light on light-tissue 

interactions, but rare attempts were made to explore the image formation process. Nevertheless, 

the NAOMi and MC models constituted two main components in the present study, and a 

detailed account of the two is given in chapters 2 and 3, respectively.  

1.4 Study Overview 

The long-term goal of our research is to develop a computational framework (Fig. 1-5) to 

improve the image quality of miniature microscope data. There will be a total of three technical 

steps: 

1) Creating a neuro-optics model to generate realistic miniscope images.  

2) Developing machine learning models that will be trained on the simulated dataset 

generated in Step 1. 

3) Enhancing the miniscope image quality using the pretrained (on synthetic data) model.  
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This thesis primarily focuses on Step 1: simulation and synthetic data generation. 

Simultaneously, it also introduces a novel approach by incorporating a deep learning network to 

expedite the simulation process. Based on the physical principles of light-tissue interaction in the 

widefield miniscope imaging system, the neuro-optics model consists of three modules: a tissue 

model, an optics model, and a detector model. 

 

Fig. 1-5. Overview of the current study and long-term goal. Step 1 is to create a neuro-optics 

simulator modeling the interactions between neural tissue and light propagating inside the brain 

volume and generating photo-realistic miniscope images. Step 2 involves the training of deep 

learning networks on simulated images for image quality improvement, including denoising and 

deconvolution. Steps 3 transfers the deconvolution result to real miniscope data from simulated 

data.  

In the following chapters, a comprehensive groundwork for the components of this 

computational framework is given. Chapter 2 is dedicated to how the fluorescence microscope 

works and the NAOMi neural volume generator. A universally recognized MC tissue-optics 

model is provided in Chapter 3. A few cutting-edge deep networks for image processing are 

summarized in Chapter 4. The implementation results of this study are presented in Chapter 5. In 

the end, Chapter 6 summarizes the study with the conclusions drawn from the results.  
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1.4.1 Motivation  

This study is motivated to bridge the gap in research by shifting the efforts towards 

widefield imaging, specifically the miniscope. The primary focus of the study is to develop a 

reliable simulation that accurately captures the essential optical characteristics of miniscope 

images. The simulation consists of elements adapted from the NAOMi and MC models. It aims 

to generate distorted and clean images for future training of deep neural networks. A self-

supervised deep learning network is incorporated into the simulation. This integration serves the 

dual purpose of accelerating the simulation process and demonstrating the effectiveness of the 

self-learning strategy in the context of widefield imaging. The objective is to lay the groundwork 

for applying these techniques in future widefield imaging research. 

1.4.2 Significance of This Study 

The lack of ground truth has been a significant obstacle in applying data driven 

techniques to microscopy image reconstruction. The proposed neuro-optics simulation provides a 

means to generate ground truth images and enables objective evaluation of the restored results. 

While serving as the benchmark for simulating light propagation in turbid media, it is worth 

noting that the MC model is highly computationally intensive. The current study offers a 

promising solution to accelerate the MC process by combining the simulation with a self-

supervised denoiser. This innovative approach presents a simple yet effective solution that 

significantly reduces the time required to obtain a satisfactory synthetic image without 

resourcing expensive hardware upgrades. The limitations posed by the absence of ground truth 

can be overcome by utilizing accelerated neuro-optics simulation. This study paves the road for 

unlocking the potential of state-of-the-art data-driven machine learning techniques in widefield 

imaging research. 
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CHAPTER 2  NEURAL TISSUE SIMULATION 

Microscopy provides a vital window into the world of cells. However, the accuracy of 

microscopic imaging is often compromised by optics aberrations, casting doubts on the 

reliability of acquired data. In silico observation offers a compelling alternative for exploring 

cellular and subcellular dynamics. Before diving into simulation techniques, it is essential to 

revisit the principles of fluorescence microscopy to comprehend its complexities and the 

necessity for studying image formation in a controlled virtual environment. This chapter is 

devoted to the fundamental principles of fluorescence microscopy, covering essential aspects of 

excitation and emission processes, and the primary sources of blurring in widefield imaging. 

Then a thorough introduction to the NAOMi simulation of two-photon microscopy is presented. 

This simulation holds particular relevance to the present study because a portion of it has been 

integrated into the proposed neuro-optics model. 

2.1 Fluorescence Microscopy 

 

Fig. 2-1. Illustration of fluorophore excitation. Left: Jablonski diagram of fluorescence emission. 

Fluorophores absorb illumination light, excite electrons to high energy state. When the electrons 

return to ground state light of slightly longer wavelengths is emitted. Right: Stokes shift equals 

the difference in wavelengths between excitation and emission. 
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Regardless of imaging techniques, fluorescence microscopy operates on the same principle 

of fluorophore excitation. Fluorophores are molecules labeled by fluorescent dyes or genetically 

encoded fluorescent proteins. When illuminated by a beam of a specific wavelength the 

fluorophores are excited and emit light of longer wavelengths, seen as fluorescence (Fig. 2-1, left 

panel). The difference between the excitation and emission wavelength is known as Stokes’ shift 

(Fig. 2-1, right panel). 

2.1.1 Illumination in Different Imaging Systems 

 

Fig. 2-2. Schematic of fluorescence microscopy. Left: Confocal imaging [31]. A pinhole is 

placed before the detector to block out-of-focus fluorescence emission. Right: widefield imaging, 

adapted from [32]. The entire tissue is illuminated and fluorescences within NA, in-focus or not, 

all being collected by the sensor. 

The distinction between imaging systems, such as confocal and widefield microscopy, 

lies in the imaging process and how the excitation beam is directed onto the sample, illustrated in 

Fig. 2-2. In confocal microscopy, the excitation beam is focused onto a narrow region, resulting 

in a correspondingly narrow emission. This is especially true for two-photon imaging, where two 

beams of longer wavelength target the excitation to a small, localized spot. Excitation and 

fluorescence emission occurs exclusively at the spot where both beams hit simultaneously, with 



18 

 

the precise location of this spot can be determined by the geometry of two excitation beams. A 

layered scanning process collects fluorescence signals from focus areas to construct volumetric 

images. To further enhance image clarity a confocal pinhole is placed in front of the detector to 

block the out-of-focus signals. In contrast, widefield microscopy illuminates the entire sample, 

capturing both in-focus and out-of-focus signals within the NA. The divergence in illumination 

and light collection schemes significantly impacts on the dynamics of tissue-optics interactions 

among different imaging systems.   

2.1.2 Tissue Scattering and Depth Limitations 

As mentioned in Chapter 1, tissue scattering determines the depth limit for widefield 

imaging. Two related metrics: MFP and TMFP, measure the behavior of light transportation in 

the presence of tissue scattering. The MFP is defined as 𝑀𝐹𝑃 =  1 𝜇𝑡⁄ , the inverse of the 

transport coefficient (μt), which equals the total attenuation due to combined effects of scattering 

and absorption. MFP represents the average length a photon travels without being scattered. The 

mean distance a photon can relatively maintain its initial direction after multiple scattering 

collisions is given by 𝑇𝑀𝐹𝑃 = 1 𝜇𝑠(1 − 𝑔)⁄ , where μs denotes the scattering coefficient and g 

the anisotropy factor. The anisotropy factor quantifies the degree of forward scattering and can 

take on values in the range of [-1, 1]. Positive values indicate a forward scatter tendency, 

whereas negative values represent backward scattering, and g equals zero signifies isotropic 

scattering.  

While most imaging techniques are subject to depth limit imposed by tissue scattering properties, 

it is more prominent in widefield imaging. Consider the example of mouse cortex tissue, the 

MFP is calculated to be 0.047mm (47μm) and the TMFP at 0.265mm (265μm), using parameter 

values of g = 0.82, μs = 21mm-1 and μa = 0.33mm-1, which are commonly observed in brain 
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tissue. The focal plane of the miniscope is typically positioned at a depth of 100μm. It means that 

within this range, multiple scattering could occur, affecting not only the out-of-focus light but 

also the in-focus signals. Additionally, the fluorescence emission is presumably isotropic, 

meaning that the initial direction of emitted photons may not necessarily be directed upward. 

These photons can travel in any direction and still reach the surface due to scattering and 

contributing to out-of-focus signals. Confocal imaging systems, on the other hand, are less 

susceptible to these concerns as they are equipped with localized scanning. This capability 

allows for more precise control over the detection of signals. As a result, the optics processes of 

the confocal and widefield differ significantly.  

2.2 In Silico Two-Photon Imaging 

Computer simulation is a versatile tool to investigate complex phenomena by utilizing 

mathematical algorithms to create virtual environments mimicking real-world scenarios, 

allowing the analysis of intricate behaviors that are otherwise difficult or impossible to study 

through traditional methods. As deep learning image improvements continue to gain ground in 

fluorescence microscopy, simulated data emerged as an appealing approach to address the 

challenges arising from the lack of ground truth data. One example is the NAOMi simulation, 

specifically designed for modeling two-photon microscopy. This section delves into the 

elemental design aspects that contribute to its accurate representation of the imaging process.  

2.2.1 The Design of NAOMi Simulation 

NAOMi simulation incorporates five individual modules simulating the anatomical 

volumes of the mouse cortex, temporal spiking activities, and the optics and imaging process of 

three dimensional (3D) two-photon confocal microscopy [26]. Fundamental to the NAOMi 

simulator are flexibility and efficiency, driven by the need to expand capacity to tackle various 
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aspects of the calcium imaging process on a simple standalone machine. The five modules run in 

sequence, each serving a distinct simulation role. The neuron module is responsible for creating a 

single neuron to be assembled by the volume module into tissue volume. Then the activity 

module generates calcium traces for neuropils and neurons. The optics module approximates 

optical properties and PSF for the scanning module to form image frames of two-photon 

microscopy. An overview of the NAOMi design is shown in Fig. 2-3. 

  

Fig. 2-3. Block diagram of two-photon NAOMi simulator, adapted from [26]. Top-Left: neural 

volume generation process Top-Right: spiking activity generation Bottom-Left: light propagation 

model Bottom-Right: scanning and image formation. Colored arrows indicate how modules are 

related to others. 
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2.2.1a Neuron module 

The creation of neurons begins with shaping cell bodies, i.e., somas, via an isotropic 

Gaussian process defined over a sphere, where points are sampled uniformly first. It is then 

followed by sampling independently and identically distributed (i.i.d) Gaussian random numbers 

for each point. The points are smoothed according to their spatial relationships. The height, i.e., 

distance from the center of the sphere, is sampled from a Gaussian distribution with the 

covariance matrix dependent on the distances between the points. 𝑟𝑖~ 𝑁 (0, 𝐾), 𝐾𝑖, 𝑗 =

𝑒−𝑑(𝑃𝑖,𝑃𝑗) 𝑙⁄ , where l denotes the length magnitude applied in controlling the smoothness of the 

cell body. The distances are calculated using the arc length along the great circle connecting the 

two random points, Pi, Pj ∈ R3, on a unit sphere. Between two points the shortest path is defined 

d(Pi, Pj) = 2 sin−1 (
1

2
‖𝑃𝑖 − 𝑃𝑗‖

2
) [26]. Rescaling is applied to radii values to constrain the radial 

height within the region of realistic deformations. The base radius at each point is treated as a 

function of its location on the sphere to account for the pyramidical neurons. After the shapes of 

cell bodies are adequately adjusted, nuclei are generated through shrinking and smoothing the 

cell walls defined as 𝑟𝑖
∗ = (𝑟50%) (|𝑟𝑖| − 𝑚𝑖𝑛𝑖 𝑟𝑖) (𝑟5% +  𝑟𝑖) + 𝑟𝑚𝑖𝑛⁄ − (∆𝑟)𝑚𝑖𝑛 [26].  

