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ABSTRACT

A theorem commonly known as the Discrete Pancake Theorem states that for two

finite disjoint sets S and T of points in a plane where S ∪T contains no three collinear

points, there exists a line that simultaneously bisects |S| and |T | within an error of

at most one. This thesis considers a more general situation in which each point is

assigned two non-negative weights and, instead of simply bisecting the plane to obtain

a balance in the number of points, we prove there exists a line that simultaneously

balances weight one and weight two accumulations within a prescribed tolerance.

The Discrete Pancake Theorem is shown to be a special case of this Dual-Balanced

Theorem, and a computational implementation of this generalization is applied to

various examples.

xiv



1 Introduction

The process of congressional and state legislative redistricting is a political un-

dertaking that has the potential to create imbalances in the political landscape. A

United States Supreme Court ruling in the 1964 case Wesberry v. Sanders interpreted

Article I Section II of the United States Constitution to mean that “as nearly as is

practicable, one person’s vote in a congressional election is to be worth as much as

another’s [27].” This ruling, which has been further supported by subsequent Supreme

Court decisions [6,7,10,19], solidified the understanding that considering population

balance is paramount when redistricting congressional districts.

Many states reference a similar population balance requirement for state legislative

districts. For example, Article IV Section II of the North Dakota State Constitution

articulates that “the legislative assembly shall guarantee, as nearly as is practicable,

that every elector is equal to every other elector in the state in the power to cast

ballots for legislative candidates [16].” See the table in [11] for links to constitutions

of other states in the United States and their reference to different criteria such as

equal population, race/ethnicity, contiguity, compactness, etc. The United States

Supreme Court has also decided that race cannot be the ultimate motivating factor

in the determination of district lines [1, 4, 5, 15,21].

1.1 Statement of the Problem

Given a region where each data point is assigned two non-negative numerical

weights, we want to construct a directed line so that the region is balanced with

respect to both weights.

Take, for example, this hypothetical scenario: After the 2020 census, a region
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underwent the process of redistricting, and the districts were created to satisfy the

population balance requirement. However, because of unforeseen or perhaps un-

considered large population shifts over the course of 7-8 years, the population was

unreasonably imbalanced among districts in 2028. Could there be a way to redistrict

a population so as to also consider future population growth? If given a reasonable

prediction of future population growth, could we establish districts that would both

necessarily balance population now and balance a predicted population after a set

period of time?

1.2 Definition of Balance and Dual-Balance

We now define the meaning of balance and dual-balance, both being essential to

the purpose of this paper.

Definition 1.1: Balance

A directed line balances a region with respect to weight x values if the absolute

difference of the sum of the weight x values on one side of the directed line

and the sum of the weight x values on the other side of the directed line is less

than or equal to the maximum weight x value.

Definition 1.2: Dual-balance

A directed line dual-balances a region with respect to weight y and weight z

values if the directed line balances the region both with respect to weight y

values and with respect to weight z values.

2



Figure 1: Dual-balancing example

As an example, consider the region above in Figure 1. For every ordered pair

(a, b), the first coordinate a represents the weight one value of the corresponding

point, and the second coordinate b represents the same point’s weight two value.

The directed line in Figure 1 separates the region into Side A and Side B, where

each side accumulates weight one and weight two values. Note that the maximum

weight one value is nine, and the maximum weight two value is eight. With the

information given in Table 1, we see by definition that the directed line in Figure 1

dual-balances the region.

Table 1: Summary of weight accumulations by side in Figure 1

Side Sum of weight one values Sum of weight two values

A 25 18

B 22 21

|Difference| 3 3
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1.3 Use of Census Blocks

In order to satisfy equal population requirements for congressional and state leg-

islative districts as determined by state legislatures and judicial law [3, 10, 11], data

must be gathered in order to ascertain population concentrations. The United States

census, performed every ten years, gathers district, regional, and statewide informa-

tion about population and other demographics. Census blocks, the “smallest level of

geography you can get basic demographic data for, such as total population by age,

sex, and race [20],” are determined by an automated process with boundaries that

can change over time [20].

Census blocks, many of which do not have any population, are combined into

block groups, one of which is a “combination of census blocks that is a subdivision

of a census tract or block numbering area [23].” Relatively permanent census tracts

can be utilized in the formation of districts based on demographic information such

as population [23,24]. As an example, in the 2010 census, North Dakota had 133,769

census blocks, 572 block groups, and 205 census tracts [25].

1.4 Region with the Usual Conditions

Consider a finite collection of points αi in a plane, where i ∈ n = {1, 2, 3, . . . , n}.

If it is not already the case, adjust the αi locations only as necessary so that for

every distinct j, k, l ∈ n, the points αj , αk, and αl are not collinear. Additionally, if

it is not already the case, adjust the αi locations only as necessary so that for every

distinct r, s ∈ n, the points αr and αs are not located on the same vertical line.

Finally, every αi in the region stores the same finite number of non-negative weights.

In this paper, we will refer to a region constructed in this fashion as a region with

4



the usual conditions.

Though the Dual-Balanced Theorem proves a more generalized result, note that

this region definition allows for the consideration of census blocks. In particular,

we may consider a finite collection of n census blocks in a finite region. For every

census block ci, where i ∈ n, we could let αi be a representative point of ci located

at the census block’s centroid. We would certainly be able to adjust the representa-

tive points as necessary to satisfy the non-collinear requirements. Furthermore, the

finite number of non-negative weights could be any census-provided demographic

information from the particular census blocks.

1.5 Representative Points for Census Blocks

To achieve the outcome of a district division given a group of census blocks, we

assign every census block ci a representative point αi that stores information from a

finite number of non-negative weights. For the main result of this paper, we consider

αi being assigned two weights (w1i and w2i).

Figure 2: Census block c4 with demographic information

In Figure 2, representative point α4 of the census block c4 stores two weight

values. In particular, α4 contains the information that the weight one value of total

5



population in c4 is 653, and the weight two value of number of people ages 18-34 in c4

is 108. By considering representative points instead of census block boundaries, we

are able to relate a group of census blocks to a region satisfying the usual conditions.

Figure 3: Directed line in a region with census blocks

Directed lines, such as the one seen in Figure 3, will be used to attempt to sep-

arate a region into balanced partitions. In the special case of census blocks and

redistricting, note that the representative points and directed line are merely tools

to achieve the ultimate outcome of a district division. Such an example is shown in

Figure 4.

6



Figure 4: Resulting polygonal district division

Table 2: Summary of weight accumulations by side in Figure 4

Side Sum of weight one values Sum of weight two values

A 24 13

B 27 21

|Difference| 3 8

By examining the coordinates in Figure 4, we note that the weight one maximum

value is nine, whereas the maximum weight two value is seven. We can see in Table 2

that although the directed line balances weight one values in the region, weight two

values are imbalanced. Thus, the directed line seen in Figure 3 does not dual-balance

the region.

7



1.6 Summary of Notation Used

For the remainder of this paper, the following notation will be used for a specified

region with the usual conditions.

ε1 : Maximum weight one value

ε2 : Maximum weight two value

ε3 : Maximum weight three value

Sa : Sub-region strictly to the left of the directed line

Sb : Sub-region strictly to the right of the directed line

S1a : Sum of weight one values assigned to Sa

S2a : Sum of weight two values assigned to Sa

S3a : Sum of weight three values assigned to Sa

S1b : Sum of weight one values assigned to Sb

S2b : Sum of weight two values assigned to Sb

S3b : Sum of weight three values assigned to Sb

ci : A census block in the region

αi : A point in the region

wji : The jth weight value for point αi

S1: Sum of all weight one values in the region

S2: Sum of all weight two values in the region

S3: Sum of all weight three values in the region

x1: S1a − S1b; difference in weight one accumulations between Sa and Sb

x2: S2a − S2b; difference in weight two accumulations between Sa and Sb

x3: S3a − S3b; difference in weight three accumulations between Sa and Sb

8



1.7 Tolerance Level for Balance

The Dual-Balanced Theorem will show that any region with the usual conditions

can be dual-balanced by at least one directed line. With the notation given above,

this means there exists a line so that

1. |x1| = |S1a − S1b| ≤ ε1, and

2. |x2| = |S2a − S2b| ≤ ε2.

Given the example below of a non-trivial region satisfying the usual conditions, we

see there can be issues for a balance tolerance less than the maximum weight value.

In particular, with each weight one value being ten in Figure 5, there does not exist

a line so that |x1| = |S1a − S1b| < 10. This shows that our defined tolerance level

for balance is reasonable.

Figure 5: Non-trivial example showing reasonableness of defined tolerance level for
balance
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1.8 Initial Weight-One Balancing

Consider any arbitrary region R with the usual conditions, along with the weight

one values w1i for each point αi. Note that in the special case of considering census

blocks, we will disregard the boundaries of the census blocks and focus on the rep-

resentative points until the desired directed line is constructed.

Figure 6: Initial weight-one balancing primary construction

To begin the initial weight-one balancing process, we first construct a vertical

directed line l directed up so that all points in the region are to the right. It is

certainly the case that the entire population S1 is strictly to the right of the directed

line, or in Sb (see Figure 6). As the vertical directed line l horizontally translates to

the right, as shown in Figure 7, more and more weight one values will be accumulating

on the left side of the directed line, or in Sa.

Since every vertical line in region R contains at most one αi by assumption, there

must be a point αp ∈ R for p ∈ n such that if line l crosses αp, it is the case for the

first time that the sum of the weight one values of points strictly to the left of line l

is greater than the sum of the weight one values of points strictly to the right. Note
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Figure 7: Initial weight-one balancing horizontal translation

that since each αi can have a different weight one value, the point αp does not have

to be centrally located.

Let the directed vertical line l contain αp. Also let S′
1a denote the sum of the

weight one values of points strictly to the left of line l, and let S′
1b denote the sum

of the weight one values of points strictly to the right of line l. The only weight one

value not assigned to either S′
1a or S′

1b is w1p, the weight one value of αp. Figure 8

gives an illustration of this step.

Figure 8: Directed line in initial weight-one balancing containing αp before w1p

assignment
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To conclude the initial weight-one balancing process, we will assign w1p to S1a if

S′
1a ≤ S′

1b, and we will assign w1p to S1b if S′
1a > S′

1b.

Note that by definitions 1.3, 1.4, and 1.5 below, the initial weight-one balancing

process generates the inequalities

S′
1a + w1p > S′

1b and S′
1b + w1p ≥ S′

1a.

Because an initial weight-one balancing process will be regularly assumed, these

consequential inequalities will prove to be useful in upcoming proofs.

Definition 1.3: αp

Given a vertical directed line directed up in a region with the usual conditions,

initially constructed so all points are to the right and followed by a rightward

horizontal translation, αp is the point in the region such that if the directed

line shifts past it, for the first time it is the case that the sum of the weight

one values of points strictly to the left of the directed vertical line is greater

than the sum of the weight one values of points strictly to the right.

Definition 1.4: S′
1a

The sum of the weight one values of points strictly to the left of the directed

vertical line directed up that contains αp

Definition 1.5: S′
1b

The sum of the weight one values of points strictly to the right of the directed

vertical line directed up that contains αp
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Definition 1.6: Initial weight-one balancing

In a region with the usual conditions, the construction of a vertical directed

line directed up that contains αp, where w1p is assigned to S1a if S′
1a ≤ S′

1b,

and w1p is assigned to S1b if S′
1a > S′

1b

1.9 Assigning Weight Values to Sa and Sb

The directives below will be adhered to when considering whether weight values will

be assigned to Sa or Sb.

1. If a point αi is completely contained in a side (either Sa or Sb), then the weight

values for αi will be assigned to that side.

2. If a point αi is contained on the directed line between Sa and Sb, then the

weight values for αi can be assigned to either side of the directed line, though

all weights for αi must be assigned to the same side.

3. A point αi can only switch sides by decision during a clockwise rotation when

there are two points on the directed line.

4. If αp is assigned to Sa after an initial weight-one balancing process, then αp

is assigned to Sb when the directed line contains αp and is vertically directed

down. If αp is assigned to Sb after an initial weight-one balancing process,

then αp is assigned to Sa when the directed line contains αp and is vertically

directed down.

