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ABSTRACT 

Transformations and Analysis of Parallel Real Time Programs 

by 

Chandima J. Gunasekara 

The problem of schedulability analysis of a set of real time programs form a 

NP complete problem. The exponential complexity of analysis is a direct result of 

the complexity in the real time programs, as a combinatorial explosion takes place 

when trying to determine access patterns of shared resources. Thus, to transform the 

original programs to a less complex form, while preserving its timing characteristics, 

is the only viable solution. By using such transformations to reduce the complexity of 

real time programs, it is possible to schedulability analyze programs at compile time 

efficiently, without adding an unnecessary overhead to the compilation time. A set 

of suitable transformations and run time scheduling algorithms are introduced and 

implemented in C++. A library of transformations and analysis routines are provided. 

The library routines can be used to build prototype schedulability analyzers for testing 

various analysis techniques. These transformations and the scheduling algorithm will 

be an integral part of the real time compiler for the real time language RTL. The RTL 

compiler will not only produce fast and efficient code for an arbitrarily specified real 

time hardware architecture, but also will provide the worst case timing characteristics 

for the programs. 
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1. Introduction 

The use of embedded real time computing systems for control are rapidly grow-

ing. A failure of an embedded computing systems to properly control its real time 

processes may lead to major economic loses, (including human life). Thus, a real 

time application demands from its computing system, a guarantee of predictable, 

reliable and timely operations. Real time computing systems with predictable be-

havior can indeed be realized. Requirements of predictable system behavior, given 

time-constrained, functional specification of the environment, can be embodied into 

the, programming language, operating system and hardware. The resulting real time 

computing system is subjectable to an a priori assessment of predictable behavior; 

which is referred to as schedulability analysis [5]. 

The construction of a embedded hard real time computing system requires a 

priori knowledge of deadline satisfaction of the tasks to be scheduled. Thus the 

construction of real time software and its implementation must be done on a deter-

ministic hardware and software platform. Most often it is the case that real time 

software is designed on hardware and software environments that are oblivious to 

the higher level software designer, causing the estimation of the execution times to 

be over pessimistic upper bounds or average statistics. Most often extensions to 

existing hardware architectures are proposed as support processors that implement 

computationally expensive features of the programming language in order to achieve 

higher execution speeds [3]. The main issue of real time computation is not increasing 

execution speed or minimizing response time, but deadline satisfaction [4]. 

Real time operations distinguish itself from other forms of data processing by 

the explicit involvement of the dimension of time. Real time systems must fulfill the 



following user requirements under all, including extreme, load conditions. 

• timeliness, 

• simultaneity, 

• predictability, and 

• dependability. 

Timeliness can be viewed as deadline satisfaction, i.e. given a set of dead lines, it 

is the task of the software designer to design a set of software modules (processes) that 

conform to the given timing requirements. Thus, the software designer should have 

the freedom to specify and configure a hardware architecture that suit the application, 

and not have to alter the problem specification to suit the hardware architecture. Real 

time systems must be distributed and must provide parallel processing capabilities, 

giving rise the need for simultaneous processing. Predictability is central in order 

to achieve timelyness, thus requiring every component in the real time computing 

system to be deterministic. The dependability requirement deals with the issues of 

fault tolerance both at the hardware and software levels. A more detailed discussion 

on the above mentioned requirements can be found in [5]. 

The real world is inherently non deterministic, i.e. there is no uniform methodol-

ogy to model all phenomena, relationships and events that occur in the environment. 

Certainly, there is no general formula that can be applied to predict future outcomes 

in a deterministic manner. Thus, all real time systems must be a subset of a non real 

time system. Moreover, a real time system will only be allowed to interact with a 

restricted environment, making it possible for deterministic behavior. 



Fig. 1.1 shows a diagram of the conceptual model of a typical real time system. 

This system is comprised of a real time computing subsystem that interacts with 

the real time external environment and a non real time computing subsystem that 

interacts with the non real time external environment. These two subsystems are 

connected via a communication port. The real time computing system may consist of 

an arbitrary number of processes connected by a communication network, that allows 

communication between the processors and interfaces to the environment that control 

or receive information. The non real time computing system is a general purpose off 

the shelf computer (e.g. Vax or Sun system) with a VMS or UNIX operating system. 

The communication port is used for non time critical message passing between the 

two subsystems. The non real time computing system will act as a host that will 

initiate a real time task and monitor its progress until termination of that task. 

Fig 1.1. Conceptual model of a real time system. 



A real time programming language must be schedulability analyzable [4]. 

Schedulability analysis is the task of (manually or automatically) finding execution times for, 

statements, processes, and modules that are to be used in a system that requires real 

time guarantees from the software. Thus one of the main criteria for a real time 

system is to have a very deterministic hardware architecture. Also, a real time pro-

gramming language should have no dynamic data structures, recursive function calls, 

both direct or indirect. All loop constructs should have compile time known bounds. 

The above mentioned requirements are the most important and only apply to real 

time programming languages. 

Constructing a schedulability analyzable programming language and a predictable 

hardware architecture will be our focus of attention. Work has been done on this area 

in [1],[2],[4] [5] and [6]. The most significant contribution is in [5], where a real time 

programming language (RT Euclid) and its associated hardware architecture is pro-

posed. A subset of RTE is implemented along with its schedulability analyzer. 

Schedulability analysis on a language is a NP-complete problem. Thus, compila-

tion of a program or a set of programs will incur an overhead due to the schedulability 

analysis stage. The overhead on the compiling process is a direct result of the com-

plexity of the real time programs being compiled. In [1] a methodology is proposed 

for a polynomial-time transformation that can be performed on the programming 

language in order to improve the performance of the schedulability analysis stage. 

However, the transformations in [1] are only defined for a very restricted subset of 

RTE that only allows the manipulation of a single resource. In this research project 

the objective is to extend the language to a more general form allowing for multi-

ple resources. Consequently, the transformations introduced in [1] and the analysis 

algorithm are extended appropriately to take account of the extended language. 



1.1 Related Previous Work 

An extensive amount of work has been done in the past in real time languages and real 

time scheduling. Most of the work are based on over simplistic assumptions and much 

more research work is needed in this area in order to provide a comprehensive system 

for hard real time software development. The research effort is broadly focused on, 1) 

specification and verification, 2) real time scheduling theory, 3) real time operating 

systems, 4) real time programming languages and design methodology, and 5) fault 

tolerance. While there are many contributions in each of the above mentioned areas 

what is needed is to unify all the research results in the above mentioned areas in order 

to provide a comprehensive integrated system for real time software development. 

In [2] a methodology for specifying and proving assertions about time in higher-

level language programs is described. The methodology introduces three ideas. 1) The 

distinction between, and the treatment of, both computer and real time in the system. 

2) The use of upper and lower bounds on the execution time of the program elements. 

3) A simple extension of Hoare logic to include the effects of the passage of real 

time. Thus, it is based on finding the best and the worst execution time bounds for 

statements. Since the timing analysis is mostly based on the language, independent 

of the underlying hardware and the runtime support system, the applicability of this 

methodology is limited. 



In [8] it is proved that finding a feasible non preemptive schedule for the following 

two problem classes is NP complete. 

1. at least two CPUs, no resources, constant maximum response times, infinite 

frames, constant CPU requirements, no IPC and o overhead. 

2. at least two CPUs, no resources, constant maximum response times, infinite 

frames, CPU requirements of 1 or 2 time units only, arbitrary IPC and no 

overhead. 

Thus, finding heuristics for scheduling and schedulability analysis is more feasible 

than trying to compute the exact solutions in the most efficient manner. However, 

when heuristics are used the solution becomes a approximation to the exact case and 

needs some form of justification of the error. 

In [9] a model with a, a single CPU, no resources, constant maximum response 

times, constant CPU requirements, no IPC, and no overhead, is analyzed. This model 

and the results obtained in [9] provide a good foundation for future work. However 

is too simple for most practical real time systems. 

In [6] a model with, a single CPU, resources and resource contention, constant 

maximum response times, frames equal to their corresponding maximum response 

times, and processes consisting of sequential segments is analyzed. Also, it is as-

sumed that, each segment has its own constant CPU and resource requirements, 

some resources require mutual exclusion, there is no IPC, processes are scheduled by 

the preemptive earliest deadline first, policy. Resources are allocated FCFS, and a 

segment cannot proceed until all its resources are allocated. In this model each task 

has a fixed set of requirements which may be needed by its segments. The analysis 



provides a worst case analysis of the tasks. However, the algorithm is of polynomial 

complexity and the results are overly pessimistic guaranteed response times. The 

schedulability analysis results in a set of very coarse worst case response time bounds 

and can be improved. 

In [4] a real time language, Real Time Euclid (RTE), is introduced. This lan-

guage is specifically designed to address reliability and guaranteed schedulability is-

sues in real time systems. Real Time Euclid employs exception handlers and im-

port/export lists to provide comprehensive error detection, isolation, and recovery. 

The RTE language definition forces every construct in the language to be time- and 

space- bounded, i.e. the language has no dynamic data structures, recursive function 

calls, and all loop constructs have compile time known loop bounds. In later work by 

the authors in [4] a compiler/schedulability analizer is implemented for RTE. However, 

due to the NP complete nature of schedulability analysis the compiler/schedulability 

analyzer incurs a large amount of time in order to provide the schedulability results. 

Thus, more work is needed in order to make the schedulability analysis more inter-

active with the users. 

In [1] a static semantic analysis and transformations on a restricted subset of 

RTE is introduced, and is shown how it can be used in a limited language to produce 

simple analyzable program forms. Also in [1] static analysis is combined with program 

transformations, reducing the cost of analysis. Also, a restricted form of shared 

resource contention of processes is introduced. The basic notion is that (1) all resource 

requests participating in a non idling resource interval are released together, when the 

last request is finished, and (2) the resource scheduler enforces statically pre computed 

non idling resource interval sizes. 

In this thesis the work presented in [1] is extended to include more general 



language constructs, such as nested conditionals and the manipulation of multiple 

resources. The static semantic analysis and the transformations are integrated in a 

prototype. Also, a library of routines in C++ for transformations and schedulability 

analysis are given. This library can be used as a testbed for testing new transforma-

tions and various heuristics for analysis. 



2. Transformations and Schedulability 
Analysis 

Plynomial time transformations of real time programs used in conjunction with 

schedulability analysis, significantly increase the class of real time programs that 

may be analyzed efficiently for guaranteed schedulability at compile time [lb The 

accuracy of the results obtained form the schedulability analyzer will depend on the 

type of transformations used. Obviously, tools or analytic techniques which would 

allow efficient analysis of larger class of programs, or reduce the expected time of 

inefficient techniques, would be highly desirable. At one end of the spectrum are the 

schedulability analysis techniques that are highly precise yet not practicable due to the 

combinatorial execution orders. At the other end of the spectrum are the 

schedulability analysis techniques that are highly imprecise with polynomial execution orders. 

In between are the techniques that are some what precise with reasonable execution 

orders. The techniques that are proposed in our work are in the latter category of 

schedulability analysis techniques. 

Moreover, important questions, relating to the above mentioned type of 

schedulability analysis techniques are, how precise are these techniques in practise? and what 

are their execution orders? How much of an overhead is imposed on the compilation 

stage as a result of schedulability analysis? Most importantly, if transformations are 

used, what is the expected improvement in the schedulability analysis stage?, i.e. how 

efficient are the transformations in reducing the original problem size. The problem 

size can be characterized as the amount of "time" that needs to be expended by the 

schedulability analyzer in order to yield the desired results. In this thesis an attempt 

is made to answer some of the above mentioned questions. 



There are four types of transformations, viz, deadline isomorphic, deadline pre-

serving, deadline extending and deadline distroying. These four types are defined 

as: 

p: Transformed programs meets deadlines. 
q: Original program meets deadlines. 

A. Deadline isomorphic: p <=> q. 
B. Deadline preserving: q p. 
C. Deadline extending: p q. 
D. Deadline destroying: -IA A ---I.B A -IC. 

deadline preserving or deadline isomorphic transformations will not be capable 

of reducing the problem size of schedulability analysis for all programs, i.e. some 

programs may resist transformations of types A and B. However, in such a case, a 

deadline extending transformation my be used effectively to reduce the problem size. 

One must remember that simply reducing the problem size is not our only objective, 

but also to provide valid schedulability results. A deadline extending transformation 

may cause the transformed program to violate the specified deadline when the original 

program would have met the specified deadline. Thus, it is up to the user to decide 

when not to use deadline extending transformations. 

2.1 The Language Model 

The subset of the language that is considered is given in Fig. 2.1. In this language 

definition, only the language constructs that are of importance are given, i.e. the 

language constructs that are important for schedulability analysis. The language 

RTE-1 is a subset of RTE consisting of a static number of top level processes and 

procedures with sequences of statements, conditionals and loops. The conditionals 

may be nested arbitrarily'. All loops are for-loops with a compile time knowable 

'In an actual implementation of the RTE-1 language it is feasible to allow only for a constant 
depth of nesting. 



loop bounds. The monitors may have multiple entries. Multiple monitor entries are 

modeled as a collection of critical sections, with the property that if a process is 

executing inside any one section, another process requesting entry to this or another 

section is blocked until the executing process exits the section. A process may be 

periodic or aperiodic depending on the definition. If a process is periodic then it will 

be activated once per every frame time. 



program: 
process_name frame positive_integer periodicopt 
variable_ declarations 
statement 

statement: 
variable_name = expression; 
section section_id(operation, parameter_list) ; 
compound_statement 
selection_statement 
iteration_statement 

compound_statement: 
{ statement_list } 

statement_list: 
statement 
statement statement_list 

iteration_statement: 
for range do statement 

selection_statement: 
if (expression) statement 
if (expression) statement else statement 
switch (expression) { switch_statement } 

switch_statement: 
switch_statement_list default_statementopt  

switch_statement_list: 
labeled_statement breakopt  
labeled_statement breakopt  switch_statement_list 

labeled_statement: 
case constant_expression : statement 

default_statement: 
default : statement 

Fig. 2.1. Programming language definition for RTE-1. 



2.2 The Hardware Model 

The ideal is to be able to specify an arbitrary hardware architecture to the 

schedulability analizer such that it is reflected in the schedulability results of a set of processes. 

However, we restrict our model to a system with n processors and a ring commu-

nication network topology connecting the processors. Each processor is capable of 

executing at most one RTE-1 process. All accesses to resources are done via monitors 

that communicate across the network. Also, whenever a resource is declared in the 

system a dedicated processor is used to handle the requests to that resource. Each 

resource access request is queued up at the processor servicing that resource. The 

requests to a particular resource may arrive in an arbitrary order i.e. without any 

causal ordering of the requests with respect to each other. 

Also, in the above describe model each process is assumed to have the same 

priority. In future extensions to the system one may consider processes with pre-

assigned priorities when arbitrating resource requests. The software routines that are 

provided for analysis can be easily extended to take account of process priorities. 