Dendrites are grown to cell bodies by the neuron module but only after the somas have been 

placed into the neural volume. Once the somas are in position, the dendrites are generated by 

identifying two endpoints for each dendrite, then iteratively filling the volume in between via a 

stochastic process while avoiding other neuronal structures already in place. Thicker and more 

axially oriented apical dendrites are grown similarly, except those in deeper layers are built from 

the bottom of volume upwards to the surface.  
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The statistical process involved in neuron creation was carefully tuned according to real 

morphological data from electron and optical microscopy, ensuring simulated neuron shapes 

accurately represent the observed characteristics. 

2.2.1b Volume module 

Anatomical volume is constructed by loading neural components into an empty volume, 

modeled as 3D grids. The volume is initialized with blood vessels. Surface vasculature is formed 

through smoothly varied and dilated connections of random nodes on the surface. Diving 

arterioles join the endpoints of surface vasculature to the volume bottom, with capillaries 

growing from diving arterioles semi-randomly [26].  

Neuron somas generated by the neuron modules are then loaded to fill the space randomly with a 

predetermined minimum distance. The density of neurons can be controlled through 

modifications of the random process. Potential overlapping of neurons is solved by a scheme 

similar to Cuckoo hashing, where newcomers, e.g., the neurons placed later, replace neurons 

already in place. Dendrites are simulated by the neuron module, attached to the somas 

sequentially, and steered clear of existing structures. The remaining space in the volume is filled 

with locally grouped axon segments, which are assigned to cells either by minimizing centroid 

distance or randomly [26]. The parameters of concentration, diameter, orientation, and branching 

levels for the vessels are verified to conform with the mouse vasculature data obtained through 

two-photon microscopy.  

2.2.1c Activity module 

Two different mechanisms were employed to model the temporal spike trains for neurons. 

The elementary independent spike activities of fluorescent proteins are obtained through a 

statistical model simulating the typical behaviors of rise and decay. More dynamic activities of 
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molecular kinetics over time are modeled by a Hawkes process to account for self-excitation and 

interneuron correlations [26]. 

The statistical method simulates the bursting activity of each neuron as a series of rapid and 

repetitive firing at independent, exponential intervals defined by 𝑃(∆𝑡𝑏𝑢𝑟𝑠𝑡) =

 𝜆𝑏𝑢𝑟𝑠𝑡𝑒−∆𝑡𝑏𝑢𝑟𝑠𝑡 𝜆𝑏𝑢𝑟𝑠𝑡⁄  𝑓𝑜𝑟 ∆𝑡𝑏𝑢𝑟𝑠𝑡 > 0 [26]. The bursting rate λburst is either predefined or drawn 

from a Gamma distribution with a given mean rate and fixed shape parameter α = 1. The number 

of spikes for a burst, Nburst, is governed by a Poisson distribution Nburst =  1 +  Poisson(λN), 

where λN is the parameter determining the bursting length. Inter-spike time is uniformly 

distributed in the range of [5, 7] milliseconds. Alternative time intervals can be attained via 

modifications to the parameters λburst, α, and λN [26].  

An adjacency matrix is used in the dynamic scheme to correlate interneuron firing via Watts-

Strogatz small-world network model. This network captures the dynamics of small dynamic 

networks by combining regular and random structures. It has a lattice structure with each node 

(representing a neuron) connected to its nearest neighbors. Randomness is introduced through a 

rewiring process where nodes undergo random reconnection to distant nodes beyond their 

immediate neighbors [33]. Rewiring is a one way process in which neurons are allowed to affect 

background, but the reverse is largely suppressed. This process facilitates local clusters and long-

range linkage commonly found in natural neural networks. 

The resulting matrix is normalized and undergoes the Hawkes process using Lewis’ method. This 

method is convenient for simulating nonhomogeneous point processes with time-varying 

intensities [34]. Hawkes model simulates spike trains exhibiting self-exciting behavior, burst, 

and temporal correlation by combining baseline intensity and excitation function [35]. The 
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baseline intensity represents the expected rate of spontaneous spikes in the absence of any 

external influence. In contrast, the excitation function describes how past spikes influence the 

probability of future spikes. Baseline fluorescence is generated by 𝛽𝑖 = |1 + 𝑧|, where z is the 

Gaussian random variable. Auto regression, AR-p dynamics, with p degrees of freedom, is used 

to model the calcium and fluorescence impulse response, which is solved by the inverse Laplace 

transformation to create temporal activity per neuron. The fluorescence level at a specific time is 

determined by the number of calcium ions bound to the indicators through the binding/unbinding 

dynamics of free calcium ions [Ca2+] in the cell [26]. The conversion of calcium concentration to 

fluorescence time traces is done using the Hill equation ∆𝐹 𝐹⁄ =  1 1 + (𝐾𝐷 [𝐶𝑎2+]⁄ )𝑛𝐻⁄  with 

the dissociation constant (KD) and Hill coefficient (nH) taken from the measured value in [36].  

2.2.1d Optics module 

At the core of the optics module is the simulation of PSF of confocal microscopy. The 

shape of PSF is assumed to remain constant throughout the scanned volume but with varied 

intensity. It means the blurring is independent of location, and optics aberrations are modeled 

through amplitude modulation. It is approximated by propagating a scalar field across the tissue 

volume. The scalar field at the front aperture of the objective lens is described as a Gaussian with 

a circular aperture and spherical phase. Optics aberrations can be added at this stage. Fresnel 

diffraction integral and the split-step beam propagation method are employed to estimate the 

field, considering the effect of inhomogeneity within the sample volume. 

The optical phase masks are calculated based on the phase differences owing to refractive index 

inhomogeneity within the sample. These masks are multiplied after every optical propagation 

step to compute the scalar field at each position. The resultant field is used to obtain the two-

photon PSF at each location over the field of view (FOV), which is averaged to derive the PSF 
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for scanning. For computational consideration, the PSF near the focal plane is sampled at volume 

resolution, whereas out-of-focus PSF and scaling mask are sampled at a reduced resolution. An 

absorbance mask was computed based on estimated signal reduction due to vasculature 

absorption. The spatial signal scaling mask is the product of the absorbance mask and optical 

excitation mask, which is the sum of PSF intensity over the entire field [26]. 

2.2.1e Imaging module 

The last module creates volumetric image frames for the two-photon microscopy based 

on the time traces and PSF. The process begins with assigning fluorescence levels to each neuron 

using fluorescence distribution and time traces. The background level is set similarly by 

repeating the same procedure on the neuropil. The fluorescence values are convolved with PSF 

to form raw images and masked with an optical mask to produce initial images. Motion is 

simulated through either a per-line motion or shearing. Poisson distributed photon shot noise and 

Gaussian electrical noise are added before signal conversion. Finally, an analog-to-digital 

accumulator is used to model the bleed effect [26]. Photons incoming in one pixel’s 

accumulation period can result in an analog form that bleeds over to the buildup for the next 

pixel.  

2.2.2 NAOMi data validation  

The NAOMi simulator was carefully designed to capture the essential properties of two-

photon microscopic data. All parameters used in the simulation were verified to conform with 

either experimental data or values well established in the literature [26]. Simulated neural 

activities and fluorescence images were checked against real two-photon microscope recordings. 

Fig. 2-4 demonstrates the comparison between NAOMi simulated data and two-photon 

recordings. 
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Fig. 2-4. Comparison between NAOMI generated data and GCaMP6f labeled mouse V1 L2/3 

recorded by two-photon imaging, adapted from [26]. The results demonstrated that simulated 

data accurately resembles the characteristics of real data in terms of pixel value distribution, 

spatial frequency content, maximum neuronal response (∆F/F), and principal component 

decomposition.  

Undoubtedly, the NAOMi simulation presents a robust framework for evaluating two-photon 

microscopy, offering a computationally efficient means to generate anatomical volumetric data. 

Once again, two-photon confocal microscopy optics and image processes differ substantially 

from those of widefield imaging for miniscope. A distinct model is needed to accurately simulate 

the intricate tissue-optics interactions and imaging procedures specific to widefield microscopy. 

2.3 Virtual Neural Volume 

One of the most desirable features of the NAOMi simulator is the modular flexibility, 

allowing component modules to function independently. This permits the leverage of its accurate 

tissue modeling capabilities by selectively integrating its tissue related modules into the 

widefield simulation. Fig. 2-5 shows examples outputs of neural and volume modules. The 
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volumetric data captures the spatial distribution and characteristics of fluorescent signals within 

the tissue.  

 

Fig. 2-5. NAOMi generated neural volume. Left: a segment of tissue with fluorescent labeled 

somas sliced from the volume. Right: isolated somas without fluorescence.  

The NAOMi simulation is an open source MATLAB software. It is directly employed in this 

project to generate brain volume. Next step is to construct an optics process that accounts for the 

tissue-light interactions in widefield imaging. This is handled by the MC model, introduced in 

Chapter 3. 
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CHAPTER 3  MONTE CARLO NEURO-OPTICS SIMULATION 

The Monte Carlo (MC) model has achieved extensive acclaim as the leading approach for 

simulating interactions between light and tissues. This chapter offers a historical overview of the 

milestones of the MC models and reveals key contributions from pioneers who laid the 

groundwork for its application in tissue optics. Moreover, this chapter dives into the specific MC 

method employed in the current study, elaborating on the intricacies of its implementation 

together with the fundamental principles underpinning the MC simulation.   

3.1 Monte Carlo Method 

The MC method was initially introduced in 1949 [37] to address physical phenomena 

involving a cascading chain of semi-random processes. An example of such a phenomenon is the 

procreative nuclear events resulting from interactions between cosmic rays and Earth's atmosphere 

[37]. While the likelihood of producing a specific particle with a particular energy in a collision 

depends on the energy the incoming particle carries, the motion direction follows a stochastic 

process governed solely by a particular probability distribution. Neither traditional mathematical 

frameworks via analytical mechanics using differential equations nor statistical schemes based on 

probability theory are fully equipped to comprehend the behaviors of such a process. 

The MC algorithm was designed to bridge the gap between these two classical approaches by 

combining a deterministic process with a stochastic one into a repetitive procedure. It can be 

likened to calculating the probability of outcomes in a game of solitaire, assuming the probability 

of each possible outcome is given, changes reflecting the presumed probability distribution can be 

materialized by simulating numerous games of chance (thus the name Monte Carlo) [37]. A 

physical process is simulated as a sequential flow of operations using two sets of parameters that 

represent the characteristics of the physical event: one set is deterministic and manipulated 
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algebraically, while the other set is randomly generated based on prescribed frequency 

distributions. The essential aspect of the MC algorithm is the complete elimination of complex 

integration with a straightforward sequence of random sampling processes. 

At the core of the stochastic process lies the random sampling of uniformly distributed 

uncorrelated numbers within the range of [0,1]. This set of random numbers can be utilized to 

derive any desired predefined probability distribution f(x), which, in turn, underlies the 

stochastically determined value y = g(x) resembling the distribution f(y) [37]. Repeating the 

sampling process can generate a collection of all possible outcomes, enabling statistical analysis 

of both genealogical properties and distributions at a specific time. The MC algorithm offers a 

notable advantage in tackling intricate problems in high-dimensional spaces, where analytical 

solutions are often unfeasible [38]. Its versatility has led to its application in various scientific 

fields, ranging from astronomy [39] [40] to microscopy [29] [41].  

3.2 Monte Carlo Neuro-Optics Model 

The MC model developed in this project is built on the framework established in a series 

of studies conducted by the research group at the University of Texas in the 1990s [27] [28] [42]. 

The MC method has proven its capability to accurately simulate tissue-light interactions, yielding 

meaningful results for various physical quantities, including volumetric heating, fluence rate, and 

more. With necessary modifications, the proposed MC model aims to provide an effective tool for 

modeling the neuro-optics dynamics in widefield miniscope imaging. 

