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Abstract 
 

In recent decades, flooding has become a major issue in many areas of the Upper 

Midwest. Many rivers and streams in the region had considerable increases in mean 

annual peak flows during this period, which was driven by a combination of natural 

factors including discharge synchrony with the spring thaw, ice jams, glacial lake plain, 

and a decrease in gradient downstream. The Red River of the North is a prominent river 

in the United States and Canada's Upper Midwest. It flows from its headwaters in 

Minnesota and North Dakota to Lake Winnipeg in Manitoba. The river is well-known for 

its spring floods, which can cause havoc on communities along its banks. There is an 

increasing need to improve the characterization and identification of precursors in the 

Red River basin that affect the hydrological conditions that cause spring snowmelt floods 

and improve predictions to reduce Red River flood damage.  

This dissertation has developed different research that concerns the dynamics of 

floods in the Red River basin by integrating hydrological, hydraulic, and machine-

learning models. The primary objectives were to improve flood prediction accuracy by 

deriving the parameters of the Muskingum Routing method using discharge 

measurements obtained by an Autonomous Surface Vehicle, to predict scour potential of 

the river through HEC-RAS modeling, and to provide an estimate of the flood 

progression downstream based on the flow characteristics. The study also compared the 

effectiveness of Seasonal Autoregressive Integrated Moving Average (SARIMA), 

Random Forest (RF), and Long Short-Term Memory (LSTM) algorithms for flood 

prediction. Additionally, the research investigated the surface water area variation and 

response to wet and dry seasons across the entire Red River basin, which can inform 
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the development of effective flood mitigation strategies.  The results of this study 

contributed to a better understanding of flood control strategies in the Red River Basin 

and helped to inform policy decisions related to flood mitigation in the region. Ultimately, 

this research aimed to understand the complex dynamics of the RRB and derive 

hydrological and hydraulic models that could help to improve flood prediction. 

The first research developed a linear and nonlinear Muskingum model with lateral 

inflows for flood routing in the Red River Basin using Salp Swarm Algorithm (SSA). The 

distributed Muskingum model is introduced to improve the accuracy and efficiency of the 

calculations. The study focuses on developing a linear and nonlinear Muskingum model 

for the Grand Forks and Drayton USGS stations deriving the parameters of the 

Muskingum Routing method using discharge measurements based on spatial variable 

exponent parameters. The suggested approach minimizes the Sum of Square Errors 

(SSE) between observed and routed outflows. The results show for an icy river like Red 

River, the Muskingum method proposed is a convenient way to predict outflow 

hydrographs caused by snowmelt. 

The second study improved flood inundation mapping accuracy in flood-prone rivers, 

such as the Red River of the North, by using simulation tools in HEC-RAS for flood 

modeling and determining Manning's n coefficient. An Autonomous Surface Vehicle 

(ASV) was used to collect bathymetry and discharge data, including a flood event with a 

16.5-year return period in 2022. The results showed that Manning's n-coefficient of 0.07 

and 0.15 for the channel and overbanks, respectively, agreed well with the observed and 

simulated water level values under steady flow conditions. The study also demonstrated 

the efficiency of using ASVs for flood mapping and examined the scour potential and any 

local scour development in the streambed near the bridge piers. 
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The third study of this dissertation used hourly level records from three USGS 

stations to evaluate water level predictions using three methods: SARIMA, RF, and 

LSTM. The LSTM method outperformed the other methods, demonstrating high 

precision for flood water level prediction. The results showed that the LSTM method was 

a reliable choice for predicting flood water levels up to one week in advance. This study 

contributes to the development of data-driven forecasting systems that provide cost-

effective solutions and improved performance in simulating the complex physical 

processes of floods using mathematical expressions. 

This last study focused on the spatiotemporal dynamics of surface water area in the 

Red River Basin (RRB) by using a high-resolution global surface water dataset to 

investigate the changes in surface water extent from 1990 to 2019. The results showed 

that there were four distinct phases of variation in surface water: wetting (1990-2001), 

dry (2002-2005), recent wetting (2006-2013), and recent drying (2014-2019). The 

transition from bare land to permanent and seasonal water area was observed during 

the wetting phase, while the other phases experienced relatively little fluctuation. Overall, 

this study contributes to a better understanding of the spatiotemporal variation of surface 

water area in the RRB and provides insights into the impact of recent wetting and drying 

periods on the lakes and wetlands of the RRB. 
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CHAPTER 1. INTRODUCTION 

1.1. Background 

Studying floods is important because they can have significant impacts on human 

populations and infrastructure. Floods can cause damage to buildings, roads, and other 

structures, as well as disrupt transportation and communication networks. They can also 

lead to loss of life and injuries, and cause displacement of communities. Understanding 

the causes and patterns of floods, as well as predicting and managing them, can help 

minimize the negative impacts of floods on society. Flood prediction in rivers is important 

for several reasons: 

1. Early warning: Flood prediction allows for early warning to be issued to at-

risk communities, giving them time to prepare and evacuate if necessary. 

2. Emergency response: With accurate flood predictions, emergency services 

can better prepare and respond to potential floods, minimizing the loss of life and 

property damage. 

3. Infrastructure protection: With accurate flood predictions, communities and 

governments can take action to protect critical infrastructure such as dams, levees, and 

bridges from potential damage. 

4. Water management: Flood predictions can be used to manage water 

resources, such as controlling the release of water from dams to prevent downstream 

flooding. 

5. Economic benefits: Accurate flood predictions can help minimize economic 

losses by allowing businesses and industries to prepare and protect their assets. 

6. Climate adaptation: Flood predictions can be used as a tool to better 

understand and adapt to the impacts of climate change on river systems. 

7. Research and Development: Flood predictions can be used to support 

research and development of new technologies, models, and strategies to improve flood 
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prediction and management capabilities. 

With this introduction, there is an increasing need to improve the characterization 

and identification of precursors that affect the hydrological conditions that cause spring 

snowmelt floods and improve predictions to reduce Red River flood damage. 

The Red River of the North, which flows through the states of Minnesota and North 

Dakota in the United States, as well as the province of Manitoba in Canada, has a long 

history of flooding [1] with records dating back to the 17th century. One of the most 

devastating flood years in the history of the Red River of the North was 1997, which 

resulted in extensive damage to infrastructure and the displacement of thousands of 

people. Another significant flood year was 2009, which was caused by a combination of 

snowmelt and heavy precipitation, leading to widespread flooding in the region. These 

floods, as well as several other major floods that have occurred in the region, have 

resulted in significant loss of life and property damage. 

Red River discharge varies annually and seasonally, and the water demand of the 

Red River basin may rise in the future due to a variety of factors, including economic 

development, population growth, and climate change [2]. Due to a long and severe 

winter for snow accumulation, warmer temperatures in the spring, and flat topography 

with weak permeability soil, the mid-latitude regions of North America are highly 

vulnerable to spring-melt floods [2]. Spring-melt floods are frequent in the Red River as it 

heads North [3, 4]. During the spring thaw, the southern part of the Red River basin 

melts first, and the river becomes hydrologically active; meanwhile, the northern part of 

the basin is often frozen. Along with the flat and homogenous topography, the river 

activity forms a slow, meandering river, which causes an overflow in the Red River of the 

North on the northern side, resulting in floods [5-8]. Surface runoff from snowmelt during 

significant floods leads the Red River to overflow its shallow banks, flooding the whole 

valley and causing immense damage. Researches by Hirsch and Ryberg (2012) and 

Rice et al. (2015) indicate that the frequency of floods in the Red River basin is 
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increasing dramatically [9, 10]. 

Flood management efforts in the Red River of the North have been ongoing for many 

years. Over time, these efforts have become more sophisticated, with the development 

of advanced flood forecasting and warning systems, as well as land-use planning and 

zoning regulations to reduce the risk of flooding. However, the Red River of the North 

continues to be a flood-prone area, and there are ongoing efforts to improve flood 

management and mitigation strategies. 

 

1.2. Research Objectives 

The objective of the dissertation was to provide an understanding of the Red River's 

complex dynamics in order to improve flood prediction through a combination of 

hydrological, hydraulic, and machine-learning models. Specifically, the study aimed to 

improve flood prediction accuracy by understanding the routing process and enhancing 

parameter estimation using the Muskingum method, calibrated hydraulic models using 

Autonomous Surface Vehicle measurements to predict scour potential, and comparing 

the performance of classical statistical, classical machine learning, and deep learning 

algorithms for flood prediction in the Red River. Furthermore, the study sought to expand 

the scope of analysis to the entire Red River basin, examining surface water area 

variation and response to wet and dry seasons, which could contribute to the 

development of effective flood mitigation strategies. By combining these four projects, 

that study provided a comprehensive understanding of the factors affecting flood 

prediction accuracy in the Red River basin, contributing to the development of a more 

effective flood management system in the region. 
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1.3. Dissertation Outline 

This dissertation is organized as follows. Four major studies were conducted to 

explore various approaches to improve flood prediction in the Red River. In Chapter 2, 

the Muskingum method was applied to understand the process of flood routing in the 

Red River and improve the parameters for flood prediction in the Red River. Chapter 3 

focused on improving flood prediction in the Red River by employing a flood hydraulic 

model calibration approach. This involved predicting the scour potential of extreme flood 

events triggered by snowmelt, using advanced ASV (Autonomous Surface Vehicle) 

measurements. By calibrating the hydraulic model, this study has enhanced flood 

prediction accuracy and ultimately contribute to effective flood mitigation strategies. 

Chapter 4, classical statistical methods, classical machine learning algorithms, and deep 

learning methods were used to predict floods in the Red River. Chapter 5 expanded the 

scope of the study to the entire Red River basin to give a more critical assessment of 

surface water area variation and detect surface water area response to wet and dry 

seasons. Finally, chapter 6 concludes the dissertation by summarizing the main findings, 

discussing their implications for practice and policy, identifying limitations and directions 

for future research, and overall contribution to the field. 

 

1.4. Publications  

This section contains the journal published while working on the Ph.D. Peer-

Reviewed conference papers and more published journal papers were not part of the 

Ph.D. projects and are not included in this dissertation. 

 

Peer-Reviewed Journal Papers 

 

J.1. V. Atashi, H. T. Gorji, S. M. Shahabi, R. Kardan, and Y. H. Lim, "Water Level 

Forecasting Using Deep Learning Time-Series Analysis: A Case Study of 
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Red River of the North," Water, vol. 14, no. 12, p. 1971, 2022. 

J.2. V. Atashi and Y. H. Lim, "Flood Hydraulic Model Calibration and Scour 

Potential Prediction Based on Advanced ASV-Measured Extreme Flood 

Events Triggered by Snowmelt," Remote Sensing, 2023, (under review). 

J.3. V. Atashi, M. H. Taufique, and K. Rasouli, "Impacts of climatic variability on 

surface water area observed by remotely sensed imageries in the Red River 

Basin," Geocarto International, 2023, (under review). 

J.4. V. Atashi, R. Barati, and Y. H. Lim. "Development of A Distributed 

Muskingum Model for River Flood Routing Incorporating Lateral Flow Using 

Whale Optimization Algorithm, " Journal of Hydroinformatics, 2023, (under 

review). 
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2 CHAPTER 2. Red River Flood Routing Using a Spatial Variable 

Exponent Parameter Nonlinear Muskingum Model and Salp Swarm 

Algorithm by Considering Lateral Flow 

2.1. Introduction and Background 

Flood routing is the process of simulating the movement of water in a river or stream 

system during a flood event using mathematical models. The goal of flood routing is to 

predict the behavior of the water as it moves through the system, including the peak 

flow, the timing of the peak flow, and the overall duration of the flood. Generally, two 

basic approaches are used to route flood waves in natural channels: hydrologic (lumped) 

and hydraulic routing. The hydrologic (lumped) method relies on the storage continuity 

equation, whereas the hydraulic method relies on the Saint-Venant equations, which 

include the continuity and momentum equations [11, 12]. 

The Muskingum model is a widely accepted flood routing model due to its adequate 

levels of accuracy and the reliable relationships between its parameters and channel 

properties. The traditional Muskingum model seeks a method of parameter estimation to 

determine the values of wave travel time, K, and weight coefficient of discharge, x.  

However, the linear Muskingum model leads to considerable inaccuracy in the 

forecast of flood behavior throughout its propagation along a river because natural 

channel reaches often have a nonlinear storage-discharge connection. To address this 

limitation, models such as the Muskingum model have been modified to account for the 

nonlinearity of flow movement processes. Gill introduced a nonlinear storage equation 

using the exponent of the Muskingum storage equation as the third parameter [13], and 

later models such as the Non-Linear Muskingum model (NLMM) have been developed 

to include lateral inflows and better simulate the nonlinear processes of flood 

movements in rivers. The NLMM with the lateral flow (NLMM-L) has been suggested as 

an accurate solution method for addressing the nonlinear Muskingum model [14-21]. 
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The fourth order Runge-Kutta method has been offered as an accurate and acceptable 

solution method among the different explicit solution methods for addressing the 

nonlinear Muskingum model since it is simpler than the Runge-Kutta-Fehlberg method 

[22, 23]. 

The Salp Swarm Algorithm (SSA) is a metaheuristic optimization technique inspired 

by the behavior of salps, a type of marine organism. SSA simulates the movement and 

behavior of salps in the search for optimal solutions to optimization problems introduced 

by Mirjalili et. al [24]. In this algorithm, each individual solution is represented as a salp, 

and the population of salps evolves over time as they interact with each other and with 

their environment. Sarming behavior of salps is a type of marine animal belonging to the 

Salpidae family [25]. Salps have a transparent barrel-shaped bodies and move through 

the water by pumping it through their body. In deep oceans, salps form a swarm called a 

salp chain [26]. The proposed mathematical model for moving salp chains divides the 

population into two groups: leader and followers and defines the position of all salps in 

an n-dimensional search space. It is assumed that there is a food source called F in the 

search space as the swarm's target.  There is little in the literature to mathematically 

model the swarming behaviors and population of salps [27, 28]. SSA has been 

successfully applied to a variety of optimization problems in engineering, science, and 

finance, and has shown to be a competitive alternative to other metaheuristic algorithms 

such as Particle Swarm Optimization and Genetic Algorithms. To the best of our 

knowledge, there is no prior research that has utilized the Salp Swarm Algorithm to 

create a model for the Muskingum method. 

Mirjalili et. al [24] propose a new nature-inspired optimization technique based on the 

swarming behavior of salps, called Sthe alp Swarm Algorithm (SSA) and its multi-

objective variant, called Multi-Objective Salp Swarm Algorithm (MSSA). Two 

mathematical models are proposed to update the position of leading and follower salps, 

and both algorithms are shown to be effective in solving both benchmark and real-world 
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optimization problems with unknown search spaces. The performance of SSA and 

MSSA is compared with other well-known algorithms in the literature using statistical 

tests, and it is found that SSA and MSSA outperform these algorithms in a statistically 

significant manner. The paper recommends further research in applying these 

algorithms to single- and multi-objective problems in different fields, proposing binary 

versions of the algorithms, and investigating the impacts of different constrained 

handling methods on their performance. 

In short, the objective of this research is to develop a nonlinear Muskingum model for 

two Red River USGS stations, Grand Forks and Drayton, to estimate the parameters of 

the nonlinear Muskingum models (K, x, m, and β) by using the distributed Muskingum to 

improve the accuracy of the procedure by splitting a reach into numerous periods, with 

the Muskingum model calculations conducted individually for each interval. 

 

2.2. Methodology 

2.2.1. Study Area 

The Red River Basin is an international watershed shared by the United States and 

Canada, with 80% of its area in the former (North Dakota, South Dakota, and Minnesota) 

and 20% in the latter (Manitoba). The Red River of the North is a major river in this basin 

that flows from south to north through the Red River Valley, which was formed by a 

glacial lake Agassiz remnant. The basin is around 60 miles wide and 315 miles long, 

with a total area of 45,000 square miles [1]. The climate is semi-arid, with cold winters 

and hot, dry summers, and most of the streamflow occurs in spring and early summer 

due to snowmelt or heavy rainfall [2]. The flat terrain and climatic conditions often lead to 

severe floods in the Red River and its tributaries during wet seasons, particularly in 

spring and early summer. The river's floodplain is broad and shallow, which makes it 

susceptible to flooding during heavy rainfalls or spring snowmelt. Some of the most 

devastating floods in North American history have occurred along the Red River.  Atashi 
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et. al studied the performance of classical statistical, machine learning, and deep 

learning methods in forecasting water levels for flood warning systems evaluated. 

Results showed that the Long Short-Term Memory (LSTM) method outperformed the 

other methods in terms of accuracy and precision, making it a reliable choice for flood 

prediction, especially for downstream stations without any discharge information 

available [29]. 

During a high-flow period in the spring snowmelt period, it is necessary to observe 

the flow hydrographs at upstream and downstream cross-section pairs. Drayton (station 

No. 05092000) and Grand Forks (station No. 05082500), which are existing USGS 

streamflow gauging stations, are chosen for flow observation because they are the only 

two stations from Grand Forks to the US-Canada border that provide streamflow data 

that enable researchers to study hydrographs (Figure 2-1). The other stations, Pembina, 

and Oslo, only provide gauge height information. The discharge flow of these two 

dataset stations is collected from USGS'S mean daily discharge. Fourteen different flood 

events between 1990 and 2022 are sampled to calibrate and verify the model 

summarized in Table 2-1.  

 



10  

 
Figure 2-1- Location of USGS stations on Red River in Pembina, Drayton, and Grand 

Forks 

 
Table 2-1- Characteristics of the water level time series at two hydrology stations of the Red 

River 

Station 
Name 

Period 
No. and Type of 

Events 
Frequency 

Drayton 1990-2022 16-flood Daily 

Grand Forks 1990-2022 16-flood Daily 

 

2.2.2. Muskingum Model 

The Muskingum method is a popular hydrological modeling technique used for 

predicting flood routing in rivers and streams. It is a simple and practical model that has 

been widely used for several decades in the field of hydrology. In this section, we will 

explain the Muskingum model in detail, including its mathematical formulation and the 

associated equations. 

The Muskingum method is based on the principle of conservation of mass and 
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momentum, which assumes that the discharge at a point in the river is equal to the inflow 

minus the outflow [30]. This method uses a linear reservoir approach to model the river 

channel, in which the channel is divided into a series of reaches with equal lengths. Each 

reach is characterized by two parameters, namely, the reach time delay (K) and the 

reach weighting factor (x). 

The reach time delay (K) is the time required for the water to travel through the 

reach, which is dependent on the channel geometry, roughness, and other hydraulic 

characteristics. The reach weighting factor (x) is the proportion of the discharge that 

enters the reach from the upstream section, which is also known as the weighting 

coefficient. These parameters can be determined using various techniques, including 

trial and error, optimization algorithms, and regression analysis. The Muskingum model 

can be represented mathematically as follows [31]: 

𝑆 = 𝐾[𝑥𝐼 + (1 − 𝑥)𝑂]                      (2-1) 

where O is the discharge at the downstream end of the reach (m3/s), I is the 

discharge at the upstream end of the reach (m3/s). x is the weighting factor for the reach 

(ranges between 0 and 0.5 for reservoir storage and between 0 and 0.3 for stream 

channels [32]), K is the time delay for the reach(s), and S is the storage volumes of the 

reach (m3). By combining equation 2-1 with continuity equation an explicit equation can 

be obtained to calculate the outflow at the next time step:  

𝑂2 = 𝐶0𝐼2 + 𝐶1𝐼1 + 𝐶2𝑂1             (2-2) 

The subscripts 1 and 2 on I and O represent the values at time t1 and t2 respectively. 

C0, C1, and C2 are the coefficients.  

The nonlinear Muskingum method is an extension of the classical Muskingum 

method, which allows for a better representation of the nonlinear relationship between 

the inflow and outflow in the river channel. This method is based on the principle of 

conservation of mass and momentum, and it uses a nonlinear reservoir approach to 

model the river channel. Previous research has advocated a nonlinear Muskingum 
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model for accounting for nonlinearity which is presented in equation 2-3 [13, 32-35]: 

𝑆 = 𝐾[𝑥𝐼𝑡 + (1 − 𝑥)𝑂𝑡]𝑚              (2-3) 

where m takes the nonlinearity without lateral flow into the models. These models 

feature an extra parameter m (= exponent power), which may be calculated using 

various parameter estimation approaches. Equation 2-4 shows modified storage 

equation that considers lateral flow. 

𝑑𝑆

𝑑𝑡
=

∆𝑆

∆𝑡
= (1 + 𝛽)𝐼𝑡 − 𝑂𝑡                                    (2-4) 

where β is the parameter accounting for the lateral flow. The storage at time t+1 is 

shown in equation below. 

 

𝑆𝑡+1 = 𝑆𝑡 + ∆𝑆                             (2-5) 

By substituting Equation 2-4 into Equation2-5, the storage at time t+1 considering 

lateral flow in a nonlinear relationship between the inflow and outflow will represent in 

Equation 2-6: 

𝑆𝑡 = 𝐾[(1 + 𝛽)𝑥𝐼𝑡 + (1 − 𝑥)𝑄𝑡]𝑚                        (2-6) 

 

2.2.3. Distributed nonlinear Muskingum model incorporating lateral flows 

Hosseini (2009) developed a concept for the linear Muskingum flood routing model to 

perform it in a river by considering multi-reach [36]. Vatankhah (2014) proposed the 

Fourth order Runge-Kutta approach as a numerical method to solve the ordinary first 

order differential equations of nonlinear Muskingum models [22]. Karahan et al. (2015) 

presented a nonlinear Muskingum model taking the contribution from lateral flow in flood 

routing calculations [37].  

In the present study, a distributed nonlinear Muskingum model incorporating lateral 

inflows has been developed. Nonlinear Muskingum models can be considered as a 

cascade of nonlinear Muskingum reaches. Figure 2-2 illustrates the concept of 
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distributed nonlinear Muskingum model. As it can be seen, one, two, three, or more 

equal nonlinear Muskingum sub-reaches can be used to represent the flow behavior of a 

single reach. Only one set of hydrological model parameters (K, x, and m) must be 

calibrated and used in the nonlinear routing calculations. Starting from the main inflow 

hydrograph at the upstream section, this flood hydrograph can be routed to the 

downstream section of the first sub-reach. Then, the routed flood hydrograph at the end 

of the first sub-reach is used as inflow for the second sub-reach and is routed 

subsequently to the downstream section of the second sub-reach [38]. This sequential 

procedure is repeated to obtain the flood hydrograph at the downstream section of the 

final sub-reach. The number of sub-reaches (NR) can be determined by a trial-and-error 

approach. In other words, the model could be calculated for one, two, three, or more 

sub-reaches and the best results between different NR options could be selected by 

comparing an objective function value and other performance evaluation criteria. The 

continuity and storage equations used in the distributed nonlinear Muskingum model 

incorporating lateral inflows are as follows: 

𝑑𝑆𝑡
𝑗

𝑑𝑡
= (1 + 𝛽)𝑄𝑡

𝑗−1
− 𝑄𝑡

𝑗
                                                  (2-7) 

𝑆𝑡
𝑗

= 𝐾[(1 + 𝛽)𝑥𝑄𝑡
𝑗−1

+ (1 − 𝑥)𝑄𝑡
𝑗
]                               (2-8) 

 

 
Figure 2-2- Models for distributed nonlinear Muskingum model: (a) single reach with no sub-reaches, (b) two 

sub-reaches within a reach, (c) three sub-reaches within a reach, and (d) multi-interval sub-reach within a 
reach. 



