
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Theses Electronic Theses and Dissertations

1-31-1992

Real-TV : RTP/L3's visual monitor Real-TV : RTP/L3's visual monitor

Richard Czop
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

 Part of the Databases and Information Systems Commons, and the Management Information

Systems Commons

Recommended Citation Recommended Citation
Czop, Richard, "Real-TV : RTP/L3's visual monitor" (1992). Theses. 2241.
https://digitalcommons.njit.edu/theses/2241

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons
@ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F2241&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=digitalcommons.njit.edu%2Ftheses%2F2241&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/636?utm_source=digitalcommons.njit.edu%2Ftheses%2F2241&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/636?utm_source=digitalcommons.njit.edu%2Ftheses%2F2241&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/2241?utm_source=digitalcommons.njit.edu%2Ftheses%2F2241&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

Real-TV: RTP/L3's Visual Monitor

Richard Czop

Department of Computer and Information Science

New Jersey Institute of Technology

Newark, New Jersey 07102

Master's Thesis

Table of Contents

Introduction 3

Real-Time Monitoring 6

Previous Work 8
Software Solutions 8

Hardware Solutions 11

RTP/L3 Simulation Components 13
Software Components 13

Hardware Components 14

VRTA Components 14

Real-TV's Functional Specification 15
Functions Performed 15

User Inputs 17

User Outputs 17

System Network Topology 18

Ring Statistics 18

Node Statistics 19

Process Tracking 19

System Files 20

Current Implementation 21

Real-TV's Design Overview 22
Simulation Name Server 23

Token Ring Network Topology Table 25

Our Representation 25

Real World Representation 25

NTT for the Simple Token Ring 26

Component Legend 27

Monitor Listener-Server Entity 28

Monitor/Simulation Initialization & Setup 29

Reporting Protocol within the Software Simulation 31

Types of Messages 31

Transferring the Network Topology to a Monitor 32

Resolving Reporting Functions 33

System Design - Low-level 34
Data Structures 35

Monitor Data Structure 35

Node Data Structures 37

Ring Structures 38

Reporting Mechanism Structure 39

Module Specification 40
File: Topology.c 40

Function Name: CheckNodePress 40

Function Name: RegisterNode 41

Function Name: PaintTopology 41

Function Name: DrawTop 42

Function Name: DrawChildRing 42

Function Name: DrawBridge 43

Function Name: DrawNode 43

File: MISC.0 44

Function Name: Unregisterbutton 44

Function Name: RegisterButton 44

Function Name: DetectButtonPress 45

Function Name: PaintZoomWindow 45

Function Name: PaintTokenWindow 45

Equipment Configuration 46

Implementation Language & Window System 46

System Evaluation 46
Network Topology Table 47

NodeZoom 47

Ring Statistics 47

ProcessTracking 47

Other modules 48

Special Cases 48

Future Extensions 49

Conclusion 49

References 50

Appendix A - Source Code Listing

Approvals

Date Submitted: 1 ,,..6/ 2

Date Approved: i/C,/ 2--

Approved by:
- ---

Abstract

Today many real-world activities are being monitored and controlled by some type
of micro-processor based system. Emphasis is placed on manufacturing and controlling
through the use of computers. The inherent nature of these real-world applications
makes them difficult to control and monitor. They must be built meeting strict timing
constraints and must be predictable. We need to develop simplistic, reliable, and cost
effective methods for building, evaluating, monitoring and controlling these complex
systems. These tools should provide the user with system insight. At the New Jersey
Institute of Technology Real-Time Computing Laboratory, we are building a system
that will provide the aforementioned tools in a complete real-time environment. This
paper gives the user a brief overview of the system that is currently under construction
and gives a detailed look into the component called Real-TV. Real-TV is a software
component that will be used as a monitoring tool to provide users with system insight.
Processes and other system statistics, occurring within the simulated predictable real-
time software/hardware environment, can be tracked and monitored.

Keywords and Phrases: RTPIL3 , Monitor, Simulation, Reporting Mechanism, Real-
time .

RTP/L3's Monitor Page - 2

1. Introduction
As computer technology rapidly expands into every aspect of real-world activities,

we see the proliferation of micro-processor based control systems. Emphasis is being
placed on manufacturing and controlling through the use of computer systems. We
need to develop simplistic, reliable, and cost effective methods for building, evaluating,
monitoring and controlling such complex systems. Real-time computing has emerged
as the saviour and sole provider for such control environments.

The inherent nature of these real-world applications makes these systems difficult
to control and monitor. The process control program must receive data, process it, and
provide a suitable control reply within a priori given time frame [9] or else it fails.
However, a failure in such a system is usually not tolerable, in fact it may cause
destruction to the controlled process or environment. Therefore, these systems must
be built meeting strict timing constraints and must be predictable.

Real-time control systems, in the past as well as today, have been designed and
developed using little or no development tools. Most of these complex real-time
control systems have failed to meet the criteria of being reliable and predictable without
enduring much redesign and reprogramming. The lack thereof, is a problem common
to most research and commercially available systems today. There is always a need to
gain insight into the system's activities, and to detect and analyze bottlenecks. Benefits
of analyzing typical programs were recognized as early as 1955 (see [26]). It would be
beneficial for the designer and developer of these real-time control systems to have
development aids aimed at providing debugging, testing and performance evaluation
for their systems.

The system we are currently developing at the New Jersey Institute of Technology
Real-Time Laboratory is made up of components that will aid these age old anomalies.
The system we are constructing will be a universally-accessible tool that can be used
as:

• a teaching tool

• capable of performing research experiments

• highly flexible for prototyping systems

• used for verifying theoretical research

It is the intent of this system and its components to aid future designers and
developers who must endure countless hours creating these complex real-time control
systems. The aid will be in the form of tools that can be used time again during design,
development, testing, debugging and future modifications that the system will incur
during its life cycle. Furthermore, the system is being designed and built from the start
to be a highly modular, extendible and interchangeable feature rich system. Several

RTP/L3's Monitor Page - 3

components are briefly described: the language, the predictable machine and the
schedulability analyzer. For a complete reference see [1], [8], [9], [12], [17], [18], and
[19]

RTP/L3's Language

To support these novel ideas, Stoyenko [1] has designed a new real-time language,
called RTP/L3 (Real-Time Programming/Language3), that will support the aforemen-
tioned criteria. It is a distributed real-time language that conforms to the ideas dis-
cussed in [1]. The language ispartitioned into a hierarchy of subsets, along the following
three (hence the 3 in RTP/L) orthogonal programming axes [1] see figure 1 below:

• Real-time features, such as activation times, time bounds, deadlines and other
critical timing constraints

• Parallel features, that is, multi-tasking, concurrency control and task
synchronization

• Conventional features (such as variables, statements and subprograms)

Figure 1

RTP/L3's Hardware Machine

To complement and support RTP/L3 a predictable software/hardware machine
has been designed and is concurrently being constructed [12], [19]. The machine
consists of a set of application task processors and a kernel process. The processors
communicate via predictable memories. All device access is time-bounded. The ar-
chitectural components are connected via a time-sliced bus, where pre-scheduled slices
are allocated both processors and DMA devices [1]. The hardware system bus is based

RTP/L3's Monitor Page - 4

on a token-ring network. Each ring on the network has its own token that revolves and
services data transportation. Each station on the communication bus is connected to
the processor through an interface.

This network architecture guarantees rotational times due to the inherent nature
of the underlying token-ring. Each node on the overall hardware network is itself a
token-ring. To reduce access times and enhance scalability of the network, we also allow
mega-rings, where each node is itself a token-ring [1].