Overall the MC process repeatedly releasing photons from specific locations in neural tissue. The 

step size and direction of propagation are determined by the tissue’s optical property and i.i.d 

sampling from a probability distribution. By repeating the procedure a sufficient number of times 

the statistical pattern of the behavior of light in tissues can be obtained. The simple variance 
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approach in [28] was adopted to boost computation efficiency. It allows the photons to be treated 

as a packet constituting any arbitrary number of photons. This feature makes the model more 

efficient and flexible because it enables the scaling of recorded physical quantities with respect to 

changes in photon energy without undergoing the simulation process. From this section onwards, 

“photon(s)” is used interchanbealbe with “photon packet(s).”     

3.2.1 Basic Assumptions of MC Neuro-Optics Process  

 The MC process employed in this study models the propagation of excitation light and 

fluorescence emission. The excitation light is a collimated beam of specific diameter and 

wavelength perpendicularly incident onto the tissue surface. The tissue is assumed to be a 

homogeneous single layer of infinite width and depth. This assumption is reasonable for mouse 

anatomical tissue in a widefield microscopy environment where the tissue size is sufficiently larger 

than the FOV. For simplicity consideration, the wave nature of light is omitted; in other words, the 

diffraction effect is left out. This simplification limited the validity of simulated images because 

diffraction plays a significant role in widefield image formation; nonetheless, it helps to reduce the 

computational complexity of the simulation. This strategy still produces satisfactory results for 

demonstrating the feasibility of applying computer simulations to generate synthetic widefield 

images and perform subsequent deconvolution.  

3.2.2 Mathematical Framework 

 The deterministic parameters of the model describe the properties of a light beam and tissue 

layer. Tissue parameters comprise the refractive index, the absorption coefficient μa, the scattering 

coefficient μs, and the anisotropy factor g. Light parameters include beam types (e.g., collimated 

or isotropic) and wavelengths. Since the tissue is assumed to be infinitely deep, only the refractive 

index of the top ambient medium is given, which is the refractive index of the GRIN lens. Two of 
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the most critical stochastic parameters are the step size and direction of photon propagation at each 

interaction site. These are constructed such that a physical quantity to be determined corresponds 

to the expected value of a given random. It is equivalently an alternative expression for bridging a 

predetermined probability distribution f(x) to a uniformly distributed variable. It is formulated in 

[28] as follows. Consider a random variable X whose probability distribution is defined over the 

interval [a, b], characterized by the probability density function: 

 ∫ 𝑝(𝑋)𝑑𝑋 = 1
𝑏

𝑎
          (1)  

Suppose there is a uniformly distributed random variable ξ over the interval [0, 1] described by 

the cumulative distribution function (CDF) as: 

 𝐹𝜉(𝜉) =  {
0 𝑖𝑓 𝜉 ≤ 0         
𝜉 𝑖𝑓 0 <  𝜉 ≤ 1

1 𝑒𝑙𝑠𝑒                  

           (2) 

Linking the two distributions requires a one-to-one mapping between them, equating the 

probabilities  

 𝑃{𝑎 < 𝑋 ≤ 𝑋1} = 𝑃{0 <  𝜉 <  𝜉1}        (3) 

Based on the definition of CDF, this leads to  

 𝐹𝑋(𝑋1) = 𝐹𝜉(𝜉1)          (4) 

 ∫ 𝑝(𝑋)𝑑𝑋 
𝑋1

𝑎
=  {

0 𝑖𝑓 𝜉1  ≤ 0      
𝜉1 𝑖𝑓 0 <  𝜉 ≤ 1

1 𝑒𝑙𝑠𝑒                

 =  𝜉1 𝑓𝑜𝑟 𝜉1 ∈ [0, 1]     (5) 

 ∫ 𝑝(𝑋)𝑑𝑋 =  𝜉1                 𝑓𝑜𝑟 𝜉1 ∈ [0, 1]
𝑋1

𝑎
          (6a) 

Assuming X = f(ξ) is non-decreasing, this is equivalent to  

 ∫ 𝑝(𝑋)𝑑𝑋 =  1 −  𝜉1         𝑓𝑜𝑟 𝜉1 ∈ [0, 1]
𝑋1

𝑎
        (6b)  

Eq. (6) lays the groundwork for the stochastic sampling procedure using a uniformly distributed 

random variable ξ. 
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3.2.3 Geometry and Coordinate Systems 

A three dimensional homogeneous gird system represents a tissue volume with infinite 

width and depth. The tissue surface is the horizontal plane intersecting the origin of the vertical 

axis, that is, z = 0. To simplify computation, the volume is inverted along the vertical axis, where 

positive z coordinates represent vertical positions inside the tissue and negative z values vertical 

positions above the tissue surface. Since the volume is assumed to be infinitely wide and deep, the 

only boundary between the two media is at the tissue surface.  

A three dimensional Cartesian coordinate system is set corresponding to the cubic anatomical 

volume generated by the NAOMi simulator. It tracks photon propagation, locates fluorescence 

values of specific neurons and stores simulated physical quantity. Coordinates are denoted by the 

standard notation of the x, y, z tuple as a unit vector [28]. Two arrays based on the Cartesian system 

are employed to record photon energy. A two dimensional array, D(x, y), stores the fluorescence 

photon weights collected by the detector. It reflects the intensity of the fluorescence image. The 

three dimensional array, A(x, y, z), records the excitation photon energy tissue absorbed. The 

excitation energy, the NAOMi generated fluorescence values, and a predefined quantum efficiency 

value jointly determine the fluorescence emission level at each grid point (e.g., voxel). 

A moving spherical coordinate system is utilized to sample the directional change of a photon 

packet. Sampling is performed with respect to the deflection angle (θ) and azimuth angle (ψ) [28]. 

This coordinate system tracks the most current direction of photon propagation as directional 

cosines. The x, y, and z components are updated before the next interaction with tissue. For the 

sake of optimizing time and space efficiency, only the current direction is registered at each step. 

Photon trajectory can be tracked when necessary by storing the directional cosines at every step.  
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A cylindrical coordinate system is employed primarily for model validation purpose, aiming to 

replicate the results from the original Monte Carlo Modeling of Light Transport (MCML) 

simulation proposed by [28]. It shares the same origin and z-axis with the Cartesian system. This 

cylindrical coordinate system is implemented as a separate module and is not typically used in the 

normal execution of the Monte Carlo simulator. 

3.2.4 Stochastic Parameters  

The stochastic parameters described in this section are derived from the framework 

summarized previously in section 3.2.2. In actual implementation the random variable ξ takes on 

values in [0, 1) instead of [0 1], which is a common practice with computer generated random 

numbers. The mathematical derivation of the stochastic parameters listed in the upcoming 

subsections follows the framework in [28]. 

3.2.4a Step size  

The step size of the photon packet is governed by the transport coefficient and probability 

distribution of a photon’s free path s ∈ [0, ∞). Given a PDF: 

 𝑝(𝑠) =  𝜇𝑡𝑒−𝜇𝑡𝑠        (7)  

According to eq. (6) this can be expressed as 

 𝜉 =  ∫  𝜇𝑡𝑒−𝜇𝑡𝑠𝑑𝑠 = 1 − 𝑒−𝜇𝑡𝑠1
𝑠1

0
       (8) 

Rearrange the equation 

 𝑒−𝜇𝑡𝑠1 = 1 −  𝜉        (9) 

Solve for s1  

 𝑠1 =  −
𝑙𝑛(1−𝜉)

𝜇𝑡
        (10a)      

Based on eq. (6) it is equivalent to  

  

𝑠1 =  
− ln(𝜉)

𝜇𝑡
          (10b)  
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S1 is the straight distance a photon travels at each move.  

3.2.4b Directional angles  

The directional change of a photon packet at an interaction depends on the deflection angle 

(θ) and azimuth angle (ψ). These angles are governed by the phase function P(θ), which describes 

the intensity of an incident ray normalized to the integral of scattered intensity at all angles [43] 

and is defined as: 

 𝑃(𝜃) =
𝐹(𝜃)

∫ 𝐹(𝜃) 𝑠𝑖𝑛 𝜃𝑑𝜃
𝜋

0

        (11) 

In tissue optics, the phase function is often approximated using the Henyey-Greenstein function in 

terms of anisotropy factor g, where the probability distribution of deflection angle (θ) is expressed 

in terms of cosine: 

 𝑝(𝑐𝑜𝑠 𝜃) =
(1−𝑔2)

2(1+𝑔2−2𝑔𝑐𝑜𝑠 𝜃)3 2⁄        (12) 

The cosine of deflection is sampled via random variable ξ: 

 𝑐𝑜𝑠 𝜃 =  {
1

2𝑔
[1 + 𝑔2 − (

1−𝑔2

1−𝑔+2𝑔𝜉
)

2

] 𝑖𝑓 𝑔 > 0

2𝜉 − 1                                   𝑖𝑓 𝑔 = 0
   𝑓𝑜𝑟 𝜃 ∈  [0, 𝜋)   (13) 

The azimuth angle ψ is directly drawn through random variable ξ: 
     

 𝜓 = 2𝜋𝜉  𝑓𝑜𝑟 𝜓 ∈  [0, 2𝜋)        (14) 

3.2.5 Deterministic Parameters  

The deterministic parameters are related to the optical properties of the tissue that controls 

the photon propagation and physical quantities of interest, such as the intensity of the image. These 

parameters include the specular reflectance (Rsp), scattering coefficient (μs), absorption coefficient 

(μa), albedo, and Anisotropy factor (g). 
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3.2.5a Specular reflectance   

Specular reflectance refers to the reflection at the boundary between two media possessing 

different refractive indices [44] [45]. In the current model, the tissue and bordering glass (GRIN 

lens) are both assumed to be homogenous, each having uniform optical properties. As a result, the 

specular reflectance takes place only at the surface when fluorescence signals transmit from tissue 

to glass. The specular reflectance is defined as: 

𝑅𝑠𝑝 = (
𝑛1−𝑛2

𝑛1+𝑛2
)

2

          (15) 

where n1, n2 denotes the refractive indices of the two-bordering media. The specular reflectance 

decrements the photon’s weight during its propagation, detailed in 3.2.6c. 

3.2.5b Scattering coefficients 

The scattering coefficient (μs) gives the likelihood of photon scattering per unit length 

traveled. It dictates a photon’s interaction with tissue and the subsequent change in direction [28]. 

The unit of scattering coefficient in this study is specified in mm-1. 

3.2.5c Absorption coefficients 

The absorption coefficient (μa) represents the likelihood of photon absorption per unit 

length traveled in the tissues. It quantifies the amount of light energy absorbed by the tissue and 

subsequently converted into heat. The unit of absorption coefficient is the same as the scattering 

coefficient. 

3.2.5d Albedo 

Albedo (α) is the ratio of scattering to the total attenuation of light in the tissue. Its value 

ranges between 0 and 1, with higher values signifying a higher scattering-to-absorption ratio. It is 

calculated as follows: 

  𝛼 =
𝜇𝑠

𝜇𝑎+ 𝜇𝑠
 ∈ [0, 1]        (16) 
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The albedo directly controls the excitation energy deposited in the tissue, determining the 

fluorescence emission level. 

3.2.5e Anisotropy factor g 

The anisotropy factor (g) provides an aggregate description of a tissue's scattering profile. 

It specifies the probability of a photon being scattered in a specific direction. The anisotropy factor 

is wavelength dependent. In tissue optics g typically ranged from 0.8 to 1. The values experimented 

in the current MC process are based on the measurements documented in [46]. 

3.2.6 Photon Propagation 

The overall propagation directions for excitation light and fluorescence emission are nearly 

the opposite. The excitation beam starts at the tissue surface, with its initial direction set straight 

downward. In contrast, fluorescence emission travels from tissue to surface. The fluorescence 

values of NAOMi generated neural volume command the initial emission location. The emission 

exhibits isotropic characteristics, with the tissue’s anisotropy factor regulating directional changes 

after each scattering event. The distance and direction are updated at every interaction site by 

sampling random variable ξ as described in 3.2.4.  