14  

 

where the lateral inflows varied linearly along the river reach and could be 

represented as a ratio of the inflow rate by considering the β parameter. t is the index of 

time between zero and the ending time of the flood. j is the spatial index between two 

and NR+1.  The routing procedure of the distributed nonlinear Muskingum model using 

the Fourth order Runge-Kutta method uses the following steps: 

1. Assume random values for hydrological model parameters K, x, and m, 

lateral flow parameter  and select one, two, three, or more reaches as NR. 

2. Estimate the initial storage by using Eq. (8). Initial flow rate at the 

downstream section of each sub-reach is the same as the initial flow rate at 

the upstream section of the sub-reach. 

3. Calculate the next storage. The next storage is computed by the present 

value plus the product of the size of the interval, Δt, and an estimated slope. 

The slope will be a weighted average of the following slopes using the Fourth 

order Runge-Kutta method: 

𝐿1𝑡
𝑗 = − (

1

1−𝑋
) (

𝑆𝑡
𝑗

𝐾
)

1/𝑚

+ (
1+𝛽

1−𝑋
) 𝑄𝑡

𝑗−1
                                                             (2-9) 

𝐿2𝑡
𝑗 = − (

1

1−𝑋
) (

𝑆𝑡
𝑗
+0.5𝐿1𝑡

𝑗
𝛥𝑡

𝐾
)

1/𝑚

+ (
1+𝛽

1−𝑋
) (

𝑄𝑡
𝑗−1

+𝑄𝑡+1
𝑗−1

2
)                                       (2-10) 

𝐿3𝑡
𝑗 = − (

1

1−𝑋
) (

𝑆𝑡
𝑗
+0.5𝐿2𝑡

𝑗
𝛥𝑡

𝐾
)

1/𝑚

+ (
1+𝛽

1−𝑋
) (

𝑄𝑡
𝑗−1

+𝑄𝑡+1
𝑗−1

2
)                                       (2-11) 

𝐿4𝑡
𝑗 = − (

1

1−𝑋
) (

𝑆𝑡
𝑗
+𝐿3𝑡

𝑗
𝛥𝑡

𝐾
)

1/𝑚

+ (
1+𝛽

1−𝑋
) 𝑄𝑡+1

𝑗−1
                                                          (2-12) 

By weight averaging these four slopes, one can calculate the next storage by using 

the following equation: 

𝑆𝑡+1
𝑗

= 𝑆𝑡
𝑗

+
𝛥𝑡

6
(𝐿1𝑡

𝑗 + 2𝐿2𝑡
𝑗 + 2𝐿3𝑡

𝑗 + 𝐿4𝑡
𝑗)                                                    (2-13) 

1. Calculate the next outflow by using the following equation: 
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𝑄𝑡+1
𝑗

= (
1

1−𝑋
) (

𝑆𝑡+1
𝑗

𝐾
)

1/𝑚

− (
𝑋

1−𝑋
) (1 + 𝛽)𝑄𝑡+1

𝑗−1
                                                   (2-14) 

1. Repeat Steps 3 and 4 for the following time intervals. 

2. Repeat Steps 2 and 5 for subsequent sub-reaches. 

The flowchart of the distributed nonlinear Muskingum model using the Fourth order 

Runge-Kutta method steps is shown in Figure 2-3. 

 

Figure 2-3- Flowchart of model steps for the distributed nonlinear Muskingum model 

 

2.2.4. Salp Swarm Algorithm (SSA) 

Salp Swarm Algorithm (SSA) is a recent swarm intelligence algorithm developed in 

2017 by Mirjalili et. al [24] which is a population-based method. Researchers believe that 

the movement behavior of salp swarm is primarily aimed at improving their search for 

food. The position of salps is determined by multiple variables in a search space. The 
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food source, which is the objective of the swarm, is represented by F. The leader of the 

swarm updates its position using a specific equation below: 

𝑥𝑗
1 = {

𝐹𝑗 + 𝑐1((𝑈𝑏𝑗 − 𝑙𝑏𝑗)𝑐2 + 𝑙𝑏𝑗)       𝑐3 ≥ 0

𝐹𝑗  −  𝑐1((𝑈𝑏𝑗 − 𝑙𝑏𝑗)𝑐2 + 𝑙𝑏𝑗)       𝑐3 < 0
       (2-15) 

Where 𝑥𝑗
1 is the position of leader in 𝑗𝑡ℎ dimension, 𝑈𝑏𝑗 are the upper and lower 

boundary at 𝑗𝑡ℎdimension, 𝐹𝑗 is the food source position. The coefficient 𝑐1 plays an 

important role in SSA which balances between exploration and exploitation. During the 

process of optimization, exploration refers to searching the search space thoroughly to 

find better solutions, while exploitation refers to utilizing the information present in the 

local region to improve the current solution. The parameter 𝑐1 is gradually decreased 

over iterations and can be calculated using the following formula. 

𝑐1=2𝑒𝑥𝑝−(
4𝑡

𝐿
)2

      (2-16) 

Where l is the current iteration and L is the maximum number of iterations. The 

parameters 𝑐2 and 𝑐3 are random numbers generated within the interval [0,1]. 𝑐3is 

responsible for indicating whether the next position of current leader salp should be 

toward +∞ or -∞. The other members of the salp swarm update their positions based on 

Newton's law of motion, which is expressed using the following equation: 

𝑥𝑗
𝑖 =  

1

2
𝑎𝑡2 + 𝑣0

𝑡      (2-17) 

Where 𝑖 ≥ 2, 𝑥𝑗
𝑖 is the position of the 𝑖𝑡ℎ follower in the 𝑗𝑡ℎdimension, t is the time, 𝑣0 

is the initial speed, and 𝑎 =  
𝑣𝑓𝑖𝑛𝑎𝑙

𝑣0
 where 𝑣 =  (𝑥 − 𝑥0)/𝑡. 

Since the time is considered as iterations and 𝑣0 = 0, Equation 2-15 can be 

reformulated as the equation below: 

𝑥𝑗
𝑖 =

1

2
 (𝑥𝑗

𝑖 + 𝑥𝑗
𝑖−1)   (2-18) 

Where 𝑖 ≥ 2, 𝑥𝑗
𝑖 is the position of the 𝑖𝑡ℎfollower in the 𝑗𝑡ℎ dimension.  

The main steps of the SSA can be summarized as follows: 
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- Parameter initialization: The algorithm starts by initializing the parameters such as 

the population size N, number of the iterations t, and the maximum number of 

iterations maxitr. 

- Initial population: We generate the initial population xi, i = {1, . . . , n} randomly in the 

range [u,l], where u and l are the upper and lower boundaries respectively. 

- Individual evaluations: Every individual (solution) within the population is assessed 

by determining its value using the objective function, and the best overall solution is 

designated as F.  

- Exploration and Exploitation: To balance between the exploration and the 

exploitation of the algorithm, the value of the parameter c1 is updated as shown in 

Equation 2-16. 

- Update the position of the solutions: The position of the leader solution and the 

other follower solutions are updated as shown in Equations 2-15 and 2-18, 

respectively. 

- Boundary violations: Boundary violations occur when a solution goes beyond the 

allowable range of the search space while updating, and it is then adjusted to fall 

within the problem's range. 

- Termination criteria: The number of iterations t is increased gradually until it reaches 

the maximum number of iterations maxitr. Then the algorithm terminates the search 

process and produces the overall best solution found. 

 

2.2.5. Statistical Performance Evaluation Criteria  

Statistical Performance Evaluation Criteria refers to a set of metrics and measures 

that organizations use to evaluate the performance of their systems and processes using 

statistical methods. These criteria are used to quantify the performance of a system and 

to make decisions based on data and evidence, rather than intuition or subjective 

judgment. Several performance evaluation criteria were developed to compare the 
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results of different approaches [32, 34, 39-45].  

The SSE is calculated by summing the squared differences between the predicted 

values and the actual values for each data point. The goal is to minimize the SSE, as a 

lower SSE indicates that the model is a better fit for the data and predicts the 

observations more accurately. Muskingum storage equations are to minimize the sum of 

square error (SSE) between computed Q̂ι and observed 𝑄𝑖 outflows as follows: 

𝑆𝑆𝐸 = ∑ {𝑂𝑡 − �̂�𝑡}
2𝑁

𝑡=1                                             (2-19) 

where 𝑄𝑖 and �̂�ι respectively are the observed and calculated outflow rates at the ith 

time, and N is the number of data. 

Three performance evaluation criteria are used to evaluate and compare the models' 

performances. 

1. SAD stands for Sum of Absolute Differences and is a statistical performance 

evaluation criterion commonly used to evaluate the performance of the 

Muskingum model. The SAD metric is used to evaluate the accuracy of the 

Muskingum model by comparing the estimated discharge values with the 

observed discharge values. 

𝑆𝐴𝐷 = ∑ |𝑂𝑡 − �̂�𝑡|𝑁
𝑡=1                                                (2-20) 

2. DPO (Deviation of Peak Observed) and DPOT (Deviation of Peak Time) are 

performance evaluation criteria used to evaluate the accuracy of the 

Muskingum model. DPO measures the deviation of the estimated peak 

discharge values from the observed peak discharge values. The deviation of 

the peak is the absolute difference between the estimated and observed peak 

discharge values. The formula for DPO is [39]: 

𝐷𝑃𝑂 =  |𝑃𝑒𝑎𝑘𝑟𝑜𝑢𝑡𝑒𝑑 − 𝑃𝑒𝑎𝑘𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑|                        (2-21) 

3. The formula for deviation of peak time of routed and actual outflows (DPOT) 

is: 
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𝐷𝑃𝑂𝑇 =
|𝑇pest -Tpobs|

𝛥𝑡
                                                    (2-22) 

Tpobs and Tpest denote the observed and estimated times to peak discharge, 

respectively. 

All the criteria presented are measurements of the accuracy of a routing model, with 

the optimum value at 0.  

 

2.3. Results of Journal Paper 1 

floods can be classified based on the quantity of snow participation in the flood and 

the relationship between weighted discharge and storage. The contribution of snow 

is directly related to the amount of lateral flow, which is determined by the coefficient 

"β". Additionally, the value of coefficient "m" determines the link between storage and 

weighted discharge. The snowmelt events of this study have been categorized into 

three distinct categories: a, b, and c. Category “a” comprised the years 1997, 2001, 

2005, 2006, 2009, 2010, and 2018. Category “b” consisted of the years 1999, 2004, 

and 2013, while category “c” included the years 2011 and 2019. All of the years 

included in the categorization process were used to calibrate the data. Specifically, 

year 2020 was used to validate category “a”, and year 2022 was used to validate 

category “b”.  

Table 2-2 displays a case study of computation and optimization for a one- to three-

reach problem using data category “a”. 

 The study model was applied to the flood data for mentioned years agreed well with 

the method proposed in this study. The optimal parameters of the model for the flood 

data were determined to be 0.54 for K, 0.24 for x, 1.38 for m, and 0.19 for β using 

SSA associated with single sub-reaches. Consequently, the proposed flood routing 

model finds 29.64 and 67.77 percent better results in terms of SSE in comparison 

with two and three number of sub-reaches, respectively. 
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Table 2-2- Hydrologic Parameters Estimates and Performance Evaluation Criteria (PEC) 
parameters for different numbers of sub-reaches applied for category “a” 

Number of 

sub-

reaches 

Model Parameters PEC 

x K m β SSE SAD DPO DPOT 

1 0.24 0.54 1.38 0.19 404942172.92 111755.01 2686.62 0 

2 0.08 0.35 1.24 0.09 524984042.89 136482.56 608.52 1 

3 0.09 0.20 1.26 0.05 679360429.21 157998.12 1030.29 1 

 

The findings for category “b” events show that NR=2 has the lowest SSE value 

among the different numbers of sub-reach. Notably, the value Muskingum 

parameters for NR=2 are K = 0.06, x = 0.06, m = 1.46, and β = 0.16. Table 2-3 

shows the optimal outflows and intermediate results for flood routing. 

 

Table 2-3- Hydrologic Parameters Estimates and Performance Evaluation Criteria (PEC) 
parameters for different numbers of sub-reaches applied for category “b” 

Number of 

sub-

reaches 

Model Parameters PEC 

x K m β SSE SAD DPO DPOT 

1 0.12 0.08 1.60 0.39 785220033.00 192284.99 4180.37 1 

2 0.06 0.06 1.46 0.16 730213882.59 197004.36 3425.99 1 

3 0.02 0.05 1.37 0.10 773926769.66 205472.96 2035.31 2 

4 0.00 0.04 1.29 0.07 840716718.70 211969.22 1175.80 2 

 

The model was calibrated using observed data from years 2011 and 2019. 

However, no observed data was available for category "c" for validation. As a result, 

the model could not be validated for category "c". Table 2-4 shows the amount of 

parameters for different numbers of sub-reaches but since we did not have PEC 

analysis due to lack of validation analysis. The results of the Muskingum model show 

that the model is a valuable tool for simulating the routing of flood waves in rivers.  

 

Table 2-4- Hydrologic Parameters Estimates and Performance Evaluation Criteria (PEC) 
parameters for different numbers of sub-reaches applied for category “c” 

Number of 

sub-

reaches 

Model Parameters 

x K m β 

1 0.54 1.38 0.19 1 
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2 0.35 1.24 0.09 2 

3 0.20 1.26 0.05 3 

4 0.12 1.27 0.04 4 

 

The simulated and observed hydrographs for 2020 and 2022 are shown in Figures 2-

4 and 2-5. The figures show that the trends and shapes of the hydrographs are similar. 

However, the peaks of the simulated hydrographs are slightly lower than the peaks of 

the observed hydrographs. The shape of the recession limb of the simulated hydrograph 

for 2020 is exactly the same as the shape of the observed hydrograph, while the 

simulated hydrograph for 2022 matches the observed hydrograph perfectly. 

 

 

Figure 2-4- Observed and simulated hydrographs of 2020 under validation for category “a”  
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Figure 2-5- Observed and simulated hydrographs of 2022 under validation for category “b”  

 

2.4. Conclusion of Journal Paper 1 

This paper discusses the Muskingum method, a simplified approach to modeling 

river systems. However, including lateral inflow in the model can improve accuracy, 

particularly when it has a significant impact on the system's behavior. The study 

develops a nonlinear Muskingum model for the Grand Forks and Drayton USGS stations 

and estimates parameters using distributed Muskingum. The results demonstrate that 

the nonlinear Muskingum model accurately routes floods through the two studied USGS 

stations. The outcomes are as follows: 

The Muskingum method is a convenient way to predict flood occurrences caused by 

snowmelt in icy rivers like the Red River. The Salp Swarm Algorithm (SSA) is a 

promising optimization algorithm that can handle the optimization of the Muskingum 

method. The results of the study show that NR=2 yields the optimized outflow for group 

“b“, whereas NR=1 produces the best results for group “a“. The optimized parameters for 

category “a” are x= 0.24, K=0.54, m=1.38, and β= 0.19. While for category “b”, the 

optimized parameters are x= 0.06, K=0.06, m=1.46, and β= 0.16. These results suggest 

0

10000

20000

30000

40000

50000

60000

70000

80000

20-Mar 30-Mar 9-Apr 19-Apr 29-Apr 9-May 19-May 29-May

Q
 (

m
3

/s
)

Date 

USGS Data-Drayton

USGS Data-GF

Modeled Data-Drayton



23  

that the Muskingum method can be effectively optimized using the SSA algorithm. The 

optimized parameters can be used to improve the accuracy of flood predictions in icy 

rivers. 

 

 

 

 

 

 

 

 

 

  



24  

 

3 CHAPTER 3. Flood Hydraulic Model Calibration and Scour Potential 

Prediction Based on Advanced ASV-Measured Extreme Flood Events 
Triggered by Snowmelt 

 
3.1. Introduction and Background 

The flood phenomenon is a dynamic problem. A good understanding of channel bed 

bathymetry and velocity field is required for flood prediction. Forecasting river and lake 

water flows are critical for flood warnings and water resource management. Few peer-

reviewed articles specifically address flood forecasting in the Red River despite the Red 

River of the North's propensity for flooding. Atashi et al. [29] established effective 

methods that use a classical statistical method, a classical Machine learning algorithm, 

and a Deep Learning method. The results indicated that the LSTM approach 

outperformed the SARIMA and Random Forest methods in terms of prediction accuracy 

for three stations in the Red River: Pembina, Drayton, and Grand Forks. Lim and Voeller 

(2009) discussed methods for estimating flood levels in the Red River using two different 

techniques: L-Moment-Based Index-Flood and Bulletin 17B Procedures [1]. Their 

findings showed that the L-moment-based index-flood (LMIF) approach has various 

benefits over standard moment methods, including higher resilience and identifiability of 

the best-fitted distribution, which is especially important for regional research. Todhunter 

[46] investigated the maximum flow data for the Grand Forks, North Dakota station. 

Todhunter (2012) advised investigating the assumptions based on the LP3 distribution to 

apply the stationary frequency analysis suggested in Bulletin 17B, guidelines for 

Determining Flood Flow Frequency. The existence of climate cycles, the temporal 

independence of the records, changes in watersheds, and flood mechanisms were 

suggested in the Todhunter study [46]. Deschamps et al. (2002) also concluded that the 

Red River floodplain is not clearly defined, although it does encompass the lakebed of 

ancient Lake Agassiz [47].  
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Bathymetry and LiDAR data offer valuable insights into the topography of land and 

water bodies, enabling more effective flood prediction and prevention strategies. 

Bathymetry data provides information on the depth and shape of water bodies, aiding in 

flood forecasting and mitigation efforts. LiDAR data, on the other hand, can create highly 

detailed topographic maps of land and floodplains. Recently, the average current depth, 

velocity, and discharge field have been estimated using the ADCP [48-53]. These 

devices can generate spatially extensive velocity and discharge patterns [54-57], which 

could be utilized to calibrate and validate numerical models.  

In this study, we provide flow measurements using an ASV called HYCAT (Figure 3-

3 b) and an ADCP (Acoustic Doppler Current Profilers) [58], which measures flow 

discharge and velocities (Figure 3-3 a). This ASV uses GPS to navigate autonomously 

along preprogrammed routes on the water surface. A bathymetric survey of the 

streambed around the bridge sites allows us to collect water depth data as point clouds 

for 3-D bathymetric mapping, which is created using the HEC-RAS model. The HEC-

RAS model is a valuable tool for modeling floods and identifying flood maps for 10-, 25-, 

50-, and 100-year return periods [59]. Also, to gather input data on river geometry 

characteristics (cross sections, streamlines, river banks), several DEMs including Shuttle 

Radar Topography Mission (SRTM), Light Detection and Ranging (LiDAR), and 

Interferometric Synthetic Aperture Radar (IFSAR) were integrated into HEC-RAS [60-

63]. 

The integration of bathymetry and LiDAR datasets can also lead to the creation of 

precise flood maps, which can be used to develop targeted flood prevention and 

mitigation strategies. By identifying at-risk communities and infrastructure and enabling 

precise flood forecasting, flood mapping plays a crucial role in mitigating and preventing 

the impact of floods.  

The first part of the study used the Ras-Mapper tool in HEC-RAS to plot flood 

inundation mapping. Flood inundation mapping assists flood hazard management and 
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flood extent area identification by visualizing prospective flooding scenarios, identifying 

locations and resources that may be in danger, and improving local response efforts 

during a flooding disaster [64]. Inundation mapping accuracy can be improved by using 

high-resolution topographic data generated by LiDAR technologies associated with 

ADCP bathymetry data to reveal unprecedented-level topographic features. The maps 

typically show the extent of flooding, including the depth and velocity of the water, and 

may also include information on evacuation routes, critical infrastructure, and other 

relevant data.  

The study of Namara et al. (2022) aimed to map flood inundation using the HEC-

RAS model for the Awash Bello flood plain in Ethiopia. The HEC-HMS model was used 

to compute annual peak flood frequency analysis for different recurrence intervals. The 

results showed that the whole area is under the influence of flood inundation due to 

intensive rainfall events [65]. Zheng et al. (2018) propose a new workflow called 

GeoFlood for flood inundation mapping using high-resolution terrain data. The approach 

involves automatic channel network extraction, computing a Height Above Nearest 

Drainage (HAND) raster to quantify elevation differences, and generating inundation 

maps using synthetic stage-discharge rating curves. The approach is evaluated in the 

Onion Creek Watershed in Central Texas and shows promising results in capturing 

general inundation patterns, with potential for informing real-time flood disaster response 

[66]. Pinos et al. (2019) evaluated the performance of three hydraulic 1D models (HEC-

RAS, MIKE 11, and Flood Modeller) in estimating inundation water levels for a mountain 

river. The models were evaluated under steady-state conditions for 10 scenarios, using 

two types of cross-sectional data. The authors found that the models performed similarly 

when using detailed field survey data (type I), but the goodness of fit decreased when 

using cross-sections derived exclusively from DEM (type II). The authors recommend 

using type I geometric data for practitioners to obtain similar model performance [67]. 

The second part of the research was focused on assessing the scour that occurs 
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specifically around the pier of the bridge, known as local scour. Both bathymetry and 

LiDAR datasets can help prevent scour near bridges by providing detailed information on 

the underwater topography, such as the depth of the water and the composition of the 

riverbed. Scouring at bridges is a highly intricate phenomenon which involves various 

processes such as local scour around the piers and abutments, contraction scour, 

channel bed degradation, channel widening, and lateral migration, which can occur 

simultaneously. The collective and interconnectedness of these river processes make 

the scouring process very complex and difficult to model mathematically. Furthermore, 

the presence of countermeasures such as riprap, grout bags, and gabions adds another 

layer of complexity to the analysis. To fully comprehend the scouring process around 

bridges, a thorough evaluation should account for all these factors. Engineers have been 

working to create and sustain bridge and hydraulic structure foundations that are secure 

from scouring more for than four decades. The HEC-RAS is a popular tool researchers 

used for analyzing bridge scour. While there are several equations available for 

computing scour around piers and abutments, the ones included in the HEC-RAS are 

widely preferred by researchers and engineers [68-70] 

In accordance with the introduction, the main goals of this project are as follows: 1) 

to map the 2022 flood in Red River of the North in Grafton using the bathymetric and 

LiDAR data, 2) to evaluate local scour around the bridge pier which employs the 

Colorado State University method as a default equation. There was a concern for scour 

potential around the mentioned bridge. Flow conditions were approximated for a 2022 

flood event with a 16.5 return period in the Red River of the North using HEC-RAS flow 

modeling software. The outcomes will enable us to understand the hydraulics and scour 

potential, propose remedial design options, and revisit the site for measurements after 

implementing the countermeasure. It is important to note that one of novelty of our study 

lies in the fact that we measured one of the rare flood events and due to a lack of tools 

and the risk involved in taking measurements during flood events, not many studies 
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have been done on these measures in the past.  