3. Transformations of Real Time 
Programs with k-way Conditionals with d 

Levels of Nesting 

The RTE-1 language allows the programmer to nest conditionals arbitrarily (see the 

language definition given in fig. 2.1), thus increasing the cost of schedulability anal-

ysis. The objective is to take a RTE-1 program and transform it as much as possible 

such that the cost of schedulability analysis will be minimal. In this section, the 

transformations of types A, B and C are defined. Also, an algorithm is presented for 

applying the transformations recursively, to a program flow graph (PFG) representing 

a RTE-1 program. 

The front end of the schedulability analyzer builds a PFG, using a attribute 

grammar like process, that closely corresponds to the parse tree of the program be-

ing compiled. The PFG contains the information needed to produce the object code 

while the transformations are applied. A PFG is obtained after clustering the pro-

gram in to blocks of simple segments and critical segments and unroling of loops. 

Once the transformed PFGs are obtained for a set of processes the schedulability an-

alyzer produces a static schedule resolving the delays associated with critical sections. 

The executable files are created using the resolved delays obtained from the static 

schedules. This scenario is shown in fig. 3.1. 

3.1 The Structure of a PFG 

A PFG is a DAG consisting of critical segment nodes (C), Simple segment nodes 

(S), Fork nodes (F) and Join nodes (J) . Each node (segment) consists of a type (T), 

(T E {C, S, F, J}), execution time (t) for that segment, depth (d) at the point in 

the PFG where a particular node occurs, the number of branches (nb) with a list 



Fig. 3.1. The compilation/schedulability analysis process. 

of pointers to the branches and a reference count rc. In case of a C, S or J node, 

nb  = 1. In the case of a C,S or F node r, = 1. In a C node the additional fields 

id, A and rt  are used to represent the resource id, a delay and the release time 

respectively. The purpose of A will be explained later. For the purpose of testing 

the transformations PFGs may be created using the grammar given in fig. 3.2. Thus 

it is possible to construct a PFG as a text file and apply transformations to it. 

The representation of a PFG given in fig. 3.2 is used as an intermediatory form of 

representation. This approach simplifies the task of testing the transformations and 

the analysis algorithms. 

<PFG> ::= <Tuples> 
<Tuples> ::= (<Tuple>) <Tuples> I (<Tuple>) 

(F,O) { <Branches> } (J,0) I c 
<Branches> ::= [<Tuples>] <Branches> I [<Tuples>] 
<Tuple> ::= (C,t,Resourceid) I (S,t) 

Fig. 3.2. The grammar for generating a PFG. 



3.2 Definition of the Transformations 

Let Sequenceij represent the jth segment on branch i, where i = 0,1, • • • , nb —1 and 

j = 0, 1, • • • , lengths — 1 where length; = length_Ci + length_Si, where length_C1  is 

the number of critical segments on branch i and length_S1  is the number of simple 

segments on branch i. Also let time, = time_C1  + time_Si, where time_C1  is the sum 

of the execution time of critical segments in branch i and time_Si is the sum of the 

execution time of simple segments in branch i. 

Domination of branches: 

Consider two alternate branches p and q. Branch p is said to dominate branch 

q if it is possible to pad q with idling delays such that it is time-wise equivalent to 

p. Thus, after padding q, taking branches p or q at execution time will have the 

same net time-wise effect. Therefore, if p dominates q then it will suffice to only 

look at branch p in order to compute the delays associated with accessing critical 

sections. Consequently, when p doesn't dominate q and q doesn't dominate p, they 

are considered to be irreducible branches. 

In the transformations given below, if branch p dominates branch q then simply 

eliminate q from the PFG. However, when generating object code it is necessary to 

pad with the appropriate delays whenever a branch is eliminated. 

The function Apply_Transformation() in A1g.1 choses a suitable transformation 

(given below) and applies it to a pair of branches eliminating a branch if possible. 

This continues until no further branches can be eliminated. 

Transformation 1: 

if lengthq  = 0 then eliminate q. 



Transformation 2: 

if length_Cp  = length_Cy = 0 and timep > timer  then eliminate q. 

Transformation 3: 

if length_Cy = 0 and time,, > timer  then eliminate q. 

Transformation 4: 

if length,, > lengthy  and time,, > timer  and Sequencep,i.T = Sequenceyo.T 

and Sequeneep,j.t > Sequenceyo.t and Sequencep,i.id = Sequenceyo.id for j = 

0, 1, • • • , length,, —I then eliminate q. 

The transformations given above are deadline isomorphic (type A) and deadline 

preserving (type B). Also, it is possible to construct transformations of types A and 

B that move code from simple segments to critical segments such that one branch 

will dominate. Note that the opposite is not possible. For example consider the PFGs 

given in fig. 3.3. The PFG in fig. 3.3 (a) can be transformed in to the PFG in fig. 

3.3 (b) by moving one unit of code from s3  to c2  and one unit of code from s4  to 

c2. The resulting PFG given in fig. 3.3 (b) can now be transformed using a deadline 

preserving transformation given above. 

Consider the PFGs given in fig.3.4 (a). The simple segment code si  can be split 

in to a simple segment and a critical segment as shown in fig. 3.4 (b). By applying 

transformation 4 to the PFG in fig. 3.4 (b) it is possible to reduce the right branch. 

This transformation is deadline extending and may cause the program to miss its 

specified deadline. Whether a program misses its deadline or not, as a result of a 

type C transformation, will depend on how much slack exists in the original program. 

Also, consider the PFG in fig. 3.5 (a), which is clearly a irreducible conditional. 



Fig. 3.3. An example of a deadline preserving transformation by moving code form a 
simple segment to a critical segment. 

However, by moving three units of code from s1  and one unit of code from s2  in 

to the critical segment c1, it is possible to transform it to the PFG given fig. 3.5 

(b). Then, by applying transformation 4 it is possible to reduce the right branch of 

the PFG in fig. 3.5 (b). Since this transformation required both its branches to be 

adjusted it is deadline extending. 



Fig. 3.4. An example of a deadline extending transformation. 

Fig. 3.5. An example of a deadline extending transformation on a irreducible conditional. 



3.3 Algorithms for the Transformations 

The algorithms given in Alg. 3.1 transforms a PFG to a less complex form by start-

ing at maximum depth and applying the transformations recursively to each k-way 

conditional in the PFG. Also, it is assumed that before applying Alg. 3.1 to a PSG 

it is preclustered. Preclustering a PFG means taking take a sequence of simple seg-

ment nodes and replacing it with a with a single simple segment node that has 

the same total time. For example the following sequence of simple segment nodes 

(S, t1), (S, t2 ) • • • , (S, tp) can be replaced by (S, El:_i  t,). 

boolean PFG::Transform(Node *n) { 
boolean Tr,Trfm = TRUE; 

while (n Null) 
switch (n—aype) 

case S: 
case C: n = n--Tet_next 

break 
case F: 

Tr=TRUE 
for ( each branch do ) 

Tr = Tr A Transform(branch) 
if (Tr) 

Tr = Apply_Transformation(n) 
else if ((n --4 nb) > 2) 

Tr = Apply_Minimize(n) 
if (Tr) 

Temp = n---get_next 
Adjust_Branches(n) 
n=Temp 

else n = skip(n) 
Trfm = Trfm A Tr 
break 

case J: 
return Trfm 

return Trfm } 

Alg. 3.1. Algorithm for recursive transformation of a PFG. 



In Alg. 1 the function Apply_Transformation() applies a set of transformations 

to alternate execution paths of a conditional. if the transformations are completely 

successful then it will yield a single execution path resulting from a conditional thus 

eliminating the particular conditional. In a case where alternate execution paths 

cannot be completely reduced it will minimize number of alternate execution paths. 

These transformations coupled with the code emitter will produce the target code for 

the transformed RTE-1 programs. 

Given in Alg. 3.2 and Alg 3.3 are the functions Apply Transformation() and 

Apply_Minimize() respectively. Apply_Transformation simply applies a set of trans-

formations by considering branches pair-wise. Apply_Minimize applies the transfor-

mations to branches that are linear, again considering branches pair-wise. 

boolean PFG::Apply_Transformation(Node *n) { 
unsigned i,j; 

i=0;j=1; 
while (i < ((n— > nb) — 1)) 

apply_T(n,i,j); 
j++; if (j >. (n— > nb)) { i++; j=i+1;} 

if ((n— > nb) == 1) return TRUE; else return FALSE; } 

Alg. 3.2. Apply_Transformation(). 



Boolean PFG::Apply..Minimize(Node *n) { 
unsigned i,j,a,b; 

i=0;j=1; 
while (i < ((n— > nb) — 1)) 

a=linear(n — >next[i]); 
b=linear(n— >next[j]); 
if (a && b) 

apply_T(n,i,j); 
j++; if (j >. (n— > nb)) { i++; j=i+1;} 

else 
if (!a && !b) 

i++;j=i+1; 
else 

if (!b) 
j++; 
if (j >. (n— > nb)) { i++;j=i+1;} 

else if (!a) {i++;j=i+1;} 
if ((n— > rib) == 1) return TRUE; else return FALSE; } 

Aig. 3.3. Apply_Minimize(). 



4. Determining the Efficiency of the 
Transformations 

4.1 Definition of Efficiency 

In order to determine the efficiency of the transformations it is necessary to apply 

the transformations to random PFGs and find the average efficiency. The efficiency 

(E) of a transformation can be defined as, 

where IPFG°  I is the sum of the number of branches of each fork node in the original 

PFG before applying the transformations and IPFGT I is the sum of the number of 

branches of each fork node after applying the transformations to IPFG°I. If PFG°  

is linear then IPFG° I = 0, i.e. there will be no fork nodes, thus the the number of 

branches as a result of fork nodes will be zero. 

To evaluate the efficiency of the transformations it is necessary to randomly 

generate PFGs that model RTE-1 programs. In order to generate random PFGS the 

following model is defined. Let G(M, d, b1, f p  , s p, c...p) be a function that generates a 

random PFG with the following properties. 

Let M be a vector specifying the number of nodes (C,S,F) to be generated at depth 

i where 0 < i < d. 



Also, 

fp +cp+ sp =1  

where fp, c, and sp  gives the proportion of F,C and S nodes at depth i of the PFG 

being generated. Whenever a fork node is generated it contains on the average # 

branches representing alternate execution paths. The number of branches generated 

at a fork node is uniformally distributed on the values 2,3, • • • , b f , where bi is the 

specified maximum number of branches to be generated. 

Then # (the branching factor of the PFG) is given by, 

Thus, by varying the parameters of G it is possible to generate a wide variety 

of PFGs. By applying the transformations to these random PFGs it is possible to 

calculate the average efficiency (E) of the transformations. The ideal set of transfor-

mations will give E = 1 for arbitrary PFGs. However in reality even transformations 

with E = 0.5 is a significant achievement. 



4.2 The Results Obtained 

It is necessary to determine how much of a reduction is possible on a PFG when 

the transformations are applied to a cluster representing a block of RTE-1 code that 

manipulate a related set of resources. Thus we only need to model blocks of RTE-1 

code rather than whole programs. Also the efficiency is computed on blocks of code 

that manipulated a single resource. 

Intuitively, notice that, whenever cp  = 0 or s p  = 0 then E = 1 since we can 

completely transform a PFG that consists only simple segments or a PFG that consists 

of only critical segments. For the graphs given in Fig. 4.1 to Fig. 4.6 the following 

values are chosen for the parameters M, b1  and d. 

The values for M (the total number of segments at depth i) are chosen such that 

it will closely resemble a block of RTE-1 code in terms of the number of instructions. 

Using the parameters fp, cp and sp  it is possible to vary the ratios of F, C and S 

segment nodes at each level of nesting. Thus, fp + cp + sp = 1 define the space of all 

the programs that can be generated for fixed values of M,b1  and d. for the graphs 

given in fig. 4.1 and 4.2 the following ranges of values are chosen for cp  and sp: 

where f p  = 0.275, 0.35, 0.425, 0.5. For each point in the space (f p,cp,sp) a random 

PFG is generated and its efficiency is calculated. The average efficiency is computed 



over 100 samples per point for the graph given in fig. 4.1. The graph in fig. 4.3 

gives the probability that the transformation will have a efficiency grater than x 

(P(E > x), 0 < x < 1), based on the distribution of efficiency given in fig. 4.2. 

For the graphs in fig. 4.4 to 4.5 the following values are chosen for fp, cp, 

cp -= (1 —  .fp)/2 } 0< fp  < 0.5. sp  = (1 — fp)/2 

The above values represent PFGs that have equal number of C and S segments. 

Thus, this particular case represent PFGs that resist transformations with a high 

probability. The probability that the efficiency is grater than x (P(E > x), 0 < x < 1) 

is given in fig. 4.6. Form the graph in fig. 4.6 it can be clearly observed that in this 

case the probability that E > 0.5 is less than 20%. However, in the more general case 

(from fig. 4.3) the average efficiency is 0.4 with with a probability grater than 80%. 

Fig. 4.1 Average efficiency of the transformations for the values cp  = s, sp  = 1— fp— s, 
0 < s < (1 — fp), and Sample Size = 100. 



Fig 4.2 Scatter plot of E for 0 < fp < 0.5, cp  = s, sp  = 1 — fp — s and 0 < s < (1— f p). 
Sample Size = 100. 

Fig 4.3 Probability distribution of P(E > x) for the data given in Fig. 4.2 



Fig 4.4 Average efficiency of the transformations for the values cp  = (1 — fp)/2, 
sp  = (1 — fp)/2, and Sample Size = 200. 

Fig 4.5 Scatter plot of E for 0 < fp  < 0.5, cp  = (1 — fp)/2,sp  = (1 — fp)I2. 
Sample Size = 200. 



Fig 4.6 Probability distribution of P(E > x) for the data given in fig. 4.5. 



5. Acquisition of Resources in a Parallel 
Real Time Environment 

Consider a set of processes written in RTE-1 that has explicit access to resources in the 

system. The task of the schedulability analyzer is to determine the execution times 

of each process in the system and provide a summary of the timing characteristics 

in a form that will inform the user whether or not his processes conform to the 

expected deadlines. Of course, in order for schedulability analysis to take place a 

static hardware configuration must be specified. In the rest of this paper the hardware 

model described in section 2.2 is assumed. 

Objective of the transformations, described in section 3, is to reduce the problem 

size of the analysis algorithm that compute the static schedules of the processes. The 

analysis algorithm, described in this section, computes the static schedules for set of 

parallel processes which is used to determine the request time and the release time of 

each resource requests in each process. The processes are allowed to have nested con-

ditionals. Since some processes may resist transformations in general the maximum 

level of nesting my be as much as in the original processes. As described in section 3, 

a set of PFGs are are created corresponding to the processes and the transformations 

are applied reducing the original PFGs as much as possible. The reduced PFGs are 

used to compute the release times for its associated resource requests. The static 

schedules of the reduced PFGs are used to determine the delays in order to pad the 

original processes appropriately such that it will conform to the precomputed static 

schedules. The original PFGs (i.e. the PFGs corresponding to the processes) will be 

needed to pad the original processes with the delays since transformations destroys 

the program flow structure of the original PFGs. The details of padding the original 



processes will be explained in in section 5.2. 

The following model is defined in order to express the details of resource acqui-

sition in real time. 

5.1 Restricted Resource Contention 

The problem of exact schedulability analysis in the presence of shared resources con-

tain an NP-complete problem. In order to get around this, one my consider the 

following techniques for timing analysis. 