3.2.6a Updating photon position 

The current position of a photon packet is represented by two vectors, the Cartesian 

coordinates (x, y, z) and directional cosines (μx, μy, μz). The position vector is updated by: 

 𝑥′ = 𝑥 +  𝜇𝑥 ∗ 𝑠 

 𝑦′ = 𝑦 +  𝜇𝑦 ∗ 𝑠                   (17) 

 𝑧′ = 𝑧 +  𝜇𝑧 ∗ 𝑠 
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where x’, y’, and z’ denote the vector components of a new position. In actual implementation, the 

position vector (x, y, z) is updated inline, and only the current position is tracked. Similarly, the 

directional cosines are updated as follows: 

 𝑢𝑥
′ = {

sin 𝜃 cos 𝜓                                                            𝑖𝑓 |𝜇𝑧| > 𝑐             
sin 𝜃

√1−𝜇𝑧
2

(𝜇𝑥𝜇𝑧 cos 𝜓 − 𝜇𝑦 sin 𝜓) +  𝜇𝑥 cos 𝜃   𝑒𝑙𝑠𝑒                              

 𝑢𝑦
′ = {

𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝜓                                                         𝑖𝑓 |𝜇𝑧| > 𝑐                    
𝑠𝑖𝑛 𝜃

√1−𝜇𝑧
2

(𝜇𝑦𝜇𝑧 𝑐𝑜𝑠 𝜓 + 𝜇𝑥 𝑠𝑖𝑛 𝜓) +  𝜇𝑦 𝑐𝑜𝑠 𝜃 𝑒𝑙𝑠𝑒                               (18) 

 𝑢𝑧
′ = {

± 𝜇𝑧 cos 𝜃                                                      𝑖𝑓 |𝜇𝑧| > 𝑐                   

− sin 𝜃 cos 𝜑 √1 − 𝜇𝑧
2 +  𝜇𝑧 cos 𝜃         𝑒𝑙𝑠𝑒                                

 

where c = 1-10-12 represents a nearly vertical incident. The border condition is checked every time 

the photon packet moves. The z components of the position vector and directional vector provide 

information about whether the photon packet reaches the surface and if it falls within the NA. 

Every position vector represents a photon-tissue interaction site where absorption and scattering 

occur, resulting in attenuation of the photon weight.  

3.2.6b Internal reflection 

Reflection or transmission occurs at the interface of two media. In this case it is the top 

tissue surface where z = 0. Since there is only one boundary condition it can be checked by 

monitoring the value of the z coordinate. The internal reflectance Ri is given by  

𝑅𝑖 =
1

2
[

𝑠𝑖𝑛2(𝛼𝑖− 𝛼𝑡)

𝑠𝑖𝑛2(𝛼𝑖+ 𝛼𝑡)
+

𝑡𝑎𝑛2(𝛼𝑖− 𝛼𝑡)

𝑡𝑎𝑛2(𝛼𝑖+ 𝛼𝑡)
]          (19) 

Whether a photon packet is transmitted or being internally reflected is determined stochastically 

by comparison of Ri to a number randomly drawn from random variable ξ. A photon packet is 

internally reflected if ξ ≤ Ri; else, it is transmitted. 



38 

 

3.2.6c Photon weight 

The weight of a photon packet at the origin is always initialized to 1 and decreases as the 

packet propagates in the tissue. This reduction represents the loss of photon energy. The drop in 

photon weight resulting from tissue absorption is: 

∆𝑊 = 𝑊 (1 −
𝜇𝑠

𝜇𝑡
)            (20) 

Another factor reducing the weight is the specular reflectance: 

𝑊 = 1 − 𝑅𝑠𝑝            (21) 

The weight of a photon packet immediately falls to zero if the packet escapes, which occurs 

exclusively at the tissue surface. Owing to the infinite tissue volume, a photon packet can travel 

almost forever as long as it stays away from the surface, even though its weight has diminished to 

a negligible level. Allowing such photons to continue the transportation no longer helps improve 

the simulation's accuracy but sufficiently increases computational intensity. Therefore, it is 

necessary to terminate the photon if its weight drops below a predefined threshold value. In [28] a 

technique called roulette is used to prevent skewing the distribution of photon deposition by 

improper termination. This technique terminates photons in an unbiased manner and conserves 

energy by granting the photon packet a second chance: 

 𝑊 =  {
𝑐𝑊 𝑖𝑓 𝜉 ≤

1

𝑐

0    𝑒𝑙𝑠𝑒        
             (22) 

The weight of surviving photon packet is reset based on a predefined chance factor. The roulette 

method is retained in this MC neuro-optics model.  

3.2.6d Procedure 

Photon propagation involves launching a photon packet from a specific location. When a 

photon is moved to a new position, the boundary condition is checked to update the weight. 

Meanwhile, the direction of the escaped photon is compared to the NA to determine whether it is 
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detected by the sensor. Once a photon packet is moved to a new position it experiences 

absorption and scattering. As a result, its energy level drops and propagation direction changes. 

When a photon’s energy level falls below a certain threshold the packet undertakes a roulette 

process to determine if it will be terminated. Algorithm 1 summarizes the propagation procedure 

of a single photon packet.  

Algorithm 1  

Algorithm Propagation(P,O): 

Input: 
 

Dictionary P contains optics parameters 
1D position vector O represents the launching point 

Output: 
 

3D array Ai storing excitation energy deposited at each voxel 
2D array Di storing fluorescence intensity collected by the sensor 

1 
2 
3 

Ai ← zeros 
Di ← zeros 
w ← 1.0 

Initialize 3D array Ai with the shape of neural volume 
Initialize 2D array Di with the shape of image 
Initialize weight factor for photon packet 

4 (x,y,z), (μx,μy,μz), RSP ← initialization() Initialize coordinate, direction, specular reflectance 

5 while w > 0.0   

6          (x,y,z), w, Di ← move() Move photon packet with one step and update Di 

7          w, Ai ← deposit() Deposit energy at the interaction site (equals to absorption) 

8          (μx,μy,μz) ← rotate() Obtain new propagation direction after being scattered 

9          w ← roulette() Check weight level 

10 return Ai, Di Ai, Di will be accumulated for all launching locations 

 

3.3 Optics and Detector model 

This section discusses a seamless integration of the detector model into the MC neuro-optics 

simulation. It begins with highlighting the fundamental optics principles that underpin the MC 

process. Next, the role of CMOS sensors is introduced, elucidating how they facilitate the 

conversion of photons into electrons for data acquisition. Additionally, significant sources of 

noise associated with CMOS sensors are examined. 

3.3.1 The Optics 

The excitation light is assumed to be a column of infinitely narrow beams injected into 

the tissue at the surface orthogonally. Each constituent beam is implemented as a photon packet 
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launched at a specific grid point (x, y) on the tissue surface. During its journey in the tissue a 

photon packet constantly experiences attenuation at every interaction site, specified by (x, y, z). 

Excitation energy deposited at the site is assumed to be re-emitted as fluorescence based on a 

predefined quantum efficiency. The default value is 100%, though not very realistic; however, 

considering the photon packet eventually consists of any arbitrary number of photons a linear 

relationship exists between the photon energy and quantum conversion efficiency. Consequently, 

a more realistic value can be obtained by scaling the output; in other words, quantum efficiency 

plays more of a theoretical role in the process.  

The excitation and emission processes are set to run independently to promote the simulation’s 

flexibility and efficiency. The outputs of each process are stored apart in separate files that can be 

accessed by the other. The segregation of the two processes does not compromise the validity of 

the outputs because the excitation beam is in the blue spectrum, while the emitted fluorescence is 

in the green spectrum. This arrangement remains consistent with the miniscope configuration, 

where the dichroic mirror filters the two. Whether a fluorescence photon packet is made to the 

NA depends on the z component of directional cosines μZ. The photon packet is collected if 

sin−1(𝜇𝑧) ≤ sin−1(𝑁𝐴 𝑛2⁄ ).  

3.3.2 Detector Model 

Miniscope employs a CMOS sensor for photon detection. Its on-chip analog-to-digit 

converter performs element-wise charge-to-voltage conversion at a pixel site. The number of 

electrons converted is the product of the number of photons reaching the detector and quantum 

efficiency. This quantum efficiency is generally provided by the manufacturer and is not the 

same as excitation-emission conversion. An amplifier is usually exploited to boost the electrical 

signal. Since both quantum efficiency and amplifier are constants and photon packets can be any 



41 

 

arbitrary number, the conversion eventually does not impact the final image and becomes 

unnecessary. 

There are several noise sources in CMOS sensors, with the single most prominent one being the 

fixed pattern noise that arises from the variations in photoelectrons produced by the sensor 

responding to the same number of striking photons. The effect is modeled in [47] by  

𝐾𝑝 =  𝛾𝑝𝑃𝑜𝑖𝑠[𝑆𝑝(𝜏)] + 𝑁(0, 𝜎𝑅) +  𝛽𝑝      (23) 

Kp is the noise value of the pixel. The Poisson distributed Sp is a function of exposure time (τ). 

Pois[Sp(τ)] is the Poisson-distributed photon shot noise.  The multiplicative factor γp and 

reference voltage βp both can be calibrated. In computer simulation it is modeled by: 

 𝐾𝑝 =   𝛾𝑝𝜍 + 𝜂 +  𝛽𝑝         (24) 

where ς and η are random numbers draw from the Poisson and Gaussian distributions, 

respectively. By setting γp = 1 and βp = 0, the model is simplified to 

 𝐾𝑝 =   𝜍 + 𝜂         (25) 

Eq. 𝐾𝑝 =   𝜍 + 𝜂         (25) shows 

that the noise can be added by sampling two values from Poisson and Gaussian distributed 

random variables.  

3.4 Implementation 

The MC neuro-optics simulator is implemented in Python code with the virtual detector 

wrapped into the MC process. A contrast between the miniscope setup and the MC simulation is 

illustrated in Fig. 3-1. 
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Fig. 3-1. Optical system setup and MC simulation flowchart. Left: schematic of miniscope setup 

for brain imaging. The dichroic mirror separates emission light from excitation light. This 

simplifies the simulation as the excitation and emission can be run separately. Right: flowchart of 

MC simulation of fluorescence emission. 

The reason to choose Python is because its NumPy array data structure is convenient for storing 

image data. Furthermore, most popular machine learning library packages like TensorFlow and 

Scikit Learn are Python based. These packages provide comprehensive tools for model 

construction and data visualization; therefore, Python offers better portability and more 

flexibility.  

The primary concern with Python is its runtime efficiency because it is generally slower than 

compiled languages like C. This is especially vital for the MC process because the simulation 

itself is computationally extensive. One solution to accelerate the process is a parallel scheme 

similar to the one in similar to [48].  Another factor contributing to the slowdown is the 

stochastic nature of the process, which requires a sufficient number of repetitions to achieve the 

desired statistical pattern. As depicted in Fig. 3-2, the noise level in the output decreases with 

increasing number of iterations. To minimize the number of iterations and further expedite the 
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simulation, a deep learning denoiser is exploited to denoise the outputs of the MC simulator. This 

denoiser is discussed in Chapter 4. The Python codes of MC simulator and deep learning 

denoiser are provided in the appendix. 

 

Fig. 3-2. The MC simulated image and distribution of various numbers of photons. Left: a 

contrast between the images of a point generated by launching 104 photons (top) and 106 photons 

(bottom). The point appears more focused as the number of photons increases. Right: the photon 

distributions of various numbers: 103, 104, 5*104, 105, 2*105, and 5*105. As the number of 

photons increases, the distribution becomes progressively more concentrated, indicating reduced 

noise levels. 
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CHAPTER 4  DEEP LEARNING DENOISING 

Although deep learning networks have gained significant attention in image enhancement, 

supervised learning approaches have been less appealing in microscopic image quality 

improvement due to the challenges associated with the need for ground truth data. Chapter 1 

presented multiple self-learning strategies to address this limitation and reduce the reliance on 

ground truth data. This chapter focuses on three key concepts: CNN, U-Net, and self-supervised 

learning, which collectively contribute to the denoiser employed in this project. Then the MC 

outputs will be reviewed before outlining the denoiser's architecture design. 