 

3.2. Methodology 

To produce the flood inundation map and investigate scour depth around the bridge 

in HEC-RAS, we first constructed a hydraulic model of the river or channel using the 

most reliable bathymetry and Lidar data available. Subsequently, we introduced the 

roughness coefficient for the channel and overbanks based on previous research, as 

well as any other necessary parameters into the model. We executed the model to 

compare predicted water surface elevations and velocities with observed data. The 

primary data employed in this study included pier dimensions, pier shapes, flow depth, 

sediment samples, and river cross-section, while secondary data consisted of discharge 

data, topographic maps, map of the study area, and river length, all of which were 

entered as input data. Finally, we utilized HEC-RAS software 6.0.0 to analyze the data 

and determine the local scour depth around the bridge piers, and to generate the flood 

map of the study area. 
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Figure 3-1- Flowchart outlining HEC RAS model development. 

 

3.2.1. Study Area 

The Red River originates near Wahpeton in North Dakota at the intersection of the 

Bois de Sioux and the Otter Tail rivers between the U.S. states of Minnesota and North 

Dakota. The river’s mouth is located northeast of Winnipeg in Manitoba, Canada, flowing 

into Lake Winnipeg. The slope of the Red River of the North varies along its length which 

is 545 miles. In the region of Fargo-Halstad, the gradient of the Red River averages 5 

inches per mile of length. In the region of Drayton-Pembina, however, the gradient drops 

to 1.5 inches per mile. The Red River of the North is considered to have a relatively 

gentle slope with the catchment area of 178,645 mi2 (287,500 km2) (Figure 3-1 a) [3]. Ice 

jams in the north cause major floods because of the backwater effect of the frozen water 
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[71]. The warmer, southern part of the Red River melts first during the spring thaw, and 

the meltwater flows north into colder temperatures while the northern portion of the Red 

River basin is still frozen, resulting in floods [1]. Rainfall in the spring and early summer, 

when there is still snow on the ground, relates to quick melting, and when paired with the 

previously described features, the Red River Valley is extremely vulnerable to floods in 

March and April. These factors increase the need to study flooding in this region to 

better identify the precursors that influence the hydrological conditions generated during 

spring snowmelt floods. 

 

 
 

(a)                                                     (b) 
Figure 3-2- a) The research location in the Red River of the North 
b) Red River East of Grafton, ND (48°24'47.56"N 97° 8'15.99" W) 

 

A section of the Red River east of Grafton, Walsh County, North Dakota 

(48°24'47.56"N 97° 8'15.99" W) and Marshall County, Minnesota has been chosen for 

this study (Figure 3-1 b). The study reach is approximately 11 miles upstream of the 

Drayton USGS station, No. 05092000, which is in Pembina County, North Dakota. This 
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study location is between two USGS stations which provide discharge data: the Red 

River at Drayton, ND (05092000) and the Red River at Grand Forks, ND (05082500), 

therefore, there are no stations with discharge information for around 50 miles. 

Additionally, there were concerns about potential scour holes near the Red River of the 

North the Grafton Bridge (Bridge 5872 in Minnesota and Bridge 0017-140.372 in North 

Dakota) is a two-span Parker through truss that carries State Highway 17 in Walsh 

County, North Dakota, and Minnesota Trunk Highway 317 in Marshall County, 

Minnesota since the bridge scour is the primary cause of bridge failure in the United 

States, making the risks associated with it substantial [72].  

 

3.2.2. Bathymetry and LiDAR Data 

RiverSurveyor and HYPACK software were used to collect discharge and raw 

velocity and bathymetry data from the Red River, respectively. The stationary 

measurement instrument M9 ADCP (Figure 3-3 a) was deployed on an Autonomous 

Surface Vehicle (ASV), kept in position using a remote controller on the channel riverbed 

(Figure 3-3 b). The M9 can monitor water depth (ranging from 0.2 to 131.23 feet at 

velocities ranging from 0 to 65.6 ft/s), velocity, and discharge profiles [73]. 

Morphological changes were measured with an acoustic Doppler current profiler on 

peak discharge days in April, May, and June 2022. Moving boat measurements for the 

repeat transects perpendicular to the flow were obtained at each transect location to 

begin collecting bathymetry data  [74, 75]. Most of the transects captured several 

acoustic reciprocal pairs, whereas the remaining transects contained one to three 

traversing passes. There was a total of 64 transects, which each transect took an 

average contact time of 4.5 minutes. The discharge was measured between April 2022 

and June 2022, which was a flood event with a 16.5-year return period. The occurrence 

frequency of a specific flood event, also known as its return period, was computed using 

PeakFQ software obtained from the US Geological Survey [76]. The dataset used for the 
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analysis spans from the year 1882 up to 2021 and is based on peak discharge 

measurements collected at the Grand Forks station. The maximum discharge based on 

which the return period was estimated is 63,900 cfs, which is the highest recorded 

discharge for Grand Forks USGS station on April 24th, 2022. The return period of a flood 

refers to the average number of years between occurrences of a flood of a certain size 

or greater. It is calculated based on the probability of the flood occurring and the 

frequency of occurrence. The discharge in this investigation ranged from 13,000 to 

47,150 cfs. LiDAR data is commonly used to create high-resolution topographic maps 

and digital elevation models. In this study, the overbank’s elevation was obtained from 

LiDAR data using the National Map of the U.S. Geological Survey with a resolution 

of 7.5 x 7.5 minutes to complete the cross-sections as input for the source of elevation 

information for flood mapping in HEC-RAS.  

 

Figure 3-3- a) RiverSurveyor/HydroSurveyor M9 ADCP unit b) ASV stationed at the Red 
River 

 

3.2.3. Model Description 

HEC-RAS simulates 1D hydraulic processes for a complete network of natural and 

 

 
(a) (b) 
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man-made channels. Four 1D hydraulic components in HEC-RAS simulate water quality, 

moveable boundary sediment transport, steady water flow, and unsteady water flow 

surface profiles. The HECRAS 6.0.0 software was used in this paper to generate a 1D 

hydrodynamic model and determine and map the flooding of the present Red River 

reach. The conventional step method is used to calculate water surface profiles from one 

cross-section to the next by solving the energy equation iteratively. The coefficients of 

contraction or expansion were multiplied with the change in velocity head to determine 

energy losses when the channel geometry changed. The following is the energy 

equation [77]: 

𝑍1 + 𝑌1 +
𝛼1𝑉1

2

2𝑔
+ ℎ𝑒 = 𝑍2 + 𝑌2 +

𝛼2𝑉2
2

2𝑔
                 (3-1) 

in which: 

Y1, Y2 = flow depth at cross sections (ft) 

Z1, Z2 = elevation of the main channel inverts (ft) 

V1, V2 = average velocities (ft/s) 

α1, α2 = velocity weighting coefficients 

g = gravitational acceleration (ft2/s) 

he = energy head loss (ft) 

The empirical Energy equation, in the form of equation 3-1, was used in the model to 

provide the relationship between river discharge, hydraulic resistance, river geometry, 

and friction energy loss. The determination of total conveyance and the velocity 

coefficient for a cross-section requires that flow be subdivided into units for which the 

velocity is uniformly distributed. 

Using the input cross-section n-value break points as the foundation for subdivision, 

the HEC-RAS method divides flow into main channel and the overbank regions. 

Manning's equation, expressed in the equation 3-2, is used to determine conveyance 

within each subdivision [78]: 
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 𝑄 = (1.486/n) A𝑅2/3𝑆𝑓
1/2

,                              (3-2) 

In the equations above: 

Q = flow rate (cfs) 

𝑆𝑓 = energy slope (ft/ft) 

n = Manning's roughness coefficient  

A = flow area (ft2) 

R = hydraulic radius (ft) 

 

3.2.4. Geometric and Hydrologic Data and Data processing in the RAS‑mapper 

tool 

 

The bathymetry data obtained from both ADCP and LiDAR was used to prepare 

cross-sectional data and hydraulic structure data for river networks. Discharge and 

boundary conditions are provided in a steady flow file. Discharge data were established 

for the calculation procedure and completing the model building after geometric data 

entry. Six different discharges collected in the 2022 flood have been used as steady flow 

data to run HEC-RAS. In this study, the normal depth was used as the boundary 

condition for both the upstream and downstream areas. The normal depth was 

determined based on the slope of the study area. The defined plan is executed in a 

steady flow analysis when the proper data is entered into the geometry and steady flow 

files. Twenty 100-foot interval cross-sections were surveyed along the 2000-foot study 

reach, with two 40-foot interval cross-sections upstream and downstream of the bridge 

for greater bathymetry precision. RAS-Mapper was used to generate terrain models and 

display HEC-RAS data on maps by using river digitization to extract GIS data from 

overbank lines, centerlines, flow, and cross-section lines (Figure 3-4) [79]. In Figure 3-4, 

red points show channel overbanks which describe a cross-section's primary channel 

overbanks, the blue arrows indicate the flow path lines, and the green lines are 
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representative of cross-sections cut lines are used to obtain the terrain's elevation data 

to build a ground profile spanning channel flow. 

 

 
Figure 3-4- Locations of the cross-sections over the study’s reach 

 

3.2.5. Bridge Scour Modeling 

The scour depth of bridge piers located on rivers can be determined by the software 

using hydraulic flow data, along with the shape and geometric characteristics of the 

bridge pier, and the composition and form of the riverbed substrate. The default model 

for estimating the local scour depth around bridge piers in the software is known as the 

CSU model, which is described as follows [69].  

 Ys =  2.0 K1K2K3K4𝛼0.65Y1
0.35Fr1

0.43           (3)  

Where: Ys= the maximum scour depth; α= width or diameter of the pier; Y1= the flow 

depth in the pier upstream; K1= the pier shape coefficient; K2=the coefficient of the 

impact angle; K3=the bed condition coefficient; K4=the bed's coefficient of reinforcement 

by the sediment particles; Fr1= Froude number.  

To calculate bridge scour, one can open the Hydraulic Design Functions window and 

choose the scour at bridges function. This selection will prompt the program to retrieve 

output for the approach section, upstream section, and sections within the bridge from 
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the output file. Input data, a graphic, and a summary results window are also available. 

Input data tabs can be accessed for contraction scour, pier scour, and abutment scour. 

When entering contraction scour data, variables other than K1 and D50 can be 

automatically obtained from the HEC-RAS output file. When calculating contraction 

scour, the user needs to input only the D50 (average size of bed material) and water 

temperature to determine the K1 factor. To enter pier scour data, the user only needs to 

provide the pier nose shape (K1), the angle of attack for incoming flow, the bed condition 

(K3), and the D95 size fraction of bed material, with all other values, obtained 

automatically from the HEC-RAS output file. 

 

3.3. Results of Journal Paper 2 

3.3.1. Model Manning Coefficient 

An observed flow of 13,250 cfs, 47,150 cfs, 36,250 cfs, 27,700 cfs, 19,500 cfs, and 

13,000 cfs at the river upstream was used from the flood event in 2022 with a 16.5-year 

return period. These flow rates are considered low, medium, and high flow in the Red 

River. In this study, we selected the value for Manning's roughness coefficient based on 

previous studies. The previous studies introduced ranges of Manning’s n-coefficient 

values and we evaluated these ranges using statistical parameters to determine the best 

n-coefficient value for our case study. The selected n value was then used in our 

hydrological analysis to improve the accuracy of flood prediction. Based on the literature 

review [78, 80], the initial value of n-coefficient was set to be between 0.04 and 0.05 for 

the channel bed river and between 0.06 and 0.16 for the river banks.  

Table 1 presents information on water level data that was both observed and 

simulated for a range of discharge data collected on the 2022 flood. R-squared is a 

statistical measure that indicates how well a regression model fits the observed data, 

with higher values indicating a better fit. For statistical analysis, the R-squared for Red 

River bathymetry data and simulated data were calculated, and the formula is: 
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𝑅2 = 1 −  
𝑆𝑢𝑚 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 (𝑆𝑆𝑅)

𝑇𝑜𝑡𝑎𝑙 𝑆𝑢𝑚 𝑜𝑓 𝑆𝑞𝑢𝑎𝑟𝑒𝑠 (𝑆𝑆𝑇)
= 1 −  

∑(𝑦𝑖−𝑦�̂�)2

∑(𝑦𝑖−�̅�)2       (3) 

where: 

𝑦𝑖 is the ith water level value generated by the model, 

𝑦�̂� is the ith water level value generated by measured data, 

𝑦�̅� is the mean water level value of measured data series, 

n is the total number of data series.  

The value of the coefficient of determination (R2), 93%, indicates that 0.046 for the 

river channel, and 0.06 for the overbanks, is the best Manning's n-coefficient value to 

use because it offers an excellent match between the observed and simulated water 

surface profile. 𝑛𝐶ℎ𝑎𝑛𝑛𝑒𝑙 shows the value of Manning’s n-coefficient for the main channel, 

and 𝑛𝑜𝑣𝑒𝑟𝑏𝑎𝑛𝑘 indicates the value of Manning’s n-coefficient for the overbanks. Since the 

left overbank (LOB) and right overbank (ROB) areas have similar vegetation, so only 

one value used is used for both overbanks.  

 
Table 3-1- Manning’s n-coefficient for observed and simulated water level data 

Date Q (cfs) 

Water Elev (ft) Water Elev 

(Hec-RAS) (ft) 

Observed 

Data 

nchannel=0.046 

noverbank=0.06 

4/8/2022 13,250 787.00 787.24 

4/27/2022 47,150 807.00 800.98 

5/7/2022 36,250 805.00 799.37 

5/27/2022 27,700 799.00 798.08 

6/12/2022 19,500 795.00 792.11 

6/20/2022 14,500 791.00 788.05 

 

3.3.2. Model Flood Mapping 

Figure 3-5 depicts the topographical surface, which comprises multiple cross-
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sections in the HEC-RAS model for the research area at the Red River near the Grafton 

Bridge (Bridge 5872 in Minnesota and Bridge 0017-140.372 in North Dakota). The 3D 

Viewer’s multiple cross-sections visualize HEC-RAS simulation results and terrain data 

in three dimensions, which assists engineers when communicating hydraulic modeling 

results to decision-makers. The simulated inflow discharge water surface profile of 

47,150 cfs and 13,000 cfs are depicted in Figure 3-5 a, and Figure 3-5 b, which are the 

high and low flow values of the measured data, respectively. The river flow entered the 

overbanks on the left overbank first due to the lower altitudes of the left overbank 

incorporated into the backwater phenomena when the flow gets close to the bridge or 

any obstacles. The term "backwater" refers to the rise in water level [81]. The bridge's 

pier will obstruct the flow and raise water levels upstream for subcritical flows. The entire 

overbank was underwater during the April 2022 Red River flood near Grafton (Figure 3-5 

b).  
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(b)  

 

Figure 3-5- HEC-RAS simulated topographical surface profile (a) Q=13,000 cfs, and (b) 

Q=47,150 cfs 

  

 

Figure 3-6 depicts the water levels at the first and the last cross-section (Figure 3-4) 

extracted from DEMs using geometry data. The ADCP bathymetry and LiDAR data 

could be combined into a single point cloud because the ADCP incorporated with ASV 

used in this study is a sensor platform capable of using data from multiple sources. A 

broad framework of standard specifications, practices, and guidelines is also necessary 

to enable multiple groups to consistently contribute well-described LiDAR and integrated 

digital elevation models (DEMs) to the development of an elevation in the river area. The 

National Geophysical Data Center (NOAA) and the USGS Earth Resources Observation 

& Science Center collaborated to create this framework to provide a single national 

representation of bathymetry and topography in the United States. Combining these two 

sets of information in the Ras Mapper’s terrain-making capability enables the creation of 

a single, continuous surface from several tiles that are all registered, have the same cell 

resolution, and are edge matched. This option can use many LiDAR tiles that line up.  

The simulation results indicate that cross-section No. 133, the last designed cross-

1691    

1614    

1506    

1405    

1302    
1234    

1060    

1016    

933     

878     

777     

682     

577     

487     

402     

298     

205     

133     

Legend

WS PF 1

Ground

Bank Sta



40  

section, is less impacted by the flood, whereas cross-section No. 1691, located 

upstream of the bridge, is more susceptible to flooding at low flow discharge conditions, 

which is 13,000 cfs (Figure 3-6 a and b). The water level for cross-sections No. 133 and 

No. 1691 is 788.14 ft and 789.00 ft, respectively. The existence of bridge piers or 

abutments in the streams will affect the stream flow and riverbed locally, causing the 

water to flow faster, the bridge to scour, and potentially jeopardizing the structure. A 

faster cross-section would have less depth when the discharge is the same, according to 

the continuity equation.  

 

   
(a) Cross-section No. 1691                                (b) Cross-section No. 133 

Figure 3-6- Water depths at the Upstream and Downstream Cross-sections 
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Q=19,500 cfs Q=27,700 cfs 

 
 

 
Q=36,125 cfs Q=47,150 cfs 

Figure 3-7- Simulated flood inundation map of Red River near Grafton from April 2022 to 
June 2022 flood event for different discharges 

 

The flood map presented in Figure 3-7 illustrates the depth changes at each cross-

section with a steady flow simulation, where dark blue denotes deeper depths, and light 

blue denotes lower depths. The simulated flood maps illustrate the variance in water 

depths along the channel in terms of color.  All discharges were measured for six time 

periods, from April 2022 to June 2022, and the highest flow was on April 27th at the Red 

River study location. The current study’s results indicate that the corresponding 

discharge was between 13,000 cfs and 47,150 cfs from April 2022 to June 2022. 

Downstream cross-sections, which were located downstream from the bridge, had a 

shallower depth during peak discharge conditions, and the upstream cross-sections 

were more affected by the flood (Figure 3-7 a and b). The results indicate that a 

substantial change in water flow of 34,150 cfs resulted in a significant difference in 
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flooding extent. The flood inundation extent determined using the HEC-RAS model 

varied substantially with slight changes in water depth because the Red River has a flat 

landscape. 

 

 
Q=13,000 cfs  

 
Q=19,500 cfs 
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Q=47,150 cfs 

Figure 3-8- Simulated velocity distribution for Q= 13,000 cfs, 19,500 cfs, and 47,150 cfs (base 
map from google earth [82]). 

 

Figure 3-8 illustrates the simulation results of the velocity distribution for Q= 13,000 

cfs, 19,500 cfs, and 47,150 cfs. These velocity mapping effects will help prevent erosion 

in the river overbanks and around bridge piers. The results from all three scenarios, 

which are low, medium, and high flow in the 2022 flood event, indicate that the flow 

velocity near the right side of the river overbank after the bridge location had higher 

values; therefore, protection may be required on this side of the river overbank. 

Furthermore, a high-velocity counter line, which is eddy flow, can be observed at all 

three discharges after bridge pier cross-section No. 933 (Figure 3-4) in the river's center. 

The existence of piers can cause the formation of eddies, which are circular currents that 

can change the flow patterns and speed of the water downstream of the pier. This fast-

moving eddy flow becomes larger at higher velocities after the bridge pier, which could 

increase scour after the bridge pier. The maximum recorded velocity in the study area 

was 1.85 ft/s, 2.79 ft/s, and 6.75 ft/s for discharge values of 13,000 cfs, 19,500 cfs, and 

47,700 cfs, respectively, after cross-section No. 933 (Figure 3-4). 

 

3.3.3. Model Scour Bridge 

In this project, hydraulic analysis was conducted using the HEC-RAS 6.0.0 software, 
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which uses a steady flow simulation. The study aimed to predict local scour depth 

around an existing bridge, specifically caused by contraction scour and piers with square 

nose shapes. Most of the data required for calculating contraction scour was generated 

automatically by the HEC-RAS program, based on the steady flow analysis. The 

remaining data, including sediment diameter (𝐷50) on each left and right overbank and 

channel, were entered manually. The HEC-RAS program automatically calculated the 

coefficient K1 using the available 𝐷50 field measurements. Finally, the program analyzed 

the contraction scour depth around the piers using the CSU equation. Then the modeling 

of local contraction scour depth with HEC-RAS 6.0.0 can be seen in Figure 3-9.  

Figure 3-9 shows the relationship between contraction scour depth (Ys) and the 

Froude number (Fr) on the existing bridge concerning discharge increasing. There is a 

rise in Froude number between Q=19,500 cfs and Q=36,250 cfs. The contraction scour 

depth and the Froude’s number increase further for the Q=13,000 cfs to Q=14,500 cfs of 

as the water level overtopped to the deck of the bridge. For the discharge of 47,150 cfs 

the water level reaches the deck of the bridge and due to this contraction scour depth 

increases whereas Froude’s number decreases. 

When the discharge increases in a river, the velocity of the water also increases, 

which leads to a higher Froude number. This is because the inertial forces become 

relatively more significant as the velocity increases. However, as the water reaches the 

deck, the depth of the water decreases, and the gravitational forces become more 

important. This causes a decrease in the Froude number, even though the velocity may 

still be high. 

As water flows towards a bridge, the channel or riverbed in which it is flowing 

becomes constricted due to the presence of the bridge piers or abutments. This 

narrowing of the channel causes an increase in the velocity of the water as it passes 

through the bridge opening and the cross-sectional area of the channel must decrease 

to maintain the same mass flow rate. Therefore, as the water passes through the bridge 
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opening, the depth of the water decreases. This can lead to a concentrated flow of water 

around the piers or abutments, which can increase the potential for erosion and scour 

around the bridge foundations. On the other hand, the contraction scour depth continues 

to increase even after the Froude number has decreased. This is because the velocity of 

the water is still high, and it can still cause erosion of the riverbed, leading to deeper 

contraction scour depths. 

 

 

Figure 3-9- Discharge Vs. Froude number and contraction scour Depth  

 

 

3.4. Conclusion of Jornal Paper 2 

Our measurement of one of the most extreme flood occurrences in this paper's 

invention allowed us to validate the accuracy of the HEC-RAS model's flood predictions 

and evaluate the model's performance under extreme flood events. By using geospatial 

techniques, we were able to enhance the accuracy of the model's flood mapping by 

incorporating topographic data and other relevant information. This study's findings can 
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contribute to better flood management and emergency response planning in the study 

area and other regions facing similar flood events. 

The study aims to determine the best value for the Manning coefficient to improve 

the accuracy of flood prediction in the Red River. The selected value for Manning's 

roughness coefficient was based on previous studies, and statistical analysis was 

performed to determine the best value for the case study. The value of the coefficient of 

determination (𝑅2), which was 93%, indicates that 0.046 for the river channel and 0.06 

for the overbanks is the best Manning's n-coefficient value to use.  