1. Employ deadline extending transformations, 

2. Restrict the model of resource contention. 

The second approach is considered in this paper. 

Let n be the number of processes and m be the number of resources in the 

system. Also, let pi  be the ith process, Ri be the jth resource and lrt j  be the last 

release time of resource j with respect to the current time t in the system. Also, it 

is assumed that each processor is capable of maintaining the global time in its local 

system accurately. 

In principle the queue size for a particular resource may range form 0 through 

n — 1. Thus the time taken to satisfy a request to a resource by a particular process 

may vary depending on the branches taken by the processes. Thus any analysis that 

needs to compute the release times of a resource will have to consider very combination 

of possible requests to that particular resource. Hence, the following restrictions are 

imposed in order to eliminate the combinatorial explosion that may take place in the 

analysis algorithm. 



1. Whenever there is a queue of requests to a resource each process requesting the 

resource will have a static release time long enough to include any combination 

of requests that may occur in that interval. 

2. Each process requesting a particular resource will be held until the static release 

time even if the process completes its request before that time. 

Also, let (11.i ,j,k,t represent the event of process i requesting resource j for k units 

of time at time instance t. Let Wid,p,r  represent the event after accessing resource 

j by process i with a delay of A and being released at time r. Thus IF represent 

resolved resource requests. In general r > t + A + k + c and r = t + A + k + c iff 

the resource j was not busy at time t+ A, where c represent a communication delay. 

The extra delay A associated with a request will be explained later. 

A resource request (Did,k,, is allowed to delay up to c units of time, i.e. if a request 

is dispatched at time instant t and that request is queued up at the resource request 

queue at time t' then t < t' < t + c, and c > 0. In a token ring network c = Kn 

where n is the number of nodes in the network and K is a constant depending on the 

packet size and the capacity of the communication channel. 

Consider p resource requests to the same resource R3. Let ti represent the time 

of the resource request and ui  represent the amount of time the resource Ri is used 

by request i. Also, assume that to  < t1  < • • • < tp_i, i.e. sorted by the request 

time and to  + Eji=0  u3  > tt+i , for i = 0, 1, • • • ,p — 2, i.e. the requests dispatched at 

to, ti , • • • , tp-1  will form a queue for the resource Rj. Then the resource busy interval 

Rijn' of Iti  is < to, to  + Erol  u, + c>, which states that from the time instant to  this 

resource will be busy for Erol  ui  + c units of time satisfying the p requests. 

Thus, we compute the release time of resource Ri, with respect to the p resource 



requests, to be r = to  + Erd ui + c. Hence, all the processes associated with resource 

busy interval R13. nt will be released at time instant r. Next, the algorithm that compute 

the release times in the above described manner is presented. 

The algorithm 5.1 computes the release times and the delays associated with 

a resource request. Also it updates the PFG with the computed values. The input 

to the algorithm is the communication delay c and a set of PFGs. The algorithm 

considers a row of requests (R) comprising of the resource requests of all PFGs in 

order to determine the earliest resource request interval. The row of requests are 

obtained by a tree of pointers that point to critical segments in the PFG. For each 

iteration the algorithm finds the set of requests RH  that fall in the earliest resource 

busy interval with respect to resource j and computes the release time for this resource 

busy interval. Then the requests in R" are advanced to the next set of requests. When 

R = 0 the algorithm terminates. 

If a resource request at time t is before the last release time lrtj for resource j 

(i.e. t < Hi) then A units of time are delayed before making the request to resource 

j, where A = lrt j  — t. For example consider the two PFGs given in fig 5.1. According 

to Alg. 5.1 the initial set of resource request are : 

R = {1'1,1,8,3, 1)2,2,2,1} 

and after resolving the request, R" = {x112,2,0,3}, lrt2  = 3. 

i.e the resource request R2 has a release time of 3 time units and A = 0. 

After advancing resource request R2 the row R becomes: 

R = {01,1,8,3, (D2,3,3,4} 

and R" = {W1,1,0,11}, lrti  = 11, 



Fig. 5.1. Example of two linear PFGs. 

i.e the resource request R1  has release time of 11 time units and 6, = 0, 

and after advancing request R1  the row R becomes: 

R = {112,3,3,4} 

and R" =  {W 2,3,0,7}, lrt3 = 7. 

After advancing R3 the row R becomes: 

R = {4)2,1,3,7} 

at this point we cannot let this request in to system since t < Hi, thus it is 

necessary to delay this request by A = Hi  — t = 4 units of time. 

and R" =   {1Y2,1,4,14}, /Hi = 14. 

Generating the resource request R4 in PFG 2 (given in fig. 5.1 (b)) at time 7 will 



Compute_Release_Times (c,PFGs) 
R, Re , R" E {V, W*}; lit; = 0 
R = initial row of resource requests of N PFGs. 
c =Communication Overhead 
WHILE (R 0) 

' I ) ., j,,,. = mint  [RI 
Ri  = all C,i,,,,„, E R 
R' = 4),,j,kt  + RI  
R = R — k . 
SORT Re. 
(rt , Re, R") = Compute_Release_Times1 (RI  , Irt 3  , c) 
FOR / = 0, • • • , IR" 1 — 1 

Ti ,j,p,*  = H ead(R") 
R" = R" — Wi jA,*  

R" = R" + IF i,i,A,rt+e 
Int 3  = max(irti, rt  + c) 
Update_PFG(R") 
R" = Advance(R") 
R = R + R" + le" 

END Compute_Release_Times 
Alg. 5.1. Algorithm for computing release times. 

cause the guarantee, of resource request Rl  to be released at time 11, to be violated. 

Thus the request at R4 is delayed by 4 time units. Note that in the above example 

the communication delay is not considered. 



Compute_Release_Timesl(R, lrt 3, c) 
R" = 0 
C,3,k,t = Head(R) 
IF (1rt3  > t) 

A+ = /rti  — t 
t+ = lrt3  — t 

R„ 
= if + Ilf i,j,p,*  

R = R - C,j,k,t 
rt  = t + k 
flag = TRUE 
FOR 1 = 0,• • • , IRI —1 A flag 

flag = FALSE 
(1),,,,k,t  = Head(R) 
IF (Int, > t) 

A+ = Hi — t 
t =- lrt 3  — t 

IF (rt  < t) 
flag = TRUE 
rt+ = k 
R = R" + xlit ,j,A,* 
R = R — C,j,k,t 

RETURN (rt, R, RH ) 
END Compute_Release_Times1 

Alg. 5.2. Algorithm that compute the resource busy interval. 



Tree Of Pointers: 

A tree of pointers (TOP) is a rooted k-ary tree. The purpose of a TOP structure 

is to represent a list of resource requests that may occur at a given time instant. A 

separate TOP structure is maintained for each PFG that needs to be analyzed. A 

node of a TOP structure consists of a time t and a pointer to a critical segment node 

Pc corresponding to a resource request. In general, for PFG, a tree of pointers Ti 

is maintained. The leaf nodes of Ti  represent the current set of resource requests of 

PFG,. The row of current resource requests (R) are formed by taking all the leaf 

nodes in each Ti (i = 0, • • • , n — 1). For example fig. 5.3 (a) shows the TOP for 

the PFG given in fig. 5.2 with its leaf nodes pointing to the initial set of resource 

requests. Fig 5.3 (b) shows the TOP after advancing the leaf node 12, i.e. after 

resolving resource request R2 of PFG in fig. 5.2. The release time of resource request 

R2 is 12 (assuming c = 1). Fig 5.4 (d) shows the TOP after advancing the leaf node 

17. When 17  is advanced (with a release time of 17), going across a simple segment 

node of 1 unit, a join node is encountered, which causes the time 18 of node 17  to 

propagate to its parent, this situation is show in fig. 5.5 (d). Similarly, advancing 110 

gives the TOP in fig. 5.4 (e). When algorithm 5.1 terminates it results in a TOP 

with a single node giving the termination time of that PFG (see fig. 5.4 (f)). 

The following steps are take when advancing a node of a TOP. 

1. node.t = release time of the resource request pointed by node. 

2. Advance to the next node in the PFG, i.e. node.p, = node.p, --* next, if the 

next node is a simple segment node then add its time to node.t and apply steps 

2-4 else found next request, return. 

3. If node.p, is a fork node then create a child for each branch in the fork node 



and set the time t of each new child to its parents current time. Apply steps 

2-4 recursively to each child until a critical segment node is reached or end of 

the PFG reached. 

4. If node.p, is a join node then if node.t is grater than the time of parent then 

propagate the time node.t to its parent. Delete node. if parent becomes a leaf 

node apply steps 2-4 to the parentnode. 

Complexity of algorithm 5.1. 

A worst case scenario for the algorithm is when for each iteration of the while 

loop !MI = 1. The search for the minimum element in R is (D(nfld). The while loop 

will execute O(D0c1) since we need to resolve all the requests in a row, where D 

is the maximum number of rows that can be constructed as a result of advancing 

resource requests, i.e. the maximum number of critical segments in any path in the 

DAG. Thus the total worst case complexity is Q(Dn2,32d). A lower bound for the 

algorithm is SI(Dn2 ). This lower bound is achieved when all the PFGs to be analyzed 

are linear. 



Fig. 5.2. 

Fig. 5.3. (a) Initial list of requests pointed by the leaf nodes of each tree for the PFGs 
given in Fig. 5.2. (b) After advancing request R2. (c) After advancing Rl. 



Fig. 5.4 (d) After advancing request R4. (e) After advancing request R5. (f) After 
advancing R3. 



Fig. 5.5. Three PFGs corresponding to three processes that neeed to be analyzed. 

As an example the algorithm 5.1 is applied to the PFGs given in fig. 5.6 resulting 

in the static schedules given in fig. 5.7. The slow down of a process is calculated 

with respect to the termination time of the same PFGs without any contention for 

resources, i.e. the the slow down can be defined as, 

termination time of a process with contention 
Slow Down =  

termination time of a process without contention 

The slow down of a process gives an idea about the loss of parallelism due to 

shared resource contention. 



PFG1 PFG2 PFG3 

( S ,2) 
( F ,0) { 

C 
( F ,0) { 

C 
( S ,8) 
( C ,8,1) 
( S ,2) 
( C ,2,1) 
( S ,1) 

][ 
( S ,4) 
( C ,7,2) 
( F ,0) { 

C 
( C ,4,2) 
( S ,1) 

II 
( C ,4,1) 
( S ,1) 

] 
} 
( J ,0) 

] 
} 
( J ,0) 

][ 
( C ,4,4) 
( S ,7) 
( C ,8,2) 

][ 
( F ,0) { 

C 
( S ,2) 
( C ,8,4) 

][ 
( S ,4) 
( C ,4,3) 

] 
} 
( J ,0) 
( C ,8,1) 

] 
} ( J ,0) 

( S ,1) 
( C ,4,4) 
( F •[ ,0) 

[ 
( S ,1) 
( C ,2,1) 
( S ,1) 
( C ,4,2) 
( S ,2) 
( C ,8,1) 

] 
C 

( S ,2) 
( C ,3,2) 
( S ,1) 
( C ,2,1) 
( S ,4) 
( C ,4,2) 

] 
C 

( S ,1) 
( C ,4,4) 
( S ,1) 
( C ,1,3) 
( S ,3) 
( C ,6,3) 

] 
} 
( .1 ,0) 
( C ,4,4) 

( S ,3) 
( C ,2,3) 
( F ,0) { 

C 
( S ,2) 
( C ,6,1) 
( S ,1) 
( C ,2,1) 
( S ,2) 

] 
[ 

( S ,4) 
( C ,7,2) 
( S ,2) 
( C ,2,2) 
( S ,1) 

] 
r 

( S ,3) 
( C ,4,3) 
( S ,4) 

] 
[ 

( S ,1) 
( C ,2,4) 

]  
1  
( .1 ,0) 
( S ,1) 

Fig 5.6. The three PFGs given in fig. 5.5 represented according to the grammar given in 
fig. 3.1. 



PFG1 PFG2 1'1173 
( S ,2) 
( F ,0) { 
[ 
( F ,0) { 
[ 
( S ,8) 
( C ,8,1,41,0) 
( S ,2) 
( C ,2,1,51,0) 
( S ,1) 

7C 
( S ,4) 
( C ,7,2,23,0) 
( F ,0) { 
[ 
( C ,4,2,43,0) 
( S ,1) 

] [ 
( C ,4,1,41,0) 
( S ,1) 
] 
} 
( J ,44) 
] 
} 
( J ,52) 
] [ 

( C ,4,4,20,0) 
( S ,7) 
( C ,8,2,43,0) 

Jr 
( F ,0) { 

C 
( S ,2) 
( C ,8,4,20,0) 

]C 
( S ,4) 
( C ,4,3,19,2) 
] 
} 
( J ,20) 
( C ,8,1,41,0) 
] 
} 
( J ,52) 
Termination time= 52 
Slow Down = 1.79 

( S ,1) 
( C ,4,4,20,0) 
( F ,0) { 
[ 
( S ,1) 
( C ,2,1,41,0) 
( S ,1) 
( C ,4,2,50,1) 
( S ,2) 
( C ,8,1,63,0) 

] 
[ 
( S ,2) 
( C ,3,2,43,1) 
( S ,1) 
( C ,2,1,51,0) 
( S ,4) 
( C ,4,2,62,0) 

] 
C 
( S ,1) 
( C ,4,4,29,0) 
( S ,1) 
( C ,1,3,34,0) 
( S ,3) 
( C ,6,3,46,0) 

] 
} 
( J ,63) 
( C ,4,4,70,0) 

Termination time= 70 
Slow Down = 1.67 

( S ,3) 
( C ,2,3,8,0) 
( F ,0) { 
[ 
( S ,2) 
( C ,6,1,41,0) 
( S ,1) 
( C ,2,1,51,0) 
( S ,2) 

] 
C 
( S ,4) 
( C ,7,2,23,0) 
( S ,2) 
( C ,2,2,43,0) 
( S ,1) 

] 
[ 
( S ,3) 
( C ,4,3,19,0) 
( S ,4) 

] 
[ 
( S ,1) 
( C ,2,4,29,11) 

] 
} 
( J ,53) 
( S ,1) 

Termination time= 54 
Slow Down = 1.74 

Fig 5.7. The corresponding static schedules for the PFGs given in fig. 5.6. Algorithm 5.1 
is used for the analysis. The critical segment nodes have the following fields (C,t,id,rt,A) 

and c = 3. 



Resource Request Interrupt Handler: 
1*,Release_Time = Get _Request (); 
Dispatch_Request(4).); 
Sleep Until Sys_time = Release_Time ; 
Return; 

Fig 5.8. Example of a runtime abstraction for handling resource requests. 

5.2 Transforming the Processes in Order to Conform 
to the Release Times 

Once the release times are computed for each request it is necessary to ensure that at 

runtime the processes conform to the timing characteristics obtained by the analysis. 

The runtime system will simply dispatch a request to a resource across a network 

or simply queue it up at the local processing element. Further more the runtime 

system will be informed by the resource when the access is completed. Thus it is 

the task of the runtime system to delay the process requesting the resource until 

the precomputed release times. In order to achieve this each resource request will 

accompany the precomputed release time so that the runtime system can delay until 

the release time is reached by the local system clock. 