Consider the example in Figure 9, where the directed line is rotating clockwise

about point L. By directive one above, the weight value for point J is assigned to
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Sa, and the weight values for points K and M are assigned to Sb. In Table 3, we see

the weight value for point L is assigned to Sa. By directive three, the weight value

for point L cannot switch sides by decision until the directed line intersects another

point.

Figure 9: Clockwise rotation about point L

Sub-region Point assignment Weight total

Sa J , L 10

Sb K, M 5

|Difference| 5

Table 3: Summary of weight accumulations by side in Figure 9

As the directed line rotates clockwise about L, it eventually intersects point K.

This moment is shown in Figure 10, where by directive three above we now can

switch the designations of K and L by decision. In Table 4, we see both points K

and L on the directed line were assigned to Sb. Since the maximum weight one value

is eight, we have maintained weight one balance thus far in the clockwise rotation.
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Figure 10: Directed line rotating clockwise contains two points

Sub-region Point assignment Weight total

Sa J 8

Sb K, L, M 7

|Difference| 1

Table 4: Summary of weight accumulations by side in Figure 10

At the moment shown in Figure 10, continuing the clockwise rotation either im-

plies rotating about point K or about point L. Though either are legitimate possibil-

ities, we can see in Figure 11 that the clockwise rotation continues by rotating about

point K. Note in Table 5 that a clockwise rotation about K results in a balanced

region, whereas a clockwise rotation about point L would not.
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Figure 11: Clockwise rotation continues about point K

Sub-region Point assignment Weight total

Sa J 8

Sb K, L, M 7

|Difference| 1

Table 5: Summary of weight accumulations by side in Figure 11

16



1.10 Summary

The main result of this paper, the Dual-Balanced Theorem, proves that any region

with the usual conditions can be dual-balanced by at least one line. Processes such

as an initial weight-one balancing and the assignment of weight values have been

established, along with the definitions of balance, dual-balance, and a region with

the usual conditions. Acceptable clockwise rotations of a directed line are defined

to be rotations about a point, and the point about which to rotate can be chosen

when two points lie on the directed line. It was shown through an example that a

tolerance level for balance less than the one described can cause problems in a region

with the usual conditions, proving the given tolerance level for balance is reasonable.

Finally, a summary of the notation to be used was listed.

In the United States, population balance is necessary in the process of redis-

tricting, both for congressional and state legislative districts. It was shown that

redistricting and the consideration of census blocks provide an application where the

Dual-Balanced Theorem can be utilized.
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2 Review of Literature

Political redistricting, when non-biased, can be considered a form of balanced

partitioning. As a result, there is a wide variety of literature pertaining to this

topic, ranging from the pure mathematical interest of creating balanced partitions of

points in a plane to the prevention of redistricting in a way so as to create an unfair

advantage for one political party. Since our main result pertains to dual-balancing a

region with the usual conditions, we naturally first consider a proof of the Pancake

Theorem.

2.1 Borsuk-Ulam Theorem in One Dimension

Consider two disjoint subsets P1, P2 ⊆ R2. The Pancake Theorem asserts the

existence of a line that simultaneously bisects P1 and P2 into regions of equal area. To

prove this, we will first show a proof for the Borsuk-Ulam Theorem in one dimension.

Lemma 2.1

If ϕ is adjusted as necessary so that 0 ≤ ϕ < 2π, then the function h : S1 →

[0, 2π) given by h(cos ϕ, sin ϕ) = ϕ is a homeomorphism.

Proof. Consider the function h : S1 → [0, 2π) given by h(cos ϕ, sin ϕ) = ϕ, where ϕ

was adjusted as necessary so that 0 ≤ ϕ < 2π. Note that [0, 2π) is Hausdorff, being

a subspace of Hausdorff R. We also know S1, being closed and bounded in R2, is

compact in R2.

Let t ∈ [0, 2π). Then h(cos t, sin t) = t, implying h is surjective.

Consider any h(cos ϕ1, sin ϕ1) = h(cos ϕ2, sin ϕ2), where ϕ1 and ϕ2 have been

adjusted as necessary. Since h(cos ϕ1, sin ϕ1) = ϕ1, and h(cos ϕ2, sin ϕ2) = ϕ2, it
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follows that ϕ1 = ϕ2, showing h is bijective.

Let x(λ) = (cos λ, sin λ) ∈ S1, where λ was adjusted as necessary. Consider any

neighborhood V of h(cos λ, sin λ) = λ. Then there exists some basis element (a, b)

in the subspace topology on [0, 2π) so that λ ∈ (a, b) ⊂ V . But then x(a, b) is a

neighborhood of x(λ) so that

h(x(a, b)) = (a, b) ⊂ V ,

proving h is continuous.

Figure 12: Continuous function h

Let C be any closed set in S1. It follows that C is compact in S1 as closed sets in

compact spaces are compact. Since h is continuous, h(C) is compact in [0, 2π). With

h(C) being compact in Hausdorff space [0, 2π), h(C) is closed in [0, 2π), showing

h−1 is also continuous.

Proving h to be bijective and continuous so that h−1 is also continuous, we have

shown that h is a homeomorphism.
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Theorem 2.2: Borsuk-Ulam Theorem in One Dimension

If f : S1 → R is continuous, then there exists an x ∈ S1 so that f(−x) =

f(x).

Proof. Let f : S1 → R be continuous, and define p(θ) : [0, 2π) → S1 so that

p(θ) = (cos θ, sin θ). By Lemma 2.1, p is continuous.

Note that f ◦ p : [0, 2π) → R is a continuous function as a composition of con-

tinuous functions is continuous. If we define g(θ) : [0, 2π) → R so that g(θ) =

(f ◦ p)(θ + π)− (f ◦ p)(θ), then g is also continuous. Furthermore, g(0) = −g(π),

as

−g(π) = −[(f ◦ p)(0)− (f ◦ p)(π)]

= (f ◦ p)(π)− (f ◦ p)(0)

= g(0).

Since f ◦ p is continuous, [0, 2π) is a connected space, and since R is an ordered set

in the order topology, we can utilize the Intermediate Value Theorem. In particular,

g(π) = g(π), g(0) = −g(π), and, as a result, there exists some 0 < r < π so that

g(r) = 0. Since g(r) = (f ◦ p)(r + π)− (f ◦ p)(r), it follows that

0 = (f ◦ p)(r + π)− (f ◦ p)(r)

(f ◦ p)(r) = (f ◦ p)(r + π)

f [p(r)] = f [p(r + π)].
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Note f [p(r)] = f(cos r, sin r), and

f [p(r + π)] = f [(cos(r + π), sin(r + π)]

= f(− cos r,− sin r)

= f [−(cos r, sin r)].

By transitivity, we have

f [p(r)] = f [p(r + π)]

f(cos r, sin r) = f [−(cos r, sin r)].

Consequentially, as (cos r, sin r) = x for some x ∈ S1, we have found a value x ∈ S1

so that f(−x) = f(x).

2.2 Proof of the Pancake Theorem

We now develop an appropriate continuous function f : S1 → R to prove the

Pancake Theorem.

Theorem 2.3: Pancake Theorem

If P1, P2 are disjoint subsets in R2, then there exists a line l that simultaneously

bisects both P1 and P2 into regions of equal area.

Proof. Let P1 and P2 be disjoint subsets in R2. Consider the unit circle S1, and let

x = (cos ϕ, sin ϕ) ∈ S1 with ϕ adjusted as necessary so that 0 ≤ ϕ < 2π. The x1 =

cos ϕ and y1 = sin ϕ coordinates of x on the unit circle can be utilized as coordinates

of a unit vector ⟨x1, y1⟩ with slope tan ϕ. Furthermore, for any 0 ≤ ϕ < 2π, there
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exists a directed line l(ϕ) with slope tan ϕ so that there is an equal amount of area

of P1 on either side of the line. Figures 13a and 13b show examples of two such lines

l(ϕ1) and l(ϕ2) for a given P1 and for directions ϕ1 and ϕ2.

(a) Line l(ϕ1) for direction ϕ1 (b) Line l(ϕ2) for direction ϕ2

Figure 13: Two examples of lines with an equal amount of Area(P1) on either side

Define h1 : S1 → [0, 2π) so that h1(cos ϕ, sin ϕ) = ϕ, where ϕ was adjusted as

necessary to satisfy 0 ≤ ϕ < 2π. By Lemma 2.1, h1 is continuous. Next, define

g1 : [0, 2π) → R so that g1(ϕ) = Area(P2 ∩ R[l(ϕ)]), where R[l(ϕ)] denotes the

right side of the line l(ϕ).

Let σ ∈ [0, 2π), and consider any neighborhood Vσ of Area(P2 ∩R[l(σ)]) ∈ R.

Then there exists some basis element (c, d) in the standard topology on R so that

Area(P2 ∩R[l(σ)]) ∈ (c, d) ⊂ Vσ. Certainly there are perturbations small enough

about σ so that the image g1(σ1, σ2) is contained in (c, d), proving g1 is continuous.
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Figure 14: Continuous function g1

We have shown h1 : S1 → [0, 2π) and g1 : [0, 2π) → R are both continuous.

Thus, f1 := g1 ◦ h1 is also continuous being the composition of continuous functions.

Note that f1 : S1 → R, and by the Borsuk-Ulam Theorem above, there must exist

a y = (cos µ, sin µ) ∈ S1 so that f1(−y) = f1(y). Adjust µ as necessary so that

0 ≤ µ < 2π. By definition of the function f1, this implies there exists a y so that

f1(−y) = f1(y)

g1 ◦ h1(−y) = g1 ◦ h1(y)

g1 ◦ h1(−(cos µ, sin µ)) = g1 ◦ h1(cos µ, sin µ)

g1 ◦ h1(− cos µ,− sin µ)) = g1 ◦ h1(cos µ, sin µ)

g1 ◦ h1(cos(π + µ), sin(π + µ)) = g1 ◦ h1(cos µ, sin µ).
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If we adjust π + µ in the usual way as necessary to be µ′, then

g1 ◦ h1(cos(π + µ), sin(π + µ)) = g1 ◦ h1(cos µ, sin µ)

g1 ◦ h1(cos(µ′), sin(µ′)) = g1 ◦ h1(cos µ, sin µ)

g1(µ
′) = g1(µ)

Area(P2 ∩R[l(µ′)]) = Area(P2 ∩R[l(µ)]).

Furthermore, this means there exists a line l(µ) so that

Area(P2 ∩L[l(µ)]) = Area(P2 ∩R[l(µ)]).

Since line l(µ) by construction also bisects P1, we have determined a line l(µ) that

simultaneously bisects both P1 and P2 into regions of equal area.

In Figure 15, we see an example of two disjoint subsets in R2 with 12 lines that

bisect P1 into regions of equal area. Specifically, we will consider l(0), l(π/6), l(π/3),

l(π/2), . . . , l(5π/3), and l(11π/6). Though each of these lines bisects P1, their effect

on P2 differs.
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Figure 15: Example of disjoint P1, P2 ∈ R2 with 12 lines that bisect P1

Note that the image of g1 (Area(P2 ∩R[l(ϕ)])) has an upper bound b ≤ Area(P2)

and a lower bound a ≥ 0. In Figure 16, we see an approximation of the relationship

between the pre-image and image of g1 based on the example in Figure 15. Every

such graph will have the same bounded and continuous features.

Figure 16: Approximate relationship between pre-image and image of g1 based on
Figure 15
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2.3 Generalizations of the Discrete Pancake Theorem

In Theorem 2.3, the continuous version of the Pancake Theorem is proven. Instead

of determining a line that simultaneously balances areas of two disjoint sub-regions

P1 and P2, the discrete version of the Pancake Theorem considers two disjoint sets

of points S and T in a plane with no three collinear points, and the determination

of a line that simultaneously balances |S| and |T | to within an error of at most

one. Though the continuous version of the Pancake Theorem is more well-known,

utilizing the Pancake Theorem in a discrete manner is not uncommon, and certain

generalizations of the Discrete Pancake Theorem have been established.