The bathymetry data were collected using ADCP and ASV combined with LiDAR 

data to determine the flow for a flood event in 2022, and the flood mapping was 

generated using HEC-RAS modeling. Flood inundation mapping indicates that an eddy 

flow occurs immediately after the bridge and becomes relatively larger with an increase 

in flow discharge and velocity. The results showed good agreement between the 

methodologies, indicating the potential of using ADCPs incorporated with ASV and 

LiDAR data together for flood inundation mapping studies due to the advantages of 

integrating bathymetry, flow velocity, and discharge flood data. 

The study also showed that as discharge increases, Froude number and contraction 

scour depth increase, but as water level reached the deck of the bridge, the Froude 

number decreases while contraction scour depth continues to increase due to high 

velocity. Narrowing the channel by bridge piers can lead to concentrated flow and 

increase scour potential. 
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4 CHAPTER 4. Water Level Forecasting Using Deep Learning Time 

Series Analysis in Red River of The North 

 
4.1. Introduction and Background 

Machine learning has become a popular tool in many fields, including environmental 

science, where it is being used to predict and manage natural disasters. In recent years, 

the Red River has experienced several devastating floods that have caused significant 

damage to the surrounding communities. As a result, researchers are exploring new 

approaches to flood prediction, including the use of machine learning algorithms. By 

analyzing historical data on weather patterns, river levels, and other factors, these 

algorithms can identify patterns and make accurate predictions about the likelihood of a 

future flood. In this chapter, we used Machine Leaning approaches to improve flood 

prediction in the Red River of the North. 

Forecasting water levels in rivers and lakes are essential for flood warnings and 

water resource management. Hydrological stations provide water level data in a time 

series format, which requires researchers to use time series hydrological prediction 

models for forecasting future data. The combination of classical statistical methods and 

Machine Learning (ML) algorithms has significantly contributed to the development of 

data-driven forecasting systems, which offer cost-effective solutions and improved 

performance in simulating complex physical processes of floods. By analyzing historical 

data, these methods can make predictions about future flood events, analyze patterns, 

and evaluate flood management strategies. 

In general, there are three methods for forecasting streamflow. The first approach 

mainly depends on physically-based models [83]  that have long been used to forecast 

hydrological events, including storms [84, 85], runoff or rainfall [86, 87], shallow 

streamflow [88], hydraulic models [89, 90], and more cases of global circulation [91], 
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encompassing the interaction between atmosphere, water, and floods [92]. While 

physical models can forecast various flooding scenarios, they usually depend on several 

hydro-geomorphological monitoring datasets, which can be expensive to acquire and 

process, and this also makes short-term predictions difficult [93]. In addition, creating 

physically-based models often requires a deep understanding and expertise in 

hydrological factors, which has been identified as a difficult task [94]. Furthermore, many 

types of research demonstrate that there is a gap in the short-term prediction capability 

of physical models [92]. 

The second approach involves using mathematical models to simulate the 

hydrodynamics of streamflow. This approach is widely adopted in many countries due to 

its basis on fundamental hydrologic and hydraulic principles. Flood modeling studies 

have utilized physically-based hydrologic models such as the hydrologic engineering 

center-hydrologic modeling system (HEC-HMS) [95], soil and water assessment tool 

(SWAT) [96], IHACRES [97], and HSPF model [98] have been engaged in flood 

modeling studies. However, using these models necessitates substantial field 

observations and trial and error parameters [99]. They still only supply at-site flood risk 

estimates based on local streamflow data obtained at gauging hydrometric stations, 

making them inappropriate for regional flood assessment [100, 101].  

The final approach is based on data and uses statistical relationships between input 

and output data to predict near-future outcomes. One of the most commonly used 

frameworks in this data-driven method is the Machine Learning (ML) model, which has 

been employed in flood forecasting since the 1990s. Unlike physically-based numerical 

models, ML models do not require explicit knowledge of nonlinear dynamic processes, 

making them a potent tool for flood prediction [102].  

Numerous research has been conducted to predict the water levels in rivers, lakes, 

and other water bodies worldwide using different time series models. The 

Autoregressive Integrated Moving Average (ARIMA) model is widely used for river 
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discharge and flood forecasting [103-109]. Yürekli et al. presented a monthly streamflow 

forecasting method for three gauging stations in the north Anatolia fault line and 

evaluated the residuals of the ARIMA model [103]. The authors state that a comparison 

of monthly mean and standard deviation for observed and anticipated data using the 

ARIMA model reveals that the anticipated values maintained the main statistical features 

of the observed data. By comparing the observed and anticipated monthly data 

sequences using linear regression, they discovered a statistically significant linear 

relationship between the observed and anticipated monthly data. In another study by 

[104], data from two Schuylkill River stations in Berne and Philadelphia were collected 

over six years. The author demonstrated that daily data have no seasonality; therefore, 

there was no seasonality in the proposed ARIMA formulation. Even though both stations 

are located along the same river, the proposed ARIMA models provided for each station 

differed due to the differing watershed coverage. Exponential Smoothing was employed 

by [110] to study and predict water level trends in the Mtera dam in Tanzania. They 

discovered that the water level in the Mtera dam has been declining over time, and the 

highest and lowest water levels were both showing a declining trend in recent years. 

Additionally, estimates for the next five years based on Exponential Smoothing of time 

series data revealed that the water level would be below the lowest water level required 

for energy production in the spring of 2023. The authors evaluate the efficiency and the 

accuracy of several models for predicting Tanshui River water levels in Taiwan during 50 

historical typhoon events that occurred over 11 years between 1996 and 2007. The 

authors compared three eagers models, including artificial neural network (ANN), linear 

regression (REG), and support vector regression (SVR), with two lazy models, including 

locally weighted regression (LWR) and the k-nearest neighbor (kNN). According to the 

results, ANN and SVR outperformed REG among eager learning models. However, the 

authors state that although ANN, SVR, and REG were considered eager learning 

models, their prediction capabilities differed due to different learning optimizers. In their 
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results, among lazy learning models, LWR outperformed kNN, and both lazy 

models showed more accurate predictions than REG eager model. 

Our objective is to utilize three models: SARIMA (a conventional statistical model), 

RF (a classical ML algorithm), and LSTM (a Deep Learning method) to create a flood 

susceptibility map and recognize flood hazard regions in the Red River of the North. No 

prior research has explicitly employed a classical statistical method, a classical ML 

algorithm, and a state-of-the-art Deep Learning method to improve flood forecasting for 

the Red River of the North. The findings from this study will support regional and local 

authorities as well as policymakers in mitigating flood risks and developing effective 

measures to minimize potential damages.  

To forecast the water level, we utilize data collected at three United States 

Geological Survey (USGS) stations in the Red River of the North (Pembina, Drayton, 

and Grand Forks), sampled hourly from 2007 to 2019. We forecast the water level six 

hours, twelve hours, one day, three days, and one week in advance at the Red River of 

the North. Pembina is the downstream forecasting location, but it only has a water level 

station. However, Drayton and Grand Forks have full discharge measurement stations 

that provide water level and discharge series. 

 

4.2. Methodology 

4.2.1. Study Area 

The Red River of the North was selected for several reasons. Firstly, its river network 

has few minor flow-control structures, making it suitable for ML flood prediction 

techniques. Secondly, it presents a challenge for using satellite altimetry to estimate the 

stage due to its narrow main stem channel. Thirdly, there are established USGS gaging 

stations along the main tributaries for field-based estimates of river flow and stage 

verification. Finally, the river basin's hydrologic response to climatic variability has not 
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been extensively modeled, despite typical devastating property losses in years with 

substantial snow accumulations. However, among the three selected stations, the 

downstream Pembina station lacks data for river flow discharge. Water level data from 

USGS stations at Pembina, Drayton, and Grand Forks sampled hourly from 2007 to 

2019 are used to forecast the water level for different time intervals in advance at the 

Red River of the North. Drayton and Grand Forks have full discharge measurement 

stations, while Pembina only has a water level station. A map in Figure 4-1 shows the 

locations of these three stations. 

 

 
Figure 4-1- Location of USGS stations on Red River in Pembina, Drayton, and Grand Forks. 
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4.2.2. Data representation and pre-processing  

Table 4-1 summarizes the characteristics of the three datasets used in this study and 

Figures 4-2 and 4-3 preset monthly and annual water level data for the selected stations, 

respectively. The water level data were collected from USGS mean daily gauge height 

for the period November 1, 2007, to December 31, 2019. To prepare the data for time 

series forecasting algorithms, it was resampled and pre-processed to have equal time 

intervals of hourly sampling. Missing data were identified as periods of non-sampling or 

days without data when the data sampling was less than 8 times per day. Linear 

interpolation was used to fill in missing data for periods with more than 8 samples per 

day but with some missing hourly data.  

 

Table 4-1- Characteristics of the water level time series at three hydrology stations of the Red 
River 

Station No. Station Name Period No. of Samples Frequency 

1 Pembina 2007-2019 104616 Hourly 

2 Drayton 2007-2019 100140 Hourly 

3 Grand Forks 2007-2019 105117 Hourly 

 

  

(a)                                                                                   (b) 
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(c) 

Figure 4-2- Monthly water level at three hydrology stations of Red River of the North (a) 
Pembina, (b) Drayton, and (c) Grand Forks stations 

 

 

The main source of water in south-central Manitoba is the Pembina River, a tributary 

of the Red River of the North. The Pembina River runs southeast from the highlands of 

the Turtle Mountains, commencing at its highest point (elevation 2000 feet). It flows west 

into the Red River in Pembina, North Dakota, about 2 miles south of the US-Canadian 

border. A stream gauge near Pembina measures the height of the water flowing down 

the Red River. The sensor, one of around 8,000 maintained by the USGS, serves as a 

sentinel for towns along the river that were flooded in 2009, 2010, and 2011. The 

Pembina gauge was targeted mainly for flood prediction because of two main reasons: 

First, this station is the last station on the Red River before it flows into Canada, and 

second, two upstream stations, Drayton and Grand Forks, have discharge information in 

USGS, but Pembina station, as the downstream station, does not have any discharge 

information. 

According to Figure 4-2, the Pembina station records the highest streamflow in April, 

with an average water level of 26.53 feet, and the maximum water level recorded was 

52.71 feet on April 15, 2009. On the other hand, the Drayton station has been recording 

streamflow records continuously since 1942, and specific-conductance measurements 

have been taken since 1970 at both Drayton and Emerson stations, approximately once 

a month, whenever discharge measurements were obtained. This long-term data has 
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allowed for the examination of trends in streamflow and water quality. The USGS crew 

obtained streamflow measurements under ice conditions on the Red River at Drayton on 

January 21, 1986 [22]. As shown in Figure 4-2, April is also the month with the highest 

streamflow at the Drayton station, with an average water level of 19.66 feet, and the 

maximum water level recorded during the study period was 43.82 feet on April 6, 2009. 

Additionally, Figure 4-2 indicates that May is the month with the second-highest 

streamflow for both the Pembina and Drayton stations, with an average water level of 

25.08 feet and 18.91 feet, respectively. 

The US Army Corps of Engineers established the upstream gage station on the Red 

River of the North at Grand Forks in 1882. On May 26, 1901, Charles M. Hall, a geology 

professor at North Dakota Agricultural College, installed an additional station above the 

original stream gauge. Hall's main purpose was to explore the possibility of storing Red 

River floodwaters for hydropower, irrigation, and domestic supply needs [23]. Today, this 

stream gauge has a continuous record of stream gauge height, discharge, stream 

velocity, and water quality parameters, as well as real-time web data. According to 

Figure 4-2, May is the month with the highest flow recorded at the Grand Forks station, 

which has an average water level of 19.70 feet. On April 06, 2009, the maximum water 

level during the time of this study was recorded, with an average water level of 49.84 

feet. 

Frequent flooding has been a concern for the Red River of the North in Grand Forks, 

ND, most notably the major floods of 1882, 1897, 1950, 1996, 1997, 2006, 2009, and 

2011, which is why Grand Forks stream gage data is critical to flood protection for the 

cities of Grand Forks, ND and East Grand Forks, MN. 

Figure 4-3 depicts the annual box and whisker plot of water level data from three 

Red River of the North hydrology stations. In 2019, the maximum annual average of 

water level data for all three stations was 21.54, 16.05, and 18.84 feet for the Pembina, 
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Drayton, and Grand Forks stations, respectively. 

 

  
(a)                                                                                   (b) 

 
(c) 

Figure 4-3- Box and whisker plot of water level data at three hydrology stations of Red River 
of the North (a) Pembina, (b) Drayton, and (c) Grand Forks stations 

 

 

Inspired by the success of the Autoregressive Integrated Moving Average (ARIMA) 

model [86, 92, 93], we propose Seasonal Autoregressive Integrated Moving Average 

(SARIMA) method to individually capture the components of the time series. This 

approach is tested on real Red River datasets for hourly water level predictions. Linear 

statistical models, such as SARIMA, may not be ideal for representing nonlinear 

interactions in time series, but they are adequate for modeling the linear component 

[111].  

Meanwhile, non-parametric statistical ML models, such as long short-term memory 

(LSTM), can model any nonlinear components (universal approximators). Furthermore, 

for the last method, RF was selected due to its popular use as an ML algorithm in 

hydrology applications [112-114]. All these three selected methods are discussed in the 
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following section.  

 

4.2.3. Seasonal Autoregressive Integrated Moving Average (SARIMA) 

SARIMA, or Seasonal Autoregressive Integrated Moving Average, is an extension of 

ARIMA, which stands for Autoregressive Integrated Moving Average. ARIMA combines 

differencing with AR (Autoregressive) and MA (Moving Average). This means that in 

ARIMA, "AR" indicates the relationship between a variable in time-series data and its 

own lagged values, "I" represents the differencing of an observation's value from its 

previous values to create stationary time-series data, and "MA" denotes the linear 

combination of observations and errors from previous observations. ARIMA is referred to 

as non-seasonal ARIMA and is not suitable when time-series data includes seasonal 

components. Therefore, a modified version of ARIMA called Seasonal ARIMA, or 

SARIMA for short, was introduced by adding seasonal terms. The ARIMA (p, d, q) can 

be represented mathematically b the following formulas: 

𝑌𝑡 = (1 − 𝑙)𝑑𝑋𝑡                                     (4-1) 

(1 − ∑ 𝜙𝑖
𝑝
𝑖=1 𝑙𝑖)𝑌𝑡 = (1 + ∑ 𝜃𝑖𝑙𝑖)

𝑞
𝑖=1 𝜀𝑡                                         (4-2) 

where l represents a lag operator; p and q are the orders of autoregressive and 

moving average parts, respectively, and d is the degree of difference. SARIMA can be 

written as 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞)(𝑃, 𝐷, 𝑄)𝑠 where P, D, Q are the seasonal terms of p, d, q, and s 

is the number of observations per year. 

 

4.2.4. Random Forest 

The Random Forest (RF) model is a supervised machine learning algorithm that 

uses an ensemble of decorrelated decision trees to make predictions. A decision tree is 

a model that relates the output to explanatory variables or attributes, and each tree has 

a set of nodes that are devoted to a dataset. These trees are grown from random 
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resampled training batches selected from the original data to make them orthogonal. For 

regression applications, multiple decision trees provide independent numerical 

predictions of the target variable, while for classification, they predict class labels. The 

outcome of the RF model is the average prediction of all the individual trees. The 

purpose of RF is to identify the spatial relationships between flood occurrences and the 

associated characteristics for classification and regression tasks. The RF was selected 

due to its simplicity; tuning a few parameters can result evaluates accuracy more than 

other ML models [115]. In this research, we evaluate python's scikit-learn package. The 

systemization of the RF algorithm's importance function is briefly described as follows: 

The system selects a set of independent values to make an impact on each tree 

response which is a subset of the predictor values of the initial dataset. The optimal 

subset of predictor variables is calculated using: 𝑙𝑜𝑔2
(𝑀+1)

 , where M is the input. Now we 

can calculate the mean-square error (RMSE) for an RF from  

𝜀 = (𝑣𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝑣𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒)
2
                   (4-3) 

where 𝜀, 𝑣𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑, and 𝑣𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 are mse, variables from observed and result 

respectively. Also, we can calculate the trees average prediction.  

𝑆 =
1

𝑡
∑ 𝑡𝑡ℎ  𝑣𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒                               (4-4) 

where S and t are RF prediction, and the number of trees in the forest, respectively. In 

classification, after defining a set of random trees and prediction, the algorithm 

compares the number of excess votes to other classes' average votes. Although a 

predictor set is randomly chosen for each tree from the equal distribution in the 

regression algorithm, each tree can add a numerical value response to form the RFs. 

 

4.2.5. Long short-term memory (LSTM) 

In this study, we utilized another Deep Learning technique called the long short-term 
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memory (LSTM) network, which is similar to the recurrent neural network (RNN). RNNs 

are designed to apply input data sequentially over extended periods. It performs the 

same task for all elements in the series, and the output is dependent on the previous 

computations. Specifically, RNNs contain a memory cell that stores data until the training 

data sequence is completed. RNNs are suitable for non-linear time series problems, but 

they encounter gradient issues when training with long time lags, which are necessary 

for predicting time series or hydrology. Therefore, LSTM networks were employed, which 

are a type of RNN that can overcome the gradient problem by using gates to control the 

information flow within the network [32]. LSTM is developed to build a robust many-to-

one model for hydrological time series similar to RNN memory cells structure of the 

input, self-recurrent connection, forget, and output gates [33]. Assume the 𝑖𝑡, 𝑜𝑡 , 𝑓𝑡 are 

input, output, and forget gate at the time of t.  

 

 
Figure 4-4- memory block with the memory cell Ct 

 

Figure 4-4 illustrates the (LSTM) adopted from [116], where xt and ht  show the input 

and state at time t. Similarly, we have h and x at time t-1 and t+1, etc. Ct and ht are 

defined as long-term and short-term (hidden) memory in this cell. According to the 
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diagram, the chain of action happens in the network and lets the network learn long-

term. The following equation will demonstrate the calculation of ht and Ct at the tth step 

in this process. 

𝑓𝑡 =  𝜎(𝑈𝑓𝑥𝑡 + 𝑊𝑓ℎ𝑡−1 + 𝑏𝑓)                             (4-5) 

𝑖𝑡 =  𝜎(𝑈𝑖𝑥𝑡 + 𝑊𝑖ℎ𝑡−1 + 𝑏𝑖)                    (4-6) 

𝑜𝑡 =  𝜎(𝑈𝑓𝑥𝑡 + 𝑊𝑓ℎ𝑡−1 + 𝑏𝑓)                              (4-7) 

𝑐�́� =  𝑡𝑎𝑛ℎ(𝑈𝑜𝑥𝑡 + 𝑊𝑜ℎ𝑡−1 + 𝑏𝑜)                 (4-8) 

𝑐𝑡 =  𝑓𝑡𝑐𝑡−1 + 𝑖𝑡𝑐�́�                                         (4-9) 

ℎ𝑡 =  𝑜𝑡tanh (𝑐𝑡)                                         (4-10) 

where Ui and Wi are matrices for weight; bi is the bias; σ is a sigmoid activation function 

𝑐𝑡
′ is the candidate for the cell state value. 

In this study, we utilized "Keras: The Python Deep Learning library" to construct the 

time delay model. Similar to previous approaches, we split the dataset into training and 

testing sets, with 70% of the data allocated for training, 15% for validation, and 15% for 

testing. The LSTM-RNN architecture consists of one layer each for input, output, and 

LSTM with memory blocks. To evaluate the model's accuracy, we used two criteria: i) 

root mean square error (RMSE), and ii) ENS (Nash-Sutcliffe efficiency coefficient), which 

are commonly used in hydrological research to assess the correlation between predicted 

and observed outcomes. The calculation formula is shown as follows: 

MSE=√∑ (𝑂𝑖−𝑃𝑖)2𝑁
𝑖=1

𝑁
,                              (4-11) 

where Oi, Pi, and N are observation at time i, prediction at the time i, and several 

observations, respectively.  

 

4.3. Results of Journal Paper 3 

Forecasting time series accurately, particularly water levels for early flood warnings, 
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is an essential but complicated process. A classical statistical method, a classical ML 

algorithm, and a state-of-the-art Deep Learning method. Respectively, the methods are 

seasonal autoregressive integrated moving average (SARIMA), Random Forest (RF), 

and Long Short-Term Memory (LSTM) which are widely used and effective forecasting 

models that have been proposed and tested on hydrological time series. Figures 4-2 and 

4-3 present the monthly and annual data of these three selected stations. We evaluated 

and compared all tested ML methods by dividing collected data into two parts for training 

and testing. The samples were taken with different frequencies from January 1, 2007, to 

June 3, 2017, for Pembina station, from January 1, 2007, to February 7, 2017, for 

Drayton station, and from January 1, 2007, to August 5, 2017, for Grand Forks station. 

As mentioned previously, studied data involve 70 percent of data as a training set, 15 

percent as validation, and 15 percent as a testing set. All models were trained on the 

training datasets and then used the trained models to forecast at a different time on the 

testing sets. 

 

Table 4-2- Evaluation of the performance of SARIMA, RF, and LSTM models at three USGS 
stations root mean square error (RMSE between the predicted and observed water level data in 

the testing phase) 

Pembina 
6 Hours 12 Hours 1 day 3 days 1 week 

RMSE RMSE RMSE RMSE RMSE 

SARIMA 0.108 0.204 0.505 1.860 2.268 

RF 0.101 0.160 0.269 0.865 2.287 

LSTM 0.023 0.031 0.039 0.076 0.190 

Drayton 
6 Hours 12 Hours 1 day 3 days 1 week 

RMSE RMSE RMSE RMSE RMSE 

SARIMA 0.041 0.074 0.152 0.535 1.491 

RF 0.038 0.096 0.184 0.707 1.819 

LSTM 0.028 0.035 0.041 0.065 0.151 

Grand Forks 6 Hours 12 Hours 1 day 3 days 1 week 
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RMSE RMSE RMSE RMSE RMSE 

SARIMA 0.609    0.655       0.754     1.198     2.027    

RF 0.135 0.246      1.059     1.632      2.673     

LSTM 0.022     0.028     0.051 0.086 0.107 

 

After applying the algorithms described above to three different sampling stations, 

the models were extracted for further evaluation and tabulated in Table 4-2. The table 

gives the details on the average forecast results of all tested methods at five different 

time intervals: six hours, twelve hours, one day, three days, and one week, for the 

Pembina, Drayton, and Grand Forks datasets. Low values of RMSE indicate higher 

forecast accuracy of the chosen models. The best results for each forecasting horizon 

are highlighted in bold. By detecting the structures of the SARIMA, RF, and LSTM 

models, it was verified that the LSTM is more accurate than the two other models. The 

reason is that the LSTM model possesses a lower RMSE than the RF and SARIMA 

models for predicting the water level data for the Red River of the North. Comparing the 

LSTM to the RF and SARIMA models in the Pembina station, the RMSE values are 

lower by 77.22 percent and 78.70 percent, respectively. Furthermore, there are 26.31 

percent and 31.71 percent reductions in RMSE between the RF and SARIMA models at 

Drayton station, respectively, when using LSTM. Finally, the RMSE values for the Grand 

Forks station for LSTM are 83.70 percent lower than the RF model and 96.39 percent 

lower than the SARIMA model. 