4.1 Convolutional Neural Networks 

Almost immediately after its first appearance [49] CNN architecture wins the dominant 

position in image processing with its ability to take raw images as input instead of feature 

vectors. The prototype CNN classifier is a backpropagate network consisting of three hidden 

layers; the first two are convolution layers and the third is a fully connected layer. The input 

layer accepts normalized images of size 16 x 16. The output layer contains ten output units 

yielding the probability of ten possible outcomes. Both convolution layers employ twelve 5 x 5 

kernels facilitating a down sampling process to extract localized feature maps with position 

information mostly discarded. This reduction in information may appear counterintuitive, but it 

eventually proves to be an elegant strategy. By ignoring the position feature the network can 

generalize local features globally to broader contexts.  

This CNN classifier was trained and tested on a dataset of over 9,000 segmented handwritten zip 

codes, splitting into a training and test set at roughly an 8:2 ratio. It achieved an error rate as low 

as 0.14% with only 23 training cycles. However, the test error of 50% suggests the network was 

heavily overfitted [49]. Despite the poor performance the network opens the door for end-to-end 
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learning machines in image processing. The dataset was later extended to comprise 60,000 

images of handwritten digits. It became one of the standard databases widely known as MNIST 

data and is frequently used to train machine learning models. This project utilizes  the MNIST 

dataset to help design and finetune the denoiser architecture.  

4.2 U-Net 

The U-Net architecture [17] further advances the CNNs to tackle image-to-image tasks. It 

was initially devised to address cell segmentation challenges with insufficient training data. 

Encouraged by its stunning performance, the U-Net architecture found widespread adoption in 

various image processing applications including deconvolution and denoising. It gains the name 

U-Net by its U-shaped architecture that typically consists of an encoder-decoder pair that 

performs feature contraction and expansion. The encoder is usually a conventional convolutional 

network comprising multiple convolutional layers, each followed by a pooling layer. It obtains 

hierarchical attributes from the input images and acquires contextual information through 

downsampling. The decoder is like an inverted CNN that mirrors the encoder with upsampling 

convolution layers. It reconstructs the image by merging the feature maps derived from the 

contracting process. The most distinctive trait of U-Net is the skip connection, which helps to 

improve accuracy by preserving high-level context. The U-Net configuration is demonstrated in 

Fig. 4-1.  

The U-Net architecture serves as the prototype for the denoiser implementation in the current 

study, aiming to effectively remove the noise of MC outputs and speed up the overall simulation 

process. This denoiser’s architectural design is detailed in section 4.4.2.  
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Fig. 4-1. U-Net architecture, adapted from [17]. Blue boxes correspond to multi-channel feature 

map with the number of channels specified on top of box. Feature maps copied from preceding 

layer. Skip connections are represented by gray arrows. 

4.3 Self-Supervised Learning 

A profoundly innovative self-supervised learning paradigm is introduced in [21] to 

eliminate the reliance on ground truth by applying the fundamental statistical assumption to 

signal reconstruction. It proves that a deep learning network can learn image restoration solely 

by observing corrupted examples without explicit priors or likelihood models (i.e., self-

supervised).  

The underlying idea of self-supervising is straightforward: to approximate a physical quantity 

from a set of unreliable measurements, say the diameter of a disc, a common strategy for 

estimating the true value is to find a value (x) that minimizes average deviations from the 
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measurements through regression. Given a loss function L(x, y) = (x – y)2, where y is the 

measured value, the minimum error is found at the arithmetic mean of the observed 

measurements. Since random errors tend to have a mean residual error of zero, the true value can 

be recovered by minimizing the loss function L(x, y). This concept is illustrated in Fig. 4-2.  

 

Fig. 4-2. A set of unreliable measurements associated with random errors. Left: linear regression. 

Right: residual errors 

The self-supervised model in [21] expands the original U-Net architecture with additional 

convolutional layers. Generally, the deeper the networks the more powerful it is. Comparison 

between supervised and self-supervised learning strategies was evaluated based on three tasks: 

removing photographic noise, denoising MC rendered synthetic natural scene images, and 

reconstructing under-sampled Magnetic Resonance Imaging (MRI) scans. The denoised results 

show that self-supervised can sometimes outperform its supervised counterpart trained on clean 

data, as measured by PSNR [21].  

However, when tested MC generated fluorescence images the model failed to produce any 

meaningful output. The most likely reason is that the network was designed to handle three-

channel images; it is overly sophisticated for grayscale fluorescence images.  
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4.4 Deep Learning Denoiser 

The noise associated with MC generated images arose from the randomness of the MC 

process. It makes the resulting images a perfect candidate for the self-supervised denoising. 

Consider other acceleration techniques, such as distributed multi-processing; deep learning 

denoising offers a faster solution. In order to better comprehend the rationale behind the denoiser 

it is necessary to briefly review how the MC algorithm works and its resulting outputs.  

4.4.1 Outputs of MC Simulator 

 

Fig. 4-3. Images of somas simulated by launching varied numbers of photons per voxel. The top-

left panel is a top-view of somas created by NAOMi, serving as a based reference. Starting from 

top-middle the number of photons launched per voxel are 102, 103, 104, 105, and 106, in the order 

of left to right and top-down. Since cells at deeper positions appear to be blurrier in an image due 

to the depth limit, the depth information is indirectly reflected in the MC generated fluorescence 

image. Therefore, the plain view of NAOMi somas is not directly comparable to MC simulated 

images. It serves as a visual reference for the overall shape of somas but cannot be used to 

evaluate the accuracy of fluorescence images. 
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As mentioned in Chapter 3, the MC algorithm involves a stochastic process that demands 

many trials for the model to converge. In the case of photon propagation numerous photon 

packets must be launched to minimize the noise in the simulated result. Example outputs of MC 

simulator are shown in Fig. 4-3.  

Table 4-1 Time required to generate a soma image with various number of photons 

Number of Photons 102 103 104 105 106 

Time in Minutes 29 54 185 1,245 14,880 

As mentioned in Chapter 3, the MC algorithm involves a stochastic process that demands 

many trials for the model to converge. In the case of photon propagation numerous photon 

packets must be launched to minimize the noise in the simulated result. Example outputs of MC 

simulator are shown in Fig. 4-3.  

Table 4-1 shows that the time required to generate an image increases exponentially as the 

number of photons increases. Because of the background fluorescence associated with the 

NAOMi neural volume data, it typically takes a sufficiently extended time to simulate an image 

of neural volume than isolated cell bodies (somas), which do not have fluorescence values 

attached. In order to produce a reasonable amount of training data for the denoiser, the training 

set contains images of somas only.  

It is worth noting that the plain view of NAOMi somas does not conserve the depth information, 

illustrated in Fig. 4-4. In addition, the synthetic images of somas differ from those simulated 

from whole volume data, where the fluorescence labels determine the number of photons to 

launch, but this is not the case for somas. Further elaboration is discussed in Chapter 5.  
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Fig. 4-4. Isolated somas viewed from different perspectives. Left: plain view of NAOMi 

generated somas. Middle: 3D view from top. Right: MC simulated image of the same somas. 

Comparing the plain view to the 3D view it can be seen that density of somas is preserved in the 

plain view, but depth information is lost.  

4.4.2 Denoiser Design 

The deep learning denoiser adopted the U-Net architecture of the encode-decoder pair, 

except it does not have a skip connection. The contraction path consists of three 2D 

convolutional layers each accompanied by a maximum pooling layer and Rectified Linear unit 

(ReLU) activation. The expansion path mirrors the encoder with three 2D transpose layers, each 

employing a 2 x 2 strides and ReLU activation. The input layer takes images of size 120 x 120, 

the same as the output layer. The denoiser design is shown in Fig. 4-5. The denoiser will adopt 

the self-supervised strategy introduced in 4.3. The learning process is evaluated by a categorical 

cross-entropy loss function. The actual implementation is given in Chapter 5 
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Fig. 4-5. Denoiser design. Left: the encode-decoder configuration. Right: the model graph 
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CHAPTER 5  METHODS, RESULTS, AND DISCUSSION 

This chapter begins by outlining the integration process of the three modules comprising the 

widefield miniscope simulator. Flowed by the validation of the MC model and the data 

generation process is provided. An analysis of synthetically generated miniscope fluorescence 

images and subsequent denoising results are presented next. While a brief discussion is included 

in this chapter, a more comprehensive examination is reserved for Chapter 6. 

5.1 Methods 

The computational framework developed in this project consists of three main components: 

a neural volume generator (NAOMi simulation), a neuro-optics simulator, and a deep learning 

denoiser. The miniscope detector simulator is wrapped into the MC neuro-optics simulator and is 

given the name MC Neuro-Optics Imager is used to reflect this integration. The neural volume 

generator is an open source MATLAB software. The imager and denoiser are implemented in 

Python. A lightweight bridging program (Bridger) links the three core elements, as depicted in 

Fig. 5-1. 

 

Fig. 5-1. Schematic of widefield tissue-optics simulation process. The outputs of each module 

are stored in separate files. The Bridger has access to all and is responsible for managing these 

files.  
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This modular arrangement provides excellent flexibility and portability as each module can be 

executed separately on a machine that best fits its computational demand. Among the core 

components NAOMi neural volume generator is the least computationally demanding one and 

runs effortlessly on any laptop with moderate computational power. In contrast, the MC imager 

is highly computationally extensive while requiring zero interactive I/O operations. The high 

performance computer cluster is thus the most suitable environment for the MC module. The 

deep learning denoiser requires graphical processing unit (GPU) power during training. The 

denoiser training is conducted in Google Colab to take advantage of the advanced GPU offered 

by Google. The runtime presented in the results is the time required to run on Tesla T4 GPU.  

5.1.1 MC Neuro-Optics Model Validation 

The MC model is built based on the framework of [28] with modifications to account for 

the imaging process. Since it is implemented in Python with parallel photon launching to boost 

time efficiency the process significantly differs from the original ANSI-standard C 

implementation in [28]. In order to validate the MC model, the same physical quantities with the 

same parameter setting as of the C code are compared. The simulator models an infinitesimally 

narrow excitation beam injected into a homogeneous tissue of infinite width and depth. Same as 

the C code, 105 photon packets are launched at the origin (0,0,0) and travel downward (Fig. 5-2, 

panels a and b). Optical parameters are also set to match the parameters used in the original C 

code. As shown in Fig. 5-2, the resulting energy distribution resembles the symmetry of intensity 

profile [28] and diffuse pattern of light rays in deeper tissue [4], suggesting the MC optics model 

accurately captures the light-tissue dynamics. 
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Fig. 5-2. Visualization of MC optics simulator. a) Comparison of fluence rate simulated by 

current simulator (left) and original C code (right); b) Energy distribution of excitation light 

launched at origin; c) Example single photon packet path inside tissue. 

5.1.2 Detector Validation 

The USAF 1951 resolution test chart is a commonly used device in optical engineering to 

validate imaging systems. This method is adopted to analyze the output of the MC Imager. From 

Fig. 5-3, it can be seen that a clear image is obtained when photons are launched at a distance 

equal to the work distance (100μm) the objective lens is located. As the launching plan moves 

farther away from this work distance the lights are diffused, and the images become more and 

more blurry. 
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Fig. 5-3. Image formed by launching photons at different depth in tissue. Left most is the USAF 

1951 resolution test chart. All photons are launched from a single horizontal plan intersecting the 

depth of 100μm, 110μm, and 120μm, corresponding to 2nd to 4th images (left to right), 

respectively. 

5.1.3 Model Benchmarking 

In order to gain insights into the runtime complexity of the MC Imager so that the 

efficiency of the denoiser can be better evaluated the runtime required for launching photon 

packets from a single launching point is compared between MC Imager in Python and the ANSI-

standard C code [28]. The result is shown in Table 5-1. 

Table 5-1 Comparison between Python and C (both run on a Linux machine) on user CPU time 

for launching different number of excitation photons from a single location.  