Delaying a process after a resource request in it self is not enough to maintain 

the desired timing characteristics. It is also necessary at a join node to delay as 

long as the longest branch. This can be be achieved by simply adding a delay at 

the join nodes that corresponds to the maximum time that may be taken by the 

corresponding execution paths. Thus the process will idle at a join until the desired 

amount of time has passed. At runtime, when the system encounters a resource 

request the system calls a service routine that will handle the request. An example 

of a runtime abstraction for handling a resource request is given in fig. 5.8. 



6. Conclusion 

The primary objective of this thesis was to, (1) extend the language in order to 

allow for nested conditionals, (2) include the facility to represent multiple resources 

in the language, and extend the transformations and the analysis algorithms to take 

account of the above changes; which is successfully accomplished. In section 3 it is 

shown how the transformations are extended to handle nested conditionals. In section 

4 the efficiency of the transformations are defined and applied to a particular case. In 

section 4.2 the statistics of the results of the transformations are given, showing clearly 

that in certain cases the the transformations are capable of reducing the problem size 

by 40% with a probability of 80%. The transformations and the analysis algorithm 

are available as set of library routines in C++, which can be used as a testbed for 

constructing and testing various types of transformations and heuristics for analysis. 

Extensions and improvements are given in section 6.1. 

6.1 Future Extensions and Improvements 

The work done in this thesis provides a comprehensive basis for building a complete 

compiler/schedulability analyzer for a supper set of the real time language that is 

given in fig. 2.1. However, more work is needed to determine the accuracy of the 

static schedules and the slow down caused as a result of the heuristics. Also, it is 

possible to introduce more type B transformations. The following is a list of possible 

extensions. 

1. It is possible to introduce more type B transformations. Also, the cost of the 

transformations must be determined with respect to the reduction in the cost 

of schedulability analysis. 



2. When deadline extending (Type C) transformations are used it is important to 

determine how much of a deadline extension is caused. Such an estimate will 

give an idea of whether using type C transformations are in fact feasible or not. 

3. The slow down of a process due to heuristics of the analysis algorithm must be 

computed. This problem it self is NP-complete thus an approximate calculation 

of the slow down will suffice. 

6.2 A Generic Real Time System: A Proposal 

All real time systems are application specific in terms of the hardware requirements 

and access a unique set of resources. Thus, building a general purpose real time 

hardware architecture is a serious failing. Instead, the real time system designers 

should posses a suit of tools that allow the specification of a hardware configuration 

that exactly match the application requirements. Such a design tool should have a 

specification tool for defining a hardware configuration, a compiler/schedulability an-

alyzer and a simulation tool. The specification tool will allow the designers to express 

a particular hardware configuration. The compiler/schedulability analyzer will pro-

duce the transformed object code for a set of processes, executable on the hardware 

configuration specified by the specification tool. The simulator will allow the design-

ers to simulate the set of real time processes and fine tune them. Once the simulation 

tool provide satisfactory evidence of timelyness of the processes the hardware specifi-

cation is implemented. This activity is shown in fig. 6.1. The hardware specifications 

are derived from a collection of, heterogeneous processing elements, interfaces to the 

environment and other facilities such as shared address spaces, interrupt handlers 

and communication network topologies. Fig 6.1 Shows the activities in the proposed 

system for designing a real time system. 



Fig. 6.1. System Development Cycle. 



The main issue in hard real time computing is not whether all processors are fully 

utilized, but simply deadline satisfaction. Thus, under-utilization of some or even all 

processors are acceptable form the standpoint of deadline satisfaction, predictability 

and dependability. Adaptability versus redundance poses a considerable challenge to 

any designer. However, this is a issue that is solely in the realm of system design. 

Thus the real time system design tools must provide sufficient degrees of freedom to 

the implementors. 

The processing elements (PE) are simple components, consisting of a local mem-

ory and communication ports to a network, without any caches or virtual memory. 

Consider a collection of simple hardware entities such as PEs, network topologies(NT), 

DAC,ADC, and software modules that may be used in a hardware specification for a 

real time architecture. A resource in such a specification may identify a simple entity 

or a complex entity. A complex entity is a collection of simple entities. Fig. 6.2 shows 

a configuration of a system with three PEs, five resources and a token bus NT. The 

relative usage-dependence specified between two entities will identify a particular re-

source and the consumers (users) of that particular resource. Given the specification 

of the architecture in fig. 6.2 it is possible to schedulability analyze and compile a 

set of processes, producing transformed real time code that will execute in a timely 

manner. 

The low cost, of processing elements and local area networks, makes the above 

described methodology for constructing a hard real time system feasible. However, the 

proposed methodology does not provide a quick fix to todays real time requirements 

in industry, since to build such a tool will require an significant amount of time 

and money. Let us consider in detail the structure of a specification for a hardware 

architecture. Fig. 6.3 shows the specification of the hardware architecture given in 



Fig. 6.2. An Instance of a hardware architecture. 

P1 Uses R1, R2, R3, R4, R5. 
P2 Uses Ri, R2)  R31  R4 • 
P3 Uses R1, R2, R3, R4. 

P1 ) P2, R1) R21  R3) 174 E NT1. 
NT1  Is a Token Bus NT. 
R1  Is a CPU. 
Pl., P2) P3 IS a CPU. 
R2 Is a SM. 
R3  Is a Bridge. 
R4 Is a ADC. 
RA Is a DAC. 

Fig. 6.3. Specification for the h/w architecture in fig. 6.2. 

fig. 6.2. The key words Uses,In, and Is a are used to identify the relation ships 

between the entities and types of the entities respectively. Such a specification can be 

used to derive the required components within a entity, i.e. connection to a network 

may or may not be available for a particular resource, as in the case of R5 in Fig. 

6.2. Also the specification is used to determine the overhead cost of communication 

and other information regarding the timing characteristics of the components. 
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NAME 

PFG - Program Flow Graph. 

SYNOPSIS 

#include <graph.h> 

class PFG { 
public: 

PFG(); 
PFG(char *infile); 
PFG(char *infile, ofstream *out); 
Node *get_start(); 
void print_PFG(Node *node); // Write this PFG to file 
Node *read_PFG(); // Read a PFG from file 
Node *generate(unsigned M[],unsigned 1, unsigned bf, 

float fp,float cp, float sp); 
void cluster_PFG(Node *node); 
unsigned transform(Node *node); 
double N_branches(Node *node); 

} 

DESCRIPTION 

The class PFG provides methods for manipulating a DAG which represent the 

timing and program flow characteristics of a RTE-1 programs. 

A PFG can be declared as: 

PFG G; 

PFG II(in); 

PFG I(in,out); 

Which declares G to be a empty DAG, H to have an input file in and I to have 

an input file in and a output file out. The input file can be used to read in a DAG 



representing a RTE-1 program, and can be written out to a file specified by out. The 

external format for a PFG is given by the grammar in fig. 3.2. 

PFG G(in,out); 

G.read_PFG(); 

G.cluster_PFG(); 

G.transform(G.start); 

G.print_PFG(G.start); 

Which declares G and reads a PFG form the input file specified by in. Preclus-

ters the PFG in order to reduce sequences of simple segments. Then, applies the 

transformations and writes the transformed PFG to the file specified by out. The 

class PFG and its associated member functions are given in appendix 2, from page 

55 to page 83. 

NAME 

PFGS - Program Flow Graphs. This class models a collection of pro-
gram flow graphs. 

SYNOPSIS 

#include <list.h> 
class Traversal; 

class PFGS { 
public: 

Traversal *T[MAX_PFGS] 
unsigned np,x; 
PFGS(unsigned n, char *arg[], ofstream *out); 
TreeNode *row(unsigned i, unsigned j); 
Node *node(unsigned i, unsigned j); 
void advance(unsigned i, unsigned j); 
void release_time_static(unsigned x); 
void release_time(unsigned x); 

} 



DESCRIPTION 

The class PFGS provides methods for manipulating TOP structures associated 

with each PFG. The details of TOP structures are given in section 5.1. The class 

PFGS is instantiated with n PFGs which represent a set of parallel real time programs 

to be analyzed. For each PFG stored in the class PFGS a unique TOP structure is 

maintained where T[i] points to the TOP structure class for the ith PFG. The TOP 

structure is realized by the class Traversal. The classes Traversal and PFGS and its 

associated member functions are given in appendix 2, from page 87 to page 96. The 

member function row(i,j) in class PFGS represent the jth resource request of the 

ith PFG represented in that class. Also, the member function advance(i,j) advances 

the jth resource request in the ith PFG. The details of advancing resource requests 

are given in section 5.1. The function compute_release_times(x) computes the static 

release times and the process termination times of n PFGs represented by the class 

PFGS. A communication delay of x units of time is allowed for when computing the 

release times. Also, compute_release_times(x) is the implementation of the algorithm 

5.1 given in section 5.1. 

DISCUSSION 

The classes PFG, PFGS, and Traversal are used to compute the efficiency of the 

of the transformations given in section 4.2. The data for the graphs given in fig. 4.1 

to fig. 4.6 are obtained by the programs epoch.c, epochl.c, epoch3.c and epoch4.c, 

which are given in appendix 2, form page 101 to page 110. Also, the programs 

release_times.c and transform.c, given in appendix 2, form page 111 to page 114, are 

used to compute the static schedule given in fig. 5.7. By using the C++ member 

functions of the classes described above it is possible to implement different heuristics 

for analysis. 



Appendix 2: Program Listings 
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*include "node.h" 
unsigned 1c=0; 
static gps =0; 
char str[100]; 
/* 

Global variables used for formatting the output. 
lc = Line Count, 
gps = indentation value. 
str = temporary string translation space. 

*/ 

*define MAX_DEPTH 10 
/* 

MAX_DEPTH defines the maximum depth allowed in a PFG. 
This is used in generating random PFGs by generate(). 
The transformations and other general functions are not 
dependent on MAX_DEPTH. 

*/ 

class PFG { 
void node_S_C(node_type nt,unsigned t,Node **new_node, 

Node **n,char &ch); 
void node_F(node_type nt,unsigned t,Node **new_node, 

Node **n,char &ch); 
char skip(); 
node_type get_type(); 
unsigned get_time(); 
void exit_eof(char *s=""); 

void get_id(unsigned &id); 
double n_branches; 

double n_branches_c; 

public: 
Node *start; 
if stream *in; 

of stream *out; 
double max(double a,double b) { if (a>b) return a; else return b;} 

char infile[25]; 
PFG(char *,ofstream *); 
PFG(ofstream *); 
PFG(void); 
"PFG(); 
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void add_node(Node *node,Node *at); /* add node at */ 
Node *get_start() { return start;} 
void printf(Node *node); 
void print(char *str); 
void calc_depth(Node *node,unsigned d); 
Node *generate(unsigned MO,unsigned l,unsigned bf, 

float pe,float fp,float cp, float sp,Node *n, 
unsigned d,unsigned p_o=FALSE); 

Node *read_PFG(Node *n); /* read PFG form file: see PFG syntax */ 
Node *cluster_sequence(Node *n); 
void cluster_PFG(Node *n); 
Node *adjust_branches(Node *n, Node *prev); 
unsigned transform(Node *n, Node *prev=NULL); 
unsigned apply_transformation(Node *n); 
void compute_lengths(Node *p,unsigned &l,unsigned &c_l,unsigned ks_1); 
void compute_times(Node *p,unsigned &t,unsigned &c_t,unsigned &s_t); 
void apply_T1(Node *p,unsigned &i,unsigned &j); 
void apply_T2(Node *p,unsigned &i,unsigned &j); 
void apply_T3(Node *p,unsigned &i,unsigned &j,unsigned to, 

unsigned tl,unsigned c_1); 
void apply_T4(Node *p,unsigned &i,unsigned kj); 
unsigned apply_T(Node *n,unsigned &r, unsigned &s); 

void apply_T6(Node *n,unsigned &i,unsigned &j,unsigned tO, 
unsigned ti); 

void test(Node *n); 
double compute_paths(Node *n); 
double max_depth(Node *n); 
double N_f(); 
void n_f(Node *n); 
int linear(Node *n); 
unsigned apply_minimize(Node *n); 

1; 

void PFG::print(char *str) 
{ 

*out<<"\n"<<str<<"\n"<<flush; 

} 

/* 
Computes the number of segments in total, number of 
critical segments and the number of simple segments 
in a branch where the pointer p points to the first 
segment in that particular branch. 

*/ 
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void PFG::compute_lengths(Node *p,unsigned kl,unsigned kc_1,unsigned ks_1) 
{ 

c_1=s_1=0; 
while (p->Type != J) 

switch (p->Type) { 
case S: s_l += 1; 

break; 
case C: c_l += 1; 

break; 
default: error("Invalid type: compute lengths "); 

exit(0); 
} 

p =p->next[0]; 
} 
1 = c_l+s_1; 

} 

/* 
computes the total and sub times for a branch. similar to 
compute_length(). Only applicable to a brach of a conditional. 