Figures 4-5, 4-6, and 4-7 present the visual comparisons of all methods for 

forecasting one week of water level at Pembina, Drayton, and Grand Forks using a 

classical statistical method, SARIMA, a classical ML algorithm, RF, and a deep Learning 

method, LSTM. The green line indicates the observed data which were used as test 

data, and the red line indicates prediction data which is the output of our models. 
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(a) (b) 

 
(c) 

Figure 4-5- Visual comparison of one week-ahead predicted values using (a) SARIMA, (b) 
RF, and (c) LSTM forecasting methods with true values on the Pembina series 

 
 

  
(a) (b) 

 
(c) 

Figure 4-6- Visual comparison of one week-ahead predicted values using (a) SARIMA, 
(b) RF, and (c) LSTM forecasting methods with true values on the Drayton series  
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(a) (b) 

 
(c) 

Figure 4-7- Visual comparison of one week-ahead predicted values using (a) SARIMA, (b) 
RF, and (c) LSTM forecasting methods with true values on Grand Forks series 

 

Figure 4-5 shows the results of forecasting the water level in a randomly chosen 

period at Pembina station one week ahead using SARIMA (from 07/01/2019 to 

07/08/2019, Figure 4-5-a), RF (from 11/10/2018 to 11/18/2018, Figure 4-5-b), and LSTM 

(from 06/25/2018 to 07/02/2018, Figure 4-5-c). When forecasting one week in advance, 

the LSTM yields the best results, as it could capture well the trend of the actual data.  

The results show that the LSTM performed better than the RF and SARIMA to predict 

the water level, with an average difference of 0.583 ± 0.21 feet between tested and 

predicted water levels for three stations. The mean difference between the tested and 

predicted water levels for RF and SARIMA is 0.983 ± 0.64 feet, and 1.848 ± 0.97 feet, 

respectively. The other two methods do not work as well as LSTM for the Pembina 

station. Figure 4-6 demonstrates the results of forecasting the water level in a randomly 

chosen period at Drayton station one week ahead using SARIMA (from 05/28/2019 to 

06/04/2019, Figure 4-6-a), RF (from 12/25/2019 to 12/31/2019, Figure 4-6-b), and LSTM 

(from 06/27/2016 to 07/04/2016, Figure 4-6-c). Figure 4-7 shows a similar result to the 

case of Drayton station in that LSTM could forecast quite accurately the peak one week 
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ahead. It still captures rather well the trend of the data in one-week ahead forecasts, but 

the errors are high. Meanwhile, all other methods failed to forecast and could not capture 

the data trend. 

 For Grand Forks data with hourly sampling, in a randomly chosen period for one-

week prediction ahead using SARIMA (from 07/23/2018 to 07/30/2018, Figure 4-7-a), 

RF (from 03/31/2018 to 04/07/2018, Figure 4-7-b), and LSTM (from 08/08/2019 to 

08/15/2018, Figure 4-7-c). Figure 4-7 demonstrates once again that the LSTM approach 

is superior to the SARIMA and RF methods. When predicting water levels one week 

ahead, LSTM produces the closest values to the real ones (Figure 4-7-c). When 

forecasting water levels one week in advance, SARIMA and RF originate good results as 

in the case of one week, but LSTM produces predicted values, which are more similar to 

the true ones than other methods (Figure 4-7-c). Although RF is second behind LSTM, 

the gaps between the forecast errors of the two methods are rather wide.  

 Figures 4-5, 4-6, and 4-7-c demonstrate that for all water levels in all three stations, 

the LSTM method forecasted slightly overestimated. As can be seen in Figures 4-5, 4-6, 

and 4-7-a, SARIMA underestimated the water level for Pembina and Drayton stations 

but overestimated the water level for Grand Forks station. Finally, the RF method 

overestimates the water level for the Pembina station but underestimates the water level 

for Drayton and Grand Forks stations (Figures 4-5, 4-6, and 4-7-b).  
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Figure 4-8- Visual comparison of 3 months predicted values using LSTM forecasting method 

with true values on Grand Forks series 

 

 Although figures 4-5, 4-6, and 4-7 indicate the capacity of the model to estimate 

water level in two weeks, the short duration of sampling data may not be a suitable 

representation of the models' capturing the flood peak. To present the accuracy of our 

model with different water level datasets as driving inputs in capturing the flood peaks 

and time of the peak, we have considered one extreme three months period that 

occurred in 2016 from May 16 to August 14. The major reason we offer this plot is that 

the reader cannot see how our model is excellent based on the statistics above. For this 

purpose, we have considered the maximum water level events in the year 2016 and 

forecasted these events one week ahead. Figure 4-8 presents a comparison between 

observing and predicted data in Grand Forks station. The green line indicates the 

observed data which were used as test data, and the red line indicates prediction data 

which is the output of our model. The results indicate that the peak flow scenarios in the 

field for May to August 2016 are well captured by trained LSTM.  

 

4.4. Discussion and Conclusion of Journal Paper 3 
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Accurately predicting time series, particularly water levels for flood warning systems, 

is a crucial yet challenging task. Forecasts of water levels at Red River flow gauging 

stations, particularly downstream stations like Pembina in this study where no discharge 

information is available, are critical for early flood warning systems. In this research, we 

evaluated three different methods: SARIMA, a classical statistical method; RF, a 

classical ML algorithm; and LSTM, a Deep Learning method. Our analysis of the models 

for Pembina, Drayton, and Grand Forks stations revealed that the LSTM method 

outperformed SARIMA and RF in terms of accuracy and prediction performance. While 

SARIMA is useful for modeling linear data, other statistical and machine learning models 

are better suited for modeling machine learning. To effectively predict water levels in a 

time series, it is necessary to consider both linear and nonlinear correlation structures. 

Results from this study indicate that the Deep Learning LSTM algorithm is a dependable 

choice for flood prediction. The LSTM model performed better than both the RF and 

SARIMA models at all three stations (Pembina, Drayton, and Grand Forks) for all 

prediction times, with significantly lower RMSE values by 77.22% and 78.70%, 

respectively. At the Drayton station, the LSTM model resulted in a 26.31% and 31.71% 

reduction in RMSE compared to the RF and SARIMA models, respectively. For the 

Grand Forks station, the LSTM model achieved lower RMSE values by 83.70% 

compared to the RF model and 96.39% compared to the SARIMA model. The study also 

found that a water stage time series can have both linear and nonlinear correlation 

structures. 
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5 CHAPTER 5. Impacts of Climatic Variability on Surface Water Area 

Observed by Remotely Sensed Imagery in the Red River Basin 

 
5.1. Introduction and Background 

The Northern Great Plains (NGP) is a region in northern central North America that 

includes parts of the United States and Canada. The NGP has a variety of unique 

hydrological habitats that are characterized by topographic depressions and create 

dynamic aquatic water features such as lakes, marshes, washouts, and wetlands [117]. 

These depressions work like sponges, absorbing up surplus water during floods and 

releasing it during droughts [118, 119].  Due to the relatively flat topography of NGP, it is 

home to millions of prairie pothole depressions of glacial and post-glacial origin [120]. 

According to recent research, global climate change has resulted in a significant rise in 

precipitation regime [121], which has a cascading effect on surface water area in cold 

region plains (e.g., NGP, plains of Russia) [122, 123]. Precipitation is projected to rise in 

NGP in the future. The effects of a recent climate change toward increasing precipitation 

on surface water area were not well recognized, particularly in the Red River Basin 

(RRB), which is located on the eastern boundary of the NGP. 

Because of a highly changing precipitation regime, the hydroclimatic conditions in 

NGP have evolved during the previous three decades, and NGP has become wetter in 

general. This increased wetness has resulted in the extension of existing wetlands and 

lakes, as well as the formation of new wetlands in many watersheds due to the fill-spill 

process [124]. Climate change has already had an impact on the area, since 

precipitation has increased [125, 126] and caused NGP to shift from dry to extremely wet 

periods in the last four decades [127]. Since 1991, NGP has had two wet periods of 

increased precipitation, both of which resulted in disastrous flooding: 1994-1999 [128] 

and 2004-2011 [129]. There was only one drought period (1999-2003) between the two 

wet periods [124]. During the wet season, some NGP basins saw major floods caused 
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by snowmelt, spring/summer rain, and rain-on-snow (ROS) occurrences. Recent 

flooding happened in 2009, 2011, and 2013  [130-133]. On the other hand, dry periods 

result in no change or decrement in the surface water area [125, 128, 130, 134, 135].  

The RRB was chosen as a crucial section of the NGP in this study because it is 

home to a diversity of wetlands and prairies. It is an important migration route for many 

species, and frequent flooding has presented a constant danger to this environment over 

the last 30 years, restricting habitat and significantly harming water quality [29]. The total 

water storage changes dramatically over the year, with the peak levels happening prior 

to snowmelt in the spring and the lowest levels occurring at the end of the summer. 

Based on Gravity Recovery and Climate Experiment (GRACE) satellite measurements, 

the average range of seasonal changes during the previous decade was 124 mm  [136]. 

Variation in water levels of wetlands in the RRB has been previously studied, which 

consists of water level measurements at the local scale [137, 138]. Therefore, a 

complete investigation of the inter-annual and intra-annual RRB surface water area is 

required to identify flood-prone locations and water bodies that expand or contract with 

climate variability. 

Recent research has shown that remote sensing technology and image classification 

algorithms may be used to accurately estimate changes in the area of surface waters 

[139-141]. Sethre et al. (2005) delineated water bodies, i.e., wetlands, in Devils Lake, 

North Dakota, using a standard density slicing approach of the short-wave infrared 

(SWIR) band (Band 5) from Landsat Thematic Mapper (TM) images. It is the RRB's 

largest natural aquatic feature and the sole terminal lake. Since 1990, Devils Lake has 

experienced an important change in area climate, resulting in a 10-meter increase in 

water level [142]. Todhunter and Fietzek-DeVries (2016) discovered that interannual and 

interdecadal climate variability in Devils Lake is superimposed over two longer-term 

climate variation modes; the principal drivers of long-term lake volume variations are a 

more extended and drier mode and a shorter and wetter mode. During the drier phase, 
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precipitation dominates Devils Lake's water budget [134]. As the long-term climate 

moves to a wetter deluge phase, the lake adopts a runoff-dominated water budget after 

a temporal lag caused by basin memory effects. Another study on a Devils Lake 

headwater basin found two unique cold region hydrologic responses, one before 2011 

dominated by increased fall antecedent soil moisture and rain on snow occurrences, and 

one after 2011 regulated by streamflow and evapotranspiration [143]. 

This study investigates the spatiotemporal variability of the RRB's surface water area 

from 1990 to 2019. In the majority of studies [139, 140], surface water area is reported to 

have increased over the whole drought-to-deluge transition (1990-present). However, we 

believe there are two wet periods [144] and one drought period between them [143] 

during the 1990-present period. We used the Global Surface Water Dataset (GSWD) 

with a 30 m resolution for 30 years (1990-2019) [141]. The time series of annual and 

monthly surface water extent was estimated using this dataset. The GSWD was 

obtained using the Google Earth Engine (GEE). The GSWD annually offers information 

on the presence of both permanent and seasonal water across the continental land of 

Earth. In order to extract precise information from time series for 30 years in the RRB 

and reduce noisy information, the study employed singular spectrum analysis (SSA) 

[145]. The Mann-Kendall trend test also was used to detect trends in time-series data in 

the RRB over the study period [146]. The goals of this study are to determine surface 

water area responses to drought times and to give a more critical assessment of the 

surface water area variance in RRB. In this study, we investigate three types of water 

areas: permanent (occurring all year), seasonal (occurring part of the year), and total (a 

sum of permanent and seasonal water areas). Using a dataset that Pekel et al. 

presented, our objective is to identify the spatiotemporal variability of the surface water 

area (2016) [141]. 

 

5.2. Methodology 
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5.2.1. Study Area 

80 percent of the Red River basin is in the United States and 20 percent is in 

Manitoba, Canada. It is a 116,550 km2 (45,000 mi2) international, transboundary, and 

multijurisdictional watershed (Figure 5-1a). It measures 507 kilometers in length and 97 

km at its widest point. It reaches its northernmost point in Lake Winnipeg in Manitoba 

from the southernmost portion of Traverse Lake in South Dakota [147]. Eastern North 

Dakota, northern Minnesota, northeastern South Dakota, and southern Manitoba in 

Canada are all included in the RRB drainage region [148].  

RRB's climate is humid continental, with warm to hot summers and cold winters [149, 

150]. The air temperature fluctuates from 48°C in August to -48°C in January and 

February [151]. The average annual precipitation in the basin ranges from approximately 

430 mm in the west to more than 673 mm in the east [152]. Typically, 22% of yearly 

precipitation falls as snow in winter and the remainder as rain, mainly as severe 

thunderstorms in summer, with up to 7.5 cm of rain per day [147]. Most streamflow 

occurs in the spring due to snowmelt and rain on snow, whereas runoff in the summer is 

caused by many days of intense rainfall on saturated soil [130]. Yet, the Red River and 

its tributaries regularly experience significant flooding due to the basin's relatively flat 

geography and humid climate. Flooding mostly happens in the spring and early summer, 

and it gets worse when it rain [2]. Spring floods account for most of the significant 

historical floods.  

The RRB has several unique watershed features in addition to the significant 

snowmelt streamflow and associated floods. The basin features a large number of 

regulated reservoirs and dams [153], a low channel gradient and lack of topographic 

relief, and frozen ditches and culverts that temporarily retain water during spring runoff 

[4]. Furthermore, wetlands remove pollutants and nutrients from water systems allowing 

lakes, streams, and aquifers to remain clean. Besides, they decrease erosion, lessen 

flooding, and refill groundwater [153-155]. Many wetlands in the RRB have been lost 
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because of excessive drainage and urbanization [156]. The basin is a nearly featureless 

plain with poorly drained silty and clayey soils.  The entire basin is covered with a layer 

of glacial drift (sand, gravel, and rocks deposited by glaciers). Although groundwater is a 

vital water source in the RRB, snowmelt runoff provides the majority of the streamflow in 

the Red River and its tributaries [157]. 

Three major ecoregions in the RRB are upland, lowland, and escarpment. We define 

them below (Figure 5-1b): 

1) Upland: The Northern Glaciated Plains (Aspen Parkland) comprise one-third of the 

RRB in the west, and the majority of the basin is located in North Dakota (Figure 5-1b). 

In the region, flat to moderately sloping plains produced by glacial moraine may be seen. 

Lacustrine and hummocky to ridged fluvioglacial deposits exist, with Tertiary and 

Cretaceous sandstones and shales as the dominant bedrock. The density of streams 

and rivers on the site is modest. The Devils Lake basin is a closed basin in the Red 

River watershed in the north, covering 9,868 km2 and encompassing a substantial 

amount of the highland ecoregion. The topographic formation of the Devils Lake Basin is 

unique due to the great number of shallow depressions of small lakes, ponds, wetlands, 

moraines, outwash plains, and drumlins [117, 120, 158].  

2) Lowland: The lowland region covers about half of the RRB's central section 

(Figure 5-1b). It descends from the basin's center, encompassing the Red River Valley 

and orienting itself north/south following the river. The topography is extremely flat, with 

higher altitudes found exclusively in the south and lower elevations found in the north. 

When the tributaries hit the lowlands of the lakebed, the river slopes become flat, with 

poorly defined watershed limits. The region is crisscrossed with low-density, low-gradient 

stream and river networks, which frequently flood in late winter and early spring [159].  

3) Escarpment: The Manitoba Escarpment is an escarpment between upland and 

lowland in the western region of the RRB (also known as the Pembina Escarpment in 

North Dakota). The escarpment has a relief of 200 meters and fairly steep topography 
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[130]. The eastern margin is much less distinct and marked by a gentle topographic rise 

to late Quaternary glacial deposits. 

 

 

Figure 5-1- Location of the study site and hydrometeorological observatories and land 

surface properties: (a) The frame shows the location of the Red River in the USA, (b) Locations 
of the subbasins selected to study the spatiotemporal variation of the surface water area in the 

Red River. The six headwater basins are: Devils Lake Basin (DLB), Sheyenne River Basin (SYB), 
LaSalle Watershed (LSLW), Tobacco Watershed (TBCW), Red Lake River Basin (RLB), and 

Buffalo Basin (BFB).  
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5.2.2. Data  

GSWD cloud-free water images from spring through summer were used to estimate 

yearly and monthly surface water extent time series [141]. This dataset is free and 

comprises photos at a resolution of 30 m for 30 years (1990-2019). Whole archive of 

orthorectified, top-of-atmosphere reflectance and illumination temperature images (L1T) 

from the Landsat 5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic Mapper-plus 

[160]. Landsats 5, 7, and 8 are in a near-polar orbit with 16-day repeat coverage; two 

satellites operate on an 8-day cycle at the same time. We quantify the local and regional 

changes in permanent, seasonal, and total surface water area over a 30-year period in 

our analysis of this data. The pixels are divided into two groups: permanent water area 

(PWA) and seasonal water area (SWA) (SWA). Total water area (TWA) for a year is the 

sum of PWA and TWA. A PWA pixel is continuously submerged throughout the year, 

whereas an SWA pixel is inconsistently underwater throughout the year. It should be 

noted that the water bodies in NGP frozen over during the winter season (4-5 months 

depending on the duration of the winter). Surfaces that are covered in water seasonally 

are those that have water for fewer than 12 months of the year or fewer months than the 

total number of months having valid observations. Total surface water referred to 

streams, rivers, lakes, reservoirs, and wetlands which can persist all year long or for only 

part of the year. 

The Google Earth Engine (GEE), a computational platform developed by Google, 

Inc., has enabled the development of global-scale data products based on satellite 

picture time series, such as the Landsat archive [161]. GGE presents GSWD water 

history on an annual and monthly basis. Water is a highly variable land surface feature 

that presents a difficult spectral target (at the wavelengths measured by the TM, ETM+, 

and OLI sensors) to chlorophyll concentration, total suspended solids, and colored 

dissolved organic matter load, depths, and bedload material for shallow waters, as well 

as variations in observation conditions (sun-target sensor geometry, and optical 
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thickness). Pekel et al. (2016) used big data technology systems including expert 

systems [162-164], visual analytics [165], and evidential reasoning to address these 

issues [166]. 

The annual GSWD offers statistics on permanent and seasonal water occurrence 

over the Earth's continental land area [141]. The monthly statistics from Spring through 

Summer, on the other hand, report the incidence depending on the water month of 

interest. The European Commission Joint Research Centre (JRC) sponsored and 

released this dataset, and it also maintains a current archive. Using GEE, we created 

algorithms to obtain both annual and monthly water data for the RRB from 1990 to 2019 

(from Spring to Summer with little cloud cover). While annual water data is available for 

all years with no limits owing to large cloud cover and Landsat 7 SLC off issues, the 

monthly dataset did encounter significant cloud cover and Landsat 7 SLC off difficulties. 

Obtaining images was frequently challenging owing to severe and continuous cloud 

cover during the winter season (Oct-Mar). Therefore, we visually checked all monthly 

water maps from 1990 to 2019 and created a database of maps with no cloud cover. In 

this research, we interpret the water maps during April–May period as the spring season 

water area while the water maps of the July- September period is considered to 

represent the summer season. 

To broaden our research, we incorporate precipitation and temperature data, as well 

as their temporal history over the study region, to better support our findings and the 

relationship with climatic variability. Obtaining full yearly precipitation and temperature 

data can be difficult, especially in the absence of a comprehensive source. The National 

Weather Service (NWS) was employed in this example to acquire precipitation and 

temperature data for the research period. It is usual practice to choose selected stations 

as proxies for the area to guarantee that the data is reflective of the region of interest. To 

overcome this issue, the stations in Grand Forks and Fargo were chosen as proxies for 

the lowland region, whereas Edmore was picked to represent the highland region. 
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Monthly data for the research period was then downloaded and utilized to construct 

annual datasets. Given the scarcity of data throughout the research period, the data 

from these three stations are regarded as typical of the region of interest and acceptable 

for further analysis and interpretation. We conducted an additional Mann-Kendall test to 

examine the correlation between water surface area, temperature, and precipitation over 

the four recognized phases to further analyze these trends. 

 

5.2.3. Data Analyses 

During a period of 30 years in the RRB, we utilized Singular Spectrum Analysis 

(SSA) on water regions to dissect significant hydroclimatic phases. SSA is a 

nonparametric technique for time series analysis. By removing noise from time series, it 

can extract as much correct information as feasible [167, 168]. SSA has evolved into a 

standard tool for analyzing climate, meteorology, and geophysics time series [169-171]. 

SSA provided the trend, periodic components, and noise components. The SSA-

denoised waveforms are then reprocessed to improve the applicability and accuracy of 

altimeter data. Since surface water fluctuation dominates a basin's water budget 

variability, monthly surface water data were utilized for SSA and to define the 

hydroclimatic phases. As the monthly surface water data includes serial dependencies 

and may be divided into seasons, years, or decades, SSA is able to decompose it. 

In addition, for the 1990-2019 period, we used the Mann-Kendall trend test on 

annual total, permanent, and seasonal water areas, as well as precipitation and air 

temperature in the RRB. The Mann-Kendall test [172] s widely known as a non-

parametric test to analyze long-term data sets and detect statistically significant trends. 

Due to its rank-based procedure with resistance to the influence of extreme values, the 

method facilitates the trend analysis for variables having skewness [173-175]. The 

Mann-Kendall test can be utilized to determine whether an increasing or decreasing 

trend exists [146]. The p-value in this test shows the chance of error when the trend 
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differs from zero. The absolute value of Z is compared to the standard normal 

cumulative distribution to assess whether or not there is a trend at the chosen 

significance level. A Z number that is positive or negative shows an upward or downward 

trend. 