Number of Photons 
User CPU Time (second) 

Python C 

102 2.146 0.072 

103 2.323 0.114 

104 3.135 0.508 

105 8.965 4.363 

106 77.692 42.927 

107 858.037 420.843 
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It is worth noting that the two implementations differ in various ways, including the coordinate 

systems. As a result, a direct comparison between the two is meaningless. Nevertheless, it can 

shed some light on the general runtime required for the Python version of the MC model. The 

excitation process is chosen because the two simulators share more similarities with the 

excitation process than the emission. Table 5-1 demonstrates that for less than 104 photons C is 

significantly faster than Python, nearly 30 times faster for 102 photons. Then the gap narrows to 

about 2x faster for 105 photons and stabilizes afterward. This is hardly any surprise because 

Python incurs sufficient overhead than C. As the number of photons launched for generating a 

single fluorescence image can easily exceed tens of millions, it is reasonable to assume that for a 

given number of photons launched at each grid point, the C code is typically 2x faster than 

Python. Since the increase in time is substantially higher for each order of magnitude increase in 

the number of photons launched, reducing the number of photons per location will effectively 

shorten the total run time.  

5.2 Results 

This section presents the outputs and results from each module alongside the parameters 

employed to generate the data. The basic setup and a thorough analysis of the results are also 

provided.  

5.2.1 Virtual Cells 

The virtual neural volume generated by the NAOMi simulator has been discussed in 

Chapter 2 and Chapter 4. This section focuses on how the virtual tissue is configured for the MC 

Imager to produce synthetic fluorescence images.   

The NAOMi simulator can simulate comprehensive neural volume containing whole cells, 

including nuclei, somas, dendrites, blood vessels, capillaries, and arterioles. In addition, 
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fluorescence labels are associated with targeted cells. The fluorescence concentration of any 

layer can be visualized by slicing the volume vertically and horizontally (Fig. 5-4, left panel). On 

the other hand, it is also possible to isolate parts of cells, e.g., somas, from the volume. The 

isolated components do not have the fluorescence labels associated with them. They are 

visualized by meshing the grid points of position vectors (Fig. 1-1, right panel).   

 

Fig. 5-4. Simulated neurons. Left: a slice taken from a neural volume of 200 x 200 x 200μm. 

Right: a slice of isolated somas taken from a neural volume of size 100 x 100 x 20μm. It has no 

fluorescence label associated with it and cells appear in solid color. 

The distinction between the two types of virtual cell data makes a difference in the number of 

photon packets launched at each position in the MC neuro-optics simulation. For a whole neural 

volume the number of photons launched at each location depends on voxelwise fluorescence 

concentration values generated by the NAOMi simulator, a predetermined quantum efficiency 

value, and a base number. The base number represents the desired image clarity, the larger the 

base number the clearer the resulting image. A threshold value can be added to regulate the 

background signal level. This configuration ensures that the simulated images consistently 
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capture the characteristics of the virtual neural volume. On the other hand, isolated somas are 

formed by grid coordinates and serve the sole purpose of simplifying the simulation process. The 

number of photons used for generating somas images does not vary across voxels.  

Again, the top or sectional view of NAOMi neural volume data is a reference for how the cells 

look. It is not directly comparable to the synthetic images generated by the MC Imager because 

the fluorescence intensity in the simulated images reflects the vertical positional information of 

the cells. However, this information is lost in the sectional view of volume data.   

5.2.2 Synthetic Neural Images 

To produce simulated fluorescence images an anatomical neural volume of desired size is 

placed at the targeted depth level. The same volume is allowed to be shifted up and down to 

observe the difference resulting from various depths and produce in-focus and out-of-focus 

images. An illustration of the tissue position with respect to focal plane is depicted in Fig. 5-5.  

 

Fig. 5-5. Tissue position in relation to focal plane. The focal plane in the tissue mirrors the 

working distance of objective lens.  
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For whole volume simulation with fluorescence concentration the number of photons launched at 

each voxel is computed as the product of a base number, normalized fluorescence concentration 

values, and quantum efficiency (default 1). The number of photons mentioned in the results 

represent the based number instead of actual number. The optical parameters experimented are 

listed in Table 5-2. 

Table 5-2 Optical parameters for excitation beam and fluorescence emission light used in MC 

optics simulation, referenced the work in [46]. 

Parameters Notation Unit 
Excitation 

Beam 
Fluorescence 

Wavelength λ nm 480 530 

Scattering Coefficient μs mm-1 21 21 

Absorption Coefficient μa mm-1 0.33 0.55 

Anisotropy Factor g -- 0.80 0.82 

Work Distance d μm -- 100 

 

 

Fig. 5-6. Example synthetic images. Left: NAOMi generated neural volume. Middle: simulated 

miniscope in-focus image. Right: simulated out-of-focus image.   

Fig. 5-6 shows one example image generated from a neural volume of size 100 x 100 x 10μm. 

The focal plane is at a distance of 100μm. The in-focus image (Fig. 5-6, left panel) is obtained by 

positioning the volume at 96μm from the surface with photons launched at depths ranging from 
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96 to 105μm. The out-of-focus image is produced by shifting the volume down 15μm (Fig. 5-6, 

right panel).  

The base number of photon packets per voxel is set to 104. It can be seen that the cell structure is 

hardly recognizable in the out-of-focus image. This can be explained by computing the MFP, 

which equals 46μm (1 𝜇𝑡⁄ =  1 21.55𝑚𝑚−1⁄ = 0.0455𝑚𝑚). It means that when the photons 

travel from depth a of 96μm up to the surface more than one scattering could have occurred and 

blurs the image. Consequently, even the in-focus image is slightly blurred. Besides being blurry, 

the images also appear to be noisy as well, due to the stochastic process constituents of the MC 

model. A reasonably clean image requires over 105 photon packets per voxel for a tissue volume 

containing complete neurons and blood vessels. It may take tens of days to generate one image, 

which is why a deep learning denoiser is necessary. 

5.2.3 Denoising Results 

The deep learning denoiser advocates the self-supervised strategy introduced in [20]; in 

other words, the model is trained solely on noisy images without seeing a clean image. The 

training dataset comprises 2,000 noisy images in size 120 x 120 pixels generated by the MC 

Imager with isolated somas to accelerate the process. Less sophisticated images also provide 

better visualization for qualitative analysis. The training set is subsequently split into training and 

validation set at a ratio of 0.768:0.232. . The test set consists of 20 noisy images and 20 clean 

images. The training set is split into training and validation sets at a ratio of 0.768:0.232. The test 

set consists of 20 noisy images and 20 clean images. The clean images are generated by 

launching 104 photons per voxel, in contrast to 102 photons per voxel for the training and noisy 

test set. Categorical crossentropy is employed as the loss function with a learning rate of 10-4. 

The training involves 2,000 training passes with a minibatch size of 128. On Tesla T4 GPU, the 
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training takes 4,000 seconds (66 minutes), whereas the denoising of the test set takes 0.07 

seconds. Example denoised results are shown in Fig. 5-7 

 

Fig. 5-7. Examples simulated images. From left to right: somas, noisy images, denoised images, 

and clean images. 
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Two metrics were used to evaluate the denoise result, structural similarity index measure (SSIM) 

and signal-noise ratio (SNR). SSIM is a common metric measuring the similarities between two 

images and evaluating how closely a compressed image represents the original. TensorFlow has 

a built-in function to compute SSIM between two images. The SNR measures a single image's 

signal-to-background-noise ratio. It is defined as 𝑆𝑁𝑅 = 10 log
𝑃𝑠𝑖𝑔𝑛𝑎𝑙

𝑃𝑛𝑜𝑖𝑠𝑒
= 10 log

𝜇

𝜎
 . The SSIM 

and SNR results are listed in Table 5-3 and Table 5-4. 

Table 5-3. SSIM between images pairs for the example denoised results demonstrated in Fig. 5-7 

SSIM Noisy-Clean Noisy-Denoised Denoised-Clean 

Row 1 0.471 0.491 0.925 

Row 2 0.480 0.501 0.926 

Row 3 0.476 0.494 0.922 

Row 4 0.503 0.524 0.930 

Row 5 0.479 0.502 0.932 

 

Table 5-4. SNR for each image in the example denoised results demonstrated in Fig. 5-7 

SNR Noisy Denoised Clean 

Row 1 0.692 0.993 0.989 

Row 2 0.949 1.254 1.255 

Row 3 0.694 0.970 0.999 

Row 4 0.817 1.233 1.213 

Row 5 0.810 1.199 1.188 

 

The results demonstrate that the denoised-clean pair achieves the highest SSIM, nearly double 

the value of the two pairs with noisy images. It indicates that the denoised image resembles high 

structural similarity with the clean image. The SNR value confirms the same pattern, where the 
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SNR values of the denoised image and clean image are close to each other, while the SNR of the 

noisy image is significantly lower.  

5.3 Discussion 

The result proves that the neuro-optics simulator can generate synthetic widefield 

fluorescence images. These images can then be used for the training of machine learning 

networks. The contribution of self-learning denoiser is at least three-fold. It helped to shorten the 

time required to generate reasonably clean images. Secondly, it demonstrated that a self-

supervised paradigm can be applied to denoising synthetic images. Additionally, denoising is 

also part of the deconvolution process. Therefore, it sheds light on the possible directions of 

future microscopy deconvolution. A more thorough review of the implications and limitations of 

the study is discussed in Chapter 6. 
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CHAPTER 6  CONCLUSION 

In conclusion, this thesis has shed light on the challenges posed by optics aberrations and the 

limitations of compact microscopes in the field of microscopy. The study has also highlighted the 

difficulties in obtaining annotated neural images and ground truth data for training machine 

learning algorithms. To address these challenges, the proposed solution involved the 

development of a computer simulation to generate synthetic microscopy images as ground truth, 

along with the incorporation of a denoiser to enhance image quality. 

While the results of this study are promising, it is crucial to acknowledge the limitations that may 

impact the generalizability of the findings. Firstly, the MC model used in the simulation was 

oversimplified and did not account for certain important factors. For instance, anatomical tissue 

is generally anisotropic rather than isotropic, and the assumption of a uniform scattering profile 

may not always hold true. Therefore, future research should focus on refining the simulation 

model by incorporating these complexities, allowing for more accurate and realistic image 

generation. 

Secondly, the exclusion of the wave nature of light in the simulation is another limitation of this 

study. In widefield imaging, diffraction plays a significant role, and by neglecting this aspect, the 

simulated images may appear cleaner than real images. To overcome this limitation, future work 

should consider incorporating the wave nature of light propagation into the MC simulation, 

enabling a more comprehensive and accurate representation of microscopy imaging. 

Furthermore, while the denoiser successfully reduced noise levels and enhanced image clarity, it 

is important to recognize that denoising is just one aspect of the broader computational 

deconvolution process. The study's focus on denoising presents an incomplete picture of 
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computational deconvolution in calcium microscopy. Future research should consider integrating 

other deconvolution techniques to provide a more holistic understanding of the computational 

deconvolution workflow in microscopy. 

The implications of this study are significant for the field of microscopy and biomedical 

imaging. By addressing the challenges of lacking ground truth data, the proposed simulation-

based approach offers researchers a valuable tool for training and evaluating machine learning 

algorithms without the need for labor-intensive manual annotation. This innovation opens doors 

for more efficient and accurate experimentation and comparison among different methods. 

Moreover, the successful application of the denoiser highlights the potential of data-driven 

computational deconvolution techniques in mitigating the effects of optics aberrations and noise 

in microscopy. The ability to reduce noise levels and enhance image quality has implications for 

various scientific and medical applications that rely on microscopy imaging. It offers researchers 

the opportunity to extract more precise and reliable information from microscopy data, 

ultimately leading to improved diagnostics, research outcomes, and advancements in the 

understanding of biological processes. 

For future research, it is recommended to expand the MC simulation to include the wave nature 

of light propagation, as well as the consideration of anisotropic properties of anatomical tissue. 