Both generalizations of the Discrete Pancake Theorem that follow involve sepa-

rating a plane containing two disjoint sets of points into partitions which contain a

specified number of points from each set. In [9], two disjoint sets of points S and T in

a plane are considered, where S ∪ T contains no three collinear points. The number

of points in S and T are constrained to be of the form |S| = 2q and |T | = mq, where

m ≥ 2 and q ≥ 1 are integers. It is proven that the collection of points S ∪ T can be

partitioned into q disjoint convex hulls so that each convex hull contains two points

from S and m points from T .

(a) S ∪T with S = {red points} and T =
{blue points} (b) Bisecting line l for S ∪ T

Figure 17: Example for generalization in [9]
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In Figure 17a, a plane has been generated with S representing the set of all red

points and T representing the set of all blue points. By construction, S and T are

disjoint sets. Furthermore, |S| = 12 with q = 6 and |T | = 30 with m = 5.

When considering q being even in the inductive step of the proof in [9], the Pancake

Theorem was used to show there exists at least one line simultaneously bisecting |S|

and |T |. An example of this is shown in Figure 17b. Note that the number of red

points to the right and to the left of the directed line l is S ∩R(l) = S ∩ L(l) = 6,

and that the number of blue points to the right and to the left of the directed line l

is T ∩R(l) = T ∩L(l) = 15. Kaneko and Kano [9] then utilized a strong inductive

hypothesis to prove the desired disjoint convex hulls exist in the case where q is even.

Figure 18 demonstrates the desired partitioning of the example plane into six

disjoint convex hulls, where each convex hull contains two red points and five blue

points.

Figure 18: Desired partitions in example for generalization in [9]

For the inductive step where q is odd, Kaneko and Kano [9] demonstrated the

desired convex hulls exist through the exploration of cases and the use of other
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proven lemmas. Thus, with certain given constraints, [9] is able to show that the

Discrete Pancake Theorem can be generalized.

An even more generalized version of the Discrete Pancake Theorem is given in [2].

The same noncollinear assumptions are made about the points in the plane, though

in this generalization |S| = gn and |T | = gm, where m ≥ 2, n ≥ 2, and g is a positive

integer. Note these constraints are similar to those in [9], though in [9] the value of

n was pre-determined to be two. A similar goal is to be achieved, namely separating

the points in the plane into g disjoint convex polygons so that each disjoint convex

polygon contains n points from S and m points from T .

Bespamyatnikh, Kirkpatrick, and Snoeyink [2] make use of what they call an

equitable 2-cutting and an equitable 3-cutting, with the latter having greater influence

in the remainder of the proof. An equitable 3-cutting separates the plane into three

partitions by constructing three rays from a common endpoint. Furthermore, each

ith partition contains a proportional number of points from S and points from T ,

namely gin points from S and gim points from T . It naturally follows that for these

0 ≤ g1, g2, g3 < g, we have g1 + g2 + g3 = g. A critical theorem in [2] - Theorem 2

- proves there exists an equitable 3-cutting of S ∪ T for any gn points from S and

gm points from T where g ≥ 2. To prove this critical theorem, Bespamyatnikh et

al. [2] utilizes the Pancake Theorem when g = 2, and a combination of lemmas for

all other cases.

To prove the desired result, Bespamyatnikh et al. [2] explain that Theorem 2 can

be used recursively in each subsequent partition to attain the outcome where each

ith partition contains n points from S and m points from T . In the example below,

we consider where g = 10, n = 3, and m = 4. As a result, |S| = 30, |T | = 40, and

our goal is to divide the set of points into g = 10 partitions such that each partition
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contains three points from the set S and four points from the set T . In Figure 19,

we see S ∪ T , where as before S is the set of all red points and T is the set of all blue

points.

Figure 19: Example for generalization in [2]

By Theorem 2 in [2], we know there exists an equitable 3-cutting. In Figure 20,

the three rays with a common vertex p generate the three wedges W , Y , and Z.

Figure 20: Equitable 3-cutting in example for generalization in [2]
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Note that wedge W has a g1 value of g1 = 3, as n = 3 and the number of red

points in W is

|SW | = g1 · n = 3 · 3 = 9.

In a similar fashion, m = 4 and the number of blue points in W is

|TW | = g1 ·m = 3 · 4 = 12.

Note also that Y has a g2 value of g2 = 2, and the number of red points in this

wedge is

|SY | = g2 · n = 2 · 3 = 6.

The number of blue points in Y is |TY | = 8, consistent with the value m = 4.

Finally, consider wedge Z and its g3 value of g3 = 5. The number of red points

in Z is

|SZ | = g3 · n = 5 · 3 = 15,

and the number of blue points in Z is

|TZ | = g3 ·m = 5 · 4 = 20.

Thus, each wedge consists of a proportional number of red and blue points, partic-

ularly in the red to blue ratio of 3 : 4. For g1 = 3, g2 = 2, g3 = 5, and g = 10, we

have both 0 ≤ g1, g2, g3 < g and g1 + g2 + g3 = g. By definition, wedges W , Y , and

Z seen in Figure 20 are equitable.

We can now perform a recursive process on the remaining wedges W , Y , and

Z. In particular, since g2 = 2 for Y , the Pancake Theorem can be implemented
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to determine an equitable 2-cutting. Wedge Y , with sub-wedges Y1 and Y2, now

satisfies the goal of containing n = 3 points of S and m = 4 points of T in each

partition. This can be seen in Figures 21 and 22.

Figure 21: Recursive equitable 3-cutting in example for generalization in [2]

Bespamyatnikh et al. noted in [2] that any equitable 2-cutting can also be consid-

ered as an equitable 3-cutting. As can be seen in Figure 21, an equitable 3-cutting

in wedge W and an equitable 3-cutting in wedge Z can separate wedge W into two

equitable sub-wedges, W1 and W2, and can separate wedge Z into two equitable

sub-wedges, Z1 and Z2. Sub-wedge W2 now has the desired proportion and number

of red and blue points.

31



Figure 22: Desired partitioning in example for generalization in [2]

One final recursive step can be taken in our example to establish the desired

partitioning of S ∪ T into ten disjoint convex polygons, where each convex polygon

contains three red points and four blue points. In particular, an equitable 3-cutting

and an equitable 2-cutting in wedge Z determine appropriately balanced polygons

Z1a, Z1b, Z1c, Z2a, and Z2b. An equitable 2-cutting in wedge W1 does the same by

establishing balanced polygons W1a and W1b. Figure 22 demonstrates this desired

partitioning of the work by Bespamyatnikh et al. [2]. Though there still are certain

constraints for the number of points in the disjoint sets S and T , Bespamyatnikh et

al. succeeded in establishing a generalization for the Discrete Pancake Theorem.

2.4 Packing and Cracking Gerrymander Examples

A recent survey of this topic summarizes the result from [2] in a discussion about

the possibilities of drawing biased political maps, often called gerrymandering. Pack-

ing and cracking are described in [22] as the two forms of gerrymandering which can
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be implemented. In particular, packing involves “concentrating a group in a single

district where they win by a large margin, thereby minimizing the impact of their

votes [22].” Contrast this with cracking, which “refers to dispersing a group across

many districts, thereby diluting the impact of their votes [22].” The results from [9]

and [2] would exemplify the cracking approach to gerrymandering, as the majority

group would be able to hold the proportional majority in each and every district,

leaving the minority group with a dilution of their vote.

Figure 23: Hypothetical region with two distinct political choices

Consider the hypothetical region shown in Figure 23, where red and blue points

represent individuals from two different political parties. Suppose we wanted to

divide this region into six districts, where each district will determine a representative

for the citizens within its boundary. There are many options to do such a task,

though we will adhere to the usual constraint that the population of each district

must be either equal or reasonably close. In this example, we will consider “equal or

reasonably close” to be the state legislative general range constraint of 10% based
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on the Supreme Court ruling in Brown v. Thomson [3]. Let n be the total number

of points in a given region. When separating a region into d districts, the number of

points within each district must consequentially be between

n

d
− 0.1n

2 and n

d
+

0.1n

2 ,

as the maximum range between the number of points would then be

(
n

d
+

0.1n

2

)
−

(
n

d
− 0.1n

2

)
=

n

d
+

0.1n

2 − n

d
+

0.1n

2

= 0.1n.

Note that the number of points in the region in Figure 23 is n = 100, where

the number of red points is |S| = 40 and the number of blue points is |T | = 60.

Therefore, for each of the d = 6 districts that will be created, we will expect the

number of points to be between

n

6 −
0.1n

2 and n

6 +
0.1n

2
100
6 −

0.1(100)
2 and 100

6 +
0.1(100)

2
16.6− 5 and 16.6 + 5

11.6 and 21.6

In the three examples below, certainly districts 1-6, A-F, and i-vi contain an appro-

priate number of points. Furthermore, an attempt was made to make the district

populations as equal as possible.

The terms packing and cracking were previously discussed as two forms of gerry-
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mandering. We will next show an example of each with the hypothetical region in

Figure 23, where we want to split the region into six districts. First, consider the

example of gerrymandering by packing shown in Figure 24.

Figure 24: Gerrymandering by packing example

Table 6: Summary of packed gerrymander case from Figure 24

District No. of red points No. of blue points Majority Choice

1 2 15 Blue

2 9 8 Red

3 9 8 Red

4 3 14 Blue

5 9 8 Red

6 8 7 Red

Districts 1 and 4 are particularly overloaded with blue dots, allowing the red choice

to maintain a majority in the other four districts. As a result, although there are
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60 blue points and 40 red points, gerrymandering by packing results in four districts

being represented by the red choice and only two districts being represented by the

blue choice. A summary of these results is found in Table 6. It is clear to see that

the districts drawn in Figure 24 are partisan in favor of red.

Next we will consider an alternative redistricting plan in Figure 25, where this

plan represents gerrymandering by cracking.

Figure 25: Gerrymandering by cracking example

Table 7: Summary of cracked gerrymander case from Figure 25

District No. of red points No. of blue points Majority Choice

A 6 10 Blue

B 7 11 Blue

C 6 10 Blue

D 8 9 Blue

E 7 9 Blue

F 6 11 Blue

36



As mentioned previously, gerrymandering by cracking relates to the work in [9] and

[2], where the minority choice numbers are spread out proportionally to the extent

where they receive no representation in the region. Table 7 shows this result, where

we can see that every district almost proportionally chose blue over red. Clearly, the

districts drawn in Figure 25 are partisan in favor of blue.

Note that in both examples above, many of the districts are irregular and concave.

Some of the districts, such as District 6, resemble animals or objects. In fact, the

term gerrymander came from a discussion in Massachusetts in 1812 regarding district

maps and their strange shapes. In [8], a description of a dinner party is detailed,

where guests were mocking the shapes of the local districts. Some were likening the

shapes to flying creatures, whereas “when a name for the figure was called for, some

one proposed the term salamander [8].” At the time, the governor of Massachusetts

was Elbridge Gerry, a member of the Continental Congress and a signer of the

Declaration of Independence. As governor, Gerry approved the apportionment law

of 1812 for the state of Massachusetts, and it appeared the districts were created to

support the party to which Gerry belonged. As a result, the term gerrymander was

developed and became well-known [8].

2.5 Geographic Compactness Measures

In order to draw six districts for the hypothetical region in Figure 23 without

partisan bias, we would presume that our outcome would be generally proportional

to the ratio of blue points to red points. In particular, since there are 60 blue points

and 40 red points, we would expect there to be either three or four of the six districts

with a blue majority. Furthermore, we will want to consider measures of geographic
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compactness such as the Reock score and the Polsby-Popper score. The Reock score

is a measure of geographic compactness that is the ratio formed by dividing the area

of the district by the area of its circumscribing circle. As a result, the Reock score

of a district is between zero and one, where a higher Reock score is a result of the

district being more circular [17, 26].