 

5.3. Results of Journal Paper 4 

5.3.1.  Annual Spatiotemporal Variability of Surface Water Area  

TWA expanded from 3247 km2 in 1990 to 6031 km2 in 2019. TWA covers both 

permanent and seasonal water areas (PWA and SWA) (Figure 5-2c). The PWA 

expanded from 2590 to 3635 km2, accounting for 79% to 60% of the TWA (Figure 5-

2a). PWAs include big lakes such as Lake Alice, Red Lake, and Devils Lake (Figure 

5-3), whereas SWAs are classified wetlands in the RRB and have increased from 

656 to 2395 km2 during the research period, accounting for 20% to 40% of TWAs 

(Figure 5-2b). The basin's central region, which is adjacent to Grand Forks, North 

Dakota, and Emerson, North Dakota (Figure 5-3), has the most noticeable seasonal 

water area and is frequently flooded in the spring when it rains heavily. Table 5-2, 

which is consistent with previous research in the Western Region, displays a rising 

trend for TWA and PWA for 1990-2019 based on the Mann-Kendall trend test that is 

significant at p < 0.05 [120, 176] and the Northern Great Plain [177]. During the 

1990-1997 era, the temporal dynamics of the total water area agreed with both 

permanent and seasonal regions. Yet, SWA fluctuates significantly after 1997, but 

PWA fluctuates just slightly. 

The chain of lakes in the Devils Lake area (upland area) and the large lakes in 

the Red Lake area are the two most prominent permanent water features shown in 

Figure 5-3. (eastern edge of the basin). While TWA, PWA, and SWA across the 

Devils Lake Basin have all significantly increased, they are still constant in the Red 
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Lake region. PWA and SWA expanded their territory in the western (near Devils 

Lake) and southeastern regions of the RRB, which are likewise located at higher 

elevations (> 370 m), during the wet years (for example, 1997, 1998, 2011, and 

2013). We also investigated the spatiotemporal variation of PWA and SWA in two 

test sites. These sites include Devils Lake with about 10,000 km2 drainage area in 

the west (Figure 5-4) and a large wetland Roseau River with a 30 km2 drainage area 

in the east of the basin (Figure 5-5). At the beginning of the study period (1990), the 

Devils Lake Basin had high PWA and SWA, and the PWA is only restricted to Devils 

Lake (Figure 5-4). However, the wetting filled up the large depressions north of 

Devils Lake and converted them into a seasonal water body in 1997 and 1998. The 

continued wetting in these further added moisture to the system and transformed 

these seasonal water bodies into permanent water bodies during the 2001-2011 

period. Lake Alice and Irvine are the names of these bodies of water. Consequently, 

the Devils Lake Basin saw two phases of wetness that substantially altered the 

PWAs: the conversion of the empty depression into a seasonal water region from 

1990 to 1999, and the transformation of the seasonal water area into a permanent 

area from 1999 to the present (2001-2011). The PWA and SWA have declined 

slightly since 2011. 
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Figure 5-2- Temporal variation of permanent (lake) water area (a), seasonal (wetland) 

water area (b), and total (lake + wetland) water area (c) during 1990-2019. 
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Figure 5-3- Spatiotemporal variation of seasonal water area in the Red River during 

1990-2019. The dark color shows the permanent area with no change. Note that most 
extreme years in terms of wetness and dryness are shown. 

 
 

Changes in large water bodies, such as the Devils Lake Basin of the western 

RRB, were rarely recorded in the eastern RRB. The Roseau River was the most 

prominent site where the seasonal-to-permanent water area transition was seen 

(Figure 5-5). SWA was present in the area from 1990 and 1997. The transition from 

seasonal to permanent, on the other hand, began in 1998 and finished in 1999. The 

PWA was present from 1999 till 2012. Since 2013, the area has been losing PWA 

permanent water and gaining SWA, but it has not totally converted to an SWA 

system. 

Figure 5-6 depicts the chronological variations in the percentage contribution of 

PWA to RRB in upland and lowland locations (Figure 5-1b). In 1990, PWA 
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contributed 18% in the upland and 58% in the lowland. During the preceding thirty 

years, the permanent area supplied by the upland to the RRB as a whole has 

expanded from 18% to 40%. In upland, there are two big periods of high area 

growth, one from 18% to 34% in 1990-1998 and another from 34% to 39% in 2007-

2013. Following 2017, it slipped back to 37% from 2017 to 2019. In the lowland area, 

however, the PWA contribution has reduced from 58% to 44%. Like the upland area, 

the recession of the percent contribution by PWA to RRB has two major phases in 

the lowland area: one in 1990-1998 from 58% to 47% and one in 2007-2013 from 

47% to 43%. During 2000-2006 and 2013-2016, the percent contribution of PWA is 

temporally stable in both upland and lowland areas. 
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Figure 5-4- Spatiotemporal variation of permanent and seasonal water area in Devils 

Lake during 1990-2019. Most extreme years in terms of wetness and dryness are shown. 
 

 
Figure 5-5- Spatiotemporal variation of permanent and seasonal water area in a small 

depression in the northeastern Red River during 1990-2019. Most extreme years in terms of 
wetness and dryness are shown. 
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To understand the spatiotemporal variability of TWA, SWA, and PWA, we 

investigate them in the six headwater basins situated at the different geomorphic 

units of the RRB (Figure 5-1b). The six headwater basins are: Devils Lake Basin 

(DLB), Sheyenne River Basin (SYB), LaSalle Watershed (LSLW), Tobacco 

Watershed (TBCW), Red Lake River Basin (RLB), and Buffalo Basin (BFB). DLB and 

SYB are in the upland area, TBCW is in the escarpment area and LSLW and RLB 

are hosted by the lowland area. BFB is in the highland area of the eastern RRB. The 

results show in upland, the temporal dynamics of the TWA, PWA, and SWA are 

consistent with that of the RRB, while the smaller basins such as LSLW and TBCW 

show different TWA, SWA, and PWA compared to the RRB. In the east of the basin, 

the temporal changes of TWA, SWA, and PWA of two headwater basins (RL and 

BFB) are consistent with the RRB.  
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Figure 5-6-Temporal changes of the percent contribution by permanent water area to 
Red River Basin PWA in upland (Figure 5-1-b) and lowland areas (Figure 5-1-b). Upland is 

located on the west of the basin and the elevation varies from 427 to 723 m while the lowland 
is located in the center and east and the elevation varies from 218 to 370 m. 

 

5.3.2.  Monthly Surface Water Area 

The long-term temporal trends of spring and summer TWA are consistent with 

those of annual PWA (Figure 5-8a), indicating a steady, increasing increase from 

1990 to 1997 and a continuous variation after that year. Figure 5-8 shows a 

consistent seasonal pattern in which the spring TWA is significantly greater than the 

summer TWA. The difference between spring and summer TWAs is shown in Figure 

5-8b. The disparity is greatest during flood years such as 1996 and 1997, and it is 

lowest during drought years such as 1993 and 2002. 

We subsequently utilized a single spectrum analysis to identify four phases in the 
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dynamics of monthly TWA (Figure 5-9). The moving average is also used to better 

distinguish the phases (Figure 5-9). A visual examination of the monthly TWA 

dynamics using SSA reveals four phases: phase 1 (1990-2001), phase 2 (2002-

2005), phase 3 (2006-2013), and phase 2014-2019. These four phases in the RRB 

indicate an alternating of wetness (TWA increase) and drying (invariant TWA or 

modest decrease in TWA). Phase 1 clearly demonstrates wetness and a significant 

increase in TWA, however phase 2 shows a halt in the acceleration of TWA 

increment. After a slight pause in TWA incrementation, Phase 3 shows a continuous 

growth in TWA. 

 

5.4. Discussion of Journal Paper 4 

5.4.1. Annual Spatiotemporal Variability of Surface Water Area  

Overall, our data indicate that the TWA in the RRB rose from 1990 to 2019, 

which is similar to the conclusions of Vanderhoof et al. (2018) and Archambault et al. 

(2019) [144, 177].  Our analysis includes the entire basin, whereas both studies just 

cover a portion of the western RRB. We further examined the seasonal and 

permanent water regions described by Pekel et al. (2016) and reported on the 

differences in the temporal evolution of the two types of water areas, permanent and 

seasonal water. Our study's findings regarding the direction of changes in the area of 

permanent water from 1990 to 2019 are consistent with those of Borja et al. (2020), 

who demonstrate that, aside from a few dramatic human-driven regional drying 

cases, the world's surface water systems have grown, primarily due to increased 

seasonal water from 1985 to 2015 [178]. The total, permanent, and seasonal surface 

water in the RRB have increased in general by 2890 km2, 1151 km2, and 1739 km2, 

respectively in 30 years (see Table 5-1). Based on the map net change in Borja et al. 
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(2020) for surface water area over regional hydrological catchments between 1985–

2000 and 2001–2015, permanent water in the RRB gains less than 2000 km2 area, 

and surface and total water gain 2000 to 5000 km2 area [178]. The total surface 

water includes a major impact on the pattern of seasonal water changing and a 

relatively small increase in permanent water changing. A comparison of estimated 

changes in long-term permanent water cover by Borja et al. (2020), between 1985 

and 2015, shows disagreement in the direction of change that is like that between 

part 1 and Donchyts et al. (2016) [179]. Especially, Borja et al. (2020) study part 2 

period, between 1985–2005, and 2013–2015, and Donchyts et al. (2016) are 

consistent in estimating an average net land area gain (permanent water loss) from 

the long 15-year period 1985–2005 to the short 3-year period 2013–2015, even 

though change magnitudes differ between these two studies [179]. PWA is largely 

governed by the volume of precipitation received by the wetland and the volume of 

water that flows into and out of the wetland. This indicates that locations with higher 

precipitation or more streamflow have a larger permanent water area. In contrast, 

SWA is influenced by how water interacts with wetlands and groundwater, as well as 

the rate of open water evaporation.  The combination of these variables affects 

whether the wetland will experience seasonal flooding and how long it will remain 

flooded throughout the year. By demonstrating the more steady and progressive 

increase in PWA as well as the extremely varied temporal response by SWAs, our 

findings contribute to new understanding. 

The spatial analyses of the PWA and SWA revealed further additional information 

in the context of the RRB. Our analysis revealed a notable seasonal water area in 

the RRB's central region (from Grand Forks to Emerson) (Figure 5-3). During rainy 

years (e.g., 2009, 2011, and 2013), this region floods during the spring season due 

to flat topography and downstream ice jams in Red River and Lake Winnipeg (Figure 
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5-3). In addition to detecting a sensitive area to seasonal water inundation, we 

further detected two most noticeable permanent water bodies with the diminishing 

influence of SWA during the study period; one is the chain of lakes in the Devils Lake 

Basin area (west of RRB in upland, Figure 5-4) and a large wetland Roseau River, 

30 km2 in the eastern RRB (Figure 5-5). Annual precipitation onto the lake surface 

(PL) is 421.6 mm from 1907 to 1980, while PL is 506.0 mm from 1981 to 2011 which 

shows the Devils Lake Basin experienced high precipitation regime since 1980 [128] 

resulting in filling up potholes and depression and basin storage. However, the 

surface water area has started to respond since mid-1990, as Figure 5-4 shows the 

emergence of SWA in 1997. The continued wetting converted the SWA to PWA 

during the study period. The diminishing influence of SWAs indicates that the Devils 

Lake Basin system transitioned from low streamflow and high evaporation system to 

high streamflow and low evaporation system while annual precipitation remains high 

and invariable during the study period (Archambault et al., 2019). The Devils Lake 

Basin region exhibits a remarkable shift between SWA and PWA during the research 

period, although being small in area (30 km2) compared to chains of lakes (Figure 5-

5). This wetland has also shown that the smaller water body is more vulnerable to 

any local or regional climate fluctuations. 

 

Table 5-1- Seasonal, permanent, and total wetlands’ surface water area assessed on 
annual surveys in the Red River Basin, 1990–2019. 

Year 

Surface water Area (km2) 

Seasonal Permanent Total 

1990 656.9 2590.8 3247.7 

1991 494.9 2557.5 3052.4 

1992 1061.2 2640.7 3701.9 
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1993 1080.9 2782.7 3863.5 

1994 1520.4 2962.2 4482.6 

1995 2116.8 3169.4 5286.2 

1996 2833.1 3277.7 6110.8 

1997 2835.2 3462.8 6298.1 

1998 1791.8 3517.3 5309.1 

1999 2327.0 3599.5 5926.5 

2000 1287.4 3581.8 4869.2 

2001 2207.1 3642.6 5849.6 

2002 1458.8 3601.2 5060.0 

2003 1171.9 3550.1 4722.0 

2004 2068.1 3597.9 5666.0 

2005 1791.8 3647.9 5439.8 

2006 2460.7 3575.7 6036.4 

2007 1795.6 3623.8 5419.4 

2008 1117.8 3580.7 4698.5 

2009 2538.8 3650.5 6189.3 

2010 2422.5 3729.7 6152.2 

2011 2626.9 3874.6 6501.6 

2012 1126.9 3588.6 4715.5 

2013 1869.6 3759.0 5628.6 

2014 1788.1 3766.0 5554.1 

2015 1109.4 3721.8 4831.2 

2016 1433.6 3681.1 5114.8 

2017 1606.2 3651.5 5257.8 

2018 1509.6 3503.9 5013.5 

2019 2395.8 3635.4 6031.2 
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Our study also indicates that the western upland geomorphic unit of the RRB has 

higher PWA than the lowland geomorphic unit located at the central part and partly in 

the eastern RRB. This comparison between upland and lowland is also consistent 

with the hydro lake database by Messenger et al., (2004). According to the upland 

area PWA contribution to the RRB, PWA increased substantially, while the lowland 

PWA contribution to the RRB decreased. The percent of PWA contribution in 1990, 

1999, 2009, and 2019 are 18, 35, 36, and 37% for the upland, while it is 58, 47, 47, 

and 45% for the lowland. Note that the PWA of upland RRB has increased at a much 

faster rate than the lowland. The upland’s PWA has increased at a rate of 40 

km2/year while the rate is only 4 km2/year in the lowland area. Rapid filling of 

potholes and depressions in the upland area during the 1990-1998 period has 

generated many permanent water bodies, improved wetland connectivity, and 

increased contributing areas resulting in substantial streamflow in the major 

tributaries (e.g., Sheyenne River, Mauvais Coulee) of Red River draining from the 

upland area. Similar phenomena are also observed during the 2009-2013 period 

resulting in massive streamflow and regional flooding in 2009, 2011, and 2013. We 

think the lowland permanent area is already filled at its maximum capacity at the 

onset of the study period. Moreover, compared to uplands, lowlands have a 

shallower water table due to lower elevation, flatter topography, and groundwater 

convergence from uplands, allowing for higher evapotranspiration and leaf area 

index in many places [180]. It can be concluded that the lowland is already filled up, 

for any flood in the future, the upland would be responsible and will lead the water to 

the lowland part which is in a flatter area. 

The western RRB has a low density of streams and rivers but high densities of 

temporary and seasonal wetlands. The topographic formation of the RRB is of glacial 

origin and is unique due to the great number of shallow depressions of small lakes, 
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ponds, wetlands, moraines, outwash plains, and drumlins (Sethre et al., 2005; Shook 

et al., 2013; Zhang et al., 2009). As can be seen in Figure 5-7, the permanent 

surface water has a big portion of the total water in both Devils Lake Basin and SYB 

which are from the upland area. In contrast, escarpment watersheds (TBCW and 

LSLW) have a low amount of PWA as the steeper slope of the channel causes rapid 

draining of wetlands and water bodies. The RLB has a low PWA due to the extensive 

development of drainage ditches at both headwater and downstream RLB (Stoner et 

al., 1993). 

 

 
Figure 5-7- Temporal variation of permanent (lake) water area, seasonal (wetland) water 

area, and total water area during 1990-2019 in the six headwater basins. Note that the first 
four columns from the left represent the subbasins located in the western Red River while the 

rest of the two columns from the right represent the subbasins in the eastern Red River 
Basin. The first two columns from the left are Devils Lake Basin and SYB which are in the 

upland area. 

 

5.4.2. Monthly Surface Water Area 

The spring TWA strongly responded during the 1990-1997 wetting period, 

showing a significant increase across the RRB, but then subdued and fluctuated little 



90  

for the rest of the study period (1998-2019) (Figure 5-8a). The summer TWA also 

responded to initial wetting and the TWA increment was observed till 2000. Since 

2000, summer season TWA remained slightly variable (between 3000 and 4000 km2) 

partly due to the consumption of summer rainfall by evapotranspiration (Figure 5-8a). 

The difference between the spring and summer TWAs (diffTWA) shows an interesting 

pattern of temporal changes (Figure 5-8b). The spring TWA is dominated by 

snowmelt runoff, frozen soil infiltration, rain on snow, fill-spill hydrology, and variable 

contributing areas while the summer TWA depends on summer rainfall, the timing of 

the rainfall, evapotranspiration, open water evaporation, cloud-cover and images for 

spring to summer from GSWD days. Hence, the diffTWA is the result of the 

competition between winter snow accumulations, spring, and summer processes. 

The high diffTWA is observed during 1996, 1997, and 2006 as both years have 

contrasting spring (wet) and summer (dry) seasons. However, other years having 

wet springs like 2009, 2011, and 2013 have moderate diffTWA as the late summer 

rainfall is responsible for the rebound of the TWA. 
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Figure 5-8- (a) Temporal dynamics of spring (Apr, May) and summer (Sep) monthly total 

water area (cloud-free and available data). (b) Temporal dynamics of the difference of total 
water area between spring and summer. 

 

A visual examination of the monthly TWA temporal dynamics using SSA reveals 

four phases: phase 1 (1990-2001), phase 2 (2002-2005), phase 3 (2006-2013), and 

phase 4. (2014-2019). The Mann-Kendall tests are run on the SSA of monthly TWAs 

(Table 5-2), and the findings reveal an increased trend for phases 1 and 3, no trend 
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for phases 2 and 4, and a negative trend for phase 4. These phases are congruent 

with the RRB's regional hydroclimatology, which states that phases 1 and 3 are 

soaking periods, phases 2 and 4 are part of the prairie drought. Phase 1 (1990-2001) 

exhibits wetting in which the RRB consistently received noticeable snowfall (with 

subsequent snow accumulation and melt) and rainfall resulting in the expansion of 

existing lakes and the creation of new lakes and smaller water bodies (Figures 5-3, -

4, and -5). The monthly TWA increases steadily and significantly with time. Due to 

memory effects acquired from phase 1, the phase 2 period (2002-2005) had 

persistent high TWA and PWA (1990-2001). While the short dry period from 2002 to 

2005 was insufficient to have a substantial impact on lakes, monthly TWA remained 

steady (Figure 5-9). Due to the drought condition during phase 2, the monthly TWA 

experienced minor fluctuations with no significant trend in the Mann-Kendall test 

statistic (Table 5-2). SWA depletion began in the summer of 1997 and persisted 

through 2003 due to persistently dry summer weather. Following this brief prairie 

drought (phase 2), the RRB had exceptional precipitation from 2006 to 2013. (phase 

3 in Figure 5-9). Although precipitation began to increase in the fall of 2006, the wet 

condition did not completely develop until 2010. With 95% confidence, Table 2 

demonstrates an increasing trend. The monthly TWA decreases in phase 4 (2014-

2019), indicating a drying period in the RRB (Figure 5-9). At the 95% confidence 

level, Table 5-2 demonstrates negative trends for TWA, PWA, and SWA. 

To further analyze how water area relates to climatic variability, precipitation and 

temperature data, as well as their temporal evolution over the research region, are 

considered. An additional Mann-Kendall test was done to establish the relationship 

between water surface area, temperature, and precipitation over the four recognized 

phases. Tables 5-3 and 4 exhibit the Mann-Kendall test findings for temperature and 

precipitation during the study period, respectively. There is no overall trend in 
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temperature or precipitation over the study period, with the exception of an increased 

tendency in precipitation at the Upland station. Precipitation increased in both upland 

and lowland stations during the first phase, the excessively wet period from 1990 to 

2001 (Table 5-4). Admittedly, there is no temperature trend in all stations throughout 

phase 1. We further study temperature changes throughout phase 1 and discover a 

period (1990-1996, Z = -3.0, p = 0.001) of cooling and wetting at Edmore (Upland) 

and Fargo (headwater lowland) stations. Over this time, the annual average 

temperature has decreased by 7 degrees Fahrenheit. Although the wetting continues 

throughout phase 1, there is no trend in temperature at the Edmore and Fargo 

stations and an upward trend at the Grand Forks station. We assume that the 

combination of cooling and wetting from 1990 to 1996 caused a significant rise in 

PWA, SWA, and monthly water areas. We believe that between 1990 and 1996, 

wetness provided moisture to the RRB system while cooling caused a lack of 

evaporation and sublimation loss, an extended winter and snow cover, and 

subsequent melt runoff to the RRB system. 

Over the study period, an analysis of surface water area during a long-term 

drought-to-deluge cycle showed a net spike in temporal, permanent, and seasonal 

water areas in RRB. Figure 5-10 summarizes the details of such changes and shows 

the spatial distribution of the transitions between permanent water, seasonal water, 

and bare land and the net land cover changes over the last three decades. The 

RRB-wide transition from bare land to permanent (170 km2) and seasonal (1851 

km2) water area is observed during the 1990-2001 period. In contrast, changes are 

minimal during the following stable period (2002-2005). During the most recent 

wetting period, 2006-2013, there was a net gain of 354 km2 in permanent water from 

seasonal and bare land, whereas 434 km2 changed from bare land to seasonal water 

area. These changes are primarily focused on the basin's west. Eventually, during 
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the recent drought period (2014-2018), a large loss (462.3 km2) of seasonal water 

area to bare land occurred. Table 5-5 summarized the changes in permanent and 

seasonal water areas, as well as barren land (non-water area), across each phase. 

 
Table 5-2- Mann-Kendall trend tests with a p-value for the annual total, permanent, and 

seasonal water areas, and monthly (from Spring to Summer) total water areas in the Red 
River Basin for the 1990-2019, 1990-1999, 2000-2003, 20,04-2013 and 2014-2019 periods. 

Period   Annual  Monthly 

   Permanent Seasonal Total  Total 

1990-2001 

Z  4.18 2.4 2.67  11.14 

p  0.000014 0.008 0.0037  0.00 

Trend  Upward Upward Upward  Upward 

2002-2005 

Z  0.34 0.34 0.34  -0.34 

p  - - -  - 

Trend  No Trend No Trend No Trend  No Trend 

2006-2013 

Z  2.35 0 0.124  2.61 

P  0.009 - -  0.004 

Trend  Upward No Trend No Trend  Upward 

2014-2019 

Z  0.375 0.75 0.376  -3.84 

p  0.012 - -  0.00 

Trend  No Trend No Trend No Trend  Downward 

 Z  4.85 0.75 0.376  12.4 

1990-2019 p  0 - 0.037  0.00 

 Trend  Upward No Trend Upward  Upward 
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Figure 5-9- Monthly TWA, singular spectrum analyses (SSA), and moving average of 
monthly TWA during the study period. 
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Table 5-3- Mann-Kendall trend tests with a p-value for temperature in the Red River 
Basin for the 1990-2019, 1990-1999, 2000-2003, 20,04-2013, and 2014-2019 periods. 