By incorporating these factors, the simulation would better represent the complexities of real-

world microscopy imaging, improving the accuracy and reliability of the generated images. 

Additionally, designing machine learning models specifically tailored to correct optical 

aberrations in compact microscopes would be a valuable avenue to explore, enabling further 

advancements in the field of microscopy. 
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In conclusion, while this study has made significant contributions in addressing the challenges of 

microscopy, such as optics aberrations and the lack of ground truth data, it is important to 

acknowledge the limitations and areas for future improvement. By refining the simulation model 

to account for the complexities of tissue properties and incorporating the wave nature of light, 

the accuracy and realism of the generated images can be further enhanced. Additionally, the 

integration of other deconvolution techniques will provide a more comprehensive understanding 

of computational deconvolution in microscopy. These advancements have the potential to 

revolutionize the field of microscopy and contribute to advancements in various scientific and 

medical disciplines, leading to improved imaging techniques and greater insights into the 

microscopic world. 
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APPENDIX 
 

1. Python script: Monte Carlo simulation 
 

''' 

Finalized version with a copy saved in finalized copy directory on 3/1/23 

functions tested produced same outputs as C code with same inputs 

''' 

 

import numpy as np 

import math 

import random 

import time 

import os 

import csv 

import matplotlib.pyplot as plt 

import scipy.io as sio 

from scipy.io import loadmat 

import plotting as pl 

import filing as fl 

import coordinates as cr 

from scipy import signal 

 

class MonteCarlo(): 

 

  def __init__(self,seed=0,n=1,threshold=0.0001,chance=0.1,d=1.,dr=1e3,nv=501): 

    self.seed = seed 

    self.n = n 

    self.threshold = threshold 

    self.chance = chance 

    self.expower = 200 * 1e-6 

    self.na = 0.5 

    self.d = d  

    self.dr = dr 

    self.zfocal = 0.1 

    self.A = [] 

    self.D = [] 

    self.T = [] 

    self.nv = nv 

    self.mp = math.floor(self.nv/2) 
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  def reflectance(self,n1,n2,cosi): 

    rf = np.zeros(len(cosi))   

    if n1 == n2: 

      return rf 

    b = 1.0 - 1e-12 

    vertical = np.where(cosi > b)[0] 

    horizontal = np.where(cosi < 1.e-6)[0] 

    slant = np.where(((cosi >= 1.e-6) & (cosi <= b)))[0] 

    sini = np.sqrt(1-cosi[slant]**2) 

    sint = (n1 / n2) * sini 

    regular = (sint < 1.0) 

    if np.any(regular): 

      sint = sint * regular 

      cost = np.sqrt(1.0 - sint**2) 

      cosp = cosi[slant] * cost - sini * sint 

      cosm = cosi[slant] * cost + sini * sint 

      sinp = sini * cost + cosi[slant] * sint 

      sinm = sini * cost - cosi[slant] * sint 

      rf[slant] = regular * (0.5 * sinm**2 * (cosm**2 + cosp**2) / (sinp**2 * cosm**2)) 

    rf[vertical] = ((n2-n1) / (n2 + n1))**2 

    rf[horizontal] = 1.0 

    rf[slant] += 1.0 * np.invert(regular) 

    return rf 

 

  def initialization(self,p,o): 

 

    cors = np.tile(np.vstack(o),self.n) 

    dirs = np.zeros((3,self.n)) 

    rsp = 0.0 

    if p['beam'] == 1: 

      rdn = np.random.uniform(size=self.n) 

      cors[0] += p['r'] * np.sqrt(rdn) 

      dirs[2] = 1.0 

      nr = p['n1'] / p['n2'] 

      rsp = pow((1.0 - nr) / (1.0 + nr),2) 

    else: 

      cosa = np.random.uniform(-1,1,self.n) 

      sina = np.sqrt(1.0 - cosa**2) 

      psi = 2.0 * math.pi * np.random.uniform(size = self.n) 

      cospsi = np.cos(psi) 
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      sign = np.where(psi < math.pi, 1, -1) 

      sinpsi = np.sqrt(1.0 - cospsi**2) * sign 

      dirs[0] = sina * cospsi 

      dirs[1] = sina * sinpsi 

      dirs[2] = cosa 

    return cors, dirs, rsp 

 

  def indexing(self,cor,offset=0): 

 

    i = np.rint(cor * self.dr + offset) 

    i = np.where(((i < 0) | (i >= self.nv)),self.nv,i).astype(int) 

    return i 

 

  def detector(self,cor,w,D): 

    i = self.indexing(cor[0],self.mp) 

    j = self.indexing(cor[1],self.mp) 

    inRange = np.where(((i < self.nv) & (j < self.nv)))[0] 

    for k in inRange: 

      D[i[k],j[k]] += w[k] 

 

  def hops(self,cors,dirs,ws,p,D): 

 

    photonAlive = np.where(ws > 0.)[0] 

    rdn = np.random.uniform(np.nextafter(0.0, 1.0), 1.0, len(photonAlive)) 

    s = -np.log(rdn) / (p['mus'] + p['mua']) 

    z = cors[2,photonAlive] + s * dirs[2,photonAlive] 

    internal = (z > 0.) 

    surface = np.invert(internal) 

    if np.any(surface): 

      uz = dirs[2,photonAlive] 

      rdn = np.random.uniform(size=len(uz)) * surface 

      ref = self.reflectance(p['n1'],p['n2'],-uz) * surface 

      escaped = (rdn > ref) * surface 

      reflected = np.invert(escaped) * surface 

       

      ss = np.abs(cors[2,photonAlive] / uz) * escaped 

      cors[0,photonAlive] += ss * dirs[0,photonAlive] 

      cors[1,photonAlive] += ss * dirs[1,photonAlive] 

      cors[2,photonAlive] += ss * dirs[2,photonAlive] 

      detected = (np.arcsin(uz) <= math.asin(self.na/p['n2'])) * escaped 

      if p['beam'] == 0 and np.any(detected): 
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        ss = self.zfocal / uz * detected 

        cors[0,photonAlive] += ss * dirs[0,photonAlive] 

        cors[1,photonAlive] += ss * dirs[1,photonAlive] 

        cors[2,photonAlive] += ss * dirs[2,photonAlive] 

        detected = np.where(detected)[0] 

        self.detector(cors[0:2,photonAlive[detected]],ws[photonAlive[detected]],D) 

    sign = (-1 * reflected + internal + escaped) if np.any(surface) else 1 

    internal = (internal + reflected) if np.any(surface) else internal 

    ws[photonAlive] *= internal      # this line is corrected on 3/3/23 

    cors[0,photonAlive] += s * dirs[0,photonAlive] * internal 

    cors[1,photonAlive] += s * dirs[1,photonAlive] * internal 

    cors[2,photonAlive] += s * dirs[2,photonAlive] * internal 

    cors[2,photonAlive] *= sign    

    dirs[2,photonAlive] *= sign 

 

  def drops(self,albedo,ws,cors,A,p): 

 

    photonAlive = np.where(ws > 0.0)[0] 

    absorb = ws[photonAlive] * (1-albedo) 

    ws[photonAlive] -= absorb  

    if p['beam'] == 1: 

      i = self.indexing(cors[0,photonAlive],self.mp) 

      j = self.indexing(cors[1,photonAlive],self.mp) 

      k = self.indexing(cors[2,photonAlive]) 

      inRange = np.where(((i < self.nv) & (j < self.nv)) & (k < self.nv))[0] 

      for h in inRange: 

        A[i[h],j[h],k[h]] += absorb[h] 

    return np.sum(absorb) 

 

  def spins(self,dirs,ws,g): 

    photonAlive = np.where(ws > 0.0)[0] 

    length  = len(photonAlive) 

    ux = dirs[0,photonAlive] 

    uy = dirs[1,photonAlive] 

    uz = dirs[2,photonAlive] 

    if g == 0.0: 

      cosa = np.random.uniform(-1,1,length) 

    elif g == 1.0: 

      cosa = np.ones(length) 

    else: 

      gr = (1.0 - g**2) / (1.0 - g + 2 * g * np.random.uniform(size=length)) 
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      cosa = (1.0 + g**2 - gr**2) / (2.0 * g) 

    sina = np.sqrt(1.0 - cosa**2) 

    psi = 2.0 * math.pi * np.random.uniform(size=length) 

    cospsi = np.cos(psi) 

    sign = np.where( psi < math.pi, 1, -1) 

    sinpsi = np.sqrt(1.0 - cospsi**2) * sign  

    slant = (1 - np.abs(uz) > 1.e-12) 

    perpendicular = np.invert(slant) 

    sign = np.where(uz < 0.0, -1, 1) 

    zr = np.where(np.abs(uz) != 1.0, np.sqrt(1-uz**2), 1.0) 

    uxx = sina * (ux * uz * cospsi - uy * sinpsi) / zr + ux * cosa 

    uyy = sina * (uy * uz * cospsi + ux * sinpsi) / zr + uy * cosa 

    uzz = -sina * cospsi * zr + uz * cosa 

    dirs[0,photonAlive] = sina * cospsi * perpendicular + uxx * slant 

    dirs[1,photonAlive] = sina * sinpsi * perpendicular + uyy * slant 

    dirs[2,photonAlive] = cosa * sign * perpendicular + uzz * slant 

 

  def roulette(self,ws): 

 

    check = np.where(np.logical_and(ws > 0.0, ws < self.threshold))[0] 

    if len(check):  # originally not verfied if check is empty (02/27) 

      rdn = np.random.uniform(size=len(check)) 

      ws[check] = np.where(rdn > self.chance, 0.0, ws[check]/self.chance) 

 

  def launch(self,p,origin): 

   

    at = 0.0 

    albedo = p['mus'] / (p['mus'] + p['mua']) 

    D = np.zeros((self.nv,self.nv)) 

    A = np.zeros((self.nv,self.nv,self.nv)) 

    cors,dirs,rt = self.initialization(p,origin) 

    ws = np.full((self.n),(1.0 - rt)) 

    while np.any(ws > 0.0): 

      self.hops(cors,dirs,ws,p,D) 

      at += self.drops(albedo,ws,cors,A,p) 

      self.spins(dirs,ws,p['g']) 

      self.roulette(ws) 

    return A if p['beam'] > 0 else D  

 

  def excitation(self,r=1): 
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    p = {'mua': 0.33,              # absorption coefficient in ,m^-1 

         'mus': 21,             # scattering coefficient in mm^-1 

         'g': 0.8,                # anisotropy 

         'n1': 1.5,              # refractive index of medium (tissue)   internal 

         'n2': 1.33,               # refractive index outside medium (air) external 

         'beam': 1,         # beam type 

         'r': 0.0, 

         'wv': 480 * 1e-6    # wavelength of excitation light 

         } 

     

    self.A = np.zeros((self.nv,self.nv,self.nv))  

    origin = np.array((0.0,0.0,0.0)) 

    self.A = self.launch(p,origin) 

   

  def emission(self,origin,r=1): 

    p = {'mua': 0.55,    #0.55         # absorption coefficient in mm^-1 

         'mus': 21,      #21          # scattering coefficient in mm^-1 

         'g': 0.82,       #0.82         # anisotropy 

         'n1': 1.5,              # refractive index of internal medium (tissue) 

         'n2': 1.33,        #1.5       # refractive index outside external medium (oil) 

         'beam': 0,         # beam type 

         'r': 0.0, 

         'wv': 530 * 1e-6    # wavelength of excitation light 

         } 

    self.D = np.zeros((self.nv,self.nv)) 

     

    print(origin.shape) 

    for i in range(len(origin)):     #self.n = int(nv[i] * nbase) 

      print(i,self.n,origin[i]) 

      self.D += self.launch(p,origin[i]) 
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2. Python script: deep learning denoising 
 

"""dpdenoiser.ipynb 

 

Automatically generated by Colaboratory. 