*/ 

void PFG::compute_times(Node *p,unsigned kt,unsigned kc_t,unsigned its_t) 
{ 

c_t=s_t=0; 
while (p->Type != .1) 

switch (p->Type) { 
case S: s_t += p->t; 

break; 
case C: c_t += p->t; 

break; 
default: error("Invalid type: compute times "); 

exit(0); 

p =p->next[0]; 

t = c_t+s_t; 
} 

/* The transformations T1 to T4 are equivalent to Tran_TO */ 

void PFG::apply_T1(Node *p,unsigned ki,unsigned kj) 
{ 
unsigned k; 

if ((p->next[i])->Type == J){ 
(p->next[i])->rc -= 1; 
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for (k=i;k<(p->nb-1);k++) 
p->next[k] = p->next[k+1]; 

} else { 
(p->next[j])->rc -= 1; 
for (k=j;k<(p->nb-1);k++) 

p->next [k] = p->next[k+1]; 
} 

i=i-1; 
p->nb = p->nb - 1; 

} 

void PFG::apply_T2(Node *p,unsigned ki,unsigned & j) 
{ 
unsigned k; 

if (((p->next[i])->t) > ((p->next[j])->t)) { 
delete p->next[j]; 
for (k=j;k<(p->nb-1);k++) 

p->next[k] = p->next[k+1]; 
} 
else { 

delete p->next[i]; 
for (k=i;k<(p->nb-1);k++) 

p->next[k] = p->next[k+1]; 
} 
j=j-1; 
p->nb = p->nb - 1; 

} 
void PFG::apply_T3(Node *p,unsigned ki,unsigned kj,unsigned to, 

unsigned ti,unsigned c_1) 
{ 
unsigned k; 

if (c_1==0) { 
if (t0<=t1){ 

delete p->next[i]; 
for (k=i;k<(p->nb-1);k++) 

p->next[k] = p->next[k+1]; 

i=i-1; 
p->nb = p->nb - 1; 

} else { 
delete p->next[i]; 
for (k=i;k<(p->nb-1);k++) 

p->next[k] = p->next[101]; 
j=j-1; 
p->nb = p->nb - 1; 
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(p->next[j])->t += tO - ti; 
} 

} else { 
if (t1<=t0) { 

delete p->next[j]; 
for (k=j;k<(p->nb-1);k++) 

p->next[k] = p->next[k+1]; 

j=j-1; 
p->nb = p->nb - 1; 

} else { 
delete p->next[j]; 
for (k=j;k<(p->nb-1);k++) 

p->next[k] = p->next[k+1]; 
j=j-1; 
p->nb = p->nb - 1; 
(p->next[i])->t += tl - to; 

} 
} 

} 

void PFG::apply_T6(Node *p,unsigned iti,unsigned kj,unsigned tO, 
unsigned t1) 

{ 
unsigned k; 

if (tO<=t1){ 
delete p->next[i]; 
for (k=i;k<(p->nb-1);k++) 

p->next[k] = p->next[k+1]; 
j=j-1; 
p->nb = p->nb - 1; 

} else { 
delete p->next[j]; 
for (k=j;k<(p->nb-1);k++) 

p->next[k] = p->next[k+1]; 

j=j-1; 
p->nb = p->nb - 1; 

} 
} 

void PFG::apply_T4(Node *p,unsigned ki,unsigned kj) 
{ 
unsigned T; 
unsigned k; 
Node *ni; 
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Node *nj; 
ni = p->next[i]; 
nj = p->next[j]; 
T=TRUE; 

while (ni->Type !=.1) { 
if (ni->Type != nj->Type){ 

T=FALSE; 
break; 

} 
else if (ni->t<nj->t){ 

T=FALSE; 
break; 

} 
ni = ni->next[0]; 
nj = nj->next[0]; 

} 
if (T) { 

delete p->next[j]; 
for (k=j;k<(p->nb-1);k++) 

p->next[k] = p->next[k+1]; 

j=j-1; 
p->nb = p->nb - 1; 
return; 

1 
ni = p->next[i]; 
nj = p->next[j]; 
T=TRUE; 
while (ni->Type !=J) { 

if (ni->Type != nj->Type){ 
T=FALSE; 
break; 

} 
else if (ni->t>nj->t){ 

T=FALSE; 
break; 

} 
ni = ni->next[0]; 
nj = nj->next[0]; 

} 
if (T) { 

delete p->next[i]; 

for (k=i;k<(p->nb-1);k++) 
p->next[k] = p->next[k+1]; 

j=j-1; 
p->nb = p->nb - 1; 
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} 

} 
/* 

unsigned PFG::apply_transformation(Node *n) 
{ 

Node *pl,*p2; 
unsigned 1[2],c_1[2],s_1[2]; 
unsigned t[2],c_t[2],s_t[2]; 
unsigned select = 0; 
unsigned i,j; 

i=0;j=1; 
while (i<((n->nb)-1)) { 

p1=n->next[i];p2=n->next[j]; 
compute_lengths(p1,1[0],c_1[0],s_1[0]); 
compute_lengths(p2,1[1],c_1[1],s_1[1]); 

compute_times(pl,t[0],c_t[0],s_t[0]); 
compute_times(p2,t[1],c_t[1],s_t[1]); 

select = 0; 
if ((1[0]==0) II (1[1]==0)) 

select=1; 
else if ((c_1[0]==0) &8t (c_1[1]==0)) 

select = 2; 

else if ((c_1[0]==0) II (c_1[1]==0)) 
select = 3; 

else if (1[0] == 1[1]) select = 4; 

switch (select) 
case 1: apply_T1(n,i,j); 

break; 
case 2: apply_T2(n,i,j); 

break; 
case 3: apply_T3(n,i,j,t[0],t[1],c_1[0]); 

break; 
case 4: apply_T4(n,i,j); 

break; 
default: error("Unimplemented transformation"); 
} 

j++; if (j>=(n->nb)) { i++; j=i+10" 
} 

if ((n->nb)==1) return TRUE; else return FALSE; 
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*/ 

unsigned min(unsigned a, unsigned b) 
{if (a<b) return a; else return b;} 

*define MAX_N_SEG 100 

/* 
transforms two branches pointed by r and s if possible. 
n is the pointer to the corresponding fork node. 

*/ 

unsigned PFG::apply_T(Node *n,unsigned &r, unsigned &s) 
{ 
unsigned 1[2],c_1[2],s_1[2]; 
unsigned t[2],c_t[2],s_t[2]; 
Node *pl,*p2; 
unsigned i,p_1,q_1; 
unsigned keep,throw; 

struct 
unsigned t; 
node_type T; 
unsigned id; 

} p[MAX_N_SEG],q[MAX_N_SEG]; 
unsigned diff; 

pi=n->next[r];p2=n->next[s]; 
compute_lengths(p1,1[0],c_1[0],s_1[0]); 
compute_lengths(p2,1[1],c_1[1],s_1[1]); 

compute_times(pl,t [0] , c_t [0] , s_t [0] ) ; 
compute_times(p2,t[1],c_t[1],s_t[1]); 
if ((1[0]==0) II (1[1]==0)) 

apply_Tl(n,r,$); 
return TRUE; 

} 

if ((c_1[0]==0) kk (c_1[1]==0)){ 
apply_T6(n,r,s,t[0],t[1]); 
return TRUE; 

} 

if ((c_1[0]==0) II (c_1[1]==0)) 
apply_T3(n,r,s,t[0],t[1],c_1[0]); 
return TRUE; 

} 
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if (1[0] > 1[1] ){ 
if (t[0] < t[1]) { 

return FALSE; 
} else { 

p_l = 1[0];q_1=1[1]; 
for(i=0;p1->Type != J;i++) { 

p[i]et = pl->t; 
p[i].T = pl->Type; 
paLid = pl->id; 
p1 = pl->next[0]; 

} 
for(i=0;p2->Type != J;i++) { 

q[i].t = p2->t; 
ci[i].T = p2->Type; 
clEiLid = p2->id; 
p2 = p2->next[0]; 

} 
throw=s; 
keep=r; 

} 
} else if (t[1]<t[0]) { 

return FALSE; 
} else { 

p_l = 1[1];q_1=1[0]; 
for(i=0;p1->Type != J;i++) { 

q[i] .t = pl->t; 
q[i].T = pl->Type; 
q[i].id = pl->id; 
p1 = pl->next[0]; 

1 
for(i=0;p2->Type != J;i++) { 

p[i].t = p2->t; 
p[i].T = p2->Type; 
giLid = p2->id; 
p2 = p2->next[0]; 

} 
throw=r; 
keep=s; 

} 

{unsigned trfm = TRUE; 
for (i=0;1<q_1;i++){ 

if ((p[i].t < q[i].t) II (p[i].T!=q[i].T)) { 
trfm =FALSE; break; 

} 
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if ((p[i].T==C) && (q[i].T==C) k& (p[i].id != q[i].id)) { 
trfm = FALSE; break; 

} 
1 
if (trfm) { 

if (q_1!=0) delete n->next[throw]; 
unsigned k; 
pi = n->next [keep] ; 
for (k=throw;k<(n->nb-1);k++) 

n->next [k] = n->next [k+1] ; 
for (i=0;i<p_1;i++){ 

p1->t = p[i].t; 
p1 = pl->next [0] ; 

} 
n->nb = n->nb - 1; 
s=s-1; 
return trfm; 

Il 

diff = p[0] .t - q[0] .t; 
for (i=1;i<q_1;i++) { 

if (p[i].T==C) { 
if ((diff>0) A& ((p[i].t-q[i].t)<O)) { 

unsigned t; 
t = min(diff,abs(p[i].t - q[i].t)); 
p[i].t += t; 
p[i-1].t -=t; 

diff = p[i].t - q[i].t; 
} else diff = p[i].t - q[i].t; 

} else { 
if ((diff<O) at (p[i].t > 0 )){ 

unsigned t; 
t = min(p[i].t,abs(diff)); 
p[i].t -= t; 
p[i-1].t += t; 

} 
diff = p[i].t - q[i].t; 

} 
} 

diff = q[0].t - p[0].t; 
for (i=1;i<q_1;i++) { 

if (q[i].T==C) { 
if ((diff>0) &A ((q[i].t-p[i].t)<O)) { 
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unsigned t; 
t = min(diff,abs(q[i].t - p[i].t)); 
cout<<"\n\n t"<<t«"\n "<<flush; 
q[i].t +=t; 
q[i-i].t -=t; 
diff = q[i].t - p[i].t; 

} else diff = q[i].t - p[i].t; 
1 else { 

if ((diff<O) && (q[i].t>0)) { 
unsigned t; 
t = min(q[i].t,abs(diff)); 
q[i].t -= t; 
q[i-i].t += t; 

} 
diff = q[i].t - p[i].t; 

} 
I 
if (p_1>q_1) for (i=q_l;i<p_l;i++) q[q_1-1].t -= p[i].t; 
unsigned trfm = TRUE; 
for (i=0;i<q_1;i++){ 

if ((p[i].t < q[i].t) II (p[i].T!=q[i].T)) { 
trfm =FALSE; break; 

} 
if ((p[i].T==C) U (q[i].T==C) U (p[i].id != q[i].id)) { 

trfm = FALSE; break; 
} 

} 
if (trfm) { 

if (q_1!=0) delete n->next[throw]; 
unsigned k; 
pi = n->next[keep]; 
for (k=throw;k<(n->nb-1);k++) 

n->next[k] = n->next[10.1]; 
for (i=0;i<p_1;i++){ 

p1->t = p[i].t; 
pi = pl->next[0]; 

} 
n->nb = n->nb - 1; 
s=s-1; 

} 
return trfm; 
} 

/* 
applies the the transformations to all the branches (nb>1). 
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return TRUE if all branches are transformed. 
*/ 

unsigned PFG::apply_transformation(Node *n) 
{ 

unsigned i,j; 

i=0;j=1; 
while (i<((n->nb)-1)) { 

apply_T(n,i,j); 
j++; if (j>=(n->nb)) { i++; j=i+1;} 

} 
if ((n->nb)==1) return TRUE; else return FALSE; 

1 

unsigned PFG::apply_minimize(Node *n) 
{ 

unsigned i,j; 
int a,b; 

i=0;j=1; 
while (i<((n->nb)-1)) { 

a=linear(n->next[i]); 
b=linear(n->next[j]); 
if (a la b){ 

apply_T(n,i,j); 
j++; if (j>=(n->nb)) { i++; j=i+1;} 

} else { 
if (!a && !b) {i++;j=i+1} 
else { 

if (!b) {j++;if (j>=(n->nb)) { i++;j=i+1;}} 

if (!a) fi++0=i+141 
} 

} 

} 
if ((n->nb)==1) return TRUE; else return FALSE; 

} 

int PFG::linear(Node *n) 
{ 

while (n!=NULL){ 
if (n->Type == J) return TRUE; 
if (n->Type == F) return FALSE; 
n=n->next[0]; 
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} 
error("\n Error : linear()"); 
exit(0); 

return FALSE; 
} 

void PFG::test(Node *n) 
{ 

Node *prev; 
prev=NULL; 
while (n->Type !=F) { 

prev=n; 
n=n->next[0]; 

prey = adjust_branches(n,prev); 
*out<<"\n Sub graph "<<flush; 
printf(prev); 
*out<<"\n End sub graph \n"<<flush; 

calc_depth(start,0); 
} 

/* 
recursively apply the transformations to a PFG pointed by n. 
returns TRUE if the transformations result in a liear sequence 
of nodes. 

*/ 

unsigned PFG::transform(Node *n,Node *prey) 
{ 

unsigned Trfm=TRUE; 
while (n!=NULL){ 

switch (n->Type) { 
case S: 
case C: 

prev=n; 
n=n->next[0]; 
break; 

case F:{ 
unsigned Tr=TRUE; 
for (unsigned i=0;i<(n->nb);i++) 

Tr = transform(n->next[i],n) &A Tr; 
if (Tr) Tr = Tr AA apply_transformation(n); 
if (!Tr) Tr = apply_minimize(n); 
if (Tr) 
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prey = adjust_branches(n,prev); 
n = prev->next[0]; 

else { 
prey = n->next[0]; 
while ((n->d) != (prev->d)) 

prev=prev->next[0]; 
n = prev->next[0]; 

Trfm = Trfm && Tr; 
} 

break; 
case J: 

return Trfm; 
case I: 

error(" Invalid node "); 
exit(0); 

} 
} 

return Trfm; 
} 

double PFG::N_f() 
{ 

n_branches=0; 
n_branches_c=0; 
n_f(start); 

return ((double) n_branches); 
} 

void PFG::n_f(Node *n) 
{ 

while (n!=NULL){ 
switch (n->Type) { 
case S: 
case C: 

n=n->next[0]; 
break; 

case F: 

{ 

n_branches += n->nb; 
n_branches_c += 1; 

for (unsigned i=0;i<(n->nb);i++) 
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n_f(n->next[i]); 

Node *t; 
t=n->next[0]; 
while ((n->d) != (t->d)) 

t=t->next[0]; 
n = t->next[0]; 
} 
break; 

case J: 
return ; 

case I: 
error(" Invalid node "); 
exit(0); 

} 
I 

return ; 

1 

double PFG::max_depth(Node *n) 
{ 
double maxd=0; 

while (n!=NULL){ 
switch (n->Type) { 
case S: 
case C: 

maid = max(maxd,n->d); 
n=n->next[0]; 
break; 

case F: 

{ 
for (unsigned i=0;i<(n->nb);i44) 

maid = max(max_depth(n->next[i]),maxd); 
Node *t; 
t=n->next[0]; 
while ((n->d) != (t->d)) 

t=t->next[0]; 
n = t->next[0]; 

} 
break; 

case J: 
return maid; 

case I: 
error(" Invalid node "); 



-graph.h- 

exit(0); 
} 

} 

return maxd; 
} 

double PFG::compute_paths(Node *n) 
{ 

double paths=1; 
while (n!=NULL){ 

switch (n->Type) { 
case S: 
case C: 

n=n->next[0]; 
break; 

case F: 
{ 

double pth=0; 
for (unsigned i=0;i<(n->nb);i++) 

pth += compute_paths(n->next[i]); 
Node *t; 
t=n->next[0]; 
while ((n->d) != (t->d)) 

t=t->next[0]; 
n = t->next[0]; 
paths = paths * pth; 

} 

break; 
case J: 

return paths; 
case I: 

error(" Invalid node "); 
exit(0); 

} 
} 

return paths; 
} 

/* 
removes a Fork and Join node. Also simple segments are 
preclustered. 

*/ 

Node *PFG::adjust_branches(Node *n,Node *prev) 
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Node *temp; 
unsigned i; 

if ((n->Type != F) II (n->nb != 1)){ 
error("Invalid adjustment of PFG"); 
exit(0); 

} 

if (prev==NULL) start = n->next[0]; 
else{ if (prev->Type == F) { 

i=0; 
while (prev->next[i]!=n) i++; 
prev->next[i]=n->next[0]; 

} 
else prev->next[0]=n->next[0]; 
1 
temp=n->next[0];(n->nb)=0; 
delete n; 
n = temp; 
if (prev!=NULL){ 

if ((prev->Type ==S) &it (n->Type == S)) { 
prev->t = prev->t + n->t; 
prev->next[0]=n->next[0]; 
temp = n->next[0]; n->nb = 0; 
delete n; 
n = temp; 

} 

} 
while (n->Type != J) { 

prey = n; 
n = n->next[0]; 

} 
if (prev==NULL) start = n->next[0]; 
else 

prev->next[0] = n->next[0]; 
prev->nb = n->nb; 

} 
temp=n->next[0];(n->nb)=0; 
delete n; 
n = temp; 
if ((prev!=NULL) && (n!=NULL)){ 

if ((prev->Type ==S) && (n->Type == S)) 
prev->t = prev->t + n->t; 
prev->next[0]=n->next[0]; 
prev->nb = n->nb; 
temp = n->next[0]; n->nb = 0; 
delete n; 
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n = temp; 
} 

} 

return prey; 
} 

/* 
precluster a sequence of linear segments. 