Schedulability Analyzer

Finally, the most important overall design issue is that RTP/L3 is schedulability
analyzable. This means that any program built using RTP/L3 can be analyzed for
predictable schedulability. That is, every program expressed in the language may be
analyzed statically for its adherence to the timing constraints [1]. See [1],[8], [17], [18]
for detailed description and explanation of schedulability analyzers.

The prototype system described in [1] includes a user interface, a programming
language, a hardwarelsoftware machine, and a schedulability analyzer tool. Another
component that is currently under construction is a visual monitor called Real-TV
(Real-Time Visualizer)1. This component is an integral part of the software/hardware
machine and plays an important role within the overall system. It is needed to allow
current and future users of the RTP/L3 software/hardware machine, to interact with
and monitor processes and activities occurring within. Through a graphical user inter-
face experimenters and students will have an insight as to what is going on within the
system.

The monitor being built will let the user visualize what is occurring within the
simulated real-time software/hardware system. When the simulation is executing, it will
not directly output any of the results of current activities to the host machine. Rather,
Real-TV will communicate with one of the active simulations and display/monitor all
the user selected activities occurring in that real-time software/hardware system.

1 Monitor, visualizer, and Real-TV will be used interchangeably and will all have the same meaning.

RTP/L3's Monitor Page - 5

2. Real-Time Monitoring
Today's emphasis is on delivering quality software. Program testing, debugging

and performance analysis, are as much a part of every programmers daily regimen as
is the editor they use to input their source code. The literature of the early 80's seemed
to shy away from these novel topics. Glass [7] goes as far as writing an entire paper
based on the "lost world" of software testing and debugging. However, in the last several
years much more research literature has been directed in this direction. This is partially
based on the need of such tools to help aid builders of these complex time dependant
systems, and partially based on the skyrocketing need of such systems within manufac-
turing, scientific, medical, and environmental control industries [8].

Many of todays computer systems are used to measure and control real-world
real-time processes. You can imagine how much a real-time software system would
benefit from exploiting such a simple idea as using a monitoring tool. If the real-time
software system could be tested and monitored accurately while the system is being
developed, it would add to the overall quality, reliability and predictability of the
complete system.

Plattner and Nievergelt, define monitoring as

"...the interaction between a target process and a monitor process by means
of predicates and actions. This interaction can be specified in a satisfactory
way only if the execution monitor is tailored to the programming language
of the target program" [16].

One problem with this definition is the lack of generality. Each programming
language would need a language specific monitor process responsible for gathering the
statistics. A better approach would be to create a general mechanism and format for
monitoring programs written in different programming languages running on
heterogeneous hardware platforms. This however, is not the argument of this paper
and is left open for further research.

Another definition given by Haban and Wybranietz, defines monitoring as "...the
extracting of data during program execution" [14]. This is a much simpler definition in
that it says nothing of how this extraction takes place.

A third definition given by Plattner states that

"a real-time monitor enables us to observe the behavior of the production
version of a real-time process, in order to collect genuine data, usable for
statistics (system and performance), or to detect illegal or unexpected
process states (identifying erroneous behavior, debugging)" [4].

RTP/L3's Monitor Page - 6

All three of these definitions are similar in there functional description of monitor-
ing; however, each describes a different method of monitoring and gathering the data
to monitor.

A monitor of a distributed system such as RTP/L3s Real-TV needs to collect,
interpret, and display information concerning interactions among concurrently execut-
ing processes. A well designed distributed monitor should be capable of collecting
communication statistics, detecting deadlock, and providing views of the nondeter-
ministic process execution. This information and its display can support debugging,
testing, performance evaluation, and dynamic documentation of the distributed system
[15].

To reiterate, real-time processes are processes whose correctness depends on
their behavior with respect to time. These processes must meet certain timing con-
straints as imposed by the external real-time environment being controlled. The
monitoring system should, therefore not affect the timing constraints imposed by the
target process being monitored. These timing constraints are those that will guarantee
the correct outcome of the overall process. We are not concerned with the logical
functional outcome of the system, but are concerned with preserving the time that those
functions perform within. If a process was interrupted for a brief moment to allow it to
dump its current status of internal variables to some reporting function, then this would
not constitute a method that meets the above criteria. This sudden pause in the process
would add a time period to the overall runtime. The timing constraints imposed by the
external environment may and probably would be violated. This example illustrates
what we mean by preserving timing constraints.

If the monitoring system conforms to the aforementioned criteria we call it
real-time monitoring. A real-time monitor enables us to track behavior of an executing
real-time process, and analyze it for statistics, errors, missed deadlines and other critical
outcomes, without violating any imposed timing constraints. It would be appropriate
to build a system that could be incorporated in the development and debugging stages
of program development, as well as during execution of the completed system that
fulfilled these requirements. However,monitoring, testing, and debugging a real-time
system is a very difficult undertaking because of the imposed timing constraints,
asynchronous concurrent activities, lack of central control [14], and the systems non-
deterministic behaviour. Today almost all such monitoring devices share computing
resources and add unwanted interference.

RTP/L3's Monitor Page - 7

3. Previous Work
There have been countless papers written on the subject of real-time monitoring.

The central issues being--designing and developing a monitor in such a way as to not
intrude on the underlying real-time process. By non-intrusive , we mean that when the
real-time process or processes are executing, the monitor will not interfere with any
outcomes or jeopardize any timing constraints. The overall process output should still
be stable, predictable and reliable when the monitor is or is not running.

Some possible side effects can be [3]:

• Performance side effects: the tool uses some of the system resources, this
reduces the effective performance of the system as seen by the user.

• Functional side effects: the tool changes the functional behavior of the system,
in particular introduces errors.

Several papers reviewed deal with monitors that are both non-invasive and
non-intrusive by means of software and/or hardware solutions. Most authors believe
that the monitoring system should be built as part of the initial base system [4], [2], [3],
[14] but is usually omitted because of economic and development time issues. Even
today, monitoring facilities are rarely integrated into programming languages and
systems. If the monitor was built as part of the overall system, then support mechanisms
could easily be provided without later redesign to support such features.

3.1. Software Solutions

Software monitors present information in an application-oriented manner. These
monitors are usually contained within the measured system, sharing with it the same
execution environment; thus producing some degree of interference in both the timing
and space of the monitored program [14]. Many software monitors are used to facilitate
debugging in systems [20], [21], [22], [23]. Others have developed Hybrid tools, [24],
[25] which can benefit from advantages of both hardware and software monitors.
Following are several overviews of papers based on "software approaches" to real-time
monitoring.

As mentioned above, several research papers in the literature provide software
solutions. Plattner [4] believes that the monitoring act should be conducted on a
symbolic level. The operator must communicate with the monitor in terms of source
code. The author also believes that high-level languages should be used and that they
be extended to handle such requests.

The mechanisms used by [4] to express monitoring activities are based on two
distinct parts: a predicate and an action. The predicate is a boolean expression. These

RTP/L3's Monitor Page - 8

actions may save values, increment counters or simply terminate the monitor. These
make up the foundation of debugging and data analysis. A typical session in this system
must continually observe the state of the process and evaluate the predicates that are
submitted to the monitor by the operator. The other operations performed, trace low
level events that change the process state [4]. These are used in the future to reconstruct
what has just occurred.

This system, like several others, also uses simple hardware hooks i.e. a "bus
listener" to eavesdrop on memory transactions and all bus traffic. This "eavesdropping"
produces no contention and therefore is considered non-intrusive by nature.