 

Original file is located at 

    https://colab.research.google.com/drive/1GN7D2zq6Z0vLsP4hCES7WS6WyZ6MudXv 

""" 

 

import numpy as np 

import tensorflow as tf 

from tensorflow.keras import layers 

from tensorflow.keras.models import Model 

from tensorflow import keras 

#from tensorflow.keras.datasets import mnist 

import matplotlib.pyplot as plt 

import os 

from scipy.io import loadmat 

import scipy.io as sio 

from IPython.display import clear_output 

import copy 

#import mat73 

 

images = np.load('/content/drive/MyDrive/denoise/images_2000_1e02.npy') 

xtrain, ytrain = np.split(images,2,axis=0) 

print(images.shape, xtrain.shape, ytrain.shape) 

 

testset = np.load('/content/images_testset20.npy') 

xtest, ytest = np.split(testset,2,axis=0) 

print(testset.shape, xtest.shape, ytest.shape) 

 

"""import shutil 

shutil.rmtree('/content/data') 

""" 

 

def preprocess(array): 

  """normalizes supplied array and reshapes it into appropriate format""" 

  if np.max(array) > 1: 

    #array = array.astype("float32") / 255.0 

    array = array.astype("float32")  / (np.max(array)) 
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    #array = np.log(1e3 * array + 1) / np.max(array) 

  else: 

   # array = array.astype("float32") / np.max(array) 

    array = array.astype("float32") / np.max(array) 

  array = np.reshape(array, (len(array), array.shape[1], array.shape[2], 1)) #size, channel 

  return array 

def display(array1, array2, array3): 

  """Displays ten random iamges from each array""" 

  n,c = 1,3 

  indices = np.random.randint(min(len(array1),len(array2),len(array3)), size=n) 

  images1 = array1[indices, :] 

  images2 = array2[indices, :] 

  images3 = array3[indices, :] 

  plt.figure(figsize = (20,4)) 

  h,w = array1.shape[1],array1.shape[2] 

  for i, (image1, image2,image3) in enumerate(zip(images1, images2,images3)):  # enumerate() returns count 

and value, zip() pairs one item from each array as a pair (or tuple for multiple arrays) 

    ax = plt.subplot(n, c, i+1) 

    plt.imshow(image1.reshape(h,w)) 

    #plt.gray() 

    ax.get_xaxis().set_visible(False) 

    ax.get_yaxis().set_visible(False) 

    ax = plt.subplot(n, c, i+2) #i+1+n) 

    plt.imshow(image2.reshape(h,w)) 

    #plt.gray() 

    ax.get_xaxis().set_visible(False) 

    ax.get_yaxis().set_visible(False) 

    ax = plt.subplot(n, c, i+3) #i+1+n*2) 

    plt.imshow(image3.reshape(h,w)) 

    #plt.gray() 

    ax.get_xaxis().set_visible(False) 

    ax.get_yaxis().set_visible(False) 

  plt.show() 

 

print(xtrain.dtype, np.max(xtrain), np.min(xtrain)) 

print(ytrain.dtype, np.max(ytrain), np.min(ytrain)) 

xtrain = preprocess(xtrain) 

ytrain = preprocess(ytrain) 

xtest = preprocess(xtest) 

ytest = preprocess(ytest) 

print(xtrain.dtype, np.max(xtrain), np.min(xtrain)) 
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print(ytrain.dtype, np.max(ytrain), np.min(ytrain)) 

 

input = layers.Input(shape=(xtrain.shape[1],xtrain.shape[2],1)) 

fc = 32 

k = 3 

# Encoder 

x = layers.Conv2D(fc,(k,k), activation="relu", padding="same")(input) 

x = layers.MaxPooling2D((2,2), padding = "same")(x) 

x = layers.Conv2D(fc*2,(k,k), activation="relu", padding="same")(x) 

x = layers.MaxPooling2D((2,2), padding = "same")(x) 

x = layers.Conv2D(fc*4,(k,k), activation="relu", padding="same")(x) 

x = layers.MaxPooling2D((2,2), padding = "same")(x) 

# Decoder 

x = layers.Conv2DTranspose(fc*4, (k,k), strides=2, activation="relu", padding="same")(x) 

x = layers.Conv2DTranspose(fc*2, (k,k), strides=2, activation="relu", padding="same")(x) 

x = layers.Conv2DTranspose(fc, (k,k), strides=2, activation="relu", padding="same")(x) 

x = layers.Conv2D(1,(k,k), activation="sigmoid", padding="same")(x) 

# autoencoder 

denoiser = Model(input,x)  # the model 

#denoiser.compile(optimizer="adam", loss="binary_crossentropy")#, metrics=['accuracy']) 

optimizer = tf.keras.optimizers.Adam(learning_rate=1e-4) 

denoiser.compile(optimizer=optimizer, loss = "binary_crossentropy") 

denoiser.summary() 

 

class showCallbacks(tf.keras.callbacks.Callback): 

  def on_epoch_end(self, epoch, logs = None): 

    clear_output(wait=True) 

    predict = denoiser.predict(xTrain) 

    print(f'epoch {epoch+1}') 

    display(xTrain,predict,yTest) 

 

callback = [keras.callbacks.EarlyStopping(monitor='val_loss', 

                                          min_delta=.5, 

                                          patience=5, 

                                          verbose=1), 

            showCallbacks()] 

 

# test model configuration on traing data( 

denoiser.fit( 

    x = xtrain, 

    y = ytrain, 
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    epochs=1, 

    batch_size = 128, 

    validation_split=0.232, 

    shuffle=True, 

    #callbacks = callback, 

    #validation_data = (xValidation, xValidation) 

) 

 

predictions = denoiser.predict(xtest) 

display(xtest, predictions, ytest) 

 

history = denoiser.fit( 

    x = xtrain, 

    y = ytrain, 

    epochs = 1000, 

    batch_size = 128, 

    validation_split = 0.232, 

    shuffle=True, 

    #callbacks = callback, 

    #validation_data = (xValidation, xValidation) 

) 

 

predictions = denoiser.predict(xtest) 

display(xtest,predictions,ytest) 

print(predictions.shape) 

 

import matplotlib.pyplot as plt 

print(history.history.keys()) 

#acc = history.history['accuracy'] 

#val_acc = history.history['val_accuracy'] 

loss = history.history['loss'] 

val_loss = history.history['val_loss'] 

epochs = range(1, len(loss) + 1) 

#epochs = range(501,1001) 

#plt.plot(epochs, acc, 'b', label='Training acc') 

#plt.plot(epochs, val_acc, 'r', label='Validation acc') 

#plt.title('Training and validation accuracy') 

#plt.legend() 

 

plt.figure() 

plt.plot(epochs, loss, 'b', label='Training loss') 
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plt.plot(epochs, val_loss, 'r', label='Validation loss') 

plt.title('Training and validation loss') 

plt.legend() 

 

plt.show() 

 

i = 19 

print(predictions.shape,ytest.shape) 

print(tf.image.ssim(predictions[i].astype('float32'),ytest[i].astype('float32'),1.0)) 

print(tf.image.ssim(predictions[i].astype('float32'),xtest[i].astype('float32'),1.0)) 

print(tf.image.ssim(ytest[i].astype('float32'),xtest[i].astype('float32'),1.0)) 

 

import math 

def signaltonoise(a): 

    a = a.flatten() 

    return (10 * math.log10(a.mean() / a.std())) 

 

snrNoisy = signaltonoise(xtest[i]) 

snrTarget = signaltonoise(ytest[i]) 

snrPredict = signaltonoise(predictions[i]) 

print(snrNoisy, snrTarget, snrPredict) 

 

clean = np.load('/content/somas_testset20.npy') 

print(clean.shape) 

img = [] 

for i in range(clean.shape[0]): 

  img.append(np.sum(clean[i],axis=2)) 

img = preprocess(np.array(img)) 

clean = np.zeros((img.shape[0],120,120,img.shape[3])) 

clean[:,10:110,10:110,:] = img 

print(clean.shape) 

 

i = 0 

print(predictions.shape,ytest.shape) 

 

print(tf.image.ssim(predictions[i].astype('float32'),clean[i].astype('float32'),1.0)) 

print(tf.image.ssim(ytest[i].astype('float32'),clean[i].astype('float32'),1.0)) 

print(tf.image.ssim(xtest[i].astype('float32'),clean[i].astype('float32'),1.0)) 

 

print(tf.image.psnr(predictions[i].astype('float32'),clean[i].astype('float32'),1.0)) 

print(tf.image.psnr(ytest[i].astype('float32'),clean[i].astype('float32'),1.0)) 
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print(tf.image.psnr(xtest[i].astype('float32'),clean[i].astype('float32'),1.0)) 

 

img2 = loadmat('/content/somas_1_1e+02_292200')['0'] 

img3 = loadmat('/content/somas_1_1e+03_284777')['0'] 

img4 = loadmat('/content/somas_1_1e+04_271509')['0'] 

img5 = loadmat('/content/somas_1_1e+05_269638')['0'] 

img6 = loadmat('/content/somas_1_1e+06_2818')['0'] 

x1,x2 = 30,150 

y1,y2 = 22,142 

images = 

np.stack((img2[x1:x2,y1:y2],img3[x1:x2,y1:y2],img4[x1:x2,y1:y2],img5[x1:x2,y1:y2],img6[x1:x2,y1:y2]),axis=0

) 

print(images.shape) 

 

plt.imshow(images[0]) 

plt.show() 

 

print(images.shape) 

print(images[0].shape) 

 

images = preprocess(images) 

 

print(tf.image.ssim(images[0],images[1],1.0)) 

print(tf.image.ssim(images[1],images[2],1.0)) 

print(tf.image.ssim(images[2],images[3],1.0)) 

print(tf.image.ssim(images[3],images[4],1.0)) 

print(tf.image.ssim(images[0],images[4],1.0)) 

print(tf.image.ssim(images[1],images[4],1.0)) 

print(tf.image.ssim(images[2],images[4],1.0)) 

print(signaltonoise(images[0]),signaltonoise(images[1]),signaltonoise(images[2]),signaltonoise(images[3]),s

ignaltonoise(images[4])) 

 

#fn = 'denoiser2000.h5' 

#denoiser.save(fn) 

#denoiser = keras.models.load_model(fn) 

print(xtest.shape) 

print(images.shape) 

i = 2 

denoised = denoiser.predict(xtest) 

plt.imshow(denoised[i]) 

plt.show() 
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plt.imshow(ytest[i]) 

plt.show() 

 

from keras import models 

layerOutputs = [layer.output for layer in denoiser.layers[:8]] 

activationModel = models.Model(inputs=denoiser.input,outputs=layerOutputs) 

 

activations = activationModel.predict(xTest) 

 

singleLayer = activations[5] 

print(singleLayer.shape) 

plt.matshow(singleLayer[0,:,:,0], cmap='gray') 

 

layerNames = [] 

for layer in denoiser.layers[:8]: 

  layerNames.append(layer.name) 

imagePerRow = 32 

for layerName, layerActivation in zip(layerNames, activations): 

  nfeatures = layerActivation.shape[-1] 

  print(nfeatures) 

  size = layerActivation.shape[1] 

  ncols = nfeatures // imagePerRow 

  displayGrid = np.zeros((size * ncols, imagePerRow * size)) 

  for col in range(ncols): 

    for row in range(imagePerRow): 

      channelImage = layerActivation[0,:,:,col*imagePerRow + row] 

      channelImage -= channelImage.mean() 

      channelImage /= channelImage.std() 

      channelImage *= 64 

      channelImage += 128 

      channelImage = np.clip(channelImage, 0, 255).astype('uint8') 

      displayGrid[col*size: (col+1)*size, 

                  row*size: (row+1)*size]=channelImage 

  scale = 1./size 

  plt.figure(figsize=(scale*displayGrid.shape[1], 

                      1)) 

  plt.title(layerName) 

  plt.grid(False) 

  plt.imshow(displayGrid,aspect='auto',cmap='viridis')
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