*/ 

Node *PFG::cluster_sequence(Node *n) 
{ 

Node *prev; 
if (n==NULL) return n; 
while ((n->Type !=J) U (n->Type !=F)) { 

prey = n; 
n = n->next[0]; 
if (n==NULL) return n; 
if ((prev->Type == S) fit& (n->Type == S)) { 

prev->t = prev->t + n->t; 
prev->next[0]=n->next[0]; 
prev->nb = n->nb; 
n->nb = 0; n->next[0] = NULL; 
delete n; 
n = prey; 

} 
} 

return n; 
} 

/* 
precluster a PFG pointed by n. 

*/ 

void PFG::cluster_PFG(Node *n) 

{ 
while (n != NULL) { 

switch (n->Type) { 
case S: 
case C: 

n = cluster_sequence(n); 
break; 

case F: 
for (unsigned i=0;i<(n->nb); i++) 

cluster_PFG(n->next[i]); 
unsigned d; 
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d = n->d; n = n->next[0]; 
while ((n->d) != d) 

n = n->next[0]; 
if (n->Type != J) { 

error("Error: J node expected"); 
exit(0); 

} 
n = n->next[0]; 
break; 

case J: 
return; 

case I: 
error("Error : Invalid type "); 
exit(0); 

} 

/* 

The next set of functions are used to read a PFG from a 
file. 

*/ 

char PFG::skip() 
{ 

char ch; 
*in>>ch; 

*ifdef PRINT 
lc++;if (1c>70) {cout<<"\n";1c=0;} cout<<ch<<flush; 

*endif 
while ((ch != '[') && (ch != && (ch != 'I') kit 

(ch!=q9 && (ch!='(') && (ch!=')') && Min)->eof())){ 
*in>>ch; 

*ifdef PRINT 
lc++;if (1c>70) {cout<<"\n";1c=0;} cout<<ch<<flush; 

#endif 

return ch; 

node_type PFG::get_type() 
{ 

char ch,chl; 
*in>>ch; 
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*in>>chl; 
*ifdef PRINT 

lc++;if (1c>70) {cout<<"\n";lc=0;} cout<<ch; 
lc++;if (1c>70) {cout<<"\n";1c=0;} cout<<chl<<flush; 

*endif 
switch (ch) { 
case 'F': return F; 
case 'J': return J; 
case 'S': return S; 
case 'C': return C; 
default : error("Invalid Node type "); 

exit(0); 
} 

} 

unsigned PFG::get_time() 
{ 
unsigned i; 

*in>>i; 
*ifdef PRINT 

lc++; if (1c>70) {cout<<"\n";1c=0;} cout<<i; 
*endif 
return i; 

} 
void PFG::get_id(unsigned &id) 
{ 
char ch; 

*in>>ch; 
if (ch != ',1) { 

error("\n error : id expected"); 
exit(0); 

} 
* in>> id; 
if (id == 0) { 

error("\n error : id should be non zero"); 
exit(0); 

} 

*ifdef PRINTF 
lc++; if (1c>70) {cout<<"\n";1c=0;} cout<<ch; 
lc++; if (1c>70) {cout<<"\n"ac=0;} cout<<id; 

*endif 

} 

void PFG::exit_eof(char *s) 
{ 
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if ((in)->eof()) { 
error("\npremature eof:",$); 
exit(0); 

} 

} 

void PFG::node_S_C(node_type nt,unsigned t,Node **new_node, 
Node **n,char &ch) 

{ 

unsigned id=0; 
if (nt == C) get_id(id); 
*new_node = new Node(nt,t,id); 

add_node(*new_node,*n); 
*n=*new_node; 
ch = skip();ch = skip(); 

} 

void PFG::node_F(node_type nt,unsigned t,Node **new_node, 
Node **n,char &ch) 

*new_node = new Node(nt,t); 
add_node(*new_node,*n); 
*n=*new_node; 
skip();exit_eof();ch = skip(); 
exit_eof(); 
if (ch!='{') { 

error("Error: { expected"); 
exit(0); 

} 
Node *ti = new Node(J,0); 
ch=skip(); 
while (ch!='}'){ 

exit_eof(); 
if (ch != '[') { 

error("error: [ - expected "); 
exit(0); 

} 

*new_node=read_PFG(*n); 
add_node(t1,*new_nods); 
ch = skip(); 

} 

*new_node=t1;*n=t1;ch=skip(); 
} 
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Node *PFG read_PFG(Node *n) 
{ 

char ch; 
node_type nt; 
Node *new_node; 
unsigned t; 

ch =skip(); 
if ((in)->eof()) return n; 
if (ch == ']') return n; 
while (ch == '(') { 

nt =get_type(); 
t = get_time(); 
switch (nt) { 
case S: 
case C: 

node_S_C(nt,t,inew_nodeAn,ch); 
break; 

case F: 
node_F(nt,tAnew_node,in,ch); 
break; 

case J: 
ch=skip();ch=skip(); 
break; 

case I: 
error("\nInvalid type in function read_PFG()"); 
exit(0); 

} 
} 

return n; 
} 

PFG "PFG() 

if (start != NULL ) delete start; 
out = NULL; 
if (in!=NULL){ 

(in)->close(); 
delete in; 

} 

} 

PFG PFG() 
{ 

start=NULL; 
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in=NULL; 
out=NULL; 

} 

PFG PFG(ofstream *fout) 
{ 

start = NULL; 
/* out = new ofstream(fout); */ 
in = NULL; 
out = fout; 
if (!*out) { 

error("cannot open output file"); 
exit(0); 

} 
1 
PFG PFG(char *fin,ofstream *fout) 
{ 

start = NULL; 
in = new ifstream(fin); 
if (!*in) { 

error("cannot open input file"); 
exit(0); 

} 

/*out = new ofstream(fout); */ 
out = fout; 
if (!*out) { 

error("cannot open output file"); 
exit(0); 

} 
strcpy(infile,fin); 

} 

*define RAND_RES 100 

/* 
Generates a random PFG with the appropriate properties. 

*/ 

Node * PFG::generate(unsigned MO,unsigned l,unsigned bf,float pe, 
float fp,float cp,float sp,Node *n,unsigned d,unsigned p_o) 

{ 

Node *new_node,*t1,*t2,*t3; 
unsigned rnd,rndl,i,j; 
unsigned RandomChoice[RAND_RES+1]; 
unsigned RandomChoice2[RAND_RES+1]; 



- graph.h - 

unsigned Max; 
unsigned randchild; 
unsigned c,s,f; 

Max=M[d]; 
if (d>1) { 

cp=fp/2; 
sp=fp/2; 
fp=0; 

} 

for (i=0;i<RAND_RES*pe;i++) RandomChoice2[i]=0; 
for (i=(int)(RAND_RES*pe);i<RAND_RES;i++) RandomChoice2[i]=1; 
for (i=0;i<RAND_RES*fp;i++) RandomChoice[i]=1; 
for (i=(int)(RAND_RES*fp);i<RAND_RES*fp+RAND_RES*cp;1++) 

RandomChoice[i]=2; 
for (i=(int)(RAND_RES*fp+RAND_RES*cp+0.5);i<RAND_RES;i++) 

RandomChoice[i]=3; 
unsigned flag =0; 
c=s=f=0; 
for (i=0;(c+s+f)<Max;i++) { 

rnd=rand()XRAND_RES; 
while ((RandomChoicerrnd>=1) && (d>=1)) rnd=rand()y.RAND_RES; 
if (d==0) rnd=1; 
switch (RandomChoice[rnd]) { 
case 2: if (p_o) cout<<"\n(C,1) "; 

new_node=NULL; 
new_node = new Node(C,1,1); 
if (new_node==NULL)ferror("C");exit(0);} 
add_node(new_node,n); 
n=new_node; 
c++; 
flag=1; 
break; 

case 1: 
if ((d<MAX_DEPTH) tat (d<=1)) 
{ 

t1=NULL; 
t2=NULL; 
t2=new Node(J,0); 
if (t2==NULL)ferror("t2"); exit(0);} 
t3=NUIL; 
t3 =new Node(F,0); 
if (t3==NULL)ferror("t3");exit(0);} 
add_node(t3,n); 
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n=t3; 
if(p_o) cout<<"\n(F,0){"<<flush; 
randchild = 2 + ( rand()%(bf-1) ); 
int Empty = FALSE; 
for (j=0;j<randchild;j++){ 

rndl=rand()%RAND_RES; 
if (RandomChoice2[rndi]==1 II Empty){ 
if (p_o)cout<<"\n["<<flush; 

tl=generate(M,1, 
bf,pe,fp,cp,sp,n,(d+1)); 

if (p_o) cout<<"\n]"<<flush; 
} 

else { 
ti=n; 
Empty =TRUE; 

} 

add_node(t2,t1); 
} 

if (p_o) cout<<"\n}"; 
if (p_o) cout<<"\n(J,0)"<<flush; 
n=t2; 
flag =1; 
f++; 

} 

flag=1; 
break; 

case 3: if (p_o) cout<<"\n(S,1)"; 
new_node=NULL; 
new_node = new Node(S,1); 
if (new_node==NULL) {error("Error: Null ptr ");exit(0);} 
add_node(new_node,n); 
n=new_node; 
s++; 

flag=1; 
break; 

default: error("Invalid choice"); 
exit(0); 

} 

if (d==0) break; 
} 

if (!flag) { 
cout<<"\n\n\nInvalid parameters: too many Nuls"<<flush; 
exit(0); 

} 

return n; 
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1 

void PFG::calc_depth(Node *n,unsigned d) 
{ 
unsigned i; 

if (d>100) { 
error("Somethings wrong"); 
exit(0); 

} 
while (n!=NULL) { 

while (((n)->Type !=F) &ft ((n)->Type!=J)){ 
(n)->d=d; 
n=n->get_next(0); 
if (n==NULL) return; 

} 
if ((n)->Type==F){ 

(n)->d=d; 
for (i=0;i<(n)->nb;i++){ 

calc_depth((n)->get_next(i),d+1); 
} 
n=(n)->get_next(0); 
while ((n)->d != d) n=(n)->get_next(0); 

if ((n)->Type != J){ 
error("Error in graph J expected"); 
exit(0); 

} 

n=(n)->get_next(0); 

} else 
if ((n)->Type==J){ 

(n)->d=d-1; 
return; 

} else { 
error("Cannot be "); 
exit(0); 

} 
} 

} 

void PFG::add_node(Node *n,Node *at) 
{ 

if (at==NULL) { 
start = n; 



-graph.h- 

(n)->rc=1; 
else (at)->add_nd(n); 

} 

void print_tab(unsigned gps,ofstream *out) 
{ 
unsigned i; 

for (i=0;i<gps;i++) str[i]=32; 
str[gps]=0; 
*out<<"\n"<<str<<flush; 

} 

void print_enum(node_type nt,ofstream *out) 
{ 

switch (nt) { 
case F: *out<<" F "; 

break; 
case J: *out<<" J "; 

break; 
case C: *out<<" C "; 

break; 
case S: *out<<" S "; 

break; 
case I: cout<<"\n\n Error at print_enum "; 

exit(0); 

} 
*out<<flush; 

} 

void print_tuple(Node *n,ofstream *out) 
{ 

*out<<"("<<flush; 
print_enum((n)->Type,out); 
*out<<","<<(n)->t; 
if ((2->Type==C)) *out<<","<<n->id<<","<<n->rt<<","<<n->delay; 
*out<<")"<<flush; 

} 

void PFG::printf(Node *n) 
{ 
unsigned i; 
Node *nl; 

if (n!=NULL){ 
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while (((n)->Type !=F) tik ((n)->Type !=.7)){ 
print_tab(gps,out); 
print_tuple(n,out); 
n=(n)->get_next(°); 
if (n==NULL) break; 

} 

if (n!=NULL){ 
if ((n)->Type == F) { 

gps +=4; 
print_tab(gps-4,out); 
print_tuple(n,out); 
*out<<" {"<<flush; 
for (i=0;i<((n)->nb);i++){ 

print_tab(gps,out); 
*out<<"{"<<flush; 
gps +=4; 
printf((n)->get_next(i)); 
gps -=4; 
print_tab(gps,out); 
*out<<"]"<<flush; 

} 
gps -= 4; 
print_tab(gps,out); 
*out<<"}"<<flush; 
if (n==NULL) { 

error(" nullpointer"); 
exit(0); 

} 
n1 = (n)->get_next(°); 
if (n1==NULL) { 

error(" null pointer"); 
exit(0); 

} 

while ( 
((n1)->d != (n)->d) ){ 
nl=n1->get_next(0); 

} 

print_tab(gps,out); 
*out<<f lush; 
print_tuple(nl,out); 
printf((n1)->get_next(°)); 
return; 

} 

if ((n)->Type == 3) { 
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return; 
}} 

} 
} 



/* 
The class node represents a node in the PFG with the appropriate 
fields. 