Svobodova [3] describes several structured guidelines to be used when designing
a performance and reliability monitor. The monitors described are considered ob-
servers rather than controllers. She also believes that the monitor activities should be
an inseparable part of the systems operations. Not only can monitors perform the above
described functions of debugging and testing but, there should be a facility for a special
type of monitoring--exception handling. In order for the exception handling facility to
work properly it requires some cooperation from the underlying hardware components.
These components must report back to the handler describing what errors or exceptions
have occurred. However one weakness to the mentioned components is that they are
all separately described. It is my belief that in order to build a sophisticated monitor it
is necessary to incorporate each one of these types of monitors into one complete
monitor.

Today, most if not all, computer systems are based on some sort of communication
backbone. The RTP/L3 project described earlier in fact relies on the token-ring
network as the sole means of bus communication and interconnection. Monitoring of
the communication network is another element that fits the monitoring paradigm.
Reliability of the communication network and individual nodes on the interconnected
network all have significant effect on the performance of the system [3]. Therefore they
are prime candidates for monitoring unforeseeable events that may occur over the
communication network.

The authors of [2] describe a monitoring system being built as part of their
distributed real-time operating system. The ARTS system has built-in kernel primitives
that aid in the monitoring process. Interestingly the ARTS system monitor must
cooperate with a schedulability analyzer. To provide a monitoring system that will not
interfere with deadlines their system incorporates time delays for each monitoring
activity. The monitoring process is built in such a way that each periodic monitoring
activity is taken into account for the schedulability analyzer [2]. This guarantees that
the processes will meet their respective imposed "hard" deadlines and that the
schedulability analyzer can verify these same deadlines.

Like the previous monitor they also have implemented their monitor as an integral
part of the system. When the monitor is in place their is no functional or performance

RTP/L3's Monitor Page - 9

side effects. However, because no software method guarantees 100% un-intrusiveness
it too suffers from some contention issues.

The overall structure of the ARTS monitor has three main parts: the Event Trap,
the Reporter, and the Visualizer. The Event Trap is the entity responsible for trapping
and recording significant occurrences. It is built into the operating system kernel. The
Reporter is responsible for sending the Event Trap data to the Visualizer. Finally, their
monitor is also built using graphical elements. They say that no one is interested in
seeing massive amounts of raw data, rather it is more meaningful to visualize such data
using visual aids. This portion of the monitoring system is responsible for portraying
the significant data to the user [2].

The Visualizer interprets the raw data and presents it in such a way as to inform
the user. Some data represented by the Visualizer is as follows:

• Debugging data

• Execution diagram

• CPU utilization for periodic and aperiodic tasks

• Number of successful completions

• Missed deadlines

It is also capable of replaying a recorded execution history at a later time. This
makes it possible to trace a process at a later time to find bugs or functional errors.

One problem with the approach taken by the ARTS system is that it addresses
only monitoring of applications software that is static. All the monitor conditions can
be statically deduced from system symbol tables, link, and load information and
statically loaded into the qualification control unit.

Another system called EXDAMS allows reenactment of the execution and the
display of information of interest to the user by extracting history files generated by a
modified compiler. It produces object code that leaves behind a history file. This
approach illustrates a monitoring system that is extensible: new features that interpret
monitoring data in different ways can be easily added [28].

Joyce et al., presents a monitoring system that provides an interactive, animated
display of an executing distributed program and enables user control of nondeter-
minism. It is also extensible in that the detection and collection of the monitoring
information is separate from the analysis and display of this information to the users
[15].

The above mentioned monitoring system was designed within the Jade program-
ming environment. The monitoring system supports the observation and control of
message passing within a distributed application system that consists of a set of

RTP/L3's Monitor Page - 10

concurrently executing processes. All monitoring data is gathered through a channel
process that resides on each machine being monitored. All information from the
application processes executing on that machine is gathered by this channel. A channel
distributes this information to one or more consoles (which may be running on an
entirely different machine), and each console receives information from one or chan-
nels. A console then examines and interprets the monitoring data it receives and
presents it to the user.

Processes loaded with this monitoring mechanism suffer slight execution speed
penalties. Typically, processes under development are monitorable, whereas system
processes and application processes, which have already been tested or that are
installed in a production environment, are unmonitorable.

I believe that a monitor is a tool that should be available to be used from
conception of the system through delivery and monitoring of the production system
therefore, this system does not suffice. The benefits of a monitoring system come from
being able to use it during any phase without lose of timing constraints and program
logic.

As with all software approaches the monitor and its support mechanism add some
delay. Even if the delay is included into the overall running time and analyzed by the
schedulability analyzer it still adds time that would otherwise not be included. There-
fore the "software approach" may not be suitable for all real-time systems. This is why
others have devised ways of providing real-time monitoring without the added time
delays that may not be tolerated in some system. These follow the "hardware approach"
of real-time monitoring and debugging.

3.2. Hardware Solutions

Hardware solutions, on the opposite end of the spectrum, rely on a device that is
designed to have minimal or no effect on the host system. Most, however, provide at
best, only limited, low-level information about the activities occurring on the host
system. Simple observation of system buses, or probes connected to the processor,
memory ports, or I/O channels, do not solve monitoring problems in these systems.
These monitors often use sophisticated features of the hardware to get valuable
information. In addition, hardware monitors cannot handle the dynamic creation and
deletion of processes, the migration of program parts in memory, and the use of memory
management units [14].

In the early sixties commercially available hardware monitors came into
widespread use, and the field of performance evaluation developed. See [27] for a
complete comprehensive bibliography of the early literature.

RTP/L3's Monitor Page - 11

Tsia et. al. [5], believe hardware solutions to monitoring real-time systems are a
much better solution. Not only do they provide non-intrusive monitoring but they also
alleviate the need for the programmer to insert print statements and breakpoints into
the program code [5]. The software solutions described above all add interference to
the target system and share the computing resources. The following hardware methods
provide a better solution. They provide non-intrusive behavior while providing com-
prehensive real-time monitoring and debugging solutions.

In [5] the detection of significant events is performed by what they call a program-
mable qualification control logic . The qualification unit here is responsible for handling
all information gathered during each cycle execution of the processes. This unit is
supported by dedicated hardware rather than by software as described earlier. This
auxiliary hardware records and feeds the monitor with execution data. The unit is a
microcomputer-based module with the ability to do as just described [5]. This approach
has been used for a number of years in the hardware industries and in logic analyzers
as tools for debugging.

The architecture to support this hardware based monitoring has two components:
the interface module, and the development module. The interface module is the front-
end and the development module is the back-end. The first module is a specific piece
of hardware that interfaces with the host real-time system hardware. It detects the
internal states of the target system based on predefined user conditions. The second
development module is the host computer for the interface module. This module is the
general-purpose microprocessor-based system that contains all the supporting software
for the initialization of the interface module and postprocessing activities [6].

By connecting the monitoring system to the internal bus of the target system and
collecting data directly from them this hardware solution does not add any contention
or intrusion. And finally because the monitoring system does not steal CPU time from
the target real-time computing system, it does not interfere with the target system
execution [6]. For a full detailed description of the underlying hardware see [6].

Haban and Wybranietz present another hardware supported monitoring
mechanism. They have developed a special Test and Measurement Processor (TMP)
which was designed to be an integral part of each node in a multicomputer system. The
TMPs are completely transparent with a minimal, less than 0.1 percent, overhead to
the measured system. This device is responsible for monitoring, recording, and evaluat-
ing the activities of the host node as well as its communication activities [14]. To
alleviate the communication contention that would result from the TMPs sharing the
same communication medium as the underlying communication network each TMP is
connected via a separate network to a central monitoring station. This central station
is an arbitrarily selected workstation of the collected network nodes. It also is used for
interactive monitoring, global measurement and distributed debugging [14].