The Polsby-Popper score is also a measure of geographic compactness. Popper

and Polsby contend in [17] that the Reock score is not able to take into account

rough edges of a district. Its definition, they argue, would “register the silhouette

of a circular saw blade as almost perfectly compact. Those serrated edges, which

could be quite useful to a gerrymanderer, would essentially be ignored [17].” The

Polysby-Popper score, as a result, considers the ratio of the area of the district to

the area of a differently defined circle. In particular, this score is “determined by

dividing the area of the shape by the area of a circle with a perimeter of equal

length [17].” In other words, it is the ratio of the area of the district to the area of

a circle with a circumference equal to the perimeter of the district. This score is

then better able to judge the smoothness of the district boundary lines. As before,

the resulting values are between zero and one, with values closer to one representing

greater compactness. A site providing both descriptions and helpful visualizations

of the Reock and Polsby-Popper scores can be found at [12].

Using this information about compactness, we can attempt to draw six districts

for the hypothetical region that are not gerrymandered. Furthermore, by the metrics

in [26], we will also attempt to keep communities together and counties in the same

district. Note in Figure 26 that half of the districts are convex polygons, in contrast

to the other two gerrymander examples where every district was a concave polygon.

By the definitions of the Reock and Polsby-Popper scores, concave polygonal districts
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would necessarily have lower compactness scores relative to the compactness scores

of similar convex polygonal districts. Further note in Figure 26 that towns are kept

together in the same district as much as possible, in contrast to the gerrymander

cases.

Figure 26: Non-partisan and compact districting example

Table 8: Summary of non-partisan and compact case from Figure 26

District No. of red points No. of blue points Majority Choice

i 3 14 Blue

ii 6 11 Blue

iii 8 6 Red

iv 7 9 Blue

v 5 14 Blue

vi 11 6 Red

39



It also appears that the division lines could be interpreted as county lines, where

in the gerrymander figures there appears to be many cases of split counties. Finally,

it appears in Figure 26 that the representatives from each district would understand

who they are representing. For example, District iv generally represents those who

live by the lake, District i and ii generally represent those who live in the city limits

of the city on the left side of the figure, and District iii generally represents those

who live in the rural areas between the two larger cities.

The summary of Figure 26 located in Table 8 indicates that the region satisfies

equal population requirements among districts. Furthermore, the majority choice

being blue in four districts agrees with the ratio of 60 blue points to 40 red points.

2.6 Further Research into Gerrymandering

Research into the topic of gerrymandering consists of both mathematical schol-

arship such as the work being performed at the MGGG Redistricing Lab, as well as

groups performing metric analyses on district maps that are currently functioning.

The MGGG Redistricting Lab [14], which is affiliated with Tisch College of Tufts

University, provides information articles regarding the mathematics of gerrymander-

ing, research articles, reports, publicly-available election data, code, and interactives

meant to “put the tools of redistricting in the hands of the public [13].”

The Gerrymandering Project at Princeton University [26] allows participants to

explore metrics of the current state house, state senate, and congressional maps

from each state of the United States of America. Metrics provided include: partisan

fairness, number of competitive districts, number of county splits, partisan com-

position, minority composition, metrics related to Reock scores and Polsby-Popper
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scores, and a split pair metric. Methodologies for the metrics are explained, and the

data presented can be downloaded. Proposed redistricting plans are graded, and the

Princeton Gerrymandering Project identifies whether a plan is fair, scores well on

compactness metrics, or if a plan allows for competitive districts. In Wisconsin, as

an example, there were 23 redistricting plans proposed by various entities within the

government of Wisconsin between October 2021 and March 2022. The Gerryman-

dering Project at Princeton University was able to grade each of these plans in such

a timely fashion as to be potentially useful in the Wisconsin redistricting debate [26].

Quantifying Gerrymandering, affiliated with Duke University, is another research

group focused on the discussion of gerrymandering. The articles generated by mem-

bers of this research group analyze and evaluate selected state redistricting plans,

comment on gerrymandering court cases, and discuss various mathematical and data

science considerations as they relate to redistricting and gerrymandering [18].
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3 The Dual-Balanced Theorem

Before arriving at the main result of this paper, multiple lemmas will be proven

with regard to an initial weight-one balancing process and the rotation of a directed

line in a region with the usual conditions. The consequences of these proofs will

assist in accomplishing the main result of this paper, namely proving that any region

with the usual conditions can be dual-balanced by at least one directed line. Dual-

balance will not be considered, however, until weight one balance can be proven to

be preserved throughout a 180◦ rotation.

3.1 Initial Weight-One Balancing Considerations

The first of three lemmas regarding an initial weight-one balancing is given below.

Lemma 3.1

Any vertical directed line that has undergone an initial weight-one balancing

process in a region with the usual conditions balances weight one values.

Proof. Let R be a region with the usual conditions, and let the initial weight-one

balancing process be performed, where l is the vertical directed line directed up that

contains αp. Recall the consequential inequalities of an initial weight-one balancing

below.

S′
1a + w1p > S′

1b and S′
1b + w1p ≥ S′

1a (1)

We will consider the two cases of S′
1a ≤ S′

1b and S′
1a > S′

1b.
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Case I: S′
1a ≤ S′

1b

If S′
1a ≤ S′

1b, we know by Definition 1.6 that w1p is assigned to S1a. As a result, we

have now assigned every point in region R, with

S1a = S′
1a + w1p and S1b = S′

1b. (2)

Since S′
1a ≤ S′

1b in this case, and as w1p ≤ ε1, it follows by use of (1) that

S′
1b < S′

1a + w1p ≤ S′
1b + ε1.

Substitution from (2) yields

S1b < S1a ≤ S1b + ε1

0 < S1a − S1b ≤ ε1,

implying |x1| = |S1a− S1b| ≤ ε1, and we have shown balance with respect to weight

one values by Definition 1.1.

Case II: S′
1a > S′

1b

If S′
1a > S′

1b, Definition 1.6 dictates that w1p is assigned to S1b. In this case, our

values for S1a and S1b are given as

S1a = S′
1a and S1b = S′

1b + w1p. (3)

Since S′
1a > S′

1b, and as w1p ≤ ε1, it follows by use of (1) that

S′
1a ≤ S′

1b + w1p < S′
1a + ε1.
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By substitution from (3),

S1a ≤ S1b < S1a + ε1

0 ≤ S1b − S1a < ε1

−ε1 < S1a − S1b ≤ 0,

implying |x1| = |S1a − S1b| ≤ ε1, and balance with respect to weight one values has

been achieved. Thus, we have shown that any directed line l that has undergone an

initial weight-one balancing process in a region with the usual conditions balances

weight one values.

We will now show, more particularly, that the vertical directed line generated

by the initial weight-one balancing process minimizes |x1| = |S1a − S1b| for vertical

directed lines. Note that, without loss of generality, we only need to consider vertical

directed lines directed up, as each corresponding vertical directed line directed down

has the same value of |x1|.

Lemma 3.2

The vertical directed line generated by the initial weight-one balancing pro-

cess in a region with the usual conditions minimizes the weight one absolute

difference |x1| = |S1a − S1b| for all vertical directed lines in the region.

Proof. Let T be a region with the usual conditions, and let line n be the directed

line generated by an initial weight-one balancing process. By Definition 1.6, line n

contains αp, and αp is either assigned to the left side of the directed line (Sa) or to

the right side of the directed line (Sb).

Suppose, for the sake of argument, that line n does not minimize |x1| for vertical
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directed lines in region T . Then there would exist another vertical directed line m

with an absolute difference closer to zero. To differentiate, let |xn| denote the weight

one absolute difference generated by the directed line n, and let |xm| denote the

weight one absolute difference generated by the directed line m. Without loss of

generality, we will choose directed line m so that it does not intersect any points.

We will also horizontally translate line n either slightly to the left or slightly to the

right of αp so that line n does not cross any other points and |xn| is not altered.

Define UnR to be the set of all points strictly to the right of directed line n, and

define UnL to be the set of all points strictly to the left of line n. Furthermore, define

VmR to be the set of all points strictly to the right of directed line m, and similarly

define VmL to be the set of all points strictly to the left of line m.

Without loss of generality, suppose αp is assigned to Sa, implying S′
1a ≤ S′

1b

by Definition 1.6. Recall that an initial weight-one balancing process generates the

inequality S′
1a + w1p > S′

1b. This implies

S′
1a + w1p − S′

1b > 0, (4)

and

S′
1a ≤ S′

1b

S′
1a − S′

1b ≤ 0

S′
1a + w1p − S′

1b ≤ w1p. (5)

Since αp is assigned to Sa, the weight one difference generated by the directed line

n is xn = S′
1a + w1p− S′

1b, which we have shown in lines (4) and (5) to have a value
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in the interval below.

0 < xn ≤ w1p (6)

Figure 27: Shaded region UnR ∩ VmL ̸= ∅, where m is to the right of n

Suppose the directed line m is to the right of n. Since |xm| < |xn| by assumption,

it follows that UnR ̸= VmR. In particular, UnR ∩ VmL ̸= ∅, and UnR ∩ VmL contains

some point αR with a positive weight one value w1R. The shaded region in Figure

27 is an illustration of nonempty UnR ∩ VmL with αp ∈ Sa. It follows that the value

of |xm| would have the relationship below.

|xm| ≥ |S′
1a + w1p + w1R − (S′

1b −w1R)|

= |S′
1a + w1p − S′

1b + 2w1R|

= |xn + 2w1R|

Since 2w1R > 0 and xn > 0 in this case,

|xm| ≥ |xn|+ 2w1R,
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implying |xm| > |xn|, and contradicting our assumption →←.

Figure 28: Shaded region UnL ∩ VmR ̸= ∅, where m is to the left of n

Suppose the directed line m is to the left of line n. As before, we can use our

assumption |xm| < |xn| to conclude UnL ∩VmR ̸= ∅. Thus, UnL ∩VmR contains some

point αL with a positive weight one value w1L. Note that αp ∈ UnL ∩ VmR in this

case, as demonstrated in Figure 28. We also still have the relationships S′
1a−S′

1b ≤ 0

by assumption and 0 < xn ≤ w1p from (4) and (5).

The line m will certainly assign w1p to S1b, and since S′
1a − S′

1b ≤ 0, the weight

one difference

xm ≤ S′
1a − (S′

1b + w1p)

= S′
1a − S′

1b −w1p

≤ −w1p.
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Thus, the weight one absolute difference generated by the line m will be

|xm| ≥ w1p,

where |xn| ≤ w1p. But this contradicts the claim that |xm| < |xn| →←. A similar,

mirrored argument would show similar contradictions in the case where αp was as-

signed to Sb. As a result, we have proven that the directed line generated by the

initial weight-one balancing process in a region with the usual conditions minimizes

|x1| for vertical directed lines.

As a consequence of Lemma 3.2, any other vertical directed line in a region with

the usual conditions with the same weight one absolute difference as the vertical

directed line generated by the initial weight-one balancing process also minimizes

|x1| for vertical directed lines.

Lemma 3.3

At least two vertical directed lines directed up in a region with the usual

conditions contain a point and minimize the weight one absolute difference for

vertical directed lines.

Proof. Let region T1 have the usual conditions, and let n1 be the vertical directed

line generated by an initial weight-one balancing process. By Lemma 3.2, we know

n1 minimizes the weight one absolute difference for vertical directed lines. Without

loss of generality, suppose αp was assigned to Sa by the initial weight-one balancing

process. Horizontally translate n1 to the right to contain the next point, and define

this vertical directed line as n′
1. Maintain weight assignments for αp and for the

point αn′
1

contained on vertical directed line n′
1.
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Figure 29: Two vertical directed lines minimizing |x1| for vertical directed lines in T1

As a result, the weight one absolute difference of T1 generated by n1 would be

equivalent to the weight one absolute difference of T1 generated by n′
1, and thus we

have shown there exists at least two vertical directed lines directed up in a region

with the usual conditions that both contain a point and minimize the weight one

absolute difference for vertical directed lines.

3.2 Maintaining Balance with a Rotating Directed Line

Transitioning from the horizontal shifts of the initial weight-one balancing process,

we will next rotate our directed line clockwise about the point αp. In general, rotating

clockwise implies rotating about a point. When two points αy and αz lie on the

directed line, the directed line may exclusively either continue to rotate clockwise

about αy or about αz.