*/ 

*define MAX_N_COND 8 

/* Critical, Non-Critical,Fork,Join */ 
enum node_type {C,S,F,J,I}; 

class Node { 
public: 
node_type Type; 
unsigned id; /* resource id */ 
unsigned t; /* Units of time */ 
unsigned rt; /* release time */ 
unsigned nb; /* Number of Branches */ 
unsigned d; /* Depth in the tree */ 
unsigned delay; 
unsigned rc; /* reference counter */ 
Node *next[MAX_N_COND]; 

Node(); 
Node(node_type T); 
Node(node_type T,unsigned ti); 
Node(node_type T,unsigned tl,unsigned i_d); 
"Node(); 
void print(); 
void add_nd(Node *n); 
Node *get_next(unsigned i); 

I; 

Node* Node:: get_next(unsigned i) 
{ return next[i];} 

Node ::-Node() 

{ 
for (unsigned i =0;i<nb;i++){ 

((next[i])-> rc )--; 
if ((next[i])->rc==0) delete next[i]; 

} 
} 
Node :: Node() 
{ 
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Type = I;rc=t=d=nb=rt=id=delay=0; 
for (unsigned i=0;i<MAX_N_COND;i++) next[i]=NULL; 

} 

Node :: Node(node_type T) 
{ 

Type = T;t=nb=d=rc=rt=id=delay=0; 
for (unsigned i=0;i<MAX_N_COND;i++) next[i]=NULL; 

} 

Node :: Node(node_type T,unsigned ti) 
{ 

Type = T;t=t1;nb=d=rc=rt=id=delay=0; 
for (unsigned i=0;i<MAX_N_COND;i++) next[i]=NULL; 

} 

Node :: Node(node_type T,unsigned ti,unsigned i_d) 
{ 

Type = T;t=t1;nb=d=rc=rt=id=delay=0; 
id = i_d; 
for (unsigned i=0;i<MAX_N_COND;i++) next[i]=NULL; 

} 

void Node::add_nd(Node *n) 
{ 

next[nb] = n; 
nb++; 
(n)->rc=((n)->rc)+1; 
if (nb>=(MAX_N_COND-1)) { 

error("MAX N COND exceeded"); 
exit(0); 

} 

} 

void Node::print() 
{ 

cout << "\n Type: "; 
switch (Type) { 

case I: cout<<"Invalid node n; 

break; 
case C: cout<<"Critical section n. 

break; 
case S: cout<<"Non Critical section "; 

break; 
case J: cout<<"Join n. 
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break; 
case F: cout<<"Fork n. 

break; 
} 

cout<<", d: "<<d<<", t: "<<t<<", nb: "<<nb<<", rc: "<< rc<<flush; 
cout<<", rt "<<rt<<", id "<<id<<flush; 
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class PFG; 
class TreeNode; 
*define MAX_BRANCHES 128 
*define MAX_PFGS 10 

*include "list.h" 

*define MAX_N_RESOURCE 200 
class Traversal { 

public: 
static unsigned g_count; 
unsigned time_static; 
unsigned time; 
PFG *G; 
TreeNode *root; 
TreeNode *row[MAX_BRANCHES]; 
unsigned nl; /* Number of leaves */ 

Traversal(char *input,ofstream *f out); 
"Traversal(); 
void DFS(TreeNode *t); 
void print(); 
void advance(unsigned r,unsigned *); 

I; 

class PFGS { /* Program Flow Graphs */ 
public: 
List L; 
unsigned lrt[MAX_N_RESOURCE]; 
Traversal *T[MAX_PFGS]; 
unsigned np,x; 
PFGS(unsigned n, char *arg[],ofstream *f out); 
"PFGS(); 
TreeNode *row(unsigned i,unsigned j);/* ith graph, jth column */ 
Node *node(unsigned i,unsigned j); /* ith graph, jth column node*/ 
void advance(unsigned i,unsigned j); 
void release_time_static(unsigned x); 
void release_time(unsigned x); 
void compute_release_times(unsigned minj,unsigned mini); 
void extract_items(unsigned minj,unsigned mini); 
void print(); 

I; 
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void PFGS::extract_items(unsigned minj,unsigned mini) 
{ 
unsigned i,j,id; 
list_item li; 

id = node(minj,mini)->id; 
for (j=0;j<np;j++){ 

for (i=0;i<T[j]->n1;i++){ 
if (((mini!=i)I1(minj!=j)) kk(id==node(j,i)->id)){ 

li.i = i;li.j=j; 
li.t=row(j,i)->t; 
li.k=node(j,i)->t; 
li.r=li.t+li.k; 
L.insert(li); 
} 

} 
} 

} 
/* 

computes the release times of a set of resources. 
it is assumed that a request may get delayed up to 
x units of time. 

*/ 

void PFGS::compute_release_times(unsigned mini, unsigned mini) 
{ 
unsigned a,b,c,start; 
unsigned i; 
unsigned id; 

a=row(minj,mini)->t; 
start = a; 
b = node(minj,mini)->t; 
c = a+b; 
for (i=0;i<L.n;i++){ 

if (( L.L[i].t) <= c){ 
row(L.L[i].j,L.L[i].i)->flag=TRUE; 
c = c+L.L[i].k; 

} 
} 
for (i=0;i<L.n;i++) 

if (row(L.L[i].j,L.L[i].i)->flag) node(L.L[i].j,L.L[i].i)->rt=c+x; 

id = node(minj,mini)->id; 
node(minj,mini)->rt = c+x; 
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if (1rt[id]<(c+x)) 
lrt[id]=c+x; 

rov(minj,mini)->flag=TRUE; 
1 

/* 
void PFGS::compute_release_times(unsigned minj, unsigned mini) 
{ 
unsigned a,b,c,start; 
unsigned k,i; 
unsigned id; 

a=rov(minj,mini)->t; 
start = a; 
b = node(minj,mini)->t; 
c = a+b; 
for (i=0;i<L.n;i++){ 

if (L.extract(i).j !=minj){ 
if (( L.L[i].t) <= c) 

c = c+L.L[i].k; 
} 

} 
id = node(minj,mini)->id; 
node(minj,mini)->rt = c+x; 
if (1rt[id]<(c+x)) 

lrt[id]=c+x; 
rov(minj,mini)->flag=TRUE; 
int ti,tj; 
for (k=0;k<L.n;k++){ 

tj=L.L[k].j; 
ti=L.L[k].i; 
L.L[k].i=mini; 
L.L[k].j=minj; 
mini=ti;minj=tj; 
L.L[k].t = a; 
L.L[k].k = b; 
L.L[k].r = c; 
a=rov(minj,mini)->t; 
b = node(minj,mini)->t; 
// c = a+b; 
c = start+b; 
for (i=0;i<L.n;i++){ 

if (L.L[i].j !=minj){ 
if ( ((L.L[i].t>=start) 84(L.L[i].t <= c)) II 

((L.L[i].r>=start) tA(L.L[i].r<= c)) II 
((start>=L.L[i].t) Ikk(c<=L.L[i].r)) ) 
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c = c+L.L[i].k; 
1 

} 
if (c > (a+b)) { 

row(minj,mini)->flag=TRUE; 
node(minj,mini)->rt = c+x; 
if (lrt[id]<(c+x)) 

lrt[id]=c+x; 
} 

1 
} 
*/ 

void PFGS::release_time(unsigned comm_delay) 
{ 
int f = FALSE; 
int i,j; 
int mini,minj; 
unsigned mint; 
unsigned tmp; 

x=comm_delay; 
for (i=0;i<MAX_N_RESOURCE;i++) lrt[i]=0; 
for (j=0;j<np;j++){ 

if (T[j]->root!=NULL) 
delete T[j]->root; 

T[j]->row[0] = new TreeNode(NULL,T[j]->G->start,0); 
T[j]->root =T[j]->row[0]; 
T[j]->n1=1; 
if (node(j,0)->Type != C) advance(j,0); 

} 

int ptr=np; 
while (!f) { 

/* Finds the earliest resource request from the list of 
resource requests. 

*/ 

mini=0;minj=0;mint=row(0,0)->t; 
for (j=0;j<np;j++){ 

for (i=0;i<T[j]->n1;i++){ 
if ((row(j,i)->t) < art[node(j,i)->id])) { 

node(j,i)->delay=lrt[node(j,i)->id]-row(j,i)->t; 
row(j,i)->t=lrt[node(j,i)->id]; 

} 
if (mint>(row(j,i)->t)) { 
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mini=i;minj=j; 
mint=row(j,i)->t; 

} 
} 

} 
L.n=0; 
extract_items(minj,mini); 
compute_release_times(minj,mini); 
for (j=0;j<np;j++){ 

tmp = T[j]->nl; 
for (i=0;i<min(tmp,T[j]->n1);i++){ 

if (row(j,i)->flag){ 
row(j,i)->flag=FALSE; 
advance(j,i); 
i--; 

} 
} 

} 
/* 

If the program terminates as a result of advancing a resource 
request then that PFG is not included for the calculation of the 
release times. If processes are periodic then after idling till 
processes framtime it must be re-include in the calculation of 
release times. 

*/ 

for (j=0;j<np0++) 
if (node(j,0)==NULL) { 

T[j]->time=row(j,0)->t; 
Traversal *Tmp = T[j]; 
T[j] = T[np-1]; 
T[np-1]=Tmp; 
np--; 

j--; 
} 

if (np==0) f =TRUE; 
} 
np=ptr; 

} 

/* 
computes the release times without any contention for the 
processes. This is used to compute the slow down. 

*/ 

void PFGS::release_time_static(unsigned comm_delay) 
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{ 
int f=FALSE; 
int tmp,i,j; 
int ptr; 

for (i=0;i<MAX_N_RESOURCE;i++) lrt[i]=0; 
for (j=0;j<np;j++){ 

if (r[j]->root!=NULL) 
delete T[j]->root; 

T[j]->row[0] = new TreeNode(NULL,T[j]->G->start,0); 
T[j]->root =T[j]->row[0]; 
T[j]->n1=1; 
if (node(j,0)->Type != C) advance(j,0); 

} 

ptr = np; 
while (!f) { 

for (j=0;j<np;j++){ 
for (i=0;i<T[j]->n1;i++){ 

node(j,i)->rt=row(j,i)->t+node(j,i)->t+comm_delay; 
} 

} 
for (j=0;j<np;j++){ 

for (i=0;i<T[j]->n1;i++) 
row(j,i)->flag=TRUE; 

} 
for (j=0;j<np;j++){ 

tmp = T[j]->nl; 
for (i=0;i<min(tmp,T[j]->ril);i++){ 

if (row(j,i)->flag){ 
advance(j,i); 
i--; 

} 
} 

for (j=0;j<np;j++) 

if (node(j,0)==NULL) { 
T[j]->time_static=row(j,0)->t; 
Traversal *Tmp = T[j]; 
T[j] = T[np-1]; 
T[np-1]=Tmp; 
np--; 

j--; 
} 

if (np==0) f =TRUE; 

} 
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up =ptr; 
} 

/* 
Advances the j th resource request in the i th PFG. 
Last resource release time is used to compute the delay 

prior to making a request. 
*/ 

void PFGS::advance(unsigned i,unsigned j) 
{ 

T[i]->advance(j,lrt); 

} 
PFGS::-PFGS() 
{ 

for (int i=0;i<np;i++) 
delete T[i]; 

1 

PFGS::PFGS(unsigned n,char *arg[],ofstream *fout) 
{ 

np = n; 
for (int i=0;i<np;i++) 

T[i]=new Traversal(arg[i],fout); 

} 

/* 
Returns a pointer to the node of the i th PFG corresponding 

to the j th resource request. 
*/ 

Node *PFGS::node(unsigned i,unsigned j) 
{ 

return ((T[1])->row[j])->node; 

/* 
Returns the pointer the leaf node in the TOP (tree of Pointers) 
of the i th tree correponding to the i th PFG and the jth 
resource resource request 

*/ 

TreeNode *PFGS::row(unsigned i,unsigned j) 
{ 

return ((T[i])->row[j]); 
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} 

void PFGS::print() 
{ 

for (int i=0;i<np;i++) 
T[i]->print(); 

} 

void Traversal::print() 
{ 

*(G->out)<<"\n \n"; 
G->print("\n(Type,t,fid,rt,delay1)"); 
*(G->out)<<"\nPFG::"<<G->infile<<"\n"; 
G->printf(G->start); 
*(G->out)<<"\n"; 
*(G->out)<<"\nTermination time = "«time; 
*(G->out)<<"\nSlow Down = "<<((float)time/time_static); 

} 

/* 
This advances the r th resource request to the next request in the 
same execution path as request r. Last release time lrt[j] is used 
to compute any delay if necessary. 

*/ 

void Traversal::advance(unsigned r,unsigned *lrt) 
{ 

Node *n; 
TreeNode *tn; 
unsigned i; 
int found =FALSE; 

row[r]->flag=FALSE; 
n = (row[r])->node; 
if (n==NULL) {return;} 
if (n->Type==C) { 

(row[r])->t = n->rt; 
n = n->next[0]; 
(row[r])->node = n; 

} 

if (n==NULL) {return;} 
tn = row[r]; 
for (i=r;i<(n1-1);i++) 

row[i]=row[i+1]; 
row [n1-1] =tn; 
r =n1-1; 
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while (!found) { 
switch (n->Type) { 
case S: 

(row[r])->t += n->t; 
n = n->next[0]; 
(row[r])->node = n; 
break; 

case C: 
if (((row[r])->t) < (1rt[n->id])){ 

n->delay = lrt[n->id]-(row[r])->t; 
(row[r])->t = lrt[n->id]; 

} 
n->rt = 0; 
(row[r])->node = n; 
r++; 

if (r<nl) n=(row[r])->node; 
break; 

case F: 
for (i=0;i<n->nb;i++){ 

tn = new TreeNode(row[r],n->next[i],(row[r])->t); 
(row[r])->add_node(tn); 
row[nl] = tn; 
nl++; 

} 
for (i=r;i<(n1-1);i++) 

row[i]=row[j+1]; 
nl--; 

n = (row[r])->node; 
break; 

case J: 
nl--; 
tn = (row[r])->parent; 
delete row[r]; 
{ 
for (int j = r;j<n10++) 

row[j]=row[j+1]; 
} 
if ((tn->nc)==0){ 

n->t = tn->t; 
n = n->next[0]; 
row[nl]=tn; nl++; 
tn->node = n; 

if (r<nl) { 
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n = (row[r])->node; 
} 
break; 

case I: 
error("\n Error:advance(): Invalid node "); 
exit(0); 

} 

if (r>=n1) found=TRUE; 
if (n==NULL) found=TRUE; 

} 
} 

void Traversal::DFS(TreeNode *t) 
{ 

if (t==NULL) return; 
for (int i=0;i<t->nc;i++) 

DFS(t->child[i]); 
t->node->print(); 

} 

Traversal::Traversal(char *input,ofstream *f out) 
{ 

g_count++; 
G = new PFG(input,fout); 
G->read_PFG(NULL); 
G->calc_depth(G->start,0); 
G->cluster_PFG(G->start); 
G->transform(G->start); 
G->calc_depth(G->start,0); 
if (G->start!=NULL) { 

row[0] = new TreeNode(NULL,G->start,0); 
root =row[0]; 
n1=1; 

} else nl = 0; 
} 

Traversal::" Traversal() 
{ 

delete G; 
delete row[0]; 
g_count--; 

} 
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class Node; 

*define MAX_BF 128 

class TreeNode { 
public: 
unsigned flag; /* Boolean */ 
TreeNode *parent; /* pointer to the parent Node */ 
unsigned nc; /* number of children */ 
unsigned t; /* time at this fork Node in the PFG */ 
TreeNode *child[MAX_BF];/* Maximum branching factor */ 
Node *node; /* ptr to a node in a PFG */ 

TreeNode(TreeNode *p,Node *n,unsigned time); 
"TreeNode(); 
void add_node(TreeNode *node); 

I; 

/* 
Add a node (child ) to " this node ". 