RTP/L3's Monitor Page - 12

To collect relevant data the monitoring mechanism uses events that are generated
by the monitored software. These events are later categorized, time-stamped,
processed and displayed for users to evaluate.

Both software and hardware approaches to supporting monitoring have been
presented. Although neither approach may be right for every need each carries its own
benefits and disadvantages. These presentation have been given in order to give the
reader an overview on how people use monitors and how these monitors are supported.

4. RTP/L3 Simulation Components
Currently RTP/L3 has several software and several hardware components being

designed and developed. Keep in mind that each component must be predictable, (as
described earlier) thus each component must be thoroughly thought out and designed
before development can begin.

4.1. Software Components

There are several software components that make up the entire RTP/L3 project
currently under development.

• Schedulability Analyzer

• OS Kernel Processor

• I/O Processor

• Command Processor

• Scheduler

The schedulability analyzer was described earlier see [1], [8], [17], [18] for a
complete description and motivation. This component is currently being designed and
development will begin shortly.

The kernel processor will be responsible for servicing requests made by the CU for
process loading. When a CU is ready and idle the kernel processor will load the program
into secondary memory for the CU.

The I/O processor will be responsible for handling keyboard input and for display-
ing terminal output. One example is a user wanting to load a program. The user would
type in a command, such as load, from the keyboard, then the I/O processor will
properly handle this input.

The command processor is responsible for interfacing with both the I/O processor
and the OS kernel. It will properly dissect and handle requests from the I/O processor
and issue commands to the kernel processor for handling these inputs.

RTP/L3's Monitor Page - 13

Finally, the scheduler is responsible for directing processes to available system
components. It will resolve any contention and will appropriately schedule each
process.

4.2. Hardware Components

There are also several essential hardware components being designed and
developed:

• Hierarchical Token Ring Network and Communications

• Control Unit

• Arithmetic Logic Unit

• Main Memory

• Secondary Memory

• Device Processor

• Registers

• PSW

The hardware system must be 100% predictable 2. The predictability is guaranteed
by the following rules [11]:

• A global clock keeps track of time elements known as quanta.

• A quantum is the smallest unit of time and can be interpreted as a nanosecond,
a second, a minute or whatever other timing unit seems appropriate.

• Every virtual processor knows beforehand how long each operation will take
to execute (quanta).

• We assume that the circuitry of the hardware will not malfunction.

• Token Ring based network for communication.

The two major hardware components are: UNIX/Virtual Real-Time Architecture
Interface and the Virtual Real-Time Architecture (VRTA).

4.2.1 VRTA Components

The VRTA consists of several components listed above [11]:

• Control Units: These fetch and execute assembled programs.

2 Predictability within the software simulation

RTP/L3's Monitor Page - 14

• Arithmetic Units: These execute only arithmetic statements (the CUs execute
logical branching requests.)

• Memory Processor: Use memory paging.

• OS Kernel (Processor): Loads a program from UNIX into the VRTA secon-
dary memory then schedules it for processing.

• Predictable Bus Architecture: Hierarchical Token Ring

• Device Processor: Forms the interface between UNIX keyboard input and
screen output and the real-time VRTA keyboard/screen I/O.

5. Real-TV's Functional Specification
Following is a detailed description of the functions Real-TV performs and how

they are accessed.

5.1. Functions Performed

Following is a list of all the functions performed by Real-TV:

Connection to a Simulation*-- monitor connects to a user selected simulation
and begins to monitor user selected activities. If the user chooses he may obtain
a list of all the simulations that are currently executing, by querying the SNS.
This list is maintained by the SNS as described earlier.

Displaying of the Network Geometry (User Level View) -- a graphical repre-
sentation of the simulations underlying hardware topology. This view represents
the entire network in a way as the user can manipulate objects and use them to
monitor the activities occurring. This view differs from the one below in that it
presents only the portion of the topology that can fit on the screen. If the network
is very complex and large the Overall Level View will instead be used. Overall
Level View is needed in order to present the user with a view that can be zoomed
into to obtain a suitable User Level View.

Displaying of the Network Geometry (Overall LevelView)* -- graphical repre-
sentation of the entire network. This view may be one in which the user must
zoom in onto a particular segment that he wants to monitor. This view provides
a look at the entire topology of the underlying network topology. Once a user
selects a portion of the network that he is interested in the zoomed in view will
be conceived as described above, User Level View.

RTP/L3's Monitor Page - 15

Static Ring Statistics -- ring statistics such as utilization, current activity,
average free token time, max freetoken time, average data packet size, max data
packet size.

Continuous Ring Monitoring -- bar graph of data packet size, throughput, and
data within the token.

Static Node Statistics -- node statistics such utilization, current activity, average
idle time, max idle time, average busy time, max busy time.

Continuous Node Statistics* -- bar graph of the utilization, throughput, and
current activity occurring at the node.

Static Bridge Statistics* -- bridge statistics such as utilization, current activity,
average data packet size, max data packet size, and number of routings.

Continuous Bridge Monitoring* -- bar graph of data packet size, throughput,
etc.

Process tracking -- track migration of process through network.

Process statistics -- process statistics such as process id, process name, current
activity, network position, controlling CU address, processing time, active time,
last operation performed, missed deadlines*, success rate*, and critical paths*.

Recording of current activities*-- record all activities for later playback

Playback of recorded activities*-- playback previously recorded activities for
offline analysis

Token Statistics -- bar graph showing size of data in token, and token state (busy
or idle).

Exception Handling Facility* -- Process and view exceptions raised during
runtime. This aids the user during debugging.

Debugging Facility* -- provides an inside view for programmers of what vari-
ables contents are, what information is packaged inside a packet, etc.

Keyboard Interface -- provide a window which allows interactive keyboard input

User configuration file* (passed on command line) -- allows the user to have
predefined activities that he wants to monitor

RTP/L3's Monitor Page - 16

Connection to simulation from within monitor* -- allow user to connect to a
different simulation from within the monitor by selecting from a list of the
currently active simulations.

Note: * -- denotes a future function or extension.

5.2. User Inputs

Most user input is directed via the mouse and the three mouse buttons. Some
examples include:

Menu selections -- user positions the mouse pointer inside a menu button and
presses the left mouse button. These commands perform all major functions.

Dialog button selections -- same as above. These commands perform activities
corresponding to specific dialog boxes.

Node Statistics -- user positions the mouse pointer inside one of the nodes and
presses the middle mouse button or right mouse button. Middle mouse button
gives the user static statistical values while the right mouse button gives con-
tinuous reporting capabilities per that node.

Ring Statistics -- user positions the mouse pointer inside one of the rings and
presses the middle mouse button or right mouse button. Middle mouse button
gives the user static statistical values while the right mouse button gives con-
tinuous reporting capabilities per that ring.

Bridge Statistics -- user positions the mouse pointer inside one of the bridges
and presses the middle mouse button or right mouse button. Middle mouse
button gives the user static statistical values while the right mouse button gives
continuous reporting capabilities per that bridge.

Process Tracking -- user selects Process from the main menu.

5.3. User Outputs

Since the entire system is built with a graphically based user interface outputs are
viewed from the very start. It is up to the user to manipulate the objects on the screen
and use them to monitor the software/hardware simulation. The user is basically in
control of all outputs. He can manipulate any of the network objects and get a internal
view of what is happening at any point in time.