While the proof below is more general, keep in mind that we will later assume

an initial weight-one balancing process has occurred. As a result, we will begin the

clockwise rotation process about αp, and hence begin the clockwise rotation process

when weight one values are balanced.
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Theorem 3.4

Consider any directed line p that balances a region with the usual conditions

being rotated clockwise about a point β. If p intersects another point γ in its

clockwise rotation, there exists a clockwise rotational path about either β or

γ so that balance is maintained.

Proof. Let T2 be a region with the usual conditions, and let n2 be a directed line

that balances T2. Also assume n2 is being rotating clockwise about a point β in

T2, and that n2 intersects another point γ in its clockwise rotation. Four cases are

to be considered regarding the assignments of β and γ. Since n2 balances T2, we

only need to show that in each case, either a clockwise rotation can be performed so

that no change in weight one absolute difference occurs, or a clockwise rotation can

be performed so that the change in weight one absolute difference does not cause

imbalance.

Case I: β and γ are both assigned to Sa

If the directed line n2 intersects two points assigned to Sa, then maintain each

assignment and continue to rotate clockwise about the point on the left. As we

rotate clockwise, the point on the right will become fully contained in Sa, preserving

Sa assignment. Thus, no change in the weight one absolute difference |x1| occurs in

this case.
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(a) Directed line n2 intersects two
points assigned to Sa

(b) Clockwise rotation action for
Case I

Figure 30: β and γ are both assigned to Sa

Case II: β and γ are both assigned to Sb

If the directed line n2 intersects two points assigned to Sb, then maintain each as-

signment and continue to rotate clockwise about the point on the right. The point

on the left will become fully contained in Sb, preserving Sb assignment. No change

in the weight one absolute difference |x1| occurs in this case as well.

(a) Directed line n2 intersects two
points assigned to Sb

(b) Clockwise rotation action for
Case II

Figure 31: β and γ are both assigned to Sb

Case III: Directed line n2 intersects a point assigned to Sb on the left and a point

assigned to Sa on the right

If the directed line n2 intersects a point assigned to Sb on the left and a point assigned

to Sa on the right as in Figure 32, maintain each assignment and rotate clockwise
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about either point.

Figure 32: n2 intersects a point from Sb on the left and a point from Sa on the right

If we continue the clockwise rotation about the point on the left, then the point

on the right will become fully contained in Sa, preserving assignment and resulting

in no change in the weight one absolute difference |x1|. Figure 33a demonstrates this

action.

(a) Clockwise rotation of n2 about the
point on the left

(b) Clockwise rotation of n2 about
the point on the right

Figure 33: Clockwise rotation actions for Case III

Similarly, if we continue the clockwise rotation about the point on the right, as

is shown in Figure 33b, then the point on the left will become fully contained in Sb

and preserve assignment. This also results in no change in the weight one absolute

difference |x1|.
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Case IV: Directed line n2 intersects a point assigned to Sa on the left and a point

assigned to Sb on the right

If the directed line n2 intersects a point assigned to Sa on the left and a point assigned

to Sb on the right as in Figure 34, an issue arises. Recall that in the previous three

cases, a clockwise rotation about a point could be determined so that the weight one

absolute difference did not change. In this case, however, a clockwise rotation about

either point is likely to alter the weight one absolute difference. As a result, we must

assess three subcases. For these three subcases, let αm be the point on the left and

let αn be the point of the right with respective weight one values w1m and w1n. By

assumption, we know the weight one values are balanced prior to this case, implying

|x1| = |S1a − S1b| ≤ ε2.

Figure 34: n2 intersects a point from Sa on the left and a point from Sb on the right

Subcase IV.a: Maintaining assignment for αm and rotating clockwise about αm

preserves balance

Maintaining assignment for αm and rotating n2 clockwise about αm can possibly

change |x1|, as this action causes αn to switch designation from Sb to Sa. Thus, the
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weight one value w1n would be subtracted from S1b and added on to S1a. The new

weight one difference, then, is

S1a + w1n − (S1b −w1n) = S1a + w1n − S1b + w1n

= S1a − S1b + 2 ·w1n

= x1 + 2 ·w1n.

Assuming a preservation of balance with respect to weight one values, it must be the

case that

x1 + 2 ·w1n ≤ ε1

and |x1 + 2 ·w1n| ≤ ε1. Note the visualization of this subcase in Figure 35b.

(a) Original picture for Case IV
(b) Ability to rotate n1 clockwise
about the left point and maintain
balance

Figure 35: Clockwise rotation action for Subcase IV.a

Subcase IV.b: Maintaining assignment for αn and rotating clockwise about αn

preserves balance

Maintaining assignment for αn and rotating n1 clockwise about αn also can possibly
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change |x1|, as αm is forced to switch designation from Sa to Sb. The weight one

value w1m would be subtracted from S1a and added on to S1b, generating the new

weight one difference below.

S1a −w1m − (S1b + w1m) = S1a −w1m − S1b −w1m

= S1a − S1b − 2 ·w1m

= x1 − 2 ·w1m.

Weight one balance is assumed to be preserved, and so

x1 − 2 ·w1m ≥ −ε1

and |x1 − 2 ·w1m| ≤ ε1. This case is demonstrated in Figure 36b.

(a) Original picture for Case IV
(b) Ability to rotate n1 clockwise
about the right point and maintain
balance

Figure 36: Clockwise rotation action for Subcase IV.b

Subcase IV.c: Both Subcase IV.a and Subcase IV.b actions cause imbalance

In the case where the Subcase IV.a and Subcase IV.b actions cause weight one
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imbalance, we know both

x1 + 2 ·w1n > ε1 (7)

and

x1 − 2 ·w1m < −ε1. (8)

In an attempt to preserve balance, we will switch the designations of the two points

on the directed line n1. We intend to show that if the Subcase IV.a and Subcase

IV.b actions cause weight one imbalance, then switching the designations of the two

points on the directed line preserves weight one balance.

(a) Original picture for Case IV
(b) Switching designations of the left and
right points on the directed line

Figure 37: Switching designations action for Subcase IV.c

The change in weight one difference when the designations of the two points on the
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directed line are switched is given below. See Figures 37a and 37b for reference.

S1a + w1n −w1m − (S1b + w1m −w1n) = S1a + w1n −w1m − S1b −w1m + w1n

= S1a − S1b + 2 ·w1n − 2 ·w1m

= x1 + 2 ·w1n − 2 ·w1m

Recall that in this subcase, the inequalities (7) and (8) must be true. Consider

(8) below, where we then add 2 · ε1 to both sides of the inequality.

x1 − 2 ·w1m < −ε1

x1 + 2 · ε1 − 2 ·w1m < ε1

Since 0 ≤ w1n ≤ ε1, it follows that 2 ·w1n ≤ 2 · ε1, and

x1 + 2 ·w1n − 2 ·w1m ≤ x1 + 2 · ε1 − 2 ·w1m < ε1

x1 + 2 ·w1n − 2 ·w1m < ε1. (9)

In particular, we have shown that the new weight one difference is less than ε1.

Now let us consider (7), where this time we will be subtracting 2 · ε1 from both

sides of the inequality.

x1 + 2 ·w1n > ε1

x1 + 2 ·w1n − 2 · ε1 > −ε1
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Since 2 ·w1m ≤ 2 · ε1,

−ε1 < x1 + 2 ·w1n − 2 · ε1 ≤ x1 + 2 ·w1n − 2 ·w1m

−ε1 < x1 + 2 ·w1n − 2 ·w1m, (10)

and we have also shown the new weight one difference is greater than−ε1. Combining

the inequalities from (9) and (10) results in

−ε1 < x1 + 2 ·w1n − 2 ·w1m < ε1,

|x1 + 2 · w1n − 2 · w1m| ≤ ε1, and the designation switch results in a preservation

of balance for weight one values. Note that the new scenario in Figure 37b is now

Case III, where we can rotate clockwise about either αm or αn without affecting the

weight one absolute difference.

Thus exhausting all cases, we have shown that for any directed line p that balances

a region with the usual conditions, where the directed line is being rotated clockwise

about a point β until it intersects another point γ, there exists a clockwise rotation

of the directed line about either β or γ so that balance is maintained.
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Corollary 3.5

The directed line generated by the initial weight-one balancing process in a

region with the usual conditions can indefinitely rotate clockwise about points

so as to always maintain balance. In particular, there exists a 180◦ clockwise

rotational path the directed line can undergo to always maintain balance.

Proof. Let n3 be the directed line generated by an initial weight-one balancing pro-

cess in a region T3 with the usual conditions. By Lemma 3.1, n3 balances T3. We

can repeatedly utilize Theorem 3.4 indefinitely to show there exists a clockwise ro-

tational path for n3 that maintains balance. Certainly, it follows that there exists a

180◦ clockwise rotational path where n3 maintains balance in T3.

3.3 Example of Weight-One Balancing with a Directed Line
Rotating 180◦ (Example A)

Consider region R1 in Figure 38, where no three points are collinear and no two

points lie on the same vertical line. Additionally, note the weight one values written

near each of the corresponding points. We intend to illustrate both the initial weight-

one balancing process as well as the procedures to guarantee continual weight-one

balancing with a directed line rotating 180◦ clockwise. We will be considering the

sum of the weight one values S1 = 22, and especially the maximum weight one value

ε1 = 6 when evaluating whether or not region R1 is balanced.
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Figure 38: Region R1 for Example A

By Definition 1.3, the point with a weight one value of five is αp. The initial

weight-one balancing process constructs directed line l1 to contain αp, where S′
1a =

4 + 3 = 7 and S′
1b = 2 + 6 + 2 = 10, implying αp is assigned to Sa by Definition

1.6. This is demonstrated in Figure 39, where weight one balance is reflected in the

table.

Figure 39: Initial weight-one balancing of region R1

S1a S1b |x1| Balanced?

12 10 2 ✓
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3.3.1 Scenarios and Actions During Clockwise Rotations

We will now begin rotating the directed line l1 clockwise about αp, where our

greatest concern will be with the decisions regarding which point to rotate about

when two points lie on the directed line. To avoid confusing the cases in the proof

of Theorem 3.4 with the cases below, but yet to preserve consistency, we will define

the subsequent scenarios and actions as follows:

Definition 3.6: Case i

Scenario: Both points on the directed line are assigned to Sa

Action: Rotate clockwise about the point on the left

Definition 3.7: Case ii

Scenario: Both points are assigned to Sb

Action: Rotate clockwise about the point on the right

Definition 3.8: Case iii

Scenario: The point on the left is assigned to Sb and the point on the right is

assigned to Sa

Subcase iii.L action: Rotate clockwise about the point on the left

Subcase iii.R action: Rotate clockwise about the point on the right
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Definition 3.9: Case iv

Scenario: The point on the left is assigned to Sa and the point on the right is

assigned to Sb

Subcase iv.a action: Equivalent to Case i action

Subcase iv.b action: Equivalent to Case ii action

Subcase iv.c action: Switch designations of the points; rotation action

equivalent to Case iii actions

Given any directed line containing two points that balances a region with the usual

conditions, note that there may be multiple actions above that maintain weight one

balance. In Example A, we will choose a clockwise rotational path that minimizes

the balance at each step.

62



3.3.2 Example A Continued

As the process of rotating the directed line l1 clockwise about αp begins, notice

in Figure 40b that the next point encountered by l1 is a point in Sb with a weight

value of two. To maintain balance in this Case iv scenario, we can choose to either

accept the Subcase iv.a or Subcase iv.c action. The Subcase iv.c action is accepted,

as it generates a weight one absolute difference closer to zero. As a result, we will

switch the designations of the two points on l1 and rotate clockwise about the point

on the right (equivalently the Case iii.R action). This transition is illustrated in the

second transitionary clockwise rotation in Figure 41a.

Figure 40: Example A clockwise rotation actions

(a) 1st transitionary clockwise rotation (b) Subcase iv.c & Case iii.R actions

S1a S1b |x1| Balanced?
12 10 2 ✓

S1a S1b |x1| Balanced?
12 10 2 ✓
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Figure 41: Example A clockwise rotation actions cont.