*/ 
void TreeNode::add_node(TreeNode *node) 
{ 

node->parent = this; 
childEnc]=node; 
nc++; 

TreeNode::TreeNode(TreeNode *p,Node *n,unsigned time) 
{ 

for (nc=0;nc<MAX_BF;nc++) 
childEnc]=NULL; 

nc=0; 
parent = p; 
t = time; 
node=n; 
flag = FALSE; 

} 

TreeNode::"TreeNode() 
{ 

if (nc != 0) { 
error("\n Error at "TreeNode(): TreeNode still intact\n"); 
exit(0); 
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if (parent != NULL) 
unsigned i; 
for (i=0;i<(parent->nc);i++) 

if ((parent->child[i])==this) break; 
if (this!=(parent->child[i])) { 

error("\nError at "TreeNode():No such child pointer\n"); 
exit(0); 

} 
unsigned j; 
for (j=i;j<((parent->nc)-1);j++) 

parent->child[j]=parent->child[j+1]; 
(parent->nc)--; 
if (parent->t < t) parent->t = t; 
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/* 
Orderd list of requests. 
The list is ordered by the field t, i.e. request time 

*/ 

typedef struct list_item { 
unsigned i,j; /* ith PFG jth pointer to request. */ 
unsigned t; /* request time */ 
unsigned k; /* resource usage time */ 
unsigned r; /* release time for this request */ 

}; 

class List { 
public: 
list_item L[MAX_BRANCHES*MAX_PFGS]; 
unsigned n; /* number of items in list */ 

List() { n=0;} 
void insert(list_item item); 
list_item extract(unsigned i); 
void reset(void) { n=0; } 

I; 

void List::insert(list_item item) 
{ 
int i,j; 

if (n==0) { 
L[n]=item; 
ni,+; 

return; 
} 
for (i=0;(i<n) Lk (L[i].t < item.t);i++); 
if (i>n) LC++n7=item; 
else { 

for (j=n-10>=i;j--) L[j+1]=L[j]; 
L[i]=item; 
n++; 

I 
} 

list_item List::extract(unsigned i) 
{ 

if (i>=n){ 
cout<<"\n Error: List:extract() - invalid range \n"<<flush; 
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exit(0); 
} 

return L [i] ; 
} 
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/* 
Generates random PFGs in the space defined by s,1-fp+s, 
for 0<= s <= 1-fp and applies the transformation and computes the 
average efficiency. Each point has a sample size of MAX_SAMPLES. 

s is sub divied in to MAX_DIV. 
*/ 

*include <iostream.h> 
*include <fstream.h> 
*include <libc.h> 

*define TRUE 1 
*define FALSE 0 

extern "C" { 
*include <stdio.h> 
*include <string.h> 
*include <stdlib.h> 

void error(char *s,char *s2=""); 
char *arg[100]; 

*include "graph.h" 

ofstream *initialise(char *0); 
void random_generate(); 

int MAX_DIVISIONS,MAX_SAMPLES; 
double fpg; 

main(int argc, char *argv[]) 

{ 
fpg=0.33;MAX_DIVISIONS=10;MAX_SAMPLES=10; 
switch (argc) { 
case 4: MAX_SAMPLES=atoi(argv[3]); 

case 3: MAX_DIVISIONS=atoi(argv[2]); 
case 2: fpg = atof(argv[1]); 

} 

random_generate(); 

} 
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void random_generate() 
{ 

unsigned M[10]; 
double e,p1,p2; 
unsigned i,j; 
Node *n; 
of stream *f out; 
double del,el; 
double fp,s; 
unsigned d,bf; 

el=0; de1=0; 
fp=fpg;d=5;bf=3;s=0; 
del = (1-fp)/MAX_DIVISIONS; 
s = -del; 
cout<<"\n\n Max Divisions = "<<MAX_DIVISIONS; 
cout<<"\n Max Samples = "<<MAX_SAMPLES<<flush; 
cout<<"\nd="<<d<<" bf="<<bf<<" fp="<<fp<<" del="<<del<<"\n"<<flush; 
M[0]=1;M[1]=8;M[2]=6;M[3]=4;M[4]=4;M[5]=4;M[6]=4; 
fout = new of stream("Output"); 
for (i=0;i<=MAX_DIVISIONS;i++) 

s += del; 
e=0; 
for (j=0;j<MAX_SAMPLES;j++){ 

PFG G(fout); 
srand(rand() % 1000 + 1); 

n=G.generate(M,d,bf,0,fp,s,l-fp-s,NULL,0); 
G.calc_depth(G.get_start(),0); 

G.cluster_PFG(G.get_start()); 
p1 = G.N_f(); 
G.transform(G.get_start()); 
p2 = G.N_f(); 

e = e + (pl-p2)/(p1); 
} 

el +=e/MAX_SAMPLES; 
cout << "\n "<< s <<flush; 

cout<<" "<<e/MAX_SAMPLES<<flush; 

} 

cout << "\n\nNumber of samples = "<<MAX_DIVISIONS<<"\n"; 
cout << "Efficiency = " << (double) el/MAX_DIVISIONS<<"\n"<<flush; 
delete fout; 

} 

of stream *initialise(char *argv[]) 
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{ 
ofstream *fout; 

fout = new ofstream(argv[1]); 
return fout; 

} 

void error(char *s,char *s2 ) 
{ 

cerr << s << " " << s2 << "\n "<<flush; 
} 
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*include <iostream.h> 
*include <fstream.h> 
*include <libc.h> 

*define TRUE 
*define FALSE 0 

extern "C" { 
*include <stdio.h> 
*include <string.h> 
*include <stdlib.h> 
} 

double get_min_E(double fp,unsigned d,unsigned bf); 
double get_min_El(double fp,unsigned d,unsigned bf); 
void error(char *s,char *s2=""); 
char *arg[100]; 

*include "graph.h" 

ofstream *initialise(char *0); 
void random_generate(); 

main(int argc, char *argvD) 

{ 

random_generate(); 

} 

*define MAX_DIVISIONS 10 
*define MAX_SAMPLES 100 

void random_generate() 

{ 
double fp; 
unsigned d,bf; 

fp=0.1;d=5;bf=3; 

for (fp=0.1;fp<=0.5;fp += 0.04){ 

cout << "\n "<<fp<<" "<<get_min_El(fp,d,bf)<<flush; 

} 
cout<<"\n\n"<<flush; 

1 

double get_min_E(double fp,unsigned d,unsigned bf) 
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{ 

unsigned M[10]; 
double e,pl,p2; 
unsigned i,j; 
Node *n; 
double del; 
double s; 
double E=1; 
int FLAG=FALSE; 

del=s=0; 
del = (1-fp)/MAX_DIVISIONS; 
M[0]=1;M[1]=12;M[2]=8;M[3]=4;M[4]=4;M[5]=4;14[6]=4; 
for (i=0;(i<MAX_DIVISIONS-1) && !FLAG;i++) { 

FLAG=TRUE; 
s += del; e=0; 
for (j=0;j<MAX_SAMPLES;j++){ 

PFG G; 
srand(rand() % 1000 + 1); 
n=G.generate(M,d,bf,0,fp,s,l-fp-s,NULL,0); 
G.calc_depth(G.get_start(),0); 
G.cluster_PFG(G.get_start()); 
pi = G.N_f(); 
G.transform(G.get_start()); 
p2 = G.N_f(); 
e  = e  + (pl-p2)/(P1); 

} 

e = e/MAX_SAMPLES; 
if (E>e) 

E = e; 
FLAG=FALSE; 

} 

} 
return E; 

} 

double get_min_E1(double fp,unsigned d,unsigned bf) 
{ 
unsigned M[10]; 
double e,p1,p2; 
unsigned j; 
double E=1; 

e=0; 
M[0]=1;M[1]=8;M[2]=6;M[3]=4;M[4]=4;M[5]=4;M[6]=4; 

for (j=0;j<MAX_SAMPLES;j++){ 
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PFG G; 
srand(rand() % 1000 + 1); 
G.generate(M,d,bf,0,fp,(1-fp)/2,(1-fp)/2,NULL,0); 
G.calc_depth(G.get_start(),0); 
G.cluster_PFG(G.get_start()); 
p1 = G.N_f(); 
G.transform(G.get_start()); 
p2 = G.N_f(); 
e = e + (pl-p2)/(pi); 

E = e/MAX_SAMPLES; 
return E; 

ofstream *initialise(char *orgy()) 

ofstream *f out; 
fout = new ofstream(orgy(1)); 
return fout; 

} 

void error(char *s,char *s2 ) 
{ 

cerr << s << " " << s2 << "\n "<<flush; 
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/* 
Generates the efficiency for the complete space defined by 
fp,cp,sp. MAX_SAMPLES samples are generated for each point. 

*/ 
*include <iostream.h> 
*include <fstream.h> 
*include <libc.h> 

*define TRUE 1 
*define FALSE 0 
extern "C" { 
*include <stdio.h> 
*include <string.h> 
*include <stdlib.h> 

} 
double get_min_E(double fp,unsigned d,unsigned bf); 

double get_min_E1(double fp,unsigned d,unsigned bf); 
void error(char *s,char *s2=""); 

char *arg[100]; 

*include "graph.h" 

ofstream *initialise(char *0); 
void random_generate(); 

main(int argc, char *argv0) 

random_generate(); 

} 

*define MAX_DIVISIONS 10 
*define MAX_SAMPLES 10 

void random_generate() 

{ 
double fp; 
unsigned d,bf; 

fp=0.1;d=5;bf=3; 
for (fp=0.1;fp<=0.5;fp += 0.02){ 

get_min_E(fp,d,bf); 
} 

cout<<"\n\n"<<flush; 
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} 

double get_min_E(double fp,unsigned d,unsigned bf) 
{ 

unsigned M[10]; 
double e,p1,p2; 
unsigned i,j; 
Node *n; 
double del; 
double s; 
double E=1; 

del=s=0; 
del = (1-fp)/MAX_DIVISIONS; 
M[0]=1;M[1]=12;M[2]=8;M[3]=4;M[4]=4;M[5]=4;M[6]=4; 
for (i=0;(i<MAX_DIVISIONS-1) ;i++) { 

s += del; e=0; 
for (j=0;j<MAX_SAMPLES;j++){ 

PFG G; 
srand(rand() % 1000 + 1); 
n=G.generate(M,d,bf,0,fp,s,1-fp-s,NULL,0); 
G.calc_depth(G.get_start(),0); 
G.cluster_PFG(G.get_start()); 
p1 = G.N_f(); 
G.transform(G.get_start()); 
p2 = G.N_f(); 
e = e + (pl-p2)/(pl); 
cout<<"\n"<<s<<" "<<(double)(pl-p2)/(p1); 

} 
e = e/MAX_SAMPLES; 
if (E>e) 

E = e; 
} 

} 

return E; 
} 

void error(char *s,char *s2 ) 
{ 

cerr << s << " " << s2 << "\n "<<flush; 
} 
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/* 
generates values for fp=0.1 ... 0.5 and cp=(1-fp)/2,sp=(1-fp)/2 
*/ 

*include <iostream.h> 
*include <fstream.h> 
*include <libc.h> 

*define TRUE 1 
*define FALSE 0 

extern "C" { 
*include <stdio.h> 
*include <string.h> 
*include <stdlib.h> 
} 

double get_min_E1(double fp,unsigned d,unsigned bf); 
void error(char *s,char *s2=""); 
char *arg[100]; 

*include "graph.h" 

ofstream *initialise(char *0); 
void random_generate(); 

main(int argc, char *argv[]) 
{ 

random_generate(); 
} 

*define MAX_DIVISIONS 10 
*define MAX_SAMPLES 20 

void random_generate() 

{ 
double fp; 
unsigned d,bf; 

fp=0.1;d=5;bf=3; 
for (fp=0.1;fp<=0.5;fp += 0.01){ 

get_min_El(fp,d,bf); 
} 

cout<<"\n\n"<<flush; 
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} 

double get_min_El(double fp,unsigned d,unsigned bf) 
{ 

unsigned M[10]; 
double e,pl,p2; 
unsigned j; 
double E=1; 

e=0; 
M[0]=1;M[1]=8;M[2]=6;M[3]=4;M[4]=4;M[5]=4;M[6]=4; 

for (j=0;j<MAX_SAMPLES;j++){ 
PFG G; 
srand(rand() % 1000 + 1); 
G.generate(M,d,bf,0,fp,(1-fp)/2,(1-fp)/2,NULL,0); 
G.calc_depth(G.get_start(),0); 
G.cluster_PFG(G.get_start()); 
p1 = G.N_f(); 
G.transform(G.get_start()); 
p2 = G.N_f(); 
e  = e + (pl-p2)/(pl); 
cout<<"\n"<<fp<<" "<<(double) (pl-p2)/(p1)<<flush; 

} 
E = e/MAX_SAMPLES; 

return E; 

ofstream *initialise(char *argv[]) 
{ 

ofstream *f out; 
fout = new of stream(argv[1]); 
return fout; 

1 

void error(char *s,char *s2 ) 
{ 

cerr << s << " " << s2 << "\n "<<flush; 
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*include <iostream.h> 
*include <fstream.h> 
*include <libc.h> 

*define TRUE 1 
*define FALSE 0 

extern "C" { 
*include <stdio.h> 
*include <string.h> 

*include <stdlib.h> 
} 

void error(char *s,char *s2=""); 
char *arg[100]; 

*include "graph.h" 

*include "tree_node.h" 
*include "traversal.h" 

ofstream *initialise(int , char *0); 

main(int argc, char *argvD) 

ofstream *fout; 

int ng; /* Number of graphs to be analised */ 
if (argc==1) { 

cout<<"\n Specify Input and Output files\n"<<flush; 
exit(0); 

} 

if ((argc-1)==1) ng =1; else ng =argc-2; 
fout = initialise(argc,argv); 

PFGS graphs(ng,arg,fout); 

graphs.release_time_static(ng); 
graphs.release_time(ng); 
graphs.print(); 

*fout<<"\n\n";fout->close(); 
delete fout; 

} 

ofstream *initialise(int argc,char *argvD) 
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{ 
of stream *fout; 

arg [0] = new char[25]; 

switch (argc) { 
case 1: 

sprintf(arg°],"Input"); 
fout = new ofstream("Output"); 
break; 

case 2: 
strcpy(arg[0],argv[1]); 
fout = new ofstream("Output"); 
break; 

default: 
strcpy(arg[0],argv[1]); 
for (int i=2;i<argc;i++){ 

arg[i-1] =new char[25]; 
strcpy(argi-1],argv[i]); 

} 
fout = new of stream(argv[argc-1]); 

} 
return fout; 

} 

void error(char *s,char *s2 ) 
{ 

cerr << s << " " << s2 << "\n "<<flush; 



-trandimmx- 

*include <iostream.h> 
*include <fstream.h> 
*include <libc.h> 

*define TRUE 1 
*define FALSE 0 

extern "C" { 
*include <stdio.h> 
*include <string.h> 
*include <stdlib.h> 
} 

void error(char *s,char *s2="); 
char *arg[100]; 

*include "graph.h" 

ofstream *initialise(char *0); 
void random_generate(ofstream *f out); 

main(int argc, char *argv0) 
{ 

ofstream *fout; 
char inf[25]; 

if (argc!=3) { 
cout<<"\n"<<argv[0]<< 

":Need to specify Input and Output files \n"<<flush; 

exit(0); 
} 

strcpy(inf,argv[1]); 

fout = initialise(argv); 
PFG G(inf,fout); 

G.read_PFG(NULL); 
G.calc_depth(G.get_start(),0); 
G.cluster_PFG(G.get_start()); 
G.transform(G.get_start()); 
G.printf(G.get_start()); 

fout->close(); 
if (fout!=NULL) delete fout; 

} 



- transform.c - 

ofstream *initialise(char *argv[]) 
{ 
of stream *fout; 

fout = new ofstream(argv[2]); 
return tout; 

} 

void error(char *s,char *s2 ) 

{ 
cerr << s << " " << s2 << "\n "<<flush; 
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