RTP/L3's Monitor Page - 17

When the simulation starts it displays the overall underlying hardware topology.
This topology is made up of:

• Nodes on the ring

• Rings on the network

• An entire network

Each node on the network is part of only one ring, however a bridge connects two
disparate rings and therefore is a member of both rings. For a full description of each
type of node that makes up the hardware system see section labeled VRTA Com-
ponents.

The user may select to view statistics for a particular component and will view the
data via graphs, histograms and/or static statistical data. Some examples include:

5.3.1 System Network Topology

Upon initialization of the system a graphical representation of the entire under-
lying network topology will be displayed. This is where the user begins to manipulate
objects and monitor the system. The user can select nodes on the network or make
menu selection to monitor process activities.

5.3.2 Ring Statistics

When the user presses the right mouse button when the mouse pointer is within
one of the rings, statistics are displayed about that ring. These include:

• Ring number

• Average data in a packet

• Continuous bar graph displaying the current data size in the packet

• Token state (idle or busy)

• Source address

• Destination address

• Data in the packet.

The ring statistics enable one to study the traffic on the ring, possibly pointing out
a need for a faster medium or possibly detecting an over used or crowded ring.

RTP/L3's Monitor Page - 18

5.3.3 Node Statistics

When the user presses the middle mouse button when the mouse pointer is within
one of the rings statistics are displayed about that node

(a bridge is not a node). These include:

• Node type

• Parent ring

• Maximum idle time

• Average idle time

• Maximum busy time

• Average busy time

• Current activity

These reporting features enable a user to pin point over worked network com-
ponents, under worked components, or possibly debug operations performed at this
particular node.

5.3.4 Process Tracking

When the user selects Process, by pressing the left mouse button while the mouse
pointer is within the menu button labeled Process, he will be able to select one process
from the currently active processes3. The process state will be monitored and tracked.
Process statistics such as:

• Process ID

• Process name

• Processes active time

• Current activity

• Current Processing node address

• Controlling CU address

• Current network position of process

• Elapsed processing time for the process

• Last node that processed the process

3 Selection of a process from a list currently not implemented

RTP/L3's Monitor Page - 19

will be displayed in a separate window. The actual process movement will be repre-
sented by showing its absolute position within the network graph currently displayed
on the screen see figure 2. When the processes CU requests operations from other
network components such as an ALU to perform an arithmetic operation that process
will be shown migrating to the available ALU within the network. This type of process
tracking will enable a user to see how processes are effected by having a different
number of specific components on the network.

Figure 2

In this particular example if there are several ALUs available on the network, most
likely the CU will find at least one idle ALU to who it can route its arithmetic operation.
In another case there may only be one ALU and therefore that process will be idle and
incur a delay due to the fact that no ALU was available. In this scenario the user may
want or may be forced to add another ALU to the network. This would alleviate the
problem of delays and unnecessary idling.

This is just one simple example of using the process tracking function that is
available within the monitor. You can imagine how powerful this feature can be in
tracking processes, mapping routing paths and detecting timing constraints.

5.4. System Files

When a user selects to record monitor activities the corresponding activities will
be saved for later playback into a flat-file. The format of the file has yet not been
determined and is open to whomever implements this feature.

RTP/L3's Monitor Page - 20

A second file will be used to store relevant startup values that will be used to
initialize the monitor when it is started. This will allow different users to start the
monitor with different parameters and allow them to view and monitor different
activities within a simulation.

Another file that is used is the NTT (described earlier). This file stores the network
topology table and describes the network layout for use with the simulation and
monitor. As described earlier, the information stored in the NTT is communicated to
the monitor via the RTP/L3's Reporting Mechanism.

5.5. Current Implementation

Currently the monitor and simulation have the following properties:

• The software monitor can only monitor/display one (1) simulation per
monitor instance.

• Multiple instances of a monitor can all monitor/display the same simulation.
(This enables different users to view diverse portions of one simulation at the
same time, possibly from two or more different machines)

• A monitor can connect to a simulation that is already in progress.

• The user of the monitor has full control of what, when, and who they monitor.
(Ex. User A can monitor a process running on a simulated software/hardware
machine from start to finish, user B can zoom in and monitor activities
occurring on a node with address 00005, while user C can zoom in and watch
activities occurring on token ring 00012)

• A monitor can run on the same machine as the simulation or can run on a
remote machine. (The monitor and simulation can run on heterogeneous
systems, however they must be able to connect via a network. Also the
monitor must know the name of the machine the simulation is running on.
The communication can occur within the UNIX internet domain.)

One of the main limitations that the system currently has is that only single
instances of reporting windows are available. What this means is that if a user wants to
track two or more activities of the same kind he will not be allowed. An example of this
limitation is if a user wants to zoom in and monitor the activities of two or more rings.
The current implementation allows only one such window to be opened at the same
time. The basic underlying control mechanism and functional mechanisms have been
built for each monitoring activity, therefore this extension should only be a matter of
semantics.

A second system limitation is that the monitor can only track one process. The
software/hardware machine being built currently allows only single process execution
this monitor limitation can therefore be tolerable. The only mechanism needed to allow

RTP/L3's Monitor Page - 21

Real-TV to allow tracking of multiple monitors would be to design the algorithms.
Again, because the underlying control and functional mechanisms are available this
extension should be able to be implemented with ease.

A third limitations is that the monitor can only connect to one simulations per
monitor instance. Future extensions may allow one monitor instance to connect to
several simulations at once and allow users to view each simulation in a window.

6. Real-TV's Design Overview
Real-TV is a distributed real-time monitor that provides an unobtrusive

mechanism for obtaining pertinent data from an executing simulation. It is designed to
be used as a front-end to the simulated software/hardware machine currently under
development. While RTP/L3's software/hardware machine is executing, Real-TV will
not interfere with any outcomes and will not add any overhead to the processes being
monitored or tracked. This guarantees that Real-TV will not jeopardize the predict-
ability that the schedulability analyzer calculated. When Real-TV is actively monitor-
ing a simulated system or if it is not, performance and deadlines will be unaltered and
outcomes will be unchanged.

When Real-TV is transformed into a real-world system it will become another
device on the network ring. Real-TV will then likely be an interactive nonreal-time
component that may physically work like any other device that is currently connected
to the network. It will request services and be serviced similarly. When the other
components of the project, such as communications or the keyboard, are completed
we will have better ideas on how to implement Real-TV's reporting mechanism into a
real-world model in a unobtrusive manner.

In order for Real-TV to work properly, it needs to obtain relevant data from the
simulation. To fulfill these requirements we needed to build a facility that would allow
two or more processes, monitors and simulations, to communication regardless of there
host machine location. The following sections give an overview of several of these
underlying support mechanisms that were built. Each ensures reliable and efficient
communication between the monitor and simulation.

We designed and built a communication reporting mechanism. This section is
based on work done concurrently while Real-TV was being developed. The author of
this paper and Richard Meyer designed and developed the following reporting
mechanism. See [10] for a complete reference.

There are two main components that make up the reporting mechanism. The
reporter and the gatherer . The former, is responsible for getting the data and reporting
it to the gatherer. The monitor and simulation are both distributed systems, therefore
the reporter is also responsible for sending the data to the correct gatherer.

RTP/L3's Monitor Page - 22

The later element, the gatherer , is located on the other end of the communication
mechanism and its primary duties are to gather the information sent from the reporter.
It listens to the communication channel, when it receives data from the channel it will
analyze the data and pass the request to the correct component. It is then responsible
for returning the data to the correct requestor.