Period 

                      Lowland                            Upland   

 Grand Forks Fargo Edmore 

1990-2001 

Z -1.029 -0.206 0.069 

p > 0.05 > 0.05 > 0.05 

Trend No Trend No Trend No Trend 

2002-2005 

Z 0 -0.245 1.02 

p > 0.05 > 0.05  > 0.05 

Trend No Trend No Trend No Trend 

2006-2013 

Z -0.124 0 -0.253  

P >0.05 >0.05 - 

Trend No Trend No Trend No Trend 

2014-2019 

Z -0.75 -0.75 0.75 

p >0.05 >0.05 >0.05 

Trend No Trend No Trend No Trend 

 Z -0.214 0.304 -0.174 

1990-2019 p >0.05 >0.05 >0.05 

 Trend No Trend No Trend No Trend 
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Table 5-4- Mann-Kendall trend tests with a p-value for precipitation in the Red River 
Basin for the 1990-2019, 1990-1999, 2000-2003, 20,04-2013, and 2014-2019 periods. 

Period 

                      Lowland                            Upland   

 
Grand Forks Fargo 

Edmore & 

Others 

1990-2001 

Z 2.5 1.787 2.336 

p 0.006 0.037 0.0098 

Trend Upward Upward Upward 

2002-2005 

Z 0 1.225 1.019 

p >0.05 >0.05 >0.05 

Trend No Trend No Trend No Trend 

2006-2013 

Z -0.124 0.124 1.361 

P >0.05  >0.05 >0.05 

Trend No Trend No Trend No Trend 

2014-2019 

Z 0.75 1.127 -0.34 

p >0.05 >0.05 >0.05 

Trend No Trend No Trend No Trend 

 Z 1.265 0.624 2.271 

1990-2019 p >0.05 >0.05 0.0034 

 Trend No Trend No Trend Upward 

 
 



98  

 

Figure 5-10- Change between permanent and seasonal water area and bare land (non-water 
area) during each phase and study period. 
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Table 5-5- Change in permanent and seasonal water area (km2) and bare land (non-water 
area, km2) during each phase. 

Change 1990-01 2002-05 2006-13 2014-19 1990-2019 

Permanent water to bare land 1 8 9 63 5 

Permanent water to seasonal water 17 87 52 164 31 

Seasonal water to bare land 141 355 812 462 143 

No change 113467 115236 114889 114911 113309 

Bare land to seasonal water 1851 722 435 857 1876 

Seasonal water to permanent water 170 124 219 91 169 

Bare land to permanent water 903 18 135 2 1018 

 

5.5. Conclusion of Journal Paper 4 

This study investigates the spatiotemporal variability of surface water area in the 

RRB from 1990 to 2019. We offered a more careful evaluation of the surface water area 

variation in RRB and noted surface water area responses to dry periods. Using the 

Global Surface Water Dataset (GSWD) with a 30 m resolution, we investigated 

permanent and seasonal water regions in this research. We discovered that the overall 

patterns for all total, permanent, and seasonal water areas exhibit an upward tendency 

during the duration of the study. From 1990 and 1997, there was an upward trend in 

TWA, PWA, and SWA. Such increasing trends of TWA, PWA, and SWA are partly due to 

cooling and wetting during the 1990-1996 period.  After 1997, the seasonal water area 

exhibits noticeable fluctuations while the permanent water variation is slight.  

From 1990 to 1998, significant depressions in Devils Lake, the largest upland 

watershed, were filled up and transformed into seasonal water bodies. From 2001 to 

2011, these seasonal bodies of water were transformed to permanent bodies of water. 

We infer that since these shifts occurred, the upland has represented the Red River's 

permanent water area. In contrast, the transition from seasonal to permanent water 

occurred in the lowland between 1998 and 1999. Nevertheless, PWA declined after 

2013 and was mostly converted back to SWA. 
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We detected four phases of variation in the surface water area, including phase 1, a 

wet period with a substantial increase in TWA from 1990 to 2001; phase 2 from 2002 to 

2005; phase 3 from 2006 to 2013 with the acceleration of TWA increment stalled SWA; 

and phase 4, a dry period with a decrease in TWA from 2014 to 2019.   The RRB-wide 

transition from bare land to permanent (170 km2) and seasonal (1851 km2) water area is 

observed during the 1990-2001 period. In contrast, during the following stable period 

(2002-2005), changes are minimal. In the recent wetting period of 2006-2013, a net gain 

of 354 km2 in permanent water from seasonal and bare land is observed while 434 km2 

changes from bare land to the seasonal water area. These changes are heavily 

concentrated around the west of the basin. Finally, during the recent drying period 

(2014-2018), a significant loss (462.3 km2) of seasonal water area to bare land occurred. 

           The PWA of upland RRB has grown faster than that of lowland RRB. As a 

result, significant and more frequent flooding has been reported in highland basins such 

as the Devils Lake Basin. Because water drains from upland to lowland via escarpment, 

the frequent and severe flooding in upland areas has prompted concerns about lowland 

floods. The fluctuations in surface water area and identified phases have major 

significance for forecasting future lake and wetland area responses in the RRB. Bonsal 

et al, (2013) predicted frequent occurrence of drought with high severity and persistent 

multi-year drought in the southern prairies [125]. The surface water area response to 

expected dry conditions in the future or wet-to-dry transition can be linked with phase 2 

and phase 4 monthly TWA response. Further, the multi-year dry period (2002-2004) can 

be comparable to phase 2. This study can be used for preparedness for the dramatic 

and inevitable extreme surface water area response (flooding) and eutrophication in the 

Red River.  

Our findings have consequences for the amount of nitrogen content in RRB lakes 

and wetlands, which are sensitive to eutrophication [181]. With a restricted supply from 

the watershed, an increase in surface water area can dilute nutrient content. Also, the 
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geochemical environment of particular bodies of water causes denitrification. However, 

during hydrologically extreme events, large nutrient loads can enter the lakes and 

wetlands of the RRB. The use of water body determination indices such as NDWI, 

MNDWI, and AWEI in the Red River Basin will be investigated in our future studies. 

These indices will be employed to comprehensively map and monitor the spatiotemporal 

dynamics of water bodies in the region, as well as to estimate various water quality 

parameters. Our goal is to provide valuable insights into the use of remote sensing data 

for effective water resource management and hydrological studies in the Red River 

Basin. 
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6 Chapter 6. Conclusions and Future Directions 

In conclusion, this study presented to highlight the importance of utilizing advanced 

techniques such as geospatial analysis, machine learning, and statistical modeling to 

better understand and predict floods and water level fluctuations in the Red River Basin. 

The findings suggest that accurate flood modeling and prediction can be achieved by 

incorporating various data sources, including bathymetry, flow velocity, and discharge 

flood data, and by employing advanced modeling techniques. 

The study develops a nonlinear Muskingum model for two USGS stations and uses 

the Salp Swarm Algorithm to optimize the model's parameters. The optimized 

parameters improve the accuracy of flood predictions caused by snowmelt in icy rivers 

like the Red River. The results demonstrate that the Muskingum method can be 

effectively optimized using the SSA algorithm. The optimized parameters for the two 

categories suggest that NR=2 yields the optimized outflow for group “b“, whereas NR=1 

produces the best results for group “a“. 

This research used geospatial techniques to simulate floods on the Red River near 

Grafton, North Dakota, by calibrating Manning's n-coefficient. The study collected 

bathymetry data using ADCP and ASV with LiDAR data to determine flow during a flood 

event in 2022. HEC-RAS modeling generated flood mapping, revealing eddy flow after 

the bridge that becomes more significant with an increase in flow discharge and velocity, 

posing a risk for scour. The study suggests that ADCPs can be useful in flood inundation 

mapping studies due to their ability to integrate bathymetry, flow velocity, and discharge 

flood data. 

In addition, three approaches for forecasting water levels in a time series, primarily 

for flood warning systems, were tested in this study: SARIMA, RF, and LSTM. According 

to the results of the investigation, the LSTM technique surpassed SARIMA and RF in 

terms of accuracy and prediction performance, making it a reliable choice for flood 
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prediction. These results demonstrate the high precision of the Deep Learning algorithm 

as a reliable choice for flood prediction. Experimental results on Pembina, Drayton, and 

Grand Forks stations show a better performance with the LSTM model in all prediction 

times. However, to further enhance the predictive performance of machine learning 

models, it is recommended to incorporate a more comprehensive set of environmental 

variables, such as temperature, precipitation, and others. By integrating multiple 

predictors, we can potentially improve the accuracy and reliability of flood prediction 

systems in the Red River basin, thereby contributing to the development of effective 

flood mitigation strategies. 

According to this study, the Red River Basin has seen an overall rise in water areas, 

including total, permanent, and seasonal water. Since 2013, the upland has seen a 

greater permanent water area increase, resulting in more frequent floods, whilst the 

lowland has seen a decline in permanent water area. The identified phases of surface 

water area variation can be used to anticipate future extreme flooding and 

eutrophication. Future studies will investigate water body determination indices to 

improve water resource management and hydrological studies in the region. 

Furthermore, our research findings on surface water changes suggest potential avenues 

for future investigations into the impact of flood events on nutrient concentration in lakes 

and wetlands of the Red River Basin. Specifically, our study highlights the potential for 

surface water area expansion to dilute nutrient concentration, assuming a limited supply 

from the Therefore, future research could explore the relationship between nutrient 

concentration, flood events, and other environmental variables in the RRB, which could 

inform the development of more effective nutrient management strategies and contribute 

to the preservation of the region's lakes and wetlands. 

 

 



104  

References 

1. Lim, Y.H. and D.L. Voeller, Regional flood estimations in Red River using L-

moment-based index-flood and bulletin 17B procedures. Journal of Hydrologic 

Engineering, 2009. 14(9): p. 1002-1016. 

2. Board, R.R.B., Inventory team report: hydrology. Red River Basin Board: Moorhead, 

MN, USA, 2000. 

3. Babiracki, D., Lateral Migration of the Red River, in the Vicinity of Grand Forks, 

North Dakota. 2015. 

4. Hu, H.H., et al., Gridded snowmelt and rainfall-runoff CWMS hydrologic modeling of 

the Red River of the North Basin. Journal of Hydrologic Engineering, 2006. 11(2): p. 

91-100. 

5. Red River of the North Watershed. 2009, Minnesota Department of Natural 

Resources: St. Paul, Minnesota. 

6. Center, D.W.S. Red River of the North at Grand Forks, North Dakota - 129 Years. 

Available from: https://www.usgs.gov/centers/dakota-water-science-center/red-river-

north-grand-forks-north-dakota-129-years?qt-science_center_objects=0. 

7. Laken, N.A., Red River of the North “A winding journey to history” Headwaters at 

Breckenridge, Minnesota, U.S.A. 2010. 

8. Stoner, J.D., et al., RED RIVER OF THE NORTH BASIN, MINNESOTA, NORTH 

DAKOTA, AND SOUTH DAKOTA 1. JAWRA Journal of the American Water 

Resources Association, 1993. 29(4): p. 575-615. 

9. Hirsch, R.M. and K.R. Ryberg, Has the magnitude of floods across the USA 

changed with global CO2 levels? Hydrological Sciences Journal, 2012. 57(1): p. 1-

9. 

10. Rice, J.S., et al., Continental US streamflow trends from 1940 to 2009 and their 

relationships with watershed spatial characteristics. Water Resources Research, 

2015. 51(8): p. 6262-6275. 

11. Akbari, G.H. and R. Barati. Comprehensive analysis of flooding in unmanaged 

catchments. in Proceedings of the Institution of Civil Engineers-Water Management. 

2012. Thomas Telford Ltd. 

12. Akbari, G.H., A.H. Nezhad, and R. Barati, Developing a model for analysis of 

uncertainties in prediction of floods. Journal of Advanced Research, 2012. 3(1): p. 

73-79. 

13. Gill, M.A., Flood routing by the Muskingum method. Journal of hydrology, 1978. 

36(3-4): p. 353-363. 

https://www.usgs.gov/centers/dakota-water-science-center/red-river-north-grand-forks-north-dakota-129-years?qt-science_center_objects=0
https://www.usgs.gov/centers/dakota-water-science-center/red-river-north-grand-forks-north-dakota-129-years?qt-science_center_objects=0


105  

14. O'donnell, T., A direct three-parameter Muskingum procedure incorporating lateral 

inflow. Hydrological Sciences Journal, 1985. 30(4): p. 479-496. 

15. Khan, M.H., Muskingum flood routing model for multiple tributaries. Water resources 

research, 1993. 29(4): p. 1057-1062. 

16. Kshirsagar, M., B. Rajagopalan, and U. Lal, Optimal parameter estimation for 

Muskingum routing with ungauged lateral inflow. Journal of Hydrology, 1995. 169(1-

4): p. 25-35. 

17. Choudhury, P., Multiple inflows Muskingum routing model. Journal of Hydrologic 

Engineering, 2007. 12(5): p. 473-481. 

18. Choudhury, P., R.K. Shrivastava, and S.M. Narulkar, Flood routing in river networks 

using equivalent Muskingum inflow. Journal of Hydrologic Engineering, 2002. 7(6): 

p. 413-419. 

19. Samani, H.M. and G. Shamsipour, Hydrologic flood routing in branched river 

systems via nonlinear optimization. Journal of Hydraulic Research, 2004. 42(1): p. 

55-59. 

20. Orouji, H., et al. Flood routing in branched river by genetic programming. in 

Proceedings of the Institution of Civil Engineers-Water Management. 2014. Thomas 

Telford Ltd. 

21. Kumar, D.N., F. Baliarsingh, and K.S. Raju, Extended Muskingum method for flood 

routing. Journal of Hydro-environment Research, 2011. 5(2): p. 127-135. 

22. Vatankhah, A.R., Evaluation of explicit numerical solution methods of the 

Muskingum model. Journal of Hydrologic Engineering, 2014. 19(8): p. 06014001. 

23. Wang, J., et al., Discussion of “parameter estimation of the nonlinear muskingum 

flood-routing model using a hybrid harmony search algorithm” by Halil Karahan, 

Gurhan Gurarslan, and Zong Woo Geem. Journal of Hydrologic Engineering, 2014. 

839: p. 842. 

24. Mirjalili, S., et al., Salp Swarm Algorithm: A bio-inspired optimizer for engineering 

design problems. Advances in engineering software, 2017. 114: p. 163-191. 

25. Madin, L.P., Aspects of jet propulsion in salps. Canadian Journal of Zoology, 1990. 

68(4): p. 765-777. 

26. Anderson, P. and Q. Bone, Communication between individuals in salp chains. II. 

Physiology. Proceedings of the Royal Society of London. Series B. Biological 

Sciences, 1980. 210(1181): p. 559-574. 

27. Andersen, V. and P. Nival, A model of the population dynamics of salps in coastal 

waters of the Ligurian Sea. Journal of plankton research, 1986. 8(6): p. 1091-1110. 



106  

28. Henschke, N., et al., Population drivers of a Thalia democratica swarm: insights 

from population modelling. Journal of Plankton Research, 2015. 37(5): p. 1074-

1087. 

29. Atashi, V., et al., Water Level Forecasting Using Deep Learning Time-Series 

Analysis: A Case Study of Red River of the North. Water, 2022. 14(12): p. 1971. 

30. McCarthy, G., The unit hydrograph and flood routing, Conference of North Atlantic 

Division. US Army Corps of Engineers, New London, CT. US Engineering, 1938. 

31. Das, A., Parameter estimation for Muskingum models. Journal of Irrigation and 

Drainage Engineering, 2004. 130(2): p. 140-147. 

32. Mohan, S., Parameter estimation of nonlinear Muskingum models using genetic 

algorithm. Journal of hydraulic engineering, 1997. 123(2): p. 137-142. 

33. Singh, V.P. and P.D. Scarlatos, Analysis of nonlinear Muskingum flood routing. 

Journal of Hydraulic Engineering, 1987. 113(1): p. 61-79. 

34. Luo, J. and J. Xie, Parameter estimation for nonlinear Muskingum model based on 

immune clonal selection algorithm. Journal of Hydrologic Engineering, 2010. 15(10): 

p. 844-851. 

35. Easa, S.M., et al. Discussion: New and improved four-parameter non-linear 

Muskingum model. in Proceedings of the Institution of Civil Engineers-Water 

Management. 2014. Thomas Telford Ltd. 

36. Hosseini, S.M., Application of spreadsheets in developing flexible multiple‑reach 

and multiple‑branch methods of Muskingum flood routing. Computer Applications in 

Engineering Education, 2009. 17(4): p. 448-454. 

37. Karahan, H., G. Gurarslan, and Z.W. Geem, A new nonlinear Muskingum flood 

routing model incorporating lateral flow. Engineering Optimization, 2015. 47(6): p. 

737-749. 

38. Farzin, S., et al., Flood routing in river reaches using a three-parameter Muskingum 

model coupled with an improved bat algorithm. Water, 2018. 10(9): p. 1130. 

39. Yoon, J. and G. Padmanabhan, Parameter estimation of linear and nonlinear 

Muskingum models. Journal of Water Resources Planning and Management, 1993. 

119(5): p. 600-610. 

40. Fuat Toprak, Z. and M.E. Savci, Longitudinal dispersion coefficient modeling in 

natural channels using fuzzy logic. CLEAN–Soil, Air, Water, 2007. 35(6): p. 626-

637. 

41. Toprak, Z.F. and H.K. Cigizoglu, Predicting longitudinal dispersion coefficient in 

natural streams by artificial intelligence methods. Hydrological Processes: An 



107  

International Journal, 2008. 22(20): p. 4106-4129. 

42. McCuen, R.H., Z. Knight, and A.G. Cutter, Evaluation of the Nash–Sutcliffe 

efficiency index. Journal of hydrologic engineering, 2006. 11(6): p. 597-602. 

43. Kazemi, M. and R. Barati, Application of dimensional analysis and multi-gene 

genetic programming to predict the performance of tunnel boring machines. Applied 

Soft Computing, 2022. 124: p. 108997. 

44. Hosseini, K., et al., Optimal design of labyrinth spillways using meta-heuristic 

algorithms. KSCE Journal of Civil Engineering, 2016. 20: p. 468-477. 

45. Alizadeh, M.J., et al., Prediction of longitudinal dispersion coefficient in natural rivers 

using a cluster-based Bayesian network. Environmental Earth Sciences, 2017. 76: 

p. 1-11. 

46. Todhunter, P.E., Uncertainty of the assumptions required for estimating the 

regulatory flood: Red River of the North. Journal of Hydrologic Engineering, 2012. 

17(9): p. 1011-1020. 

47. Deschamps, A., et al. Geospatial data integration for applications in flood prediction 

and management in the Red River Basin. 

48. Abad, J.D., et al. Exploratory study of the influence of the wake produced by 

acoustic Doppler velocimeter probes on the water velocities within measurement 

volume. in World Water and Environmental Resources Congress. 2004. Salt Lake 

City. 

49. Garcia, C.M., K. Oberg, and M.H. García, ADCP measurements of gravity currents 

in the Chicago River, Illinois. Journal of Hydraulic Engineering, 2007. 133(12): p. 

1356-1366. 

50. Vermeulen, B., A.J.F. Hoitink, and R.J. Labeur, Flow structure caused by a local 

cross-sectional area increase and curvature in a sharp river bend. Journal of 

Geophysical Research: Earth Surface, 2015. 120(9): p. 1771-1783. 

51. Vermeulen, B., A.J.F. Hoitink, and M.G. Sassi, Coupled ADCPs can yield complete 

Reynolds stress tensor profiles in geophysical surface flows. Geophysical Research 

Letters 2011. 38(6). 

52. Vermeulen, B., M.G. Sassi, and A.J.F. and Hoitink, Improved flow velocity estimates 

from moving-boat ADCP measurements. Water Resources Research, 2014. 50(5): 

p. 4186-4196. 

53. Parsapour-Moghaddam, P. and C.D. Rennie. 3D versus 2D calibration of a 3D 

hydrodynamic model. in 37th IAHR World Congress. 2017a. Kuala Lumpur, 

Malaysia. 



108  

54. Muste, M., K. Yu, and M. Spasojevic, Practical aspects of ADCP data use for 

quantification of mean river flow characteristics; part I: moving-vessel 

measurements. Flow measurement and instrumentation, 2004. 15(1): p. 1-16. 

55. Guerrero, M., et al., The acoustic properties of suspended sediment in large rivers: 

consequences on ADCP methods applicability. Water, 2016. 8(1): p. 13. 

56. Rennie, C.D. and F. Rainville, Case study of precision of GPS differential correction 

strategies: Influence on aDcp velocity and discharge estimates. Journal of hydraulic 

engineering, 2006. 132(3): p. 225-234. 

57. Vermeulen, B., M. Sassi, and A. Hoitink, Improved flow velocity estimates from 

moving‑boat ADCP measurements. Water resources research, 2014. 50(5): p. 

4186-4196. 

58. Atashi, V., et al. Characteristics of Seasonality on 3D Velocity and Bathymetry 

Profiles in Red River of the North. in World Environmental and Water Resources 

Congress 2022. 

59. Prabnakorn, S., et al., Development of an integrated flood hazard assessment 

model for a complex river system: a case study of the Mun River Basin, Thailand. 

Modeling Earth Systems and Environment, 2019. 5(4): p. 1265-1281. 

60. Bhuyian, M.N., A.J. Kalyanapu, and F. Nardi, Approach to digital elevation model 

correction by improving channel conveyance. Journal of Hydrologic Engineering, 

2015. 20(5): p. 04014062. 

61. Cook, A. and V. Merwade, Effect of topographic data, geometric configuration and 

modeling approach on flood inundation mapping. Journal of hydrology, 2009. 377(1-

2): p. 131-142. 

62. Getahun, Y.S. and S.L. Gebre, Flood hazard assessment and mapping of flood 

inundation area of the Awash River Basin in Ethiopia using GIS and HEC-

GeoRAS/HEC-RAS model. Journal of Civil & Environmental Engineering, 2015. 

5(4): p. 1. 

63. Saksena, S. and V. Merwade, Incorporating the effect of DEM resolution and 

accuracy for improved flood inundation mapping. Journal of Hydrology, 2015. 530: 

p. 180-194. 

64. Merz, B., A. Thieken, and M. Gocht, Flood risk mapping at the local scale: concepts 

and challenges, in Flood risk management in Europe. 2007, Springer. p. 231-251. 

65. Namara, W.G., T.A. Damisse, and F.G. Tufa, Application of HEC-RAS and HEC-

GeoRAS model for Flood Inundation Mapping, the case of Awash Bello Flood Plain, 

Upper Awash River Basin, Oromiya Regional State, Ethiopia. Modeling Earth 



109  

Systems and Environment, 2022. 8(2): p. 1449-1460. 

66. Zheng, X., et al., GeoFlood: Large‑scale flood inundation mapping based on 

high‑resolution terrain analysis. Water Resources Research, 2018. 54(12): p. 

10,013-10,033. 

67. Pinos, J., L. Timbe, and E. Timbe, Evaluation of 1D hydraulic models for the 

simulation of mountain fluvial floods: a case study of the Santa Bárbara River in 

Ecuador. Water Practice and Technology, 2019. 14(2): p. 341-354. 