(a) 2nd transitionary clockwise rota-
tion (b) Case i action

S1a S1b |x1| Balanced?
9 13 4 ✓

S1a S1b |x1| Balanced?
9 13 4 ✓

In Figure 41b, we see that the next point to intersect l1 is the point with a weight

value of three. In this case, the only balanced path preserves assignment in Sa,

resulting in a Case i scenario. The Case i action dictates l1 to rotate clockwise about

the point on the left. Figure 42a illustrates this step.

Figure 42: Example A clockwise rotation actions cont.

(a) 3rd transitionary clockwise rotation (b) Subcase iv.c & Case iii.R actions

S1a S1b |x1| Balanced?
9 13 4 ✓

S1a S1b |x1| Balanced?
9 13 4 ✓
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Another Case iv scenario occurs in Figure 42b, and both Subcase iv.a and Subcase

iv.c actions maintain weight one balance. Once again, the Subcase iv.c action, in

combination with the Case iii.R action, results in a weight one absolute difference

closer to zero; Figure 43a demonstrates both actions.

Figure 43: Example A clockwise rotation actions cont.

(a) 4th transitionary clockwise rotation (b) Subcase iv.c & Case iii.R actions

S1a S1b |x1| Balanced?
11 11 0 ✓

S1a S1b |x1| Balanced?
11 11 0 ✓

Figure 44: Example A clockwise rotation actions cont.

(a) 5th transitionary clockwise rotation (b) Case i action

S1a S1b |x1| Balanced?

12 10 2 ✓

S1a S1b |x1| Balanced?

12 10 2 ✓
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Yet another Subcase iv.c action presents itself as the best Case iv option in Figure

43b, and after switching the designations of the points, we will continue rotating

clockwise about the point on the right.

The clockwise rotation process will continue with another Case i scenario in Figure

44b, followed by a Subcase iv.c and Case iii.R action in Figure 45b. Each of these

actions minimizes the balance at their respective steps.

Figure 45: Example A clockwise rotation actions cont.

(a) 6th transitionary clockwise rotation (b) Subcase iv.c & Case iii.R action

S1a S1b |x1| Balanced?
12 10 2 ✓

S1a S1b |x1| Balanced?
12 10 2 ✓

The final steps in the process involve one more Case i action before the directed

line has completed its 180◦ rotation in Figure 47b, now being centered at the point

with a weight one value of two. Note that, as expected, the directed line balanced

region R1 at every step of the clockwise rotation.
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Figure 46: Example A clockwise rotation actions cont.

(a) 7th transitionary clockwise rotation (b) Case i action

S1a S1b |x1| Balanced?
10 12 2 ✓

S1a S1b |x1| Balanced?
10 12 2 ✓

Figure 47: Example A conclusion

(a) 8th transitionary clockwise rotation (b) Completed 180◦ clockwise rotation

S1a S1b |x1| Balanced?
10 12 2 ✓

S1a S1b |x1| Balanced?
10 12 2 ✓
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3.4 Balanced Path and Minimized Balanced Path

We define a balanced path in a region with the usual conditions to have the fol-

lowing qualifications.

Definition 3.10: Balanced path

1. The initial vertical directed line directed up balances the region and

contains a point

2. A clockwise rotational path about points commences

3. When two points are located on the directed line, any clockwise rotation

action about a point that generates balance in the region is accepted.

4. The directed line rotates clockwise 180◦.

Though a balanced path will be the only requirement in the upcoming lemma,

the definition of a minimized balanced path will help determine code to demonstrate

the existence of a dual-balanced line in a region with the usual conditions.
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Definition 3.11: Minimized balanced path

1. The initial vertical directed line directed up balances the region, mini-

mizes the weight one absolute difference for vertical directed lines, and

contains a point

2. A clockwise rotational path about points commences

3. When two points are located on the directed line, the accepted clockwise

rotation action generates balance in the region and minimizes |x1|.

4. The directed line rotates clockwise 180◦.

Note there could be many minimized balanced paths in a region with the usual

conditions, as at any step there could be multiple actions that minimize the balance.

Moreover, we have proven in Lemma 3.3 that there are at least two vertical directed

lines that satisfy qualification number one for a minimized balanced path. Example

A is an example of a minimized balanced path by definition, as we began the process

with an initial weight-one balancing, the directed line rotated clockwise 180◦, and

we chose a clockwise rotation action about a point at every step that generated the

minimized balance.
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3.5 Alternative Minimized Balanced Path for Region R1 Con-
taining αp at Its Conclusion (Example B)

Recall region R1 and its initial weight-one balancing below.

Figure 48: Initial weight-one balancing of region R1

S1a S1b |x1| Balanced?

12 10 2 ✓

What follows is a list of figures showing consecutive clockwise rotation actions that

generate a minimized balanced path different from the minimized balanced path in

Example A. Note that Figures 48 - 53, in addition to Figure 54a, are the first twelve

steps of Example A. The alternative path of Example B deviates from the path of

Example A beginning in Figure 54b.
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Figure 49: Example B clockwise rotation actions

(a) 1st transitionary clockwise rotation (b) Subcase iv.c & Case iii.R actions

Figure 50: Example B clockwise rotation actions cont.

(a) 2nd transitionary clockwise rotation (b) Case i action

Figure 51: Example B clockwise rotation actions cont.

(a) 3rd transitionary clockwise rotation (b) Subcase iv.c & Case iii.R actions
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Figure 52: Example B clockwise rotation actions cont.

(a) 4th transitionary clockwise rotation (b) Subcase iv.c & Case iii.R actions

Figure 53: Example B clockwise rotation actions cont.

(a) 5th transitionary clockwise rotation (b) Case i action

Figure 54: Example B clockwise rotation actions cont.

(a) 6th transitionary clockwise rotation (b) Subcase iv.c & Case iii.L actions
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Figure 55: Example B clockwise rotation actions cont.

(a) 7th transitionary clockwise rota-
tion (b) Case ii action

S1a S1b |x1| Balanced?
10 12 2 ✓

S1a S1b |x1| Balanced?
10 12 2 ✓

Figure 56: Example B conclusion

(a) 8th transitionary clockwise rota-
tion

(b) Completed 180◦ clockwise rota-
tion

S1a S1b |x1| Balanced?
10 12 2 ✓

S1a S1b |x1| Balanced?
10 12 2 ✓

In Example A and Example B, we see that it is possible both for a minimized

balanced path to contain αp at its conclusion and for a minimized balanced path

to not contain αp at its conclusion. The next section will consider a horizontal
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translation of the directed line that does not contain αp at its conclusion, and whether

or not balance can be maintained as it translates toward αp.

3.6 Maintaining Balance with a Horizontal Translation of a
Balanced Path Not Containing αp at Its Conclusion

We now consider cases such as Example A, where the concluding vertical directed

line of a balanced path does not contain αp.

Lemma 3.12

Any directed line that has undergone a balanced path in a region with the

usual conditions can be horizontally translated to contain αp while maintaining

balance the entirety of the horizontal translation.

Proof. Let l2 be the directed vertical line generated by an initial weight-one balancing

process in a region R2 with the usual conditions. Suppose l2 has undergone a balanced

path. If l2 contains αp at its conclusion, then we are done.

If l2 does not contain αp at its conclusion, but some other point αr, then we will

consider horizontally translating l2 toward αp. There are two cases: where αr is to

the left of αp and where αr is to the right of αp.

Case I: αr is to the left of αp

If αr is to the left of αp as in Figure 57a, then we can begin horizontally translating

the directed line to the right toward αp. This action is shown in Figure 57b.
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(a) Concluding directed line contains a
point to the left of αp

(b) Right horizontal shift of the directed
line

Figure 57: Horizontal translation to the right from αr to αp

Let B be the set of all points with positive weight one values that will switch

designations as we horizontally translate the directed line to the right toward αp.

Note it is possible for B = ∅, in which case we are done by the assumption l2 had

undergone a balanced path.

Suppose the set B ̸= ∅. Then a horizontal shift of the directed line to the right

toward αp would eventually have an effect on the weight one absolute difference.

Let αq ∈ B be the first point that will switch its designation as the directed line

translates to the right. As the directed line crosses over αq, the weight one value w1q

is subtracted from Sa and added to Sb. Hence, the new weight one difference would

be

S1a −w1q − (S1b + w1q) = S1a −w1q − S1b −w1q

= S1a − S1b − 2 ·w1q

= x1 − 2 ·w1q

For the sake of argument, suppose that somewhere along the horizontal translation

from αr to αp, the value of x1 is less than −ε1, implying the region is imbalanced.
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Then as the value of x1 decreases monotonically as the directed line translates to the

right, the directed line containing αp also generates an imbalance with x1 < −ε1.

But by Lemma 3.1, the directed line containing αp balances the region →←. Thus,

the value of x1 remains in the interval [−ε1, ε1] as it translates horizontally to the

right from αr to αp. This implies weight one balance is maintained during the entire

horizontal shift of the directed line to the right from αr to αp.

Case II: αr is to the right of αp

Consider the case where a left horizontal shift of the directed line is necessary for the

concluding directed line to contain αp. See Figures 58a and 58b for a visualization.

(a) Concluding directed line contains a
point to the right of αp

(b) Left horizontal shift of the directed
line

Figure 58: Horizontal translation to the left from αr to αp

Similar to the previous case, there is no change in the balance unless a point with

a positive weight one value switches designation. Let αq again be the first such point

that will switch its designation as the directed line translates to the left. As the

directed line crosses over αq, the weight one value of αq is subtracted from Sb and

added to Sa. There would then be a +2 ·w1q net change in the value of x1.

For the sake of argument, suppose that somewhere along the horizontal translation

from αr to αp, the value of x1 is greater than ε1, implying the region is imbalanced.

Since the value of x1 increases monotonically as the directed line translates to the
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left, the directed line containing αp also generates an imbalance with x1 > ε1. This

creates a similar contradiction as in Case I, as the directed line containing αp balances

the region by Lemma 3.1→←. It is also true in this case that the value of x1 remains

in the interval [−ε1, ε1] as the directed line translates horizontally to the left from αr

to αp. Thus, whether the concluding directed line after a balanced path contains αp

or a point other than αp, we are able to shift the directed line horizontally to contain

αp while maintaining weight one balance for the duration of the translation.

3.7 Proof of the Existence of a Specified Balanced Path

Finally, we are able to coalesce the previous results to prove the valuable theorem

below.

Theorem 3.13

For any region with the usual conditions, there exists a directed line that

maintains balance for a 180◦ clockwise rotation about points in the plane,

initially containing a point when directed up, and then containing the same

point at its conclusion when directed down.

Proof. Let R3 be a region with the usual conditions. Perform an initial weight-one

balancing process, which will identify αp ∈ R3 and generate the vertical directed

line l3 containing αp. By Lemma 3.1, we know the vertical directed line l3 balances

region R3 with respect to weight one values, satisfying the first qualification of a

balanced path. We can utilize Corollary 3.5 next to state there exists a 180◦ clockwise

rotational path l3 can undergo about points to always maintain balance. This satisfies

the second, third, and fourth qualifications to be a balanced path. Finally, Lemma
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3.12 assures us that, if necessary, we can horizontally translate l3 after its balanced

180◦ clockwise rotational path to contain αp while maintaining balance the entirety

of the horizontal translation.

Corollary 3.14

For any region with the usual conditions, the vertical directed line generated

by the initial weight-one balancing process, initially containing αp when di-

rected up, can perform a 180◦ clockwise rotation about points in the plane

with a balanced horizontal translation as necessary to contain αp again at its

conclusion when directed down.

Proof. See proof of Theorem 3.13 above.

3.8 Unique Minimized Balanced Path

We have already defined a minimized balanced path. In this final section solely

regarding the balancing of one weight value, we consider the definition of a unique

minimized balanced path. In addition to satisfying the qualifications of a minimized

balanced path, which can be found in Definition 3.11, the unique minimized balanced

path will specify which minimized path to take whenever multiple actions minimize

the balance.

In essence, we only need to consider the Case i, Case ii, and Case iii actions, all

of which are shown in Figure 59.
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(a) Case i action (b) Case ii action

(c) Case iii.L action (d) Case iii.R action

Figure 59: Four clockwise rotation actions to consider

Definition 3.15: Unique minimized balanced path

A minimized balanced path is considered the unique minimized balanced path

if the initial vertical directed line is the vertical directed line generated by the

initial weight-one balancing process, and if the following priority list is adhered

to at every step whenever two or more actions result in a minimized balance.