We needed to build a reporting mechanism which was:

• easily callable by both monitor and simulation

• portable

• capable of asynchronous communication

• capable of handling multiple connections

We chose to implement the reporting mechanism via UNIX internet stream
sockets, and UNIX shared memory. The socket IPC mechanism is used to communicate
between a monitor and a simulation via the TCP/IP protocol. While the shared memory
is used to pass data between the listener-server entity (see below) and the monitor or
simulation. The monitor and simulation both use this communication model to provide
asynchronous communication in a predictable, reliable and efficient manner.

6.1. Simulation Name Server

The monitor and simulation can be executing on different host machines, this
made it necessary to design a name server. The primary responsibility of this server is
to assign unique keys to the simulation. These keys are later used by both the simulation
and monitor to setup a communication path in order to exchange relevant information.

When the RTP/L3 software/hardware simulation is started it is responsible for
registering with a Simulation Name Server (SNS). The simulation will register its
simulation name and its machine name. It will then be given a unique socket port
number by the SNS. This procedure will ensure that communications, directed to a
machine running multiple monitors or one running multiple simulations, are
transported correctly and to the correct simulation or monitor. The socket port number
will then be used to establish a communication socket between a simulation and a
monitor that want to communicate.

When a monitor wants to connect to a running simulation it can request, from the
SNS, a list of all the simulations currently active. The monitor will receive a list of
simulation names, simulation host computer names, and a list of unique port ID's which
correspond to each simulation. This socket port number will then be used to establish
communications between a simulation and a monitor. This procedure is outlined in
figure 3 .

RTP/L3's Monitor Page - 23

The SNS will be running on a well-known machine with a well-known port number.
These parameters will be agreed upon and publically known. The SNS is capable of
running on any machine within the UNIX internet domain and may in fact be executing
on different machines at different times. This feature allows for easy portability.

Figure 3

When the simulation is ready to register its services it will connect to the SNS via
a UNIX socket. This connection is kept alive throughout the simulation and is again
used to notify the SNS upon simulation termination. This ensures that the SNS is kept
up to date with the simulations that are currently running and gives prospective
monitors accurate active simulation lists. It is the simulations responsibility to register
its services and to unregister its services upon terminating.

The SNS is capable of handling these three types of requests:

• Simulation Registry

• Simulation Unregistry

• Monitor Query

When a simulation registers its services it is known as simulation registry. When
that same simulation is about to terminate, for what ever reason, it must unregister its
services. This is known as simulation unregistry. Finally, monitor query is the procedure
by which a monitor obtains a list of all simulations that are currently running including
their unique port number identifier. The monitor can then select the simulation that it
would like to monitor and connect to it correctly.

RTP/L3's Monitor Page - 24

The main need for this SNS is to help alleviate the naming discrepancies that may
be incurred due to multiple simulations or multiple monitors running on the same
machine. It is also a nice feature which enables prospective monitors to see which
simulations are currently running. One scenario may be that several simulations may
be running and users may be assigned a problem. The user may want to run the problem
on several different simulated software/hardware systems each with a different
hardware configuration. The SNS gives each user a easy, flexible mechanism to locate
the simulations to execute their problem set.

6.2. Token Ring Network Topology Table

RTP/L3's hardware bus is based on a token-ring network, hence we needed to
devise a way to represent it. Displaying the network topology of the underlying
hardware system graphically without such a support feature would not provide a real
world view. We needed to design a method that would allow users a quick and easy
way to change network layouts and at the same time give a physical layout for Real-TV
and the simulation to use.

6.2.1 Our Representation

We defined a format for a flat file called Network Topology Table (NTT). The
NTT will be used for two specific areas during the simulation. First, it will be used to
initialize the simulation with the layout of the hardware subsystems. Based on the
network topology represented in this file we provide the users with an easy method for
simulating different network configurations. Very easily they can create an NTT and
execute a simulation passing the newly created NTT as a parameter. Changing the
contents of this file or starting the simulation with a different NTT allows many
combinations of topologies to be tested and analyzed for performance.

The second use for the NTT is for Real-TV. When the monitor connects to a
simulation the first data they exchange is the NTT. The simulation will pass this
information via the reporting mechanism described earlier. The monitor will then be
able to build a graphical representation of the underlying network.

6.2.2 Real World Representation

In a real world token-ring network, obtaining a network topology is fairly straight
forward. When the network comes up each node is responsible for announcing its
presence and voicing its network address. Each node knows of his neighbors and their
associated addressed. This information would be polled by a designated node on the
network who would be responsible for gathering this information for the monitor. The
exact protocol may differ for different vendors token ring networks.

RTP/L3's Monitor Page - 25

6.2.3 NTT for the Simple Token Ring

Following is an example NTT for the network represented in figure 4. The node
type column represents a symbolic identifier to describe one type of node (component)
on the rine.

Node Type
1
3
-1
5
0 < ---End of Network #1
-1
3
6
5
0 < ---End of Network #2

Figure 4

4 A zero (0) delimiter is used to separate disparate rings on the network

RTP/L3's Monitor Page - 26

6.3. Component Legend

Component Identifier
CU 1
ALU 2
Register 3
PSW 4
I/O Processor 5
Main Memory 6
Secondary Memory 7
Command Proc. 8
OS Kernel 9
End of Ring 0
Bridges < 0

CU - The Control Unit provides a means of controlling the processing of instruc-
tions.

ALU - The Arithmetic Logic Unit, executes mathematical instructions. These
instructions either involve numerical operations (arithmetic) or non-numerical (logi-
cal) operations, such as program branching and symbolic processing.

Register - Registers are those components which provide a storage device for
words.

PSW - A Program Status Word, stored in a special register, indicates program
status, interrupts that the CPU may respond to, and address of the next instruction to
be executed.

I/O Processor - An Input/Output Processor is a special-purpose processor used
exclusively to control input-output operations.

Main Memory - Main Memory is a large fast memory used for program and data
storage during computer operation.

Secondary Memory - Secondary Memory also called auxiliary memory, is general-
ly much larger in capacity than Main Memory but slower. It is used for storing files

5 Bridges are represented in the SGT as negative integers

RTP/L3's Monitor Page - 27

which are not continually accessed by the CPU. It also serves as an overflow memory
when the capacity of main memory is exceeded.

Command Processor - A Command Processor reads an instruction and based on
what is to be performed, distributes the work to the respective resources.

OS Kernel - The Operating System Kernel is a portion of the operating system
that remains in main memory and consists of the most frequently used part of the
operating system.

Bridge - A Bridge is used to connect a collection of separate network segments.
Bridges examine each frame and only forward those that need to reach the other
segments.

To identify bridges that connect two disparate rings the same negative integer is
used in the NTT. Example: In the above network layout Ring #1 and Ring #2 are
connected via a bridge (-1). The bridge has separate addresses per network ring. Also note
that the next set of bridges would be labeled -2. -3, -4 respectively.

Ring #1 contains a CU, a Register, a Bridge, and a I/O processor. Ring #2 contains
a Bridge, a Register, Main Memory, and a I/O processor.

Note that the NTT does not contain any notion of node addresses. When a network
topology is modified it will make it easier for placing new components in between
existing nodes without upsetting node addressing. It will be the responsibilities of the
data communications portion of the simulated hardware system to build network
topology and to assign each node per ring a unique network address.