68. Noor, M., et al., Experimental and HEC-RAS modelling of bridge pier scouring. 

Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 2020. 

74(1): p. 119-132. 

69. Ghaderi, A., R. Daneshfaraz, and M. Dasineh, Evaluation and prediction of the 

scour depth of bridge foundations with HEC-RAS numerical model and empirical 

equations (Case Study: Bridge of Simineh Rood Miandoab, Iran). Engineering 

Journal, 2019. 23(6): p. 279-295. 

70. Mehta, D.J. and S. Yadav, Analysis of scour depth in the case of parallel bridges 

using HEC-RAS. Water Supply, 2020. 20(8): p. 3419-3432. 

71. Lindenschmidt, K.-E., et al., Ice jam modelling of the Lower Red River. Journal of 

Water Resource and Protection, 2012. 4(1): p. 1-11. 

72. Richardson, E.V. and S.R. Davis, Evaluating scour at bridges. 2001, United States. 

Federal Highway Administration. Office of Bridge Technology. 

73. Carlson, D.F., et al., An affordable and portable autonomous surface vehicle with 

obstacle avoidance for coastal ocean monitoring. HardwareX, 2019. 5: p. e00059. 

74. Mueller, D.S., et al., Measuring discharge with acoustic Doppler current profilers 

from a moving boat. 2009: US Department of the Interior, US Geological Survey 

Reston, Virginia (EUA). 

75. SonTek, RiverSurveyor S5/M9 system manual firmware version 3.00. 2012, 

SonTek/YSI San Diego, California. 

76. Veilleux, A.G., et al., Estimating magnitude and frequency of floods using the 

PeakFQ 7.0 program: US Geological Survey Fact Sheet 2013–3108. US Geological 

Survey Fact Sheet, 2014. 2. 

77. Brunner, G., CEIWR-HEC HEC-RAS River Analysis System: User’s Manual Version 

6.0. US Army Corps of Engineers Institute for Water Resources, HEC, January: 

Davis, CA, USA, 2021. 

78. Chow, V.T., Open-channel Hydraulics. New York: McGram-Hill Book Company. 

1959, Inc. 



110  

79. Banks, J.C., J.V. Camp, and M.D. Abkowitz, Adaptation planning for floods: a 

review of available tools. Natural hazards, 2014. 70(2): p. 1327-1337. 

80. U.S. Army Corps of Engineers, S.P.D., 180 Fifth Street East, Suite 700, St. Paul, 

Minnesota 55101-1678, Lower Red Basin Retention (LRBR) Study. 2019. 

81. Charbeneau, R.J. and E.R. Holley, Backwater effects of bridge piers in subcritical 

flow. 2001: Center for Transportation Research, Bureau of Engineering 

Research …. 

82. Pro, G.E., Grafton Bridge, Marshal County. 08/10/2015. p. 48.4133, -97.1377. 

83. Zhao, M. and H.H. Hendon, Representation and prediction of the Indian Ocean 

dipole in the POAMA seasonal forecast model. Quarterly Journal of the Royal 

Meteorological Society: A journal of the atmospheric sciences, applied meteorology 

and physical oceanography, 2009. 135(639): p. 337-352. 

84. Borah, D.K., Hydrologic procedures of storm event watershed models: a 

comprehensive review and comparison. Hydrological Processes, 2011. 25(22): p. 

3472-3489. 

85. Costabile, P., C. Costanzo, and F. Macchione, A storm event watershed model for 

surface runoff based on 2D fully dynamic wave equations. Hydrological processes, 

2013. 27(4): p. 554-569. 

86. Cea, L., M. Garrido, and J. Puertas, Experimental validation of two-dimensional 

depth-averaged models for forecasting rainfall–runoff from precipitation data in 

urban areas. Journal of Hydrology, 2010. 382(1-4): p. 88-102. 

87. Fernández-Pato, J., D. Caviedes-Voullième, and P. García-Navarro, Rainfall/runoff 

simulation with 2D full shallow water equations: Sensitivity analysis and calibration 

of infiltration parameters. Journal of hydrology, 2016. 536: p. 496-513. 

88. Caviedes-Voullième, D., P. García-Navarro, and J. Murillo, Influence of mesh 

structure on 2D full shallow water equations and SCS Curve Number simulation of 

rainfall/runoff events. Journal of hydrology, 2012. 448: p. 39-59. 

89. Costabile, P., C. Costanzo, and F. Macchione, Comparative analysis of overland 

flow models using finite volume schemes. Journal of hydroinformatics, 2012. 14(1): 

p. 122-135. 

90. Xia, X., et al., An efficient and stable hydrodynamic model with novel source term 

discretization schemes for overland flow and flood simulations. Water resources 

research, 2017. 53(5): p. 3730-3759. 

91. Liang, X., et al., A simple hydrologically based model of land surface water and 

energy fluxes for general circulation models. Journal of Geophysical Research: 



111  

Atmospheres, 1994. 99(D7): p. 14415-14428. 

92. Costabile, P. and F. Macchione, Enhancing river model set-up for 2-D dynamic 

flood modelling. Environmental Modelling & Software, 2015. 67: p. 89-107. 

93. Nayak, P., et al., Short‑term flood forecasting with a neurofuzzy model. Water 

Resources Research, 2005. 41(4). 

94. Kim, B., et al., Urban flood modeling with porous shallow-water equations: A case 

study of model errors in the presence of anisotropic porosity. Journal of Hydrology, 

2015. 523: p. 680-692. 

95. Feldman, A., Hydrologic Modeling System HEC-HMS technical reference manual: 

US Army Corps of Engineers. Hydrologic Engineering Center (609 Second St., 

Davis, CA 95616), 2000. 

96. Arnold, J.G., et al., Large area hydrologic modeling and assessment part I: model 

development 1. JAWRA Journal of the American Water Resources Association, 

1998. 34(1): p. 73-89. 

97. Croke, B.F., et al. Redesign of the IHACRES rainfall-runoff model. in 29th 

Hydrology and Water Resources Symposium. 2005. 

98. Bicknell, B.R., et al., Hydrological simulation program-FORTRAN. user's manual for 

release 11. US EPA, 1996. 

99. Fenicia, F., et al., Understanding catchment behavior through stepwise model 

concept improvement. Water Resources Research, 2008. 44(1). 

100. Li, X.H., et al. A comparison of parameter estimation for distributed hydrological 

modelling using automatic and manual methods. in Advanced Materials Research. 

2012. Trans Tech Publ. 

101. Bui, D.T., et al., Hybrid artificial intelligence approach based on neural fuzzy 

inference model and metaheuristic optimization for flood susceptibilitgy modeling in 

a high-frequency tropical cyclone area using GIS. Journal of Hydrology, 2016. 540: 

p. 317-330. 

102. Mosavi, A., P. Ozturk, and K.-w. Chau, Flood prediction using machine learning 

models: Literature review. Water, 2018. 10(11): p. 1536. 

103. Yürekli, K., A. Kurunç, and F. Öztürk, Testing the residuals of an ARIMA model on 

the Cekerek Stream Watershed in Turkey. Turkish Journal of Engineering and 

Environmental Sciences, 2005. 29(2): p. 61-74. 

104. Ghimire, B.N., Application of ARIMA model for river discharges analysis. Journal of 

Nepal Physical Society, 2017. 4(1): p. 27-32. 

105. Nguyen, X.H., Combining statistical machine learning models with ARIMA for water 



112  

level forecasting: The case of the Red river. Advances in water resources, 2020. 

142: p. 103656. 

106. Kassem, A.A., A.M. Raheem, and K.M. Khidir, Daily Streamflow Prediction for 

Khazir River Basin Using ARIMA and ANN Models. Zanco Journal of Pure and 

Applied Sciences, 2020. 32(3): p. 30-39. 

107. Singh, H. and M.R. Ray, Synthetic stream flow generation of river Gomti using 

ARIMA Model, in Advances in Civil Engineering and Infrastructural Development. 

2021, Springer. p. 255-263. 

108. Elganiny, M.A. and A.E. Eldwer, Enhancing the forecasting of monthly streamflow in 

the main key stations of the river nile basin. Water Resources, 2018. 45(5): p. 660-

671. 

109. Fernández, C., et al., Streamflow drought time series forecasting: a case study in a 

small watershed in North West Spain. Stochastic Environmental Research and Risk 

Assessment, 2009. 23(8): p. 1063-1070. 

110. Mgandu, F.A., M. Mkandawile, and M. Rashid, Trend Analysis and Forecasting of 

Water Level in Mtera Dam Using Exponential Smoothing. 2020. 

111. Faruk, D.Ö., A hybrid neural network and ARIMA model for water quality time series 

prediction. Engineering applications of artificial intelligence, 2010. 23(4): p. 586-594. 

112. Yang, T., et al., Simulating California reservoir operation using the classification and 

regression‑tree algorithm combined with a shuffled cross‑validation scheme. Water 

Resources Research, 2016. 52(3): p. 1626-1651. 

113. Wang, Z., et al., Flood hazard risk assessment model based on random forest. 

Journal of Hydrology, 2015. 527: p. 1130-1141. 

114. Loos, M. and H. Elsenbeer, Topographic controls on overland flow generation in a 

forest–An ensemble tree approach. Journal of Hydrology, 2011. 409(1-2): p. 94-

103. 

115. Sahoo, B.B., et al., Long short-term memory (LSTM) recurrent neural network for 

low-flow hydrological time series forecasting. Acta Geophysica, 2019. 67(5): p. 

1471-1481. 

116. Le, X.-H., H.V. Ho, and G. Lee, River streamflow prediction using a deep neural 

network: a case study on the Red River, Vietnam. Korean Journal of Agricultural 

Science, 2019. 46(4): p. 843-856. 

117. Shook, K., et al., Storage dynamics simulations in prairie wetland hydrology models: 

evaluation and parameterization. Hydrological Processes, 2013. 27(13): p. 1875-

1889. 



113  

118. Shaw, D.A., et al., The fill–spill hydrology of prairie wetland complexes during 

drought and deluge. Hydrological Processes, 2012. 26(20): p. 3147-3156. 

119. Bullock, A. and M. Acreman, The role of wetlands in the hydrological cycle. 

Hydrology and Earth System Sciences, 2003. 7(3): p. 358-389. 

120. Sethre, P.R., B.C. Rundquist, and P.E. Todhunter, Remote detection of prairie 

pothole ponds in the Devils Lake Basin, North Dakota. GIScience & Remote 

Sensing, 2005. 42(4): p. 277-296. 

121. Negm, A., et al., Effects of climate change on depression‑focused groundwater 

recharge in the Canadian Prairies. Vadose Zone Journal, 2021. 20(5): p. e20153. 

122. Mitsch, W.J. and M.E. Hernandez, Landscape and climate change threats to 

wetlands of North and Central America. Aquatic Sciences, 2013. 75(1): p. 133-149. 

123. Robarts, R.D., A.V. Zhulidov, and D.F. Pavlov, The state of knowledge about 

wetlands and their future under aspects of global climate change: The situation in 

Russia. Aquatic sciences, 2013. 75(1): p. 27-38. 

124. Dumanski, S., J.W. Pomeroy, and C.J. Westbrook, Hydrological regime changes in 

a Canadian Prairie basin. Hydrological Processes, 2015. 29(18): p. 3893-3904. 

125. Bonsal, B.R., et al., An assessment of Canadian prairie drought: past, present, and 

future. Climate Dynamics, 2013. 41(2): p. 501-516. 

126. Kolmakova, M., Hydrological and climatic variability in the river basins of the West 

Siberian Plain (from meteorological stations, model reanalysis and satellite altimetry 

data). 2012, Université Paul Sabatier-Toulouse III. 

127. Harden, T.M., J.E. O'Connor, and D.G. Driscoll, Late holocene flood probabilities in 

the black hills, South Dakota with emphasis on the medieval climate anomaly. 

Catena, 2015. 130: p. 62-68. 

128. Todhunter, P.E., Mean hydroclimatic and hydrological conditions during two climatic 

modes in the Devils Lake Basin, North Dakota (USA). Lakes & Reservoirs: 

Research & Management, 2016. 21(4): p. 338-350. 

129. Rodell, M., et al., Emerging trends in global freshwater availability. Nature, 2018. 

557(7707): p. 651-659. 

130. Mahmood, T.H., et al., Hydrological responses to climatic variability in a cold 

agricultural region. Hydrological Processes, 2017. 31(4): p. 854-870. 

131. Stadnyk, T., et al., The 2011 flood event in the Red River Basin: causes, 

assessment and damages. Canadian Water Resources Journal/Revue canadienne 

des ressources hydriques, 2016. 41(1-2): p. 65-73. 

132. Blais, E.-L., J. Greshuk, and T. Stadnyk, The 2011 flood event in the Assiniboine 



114  

River Basin: causes, assessment and damages. Canadian Water Resources 

Journal/Revue Canadienne des Ressources Hydriques, 2016. 41(1-2): p. 74-84. 

133. Kharel, G., H. Zheng, and A. Kirilenko, Can land-use change mitigate long-term 

flood risks in the Prairie Pothole Region? The case of Devils Lake, North Dakota, 

USA. Regional Environmental Change, 2016. 16(8): p. 2443-2456. 

134. Todhunter, P.E. and R. Fietzek-DeVries, Natural hydroclimatic forcing of historical 

lake volume fluctuations at Devils Lake, North Dakota (USA). Natural Hazards, 

2016. 81(3): p. 1515-1532. 

135. Bonsal, B.R., et al., Drought research in Canada: A review. Atmosphere-Ocean, 

2011. 49(4): p. 303-319. 

136. Wang, S. and H.A. Russell, Forecasting snowmelt-induced flooding using GRACE 

satellite data: A case study for the Red River watershed. Canadian Journal of 

Remote Sensing, 2016. 42(3): p. 203-213. 

137. Liu, G., et al., Discharge and water‑depth estimates for ungauged rivers: Combining 

hydrologic, hydraulic, and inverse modeling with stage and water‑area 

measurements from satellites. Water Resources Research, 2015. 51(8): p. 6017-

6035. 

138. Kelly, S.A., et al., Human amplified changes in precipitation–runoff patterns in large 

river basins of the Midwestern United States. Hydrology and Earth System 

Sciences, 2017. 21(10): p. 5065-5088. 

139. Vanderhoof, M.K. and L.C. Alexander, The role of lake expansion in altering the 

wetland landscape of the Prairie Pothole Region, United States. Wetlands, 2016. 

36(2): p. 309-321. 

140. Vanderhoof, M.K., L.C. Alexander, and M.J. Todd, Temporal and spatial patterns of 

wetland extent influence variability of surface water connectivity in the Prairie 

Pothole Region, United States. Landscape Ecology, 2016. 31(4): p. 805-824. 

141. Pekel, J.-F., et al., High-resolution mapping of global surface water and its long-

term changes. Nature, 2016. 540(7633): p. 418-422. 

142. Gulbin, S., Impact Of Wetlands Loss On The Long-Term Flood Risks Of Devils Lake 

In A Changing Climate. 2017: The University of North Dakota. 

143. Van Hoy, D.F., et al., Mechanisms of cold region hydrologic change to recent 

wetting in a northern glaciated landscape. Water Resources Research, 2020. 56(7): 

p. e2019WR026932. 

144. Archambault, A.L., Wetland Dynamics In A Terminal Lake Basin: Implications To 

Recent Hydroclimatic Evolution. 2019. 



115  

145. Rasouli, K., et al., Linking hydrological variations at local scales to regional climate 

teleconnection patterns. Hydrological Processes, 2020. 34(26): p. 5624-5641. 

146. Kendall, M.G., Rank correlation methods. 1948. 

147. de Loë, R., Sharing the waters of the Red River basin: a review of options for 

transboundary water governance. Prepared for International Red River Board, 

International Joint Commission. Rob de loë Consulting Services, Guelph, 

Canada.[online] URL: 

http://www.ijc.org/files/publications/Sharing%20the%20Waters%20of%20the%20Re

d%20River%20Basin.pdf, 2009. 

148. Rogers, P., et al., A comparative hydrometeorological analysis of the 2009, 2010, 

and 2011 Red River of the North Basin Spring floods. National Weather Service, 

Central Region Technical Attachment, 2013(13-03). 

149. Belda, M., et al., Climate classification revisited: from Köppen to Trewartha. Climate 

research, 2014. 59(1): p. 1-13. 

150. Peel, M.C., B.L. Finlayson, and T.A. McMahon, Updated world map of the Köppen-

Geiger climate classification. Hydrology and earth system sciences, 2007. 11(5): p. 

1633-1644. 

151. Krenz, G. and J. Leitch, A river runs north: managing an international river. 1993: 

Red River Water Resources Council. 

152. Group, P.C., 30-year normals. 2015, Oregon State University Corvallis, OR, USA. 

153. Bengtson, M.L. and G. Padmanabhan, A hydrologic model for assessing the 

influence of wetlands on flood hydrographs in the Red River Basin: Development 

and application. 1999: Citeseer. 

154. Juliano, K. and S.P. Simonovic, The impact of wetlands on flood control in the Red 

River Valley of Manitoba. Final Report to International Joint Commission, 

International Joint Commission, Washington, DC, 1999. 

155. Simonovic, S. and K. Juliano, The role of wetlands during low frequency flooding 

events in the Red River basin. Canadian Water Resources Journal, 2001. 26(3): p. 

377-397. 

156. Hearne, R.R., Evolving water management institutions in the Red River Basin. 

Environmental Management, 2007. 40(6): p. 842-852. 

157. de Loë, R., Sharing the waters of the Red River basin: a review of options for 

transboundary water governance. Prepared for International Red River Board, 

International Joint Commission. Rob de loë Consulting Services, Guelph, 

Canada.[online] URL: http://www. ijc. org/files/publications/Sharing% 20the% 

http://www.ijc.org/files/publications/Sharing%20the%20Waters%20of%20the%20Red%20River%20Basin.pdf
http://www.ijc.org/files/publications/Sharing%20the%20Waters%20of%20the%20Red%20River%20Basin.pdf
http://www/


116  

20Waters% 20of% 20the% 20Red% 20River% 20Basin. pdf 2009 2009. 

158. Zhang, B., F.W. Schwartz, and G. Liu, Systematics in the size structure of prairie 

pothole lakes through drought and deluge. Water Resources Research, 2009. 

45(4). 

159. Galloway, J.M., Simulation of the effects of the Devils Lake State Outlet on 

hydrodynamics and water quality in Lake Ashtabula, North Dakota, 2006-10. 2011, 

U. S. Geological Survey. 

160. USGS, L.M., Landsat 8 Data Users Handbook. 2016, United States Geological 

Survey, Reston. 

161. Gorelick, N., et al., Google Earth Engine: Planetary-scale geospatial analysis for 

everyone. Remote sensing of Environment, 2017. 202: p. 18-27. 

162. Kartikeyan, B., K.L. Majumder, and A. Dasgupta, An expert system for land cover 

classification. IEEE Transactions on geoscience and remote sensing, 1995. 33(1): 

p. 58-66. 

163. Lu, D. and Q. Weng, A survey of image classification methods and techniques for 

improving classification performance. International journal of Remote sensing, 2007. 

28(5): p. 823-870. 

164. Shoshany, M., Knowledge based expert systems in remote sensing tasks: 

quantifying gain from intelligent inference. Int. Soc. Photogramm. Remote Sens. 

Arch., 2008. 37: p. 1085-1088. 

165. Keim, D.A., et al., Visual analytics: Scope and challenges, in Visual data mining. 

2008, Springer. p. 76-90. 

166. Yang, J.-B. and D.-L. Xu, On the evidential reasoning algorithm for multiple attribute 

decision analysis under uncertainty. IEEE Transactions on Systems, Man, and 

Cybernetics-Part A: Systems and Humans, 2002. 32(3): p. 289-304. 

167. Guo, J., et al., Singular spectrum analysis of ionospheric anomalies preceding great 

earthquakes: Case studies of Kaikoura and Fukushima earthquakes. Journal of 

geodynamics, 2019. 124: p. 1-13. 

168. Shen, Y., et al., Long-term prediction of polar motion using a combined SSA and 

ARMA model. Journal of Geodesy, 2018. 92(3): p. 333-343. 

169. Vautard, R. and M. Ghil, Singular spectrum analysis in nonlinear dynamics, with 

applications to paleoclimatic time series. Physica D: Nonlinear Phenomena, 1989. 

35(3): p. 395-424. 

170. Yiou, P., E. Baert, and M.-F. Loutre, Spectral analysis of climate data. Surveys in 

Geophysics, 1996. 17(6): p. 619-663. 



117  

171. Golyandina, N., V. Nekrutkin, and A.A. Zhigljavsky, Analysis of time series structure: 

SSA and related techniques. 2001: CRC press. 

172. Mann, H.B., Nonparametric tests against trend. Econometrica: Journal of the 

econometric society, 1945: p. 245-259. 

173. Önöz, B. and M. Bayazit, The power of statistical tests for trend detection. Turkish 

journal of engineering and environmental sciences, 2003. 27(4): p. 247-251. 

174. Partal, T. and M. Küçük, Long-term trend analysis using discrete wavelet 

components of annual precipitations measurements in Marmara region (Turkey). 

Physics and Chemistry of the Earth, Parts A/B/C, 2006. 31(18): p. 1189-1200. 

175. Adamowski, K., A. Prokoph, and J. Adamowski, Development of a new method of 

wavelet aided trend detection and estimation. Hydrological Processes: An 

International Journal, 2009. 23(18): p. 2686-2696. 

176. Todhunter, P., Hydrological basis of the Devils Lake, North Dakota (USA), terminal 

lake flood disaster. Natural Hazards, 2021. 106(3): p. 2797-2824. 

177. Vanderhoof, M.K., et al., The influence of data characteristics on detecting 

wetland/stream surface-water connections in the Delmarva Peninsula, Maryland 

and Delaware. Wetlands Ecology and Management, 2018. 26(1): p. 63-86. 

178. Borja, S., Z. Kalantari, and G. Destouni, Global wetting by seasonal surface water 

over the last decades. Earth's Future, 2020. 8(3): p. e2019EF001449. 

179. Donchyts, G., et al., Earth's surface water change over the past 30 years. Nature 

Climate Change, 2016. 6(9): p. 810-813. 

180. Subin, Z., et al., Resolving terrestrial ecosystem processes along a subgrid 

topographic gradient for an earth-system model. Hydrology and Earth System 

Sciences Discussions, 2014. 11(7): p. 8443-8492. 

181. Jeannotte, T.L., et al., Impacts of cold region hydroclimatic variability on phosphorus 

exports: Insights from concentration-discharge relationship. Journal of Hydrology, 

2020. 591: p. 125312. 

 


	Dynamics Of Flood Flow In Red River Basin
	Recommended Citation

	tmp.1695414963.pdf.UNQGz