1. Case iii.R action

2. Case ii action

3. Case i action

4. Case iii.L action
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This means that if the Case iii.R action and Case i action generate the same

minimized balance, then the unique minimized balanced path would accept the Case

iii.R action. One can check that Example A is the unique minimized balance path

for region R1, as the qualifications for a minimized balanced path are satisfied and

the priority list above is respected.

On the other hand, Example B is a minimized balanced path but not the unique

minimized balanced path for region R1. In Figure 54b, we see that the Case iii.L

action is prioritized over the Case iii.R action, contradicting the priority list of the

unique minimized balanced path above.
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3.9 The Dual-Balanced Theorem

For the main result of this paper, we now consider where points in a region with

the usual conditions are assigned two non-negative weight values. Refer to Definition

1.2 for a definition of dual-balance as needed.

Theorem 3.16: The Dual-Balanced Theorem

Any region with the usual conditions can be dual-balanced by at least one

directed line.

Proof. Let R4 be a region with the usual conditions, where each point is assigned two

non-negative weight values. Perform an initial weight-one balancing process, where

l4 is the resulting vertical directed line that contains αp. By Lemma 3.1, directed

line l4 balances region R4 with respect to weight one values. If l4 balances region R4

with respect to weight two values, then we are done.

Suppose the initial weight-one balancing process results in an imbalance for weight

two values. This means

|x2| = |S2a − S2b| > ε2

after the initial weight-one balancing. Without loss of generality, assume the im-

balance is caused by an over-accumulation of weight two values in Sa, the left side

of the vertical directed line l4. In Figure 60, we see an example of this situation.

Recall that for the coordinates (a, b), a represents the point’s weight one value, and

b represents the point’s weight two value.
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Figure 60: Initial weight-one balancing resulting in a weight two imbalance

S1a S1b x1 Weight 1 balanced? S2a S2b x2 Weight 2 balanced?

12 11 1 ✓ 25 3 22 ✗

Next, perform a balanced 180◦ clockwise rotational path with respect to weight

one values about points with a balanced horizontal translation as necessary so that

l4 contains αp again at its conclusion. We know such a balanced clockwise rotational

path exists by Corollary 3.14. By Rule 4 concerning the assignment of weight values,

αp will be assigned so that both the weight one difference x1 = S1a − S1b and the

weight two difference x2 = S2a− S2b will have the opposite value relative to when l4

contained αp and was directed up.

Figures 60 and 61 exemplify this, as the value of x1 changes from 1 to −1, and

the value of x2 changes from 22 to −22.
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Figure 61: Example of concluding directed line showing opposite values of x1 and x2
as in Figure 60

S1a S1b x1 Weight 1 balanced? S2a S2b x2 Weight 2 balanced?

11 12 −1 ✓ 3 25 −22 ✗

Because the directed line was being rotated in a continuous fashion, and since no

three points are collinear, it must be the case that at some stage of the clockwise

rotation, the value of x2 changed from being positive or zero to being negative. More-

over, this event must have occurred when one or two points switched designations so

that the weight two difference decreased.

Case I: The value of x2 first becomes negative when one point switches designation

During a balanced path, it is possible for x2 to decrease when only one point switches

designation. Consider again the Case iv scenario shown below in Figure 62a, where

the directed line intersects a point from Sa on the left and a point from Sb on the

right. In what was considered a Subcase iv.b action, or, equivalently, a Case ii action,

we were able to rotate clockwise about the point on the right and preserve balance.

The point on the left would then switch designation from Sa to Sb, either decreasing

or keeping the value of x2 constant.
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(a) Original picture for Case IV (b) Ability to rotate clockwise about
the right point

Figure 62: Case I scenario related to a Subcase iv.b action

Additionally, since no two points are on the same vertical line, one point at a time

switches designation from Sa to Sb when the vertical directed line directed down

is horizontally translated toward αp from the right, as shown in Figure 63. The

following proof will satisfy both of these situations.

Figure 63: Case I scenario related to a horizontal translation of the directed line

Suppose that the value of x2 first becomes negative when one point switches

designation from Sa to Sb. We will show that in this case, we cannot avoid balance

for weight two values.

Let αm be the point switching designation from Sa to Sb. Note that since we are
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undergoing a balanced path, weight one balance will be preserved. To differentiate,

let x2 be the weight two difference before the action, and let x′
2 be the weight two

difference after. Suppose, for the sake of argument, that the weight two values are

imbalanced before and after this action. Since our case is considering when the value

of x2 first becomes negative, it must follow that x2 > ε2 and x′
2 < −ε2.

When the action that switches the designation of αm occurs, the weight two value

w2m would be subtracted from S2a and added to S2b, with the resultant weight two

difference below.

x′
2 = S2a −w2m − (S2b + w2m)

= S2a −w2m − S2b −w2m

= S2a − S2b − 2 ·w2m

= x2 − 2 ·w2m

Consequentially, x2 − 2 ·w2m < −ε2. But since w2m ≤ ε2,

x2 − 2 · ε2 ≤ x2 − 2 ·w2m < −ε2

x2 − 2 · ε2 < −ε2

x2 < ε2,

contradicting the assumption that both x2 > ε2 and x′
2 < −ε2 →←. Hence, either

0 ≤ x2 ≤ ε2 or −ε2 ≤ x′
2 < 0. By definition, then, either x2 or x′

2 signifies weight

two balance. Without loss of generality, suppose x′
2 signifies balance with respect

to weight two values. Since weight one balance would have been preserved through

this action by definition of balanced path, the directed line with weight two absolute
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difference |x′
2| dual-balances R4.

Case II: The value of x2 first becomes negative when two points switch designation

Two possibilities exist where two points switch designation and x2 is subsequently

decreased: two points from Sa could switch designation to Sb, or one point could

switch designation from Sa to Sb while the other point switches designation from Sb

to Sa.

Subcase II.a: The value of x2 first becomes negative when two points switch

designation from Sa to Sb

During a balanced path, when two points on the directed line are assigned to Sa, we

may preserve assignment and rotate about the point on the left to maintain balance.

In this way, we avoid this subcase altogether.

Subcase II.b: The value of x2 first becomes negative when one point switches

designation from Sa to Sb and the other point switches designation from Sb to Sa

Switching the designations of the two points on the directed line is a Subcase iv.c

action, which would then be followed by a Case iii action. Since a Case iii action

does not entail a change in weight two balance, we will only consider the designation

switch, demonstrated again in Figure 64b. Recall that this designation switch would

maintain balance with respect to weight one values by definition of balanced path.
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(a) Original picture for Case
IV

(b) Switching designations of
the left and right points

Figure 64: Subcase II.b scenario related to a Subcase iv.c action

Let αm and αn be the two points on the directed line, with αm on the left assigned

to Sa and αn on the right assigned to Sb. We will again let x2 be the weight

two difference before the designation switch, and x′
2 the weight two difference after.

Suppose, for the sake of argument, that the weight two values are imbalanced before

and after the designation switch. Then it must be the case that x2 > ε2 and x′
2 <

−ε2. When we consider αm instead being assigned to Sb and αn instead being

assigned to Sa, the weight two difference x2 would be affected as follows.

x′
2 = S2a −w2m + w2n − (S2b + w2m −w2n)

= S2a −w2m + w2n − S2b −w2m + w2n

= S2a − S2b + 2 ·w2n − 2 ·w2m

= x2 + 2 ·w2n − 2 ·w2m

By substitution, x2 + 2 ·w2n − 2 ·w2m < −ε2, and

x2 < −ε2 + 2 ·w2m − 2 ·w2n.
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But since

2 ·w2m − 2 ·w2n = 2 · (w2m −w2n)

< 2 · ε2,

it follows that

x2 < −ε2 + 2 ·w2m − 2 ·w2n

< −ε2 + 2 · ε2 = ε2,

showing x2 < ε2 and contradicting the assumption that both x2 > ε2 and x′
2 < −ε2

→←. Thus, either 0 ≤ x2 ≤ ε2 or −ε2 ≤ x′
2 < 0. By definition, either x2 or x′

2

signifies weight two balance. Without loss of generality, suppose x′
2 signifies weight

two balance. Since weight one balance would have been preserved by definition of

balanced path, the directed line with weight two absolute difference |x′
2| dual-balances

R4.

Thus, we used the fact that we are able to determine a balanced path with respect

to weight one values in any region with the usual conditions to prove there must exist

a directed line that dual-balances the region by definition.
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3.10 Discrete Pancake Theorem Generalization

A theorem commonly known as the Discrete Pancake Theorem states that for

two finite disjoint sets S and T of points in a plane where S ∪ T contains no three

collinear points, there exists a line that simultaneously bisects |S| and |T | within an

error of at most one. As is often the case, the disjoint sets are represented so that the

points from one set are colored blue, and the points from the other set are colored

red.

Figure 65: Blue and red points instead being assigned two non-negative weights

We can consider the Discrete Pancake Theorem to be but a special case of the

Dual-Balanced Theorem, where each point is instead assigned two non-negative

weights. In particular, the points colored red could be assigned a weight one value

of one and a weight two value of zero, and the points colored blue could then be

assigned a weight one value of zero and a weight two value of one. The definition of

balance with respect to each weight would be the same as in Definition 1.1, namely

|S1a − S1b| ≤ ε1 and |S2a − S2b| ≤ ε2.
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S1a and S1b would respectively be the number of red points on side Sa and side Sb,

and S2a and S2b would respectively be the number of blue points on side Sa and side

Sb. Furthermore, ε1 = ε2 = 1, and dual-balance would be satisfied if the absolute

difference of the number of red points on either side of the line, and if the absolute

difference of the number of blue points on either side of the line, both have values of at

most one. This weighted scenario precisely describes the Discrete Pancake Theorem.

Thus, we have shown that the Discrete Pancake Theorem is but a special case of

the Dual-Balanced Theorem, and that the Dual-Balanced Theorem generalizes the

Discrete Pancake Theorem.
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3.11 Further Examples

Given a region with the usual conditions, we have shown through the Dual-

Balanced Theorem that we can always determine a directed line so that the region

is dual-balanced. This raises a natural question: can we always determine a directed

line so that a region with the usual conditions is triple-balanced?

We define triple-balanced as one would expect, where the points in a region are

now each being assigned three non-negative weights.

Definition 3.17: Triple-balanced

A directed line triple-balances a region with respect to weight x, y, and z values

if the directed line balances the region with respect to weight x values, with

respect to weight y values, and with respect to weight z values.

Certainly, in some regions, a directed line can be generated to triple-balance the

region. However, in this section, we will provide a counterexample showing that it

is not always possible to determine a directed line that triple-balances a region with

the usual conditions.

Example 3.18

Given a region with the usual conditions, there does not always exist a directed

line that triple-balances the region.

Proof. Consider region T4 in Figure 66, where we note the locations of points αi for

i ∈ 5 imply region T4 satisfies the usual conditions. Each coordinate (w1i, w2i, w3i)

for every αi communicates the three weight values w1i, w2i, and w3i. For example,

w25 = 4, as the second weight value of α5 is four.
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Figure 66: Region T4

We intend to show region T4 is an example of a region with the usual conditions

where it is impossible to determine a directed line that simultaneously balances the

weight one, weight two, and weight three values. We will consider the critical values

in Table 9 which influence whether or not the region is balanced by definition.

Weight One Weight Two Weight Three

Total S1 = 19 S2 = 18 S3 = 33

Maximum ε1 = 9 ε2 = 5 ε3 = 10

Table 9: Weight totals and maximum values in region T4

The weight three values particularly invite imbalance. We will focus our attention

specifically where |S3a − S3b| ≤ ε3. In Table 10, all possible S3a and S3b values are

given, along with an evaluation of whether or not each difference signifies weight

three balance. Note there are only four values of S3a that determine weight three

balance.
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S3a S3b x3 |x3| ≤ ε3

33 0 +33 ✗

32 1 +31 ✗

31 2 +29 ✗

30 3 +27 ✗

23 10 +13 ✗

22 11 +11 ✗

21 12 +9 ✓
20 13 +7 ✓
13 20 -7 ✓
12 21 -9 ✓
11 22 -11 ✗

10 23 -13 ✗

3 30 -27 ✗

2 31 -29 ✗

1 32 -31 ✗

0 33 -33 ✗

Table 10: Possible S3a and S3b values for region T4

We will now only consider directed lines that balance weight three values. In

Figure 67, we separate T4 into wedges, where each wedge is defined to be a gap from

A to E. We will use these gaps to determine all of the possible ways to balance weight

three values, where we can then demonstrate that any directed line balancing weight

three values does not simultaneously balance weight one and weight two values.