6.4. Monitor Listener-Server Entity

This section describes the method used to setup the reporting mechanism in both
the monitor and simulated software/hardware. Upon initialization of the graphical
software monitor and the simulation each respective process is responsible for setting
up and initializing a piece of shared memory. The shared memory is used to pass data
between the controlling process6 and the listener-server process. It also initializes a
signal handler of the type SIGUSR1. The signal handler will be responsible for handling
reading of the shared memory data, properly dissecting it and then finally servicing the
request. Signals are used to interrupt the controlling process and notify it that data is
ready to be read. This data can either be a monitor request, originating at the monitor,
or can be simulation data, information pertaining to the requested information. After
this information is retrieved only then may it resume its previous activities.

6 Controlling process is either the monitor or the simulation

RTP/L3's Monitor Page - 28

When the preliminary initialization is finalized the listener-server (LS) (or server
or socket server) process is forked off using the UNIX fork() system call. The LS
process is then responsible for initializing its own end of the shared memory and for
setting up the main communication socket. This is the socket which all communication
is directed through. It is also the LS's responsibility to register and unregister with the
SNS. Finally, the LS must establish and terminate socket connections between one
through several communicants who may connect in an unpredictable manner
throughout the life of a monitor or simulation. See figure 5 for a visual representation.

When a new connection is detected by the LS it is up to it to process these requests
both efficiently and with a guarantee. This is done by polling all the connected sockets
and servicing them in a timely fashion. Each connection that does have a pending read
or write will be serviced until that read or write request is consummated. The LS
protocol is structured so as not to interrupt the servicing of the current monitor or
simulation requests.

Figure 5

6.5. Monitor/Simulation Initialization & Setup

Both the monitor and simulation will call one function to initialize and setup the
reporting communication mechanism. A call to the function init_rpt_mech() (initialize
reporting mechanism) will (see figure 6):

• Setup the SIGUSR1 signal handler which signals that a request has arrived

RTP/L3's Monitor Page - 29

• Setup the shared memory

• Fork() and exec() the LS

Once the LS is fork'ed and exec'ed the control returns back to the parent process,
which in this case is the monitor or simulation. Then the child process, or the LS, is
responsible for:

• Initializing and setup of the LS

• Setting up the LS's shared memory pointer

• Connecting and registering with the SNS (simulation only)

• Polling the sockets for new connections and new service requests

• Reading from the socket, passing the request to the simulation or monitor
through the shared memory

• Finally, forwarding the serviced request data back to the originator

During the entire lifetime of the monitor and simulation the LS is accountable for
establishing new connections to the simulation, reading requests initiated by the
monitor, and sending back the serviced requests back to the monitor.

Figure 6

RTP/L3's Monitor Page - 30

6.6. Reporting Protocol within the Software
Simulation

The simulation only has to be concerned with the functional interface provided to
it for accepting connections and sending messages to the monitor(s). There are four
function calls provided:

• init_rpt_mech - Initialize Reporting Mechanism. Initializes data structures,
fork()'s the listener process, and creates shared memory for IPC. This needs
to be called only once by the simulation.

• continuous monitor - provides the mechanism to gather data and send
messages to monitors viewing data in continuous monitor mode (explained
below). This function is called once per simulation clock time.

• msg_driver - The interrupt driven reporting mechanism (IDRM) that is
asynchronously invoked by a signal from the listener process. The IDRM
determines which message was received then processes and sends an ap-
propriate reply.

• send_monitor - Sends the requested information back to the monitor.

6.6.1 Types of Messages

There are two types of messages: Read/Write (RW) messages and Continuous
Monitor (CM) messages. These two types of messages correspond to the two choices
the monitor offers in viewing data: Snapshot and Continuous mode.

An RWmessage type is a request made by a monitor to a simulation to send current
information about a single object (i.e. a node or bridge in the network).

The protocol is as follows:

• The monitor sends an RW type message; the monitor's listener process waits
for the reply

• The request arrives at the simulation's listener

• The request is transferred to the simulation via shared memory and handled
by the IDRM

• The listener blocks until the reply is placed in shared memory and is signaled
by the simulation

• The listener, upon being signaled, fetches the reply from shared memory and
sends the reply (message) to the monitor.

RTP/L3's Monitor Page - 31

• The monitor's listener process continues upon receiving the message

By following the above protocol, when many RW type messages are queued at a
simulation, they will be serviced one at a time. Thus synchronization has been achieved
-- it is not possible for one monitor's request to interfere with another.

A Continuous Monitor message is a message that is sent to a monitor, at regular
intervals, which describes the current state of an object. To establish the Continuous
Monitor mode, the monitor sends an initial CM type message informing the simulation
that it wants to register the CM mode of operation for a particular item.

The simulation, upon receiving a CM type message, registers the monitor and
notes the item to be monitored. Whenever the continuous monitor function is called
by the simulation, the appropriate reply will be generated and sent.

The protocol is as follows:

• The monitor sends a CM type message describing the item to be continuously
monitored

• The request is serviced by the simulation's listener

• The request is transferred to the simulation via shared memory and handled
by the IDRM

• The listener, upon being signaled, fetches the reply from

shared memory and sends the reply (message) to the monitor

• The simulation, at pre-defined regular intervals, performs step 4 automat-
ically until the monitor terminates this CM request

6.6.2 Transferring the Network Topology to a Monitor

After establishing communication with the simulation the monitor will request
the NTT from the simulation. The RW protocol is altered slightly to accommodate the
transfer of the Network Topology Table file since many messages must be sent to
complete the request. When the simulation listener sees that the request was for the
Network Topology Table (NTT), it cycles through the following protocol:

• Monitor sends a NTT request

• Simulation replies with NTTSTART and first NTT entry

• Monitor sends NTTNEXT request

• Simulation replies with NTTENTRY and next NTT entry

7 The simulation will call this function as needed--every clock tick, every tow clock ticks, or whatever is deemed appropriate

RTP/L3's Monitor Page - 32

• Repeat step 3 and 4 until the last entry in the NTT is reached

• Simulation sends NTTEND and the last NTT entry

NTTSTART, NTTNEXT, and NTTEND are placed in the reportlD field within
the reporting mechanism data structure (described later).

NTTSTART -- Indicates the first entry of the NTT

NTTENTRY -- Indicates a NTT entry

NTTEND -- Indicates the last entry in the NIT

6.6.3 Resolving Reporting Functions

Since there are possibly several instantiations of one node type (i.e. CU, ALU,
Main Memory, etc.) a cross-reference table is used, in the simulation, to resolve which
reporting function should be called. The table contains the address of the node, the
object, and a pointer to a function. The address corresponds to the 10 digit network
address. The function pointer points to the actual function that will properly generate
the message request packet to be sent to the monitor.

The reporting functions are provided by the programmers of the objects (node
types). All instantiations of the same object will report the same "set" of information.
A typical reporting function will gather the data for a particular instantiation, write the
data to shared memory, and signal the listener process.

RTP/L3's Monitor Page - 33

6.7. System Design - Low-level

All relevant data pertaining to the simulation and the current activities is kept in
individual data structure. Each structure is defined below along with a brief description
of each member.

The monitor, once started, will continuously loop processing user requests. These
requests are made by moving the mouse pointer and pressing the mouse button on an
appropriate control. These requests range from selecting a menu choice that monitors
and tracks a process to clicking the mouse on a node to zoom in on the current
information pertaining to that node.

The first function performed by the monitor is to connect to the simulation and
receive the network topology description. This data is stored in an internal data
structure that will be used each time to repaint the network graphically and when a
users selects a component of the network, such as a CU. When the user selects a node,
all the relevant data about the screen position and current status of the node is kept by
this data structure (see Node Data Structure below).