Figure 67: Region T4 separated into gap wedges
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The only path to balance weight three values from Gap A directs toward Gap C.

Note there are infinitely many directed lines being directed from Gap A to Gap C,

though every directed line directed from Gap A which balances weight three values

will maintain the designations seen in Figure 68a. Thus, while there exists directed

lines that dual-balance region T4, no directed line directed from Gap A triple-balances

region T4.

Figure 68: Directed line gap considerations

(a) From Gap A to Gap C (b) From Gap B to Gap D

Absolute Differences Balanced?
|x1| = 15 ✗

|x2| = 4 ✓
|x3| = 7 ✓

Absolute Differences Balanced?
|x1| = 5 ✓
|x2| = 8 ✗

|x3| = 9 ✓

In Figures 68b and 69a, we see that every directed line being directed from Gap

B which balances weight three values either has an imbalance for weight two values

or an imbalance for weight one values, implying no directed line directed from Gap

B triple-balances the region.

Figures 69b, 70a, and 70b show the only paths to balance weight three values

being directed respectively from Gap C, Gap D, and Gap E. Weight one values

are imbalanced whenever weight three values are balanced in the Gap C and Gap

E cases, and weight two values are imbalanced whenever weight three values are
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balanced in the Gap D case. No directed line directed from Gap C, Gap D, or Gap

E triple-balance T4.

Figure 69: Directed line gap considerations cont.

(a) From Gap B to Gap E (b) From Gap C to Gap A

Absolute Differences Balanced?
|x1| = 13 ✗

|x2| = 0 ✓
|x3| = 7 ✓

Absolute Differences Balanced?
|x1| = 15 ✗

|x2| = 4 ✓
|x3| = 7 ✓

Figure 70: Directed line gap considerations cont.

(a) From Gap D to Gap B (b) From Gap E to Gap B

Absolute Differences Balanced?
|x1| = 5 ✓
|x2| = 8 ✗

|x3| = 9 ✓

Absolute Differences Balanced?
|x1| = 13 ✗

|x2| = 0 ✓
|x3| = 7 ✓
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Thus, we have shown that wherever weight three values are balanced, either weight

one or weight two values are imbalanced. We have proven, then, that there does not

exist a directed line in region T4 that triple-balances the region. As a result, given

a region with the usual conditions, there does not always exist a directed line that

triple-balances the region.

3.12 Code-Generated Unique Minimized Balanced Path

Coding was implemented in Python to determine the unique minimized balanced

path for any specified region with the usual conditions. In the proof for the Dual-

Balanced Theorem, we provided an example to demonstrate some of the expressed

statements. The region of that example is displayed again in Figure 71.

Figure 71: Region R4

We now will use the generated code to identify αp for region R4, where the initial

weight-one balancing can be seen in Figure 72. Note that the weight one and weight

two values are written by each point, and the assignment decision for the point(s)

on the directed line is written in a text box.
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Figure 72: Code-generated initial weight-one balancing for region R4

As one can check, the coding is consistent with the initial weight-one balancing

in Figure 60, where weight two imbalance was caused by an over-accumulation of

weight two values on side Sa. The directed line generated by the initial weight-one

balancing process in Figure 72 does not dual-balance region R4 as signified by the red

line. We also see a new term titled minimized dual-balanced in the legend of Figure

72. Defined below, a directed line that minimizes dual-balance for a region is colored

green, while a directed line that dual-balances the region but does not minimize the

dual-balance is colored blue.
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Definition 3.19: Minimized dual-balanced

A directed line minimizes dual-balance for a region with the usual conditions

if the qualifications below are met:

1. The directed line was generated by a unique minimized balanced path

2. The directed line dual-balances the region

3. |x1|+ |x2| is minimized

After the first clockwise rotation, we see in Figure ?? that there is still imbalance

with respect to the weight two values. Note that the code is correctly selecting a

Case i action, as the weight one balance is minimized by preserving Sa assignments.

Figure 73: First code-generated clockwise rotation
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The first directed line during this unique minimized balanced path that dual-

balances region R4 is seen in Figure 74, where a Case iv scenario results in a desig-

nation switch and a clockwise rotation about the point on the right.

Figure 74: Second code-generated clockwise rotation

A Subcase iv.b action is accepted in Figure 75, as rotating past the point on the

left will generate the minimized balance. We also notice a green line for the first time,

implying the minimum value of |x1|+ |x2| is five for dual-balanced lines along this

path. It is also the case for the first time that x2 is negative. We demonstrated in the

proof for Theorem 3.16 that this occurrence must be accompanied by a dual-balanced

line, which is verified in Figure 75 for region R4.
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Figure 75: Third code-generated clockwise rotation

Both points preserve Sa assignment in the fourth clockwise rotation in Figure 76,

resulting in the same minimized dual-balance, but this time with a clockwise rotation

about the point on the left.

Figure 76: Fourth code-generated clockwise rotation
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Yet another dual-balanced situation presents itself in Figure 77, where a Case i

action is accepted as the minimized balanced path.

Figure 77: Fifth code-generated clockwise rotation

A designation switch in Figure 78 results in a directed line that does not dual-

balance the region, and it appears an imbalance for weight two values will continue.
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Figure 78: Sixth code-generated clockwise rotation

A final designation switch and clockwise rotation about the point on the right will

complete the 180◦ unique minimized balanced path. Note that the values of x1 and

x2 in Figure 79 are opposite that of their respective initial values in Figure 72.

Figure 79: Seventh code-generated clockwise rotation
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The concluding vertical directed line will contain the point with a weight two

value of two, entirely consistent with the definition of a unique minimized balanced

path.

Figure 80: Eighth code-generated clockwise rotation rotates past 180◦
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4 Application with Grand Forks Census Data

United States census block population data is free to access, and this information

will be considered in the following application regarding population disbursement in

the city of Grand Forks, North Dakota. Each census block will have a representative

point located at its centroid, and the first weight assigned to each representative

point is the population of the census block recorded by the 2010 census. The second

weight is the population of the census block recorded by the 2020 census.

As a result of the Dual-Balanced Theorem, there exists some line so that the 2010

and 2020 populations are balanced. In this case, S1a and S1b respectively describe

the population recorded in Grand Forks according to the 2010 census on the left and

right of the directed line. S2a and S2b are defined similarly, though they refer to the

2020 census. Finally, ε1 is the maximum census block population in Grand Forks in

2010, and ε2 is the maximum census block population in Grand Forks in 2020. We

wish to find a line where |x1| = |S1a − S2b| ≤ ε1 and |x2| = |S2a − S2b| ≤ ε2.

4.1 Directed Line that Dual-Balances the Region

By the Dual-Balanced Theorem, any region with the usual conditions can be dual-

balanced by some line. In this census data context, that means there always exists a

line where the 2010 and 2020 populations balance. This directed line would separate

the region into sub-regions that perhaps had a similar growth rate over the span of

ten years. Note that the path generated by the code in the following examples is a

unique minimized balanced path, and, as a result, the weight one values (2010 census

population) will always be balanced.

In Figure 81, we see an example of a directed line dual-balancing the region of
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Grand Forks, though the value of |x2| = 966 is rather high, and close to the maximum

census block population value from the 2020 census being ε2 = 1379. With the values

below the graph, note that the greatest change was an increase in population on the

western side of the directed line from 2010 to 2020. Otherwise, it appears the eastern

and western portions of Grand Forks had similar growth trends from 2010 to 2020.

Figure 81: Line dual-balancing 2010 and 2020 census block data
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4.2 Directed Line that Does Not Dual-Balance the Region

Figure 82: Line balancing 2010 but not 2020 census block data

The imbalanced region in Figure 82 demonstrates the population growth of the

south end of Grand Forks between the years 2010 and 2020. The directed line

certainly balances population disbursement in 2010, but there is a drastic imbalance

in 2020. If district boundaries were created in 2010 without a consideration for such

a population boom on the south end of town, then possible imbalances may have

existed in 2020 before new district lines were drawn. Anticipating and predicting

such future population shifts could avoid district imbalances in the future, where we

can utilize population prediction models and the Dual-Balanced Theorem to balance

population disbursement both now and at a set time in the future.
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4.3 Particularly Good Dual-Balancing

Finally, we consider a separation of the Grand Forks region where |x1|+ |x2| is

particularly close to zero. Note in Figure 83 that x1 = 28, x2 = −54, and that both

absolute values are relatively low.

Figure 83: Line dual-balancing 2010 and 2020 census block population particularly
well
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Because of how well the above separation dual-balances the region of Grand Forks,

we constructed the corresponding district division of Grand Forks, seen in Figure 84.

Figure 84: Resulting district division of Grand Forks from directed line in Figure 83
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4.4 Application Discussion

The Dual-Balanced Theorem helped to determine a district division that dual-

balances census block population data from 2010 and 2020. This same technique

could be used if one wanted to use 2020 census data for weight one assignment and

implement a population prediction model for weight two assignment. Instead of

dual-balancing 2010 and 2020 populations, we would then be able to dual-balance a

relatively current population and an estimated future population.

From analyzing the unique minimized balanced path, I noticed that all of the

lines that dual-balanced the Grand Forks region more or less separated the region

into east and west sub-regions. If one wanted to use the Dual-Balanced Theorem

again in a recursive process, it might be difficult to generate lines to dual-balance the

sub-regions that do not cause the Grand Forks region to be cut into vertical strips.

Continuing the process of dual-balancing may result in an undesirable division of the

region that could score low on geographic compactness scores. Though there may

be negative effects of this process, a recursive use of the Dual-Balanced Theorem is

a natural extension of this work, and this idea is mentioned below in suggestions for

future research.
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5 Conclusion

By the Dual-Balanced Theorem, if a region has the usual conditions and each

point in the region is assigned two non-negative weights, then there exists a line

that dual-balances the region. In the determination of this theorem, we defined

what we call a unique minimized balanced path to demonstrate the feasibility of the

Dual-Balanced Theorem through various examples with the aid of Python code.

5.1 Suggestions for Future Research

In the research expressed in [9] and [2], disjoint sub-regions were constructed so

that each sub-region contained a proportional number of red points and blue points.

A natural extension of this work would be to consider a recursive use of the Dual-

Balanced Theorem and how dual-balance would be affected by multiple divisions.

Perhaps some of the techniques from [9] and [2], such as an equitable 3-cutting, may

prove useful. It would be particularly beneficial to be able to create any number of

disjoint, dual-balanced sub-regions given a set of weighted points, as in the census

block scenario we would then be able to create a desired number of dual-balanced

districts. If a direct generalization in constructing dual-balanced sub-regions is not

possible in the weighted scenario, it may be worth considering constraints where

progress could be made. In both [9] and [2], constraints were placed on |S| and |T |.

Perhaps one could consider maximum weight value constraints, a weight variability

constraint, or a constraint on the number of sub-regions that could be constructed.

The Dual-Balanced Theorem proves there exists a line that dual-balances a region

in a two-dimensional plane. Could this idea be extended to three dimensions, where

we could determine a plane that would dual-balance a region in three-dimensional
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space?

In section four, the population data from 2010 and 2020 were respectively used as

weight one and weight two assignments. With more research into current population

trends, I think it would have been interesting to use 2020 population data as the

weight one assignment, and to have the results of a population prediction model be

the weight two assignment. This consideration opens another window of research, in

combining the idea of dual-balance with population prediction modeling.

Finally, this paper stated that no two points could be on the same vertical line. Is

this stipulation necessary? One could consider writing a proof for the Dual-Balanced

Theorem without this condition.
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