Current monitor status, such as what windows are currently active, are kept in the
monitor data structure. When the user requests an activity the program checks to see
the current status of this activity and takes the appropriate actions. If the activity is
currently active the window is updated to reflect to new information. If the activity is
not currently active then the proper flags are set and a window is popped up to show
the relevant information.

When the user clicks on a node, such as a CU, the monitor will fill the reporting
mechanism data structure with the appropriate request data and pass it to the server
socket. This requested data will then be returned by the simulation in the same data
structure. Once the monitor receives this data it is up to it to dissect it and display the
correct information to the user within the proper window.

The following section describes the most important data structures that are used
to control Real-TV. Each member plays an important role in helping Real-TV to track
current activities and to track the current status of user activity.

RTP/L3's Monitor Page - 34

6.8. Data Structures

6.8.1 Monitor Data Structure

The main data structure used to control Real-TV is MonitorData. It primarily
tracks the states of the different activities that the user selects to monitor and manipu-
late. The structure is as follows:

struct Monitor{
int Nodes

int Rings

int Bridges

int currentMenuSet

int menuItems

int buttonSelected
int trafficWindow

int trafficButIndex

int zoomWindow

int zoomButIndex

int process Window

int processButIndex

int tokenWindow

int tokenButIndex

int aboutButIndex

int aboutWindow

int legendWindow

int legendButIndex

int bridgeWindow

int bridgeButIndex

int ringSelected

char addSelected[NODEADDRESS]

int typeSelected

int tokenNewView

int quit
}

RTP/L3's Monitor Page - 35

These three variables are used mainly when building the graphical representation
of the underlying network.

Nodes -- Indicates how many elements are on the network including ring
delimiters.

Rings -- Indicates how many rings are on the entire network.

Bridges -- Indicates how many bridges are on the entire network.

These variable describe the current menu set being displayed and are used when
repainting the menu.

currentMenuSet -- Indicates the index of the menu set currently being displayed
on the menu line. This variable is used to repaint the menu when the X Window
is exposed.

menultems -- Indicates the number of menu items in this menu set.

buttonSelected -- Indicates what button the user pressed from the main menu.

These variables track open windows, and their associated buttons.

xxxWindow -- This set of variables with the Window extension are flags that
indicate if that window is already open.

xxxButIndex -- This set of variables with the Butlndex (button Index) extension
are indexes into the structure that tracks what buttons have been registered per
dialog box. Each registered button has an x,y coordinate, a string, and a function
attached to it.

The last set of variables indicates the type of node the user selected when he
pressed the mouse button for node, ring, or bridge statistics.

ringSelected -- Indicates what ring the node is a part of when a user presses the
mouse button while the pointer is

within a network node.

typeSelected -- Indicates the type of node selected: CU, ALU, bridge, etc.

addSelected -- Indicates the address of the ring, node, or bridge selected.

Finally, quit indicates if the user selected quit from the main menu.

RTP/L3's Monitor Page - 36

6.8.2 Node Data Structures

This data structure tracks all the nodes (CU, ALU, registers, etc.) on the network.
The information contained gives exact coordinates of each node and other relevant
data. This structure is used when the network is drawn on the screen as well as when
the user selects a node from the graphical diagram.

struct NodePtr

{
int x

int y

int gender

int type

char address[NODEADDRESS]

int ring

int nodeMarked

int processState
}

x -- Indicates the center X coordinate of the circle representing the node.

y -- Indicates the center Y coordinate of the circle representing the node.

gender -- Describes the nodes gender: Node, Ring, or Bridge.

type -- Indicates the nodes type: ALU, CU, Register, etc.

address -- Indicates the address of the node.

ring -- Indicates what ring number the node is connected to.

processState -- Indicates which process tracking state the current node is in. This
is used when repainting the topology. The three states are Controlling CU,
Processing, or Token.

The following data structure is made up of the data structure just described above.
It is used to draw the network topology to the screen.

struct RegNodes

{

RTP/L3's Monitor Page - 37

int numberOfNodes

int currentIndex

struct NodePtr Nodelnfo[MAXNODES + MAXRINGS]
}

numberOfNode -- Indicates the number of nodes on the network.

currentIndex -- Indicates the index into Nodelnfo. This is the node currently
being processed when the network is being drawn on the screen.

Nodelnfo -- An array of NodePtr structures. Describes each node on the
network as described earlier.

6.8.3 Ring Structures

struct ringData {
int ringTop

int processed

int centerX

int centerY

double radians

double currentRadians

int lineLength

int LineX

int LineY

int NodeX

int NodeY

int CircleX

int CircleY

int BridgeX

int BridgeY
}

The variables in this structure describe the positions of all the rings on the network.

ringTop -- Index of the first ring drawn.

processed -- Indicates if this ring has been finished being processed. Because
the network topology is drawn recursively we need to track which rings have
been processed.

RTP/L3's Monitor Page - 38

centerX -- Center X coordinate of this ring.

centerY -- Center Y coordinate of this ring.

radians -- Angle between node connectors on this ring. This angle is in radians.
Because each ring may have a different number of nodes connected to it each
node on the ring is spaced different from other rings. The number of nodes is
divided by a full circle and an equal distant angle is calculated for each ring.

currentRadians -- The current angle to draw the node connector.

lineLength -- Length of the node connector line, from the ring to the node.

LineX -- Point X where the node connector ends, at the bridge.

LineY -- Point Y where the node connector ends, at the bridge.

NodeX -- Point X where the node connector connects on the node.

NodeY -- Point Y where the node connector connects on the node.

CircleX -- Point X where the node connector connects to the ring.

CircleY -- Point Y where the node connector connects to the ring.

BridgeX -- Point X where the node connector connects to the bridge.

BridgeY -- Point Y where the node connector connects to the bridge.

6.8.4 Reporting Mechanism Structure

struct RptMech {
int reportType

int reportlD

int value 1

int value2

int value3

int value4

int value5

char textl[RPTTEXT]

char text2[RPTTEXT]

char text3[RPTTEXT]

RTP/L3's Monitor Page - 39

char text4[RPTTEXT j

char texts[RVITEXT]
}

The reporting mechanism described earlier uses this structure to pass relevant
data from the simulation to the monitor and back. The value and text fields below are
used for different data depending on the report type requested.

reportType -- Indicates if the reporting mode is Read Write (RW) or Con-
tinuous.

reportID -- Indicates the type of report the monitor needs information about.

valuel - value5 -- Generic fields used for numeric return values.

textl - texts -- A generic field used for character return values.

7. Module Specification
This section describes several selected modules. It briefly describes what function

each module performs and provides the interface to the module. Most of the functions
described below have four common parameters defined. The first three are used when
calling the X Window functions.

thisDisplay -- describes what display to write output to.

thisWindow -- indicates what window to write output to or take input from.

thisGC -- describes the Graphic Context for the window.

MonitorData -- described earlier.

7.1. File: Topology.c

7.1.1 Function Name: CheckNodePress

Function Interface
Display thisDisplay

Window thisWindow

RTP/L3's Monitor Page - 40

GC thisGC

int x, y -- X, Y coordinates of the mouse pointer when the mouse was pressed.

struct Monitor MonitorData

Functions Performed
Scans the list of registered nodes (rings, nodes, or bridges) and returns whether
one was pressed.

7.1.2 Function Name: RegisterNode

Function Interface
int centerX, centerY -- X, Y coordinate of the center point for the node.

int gender -- Node, Ring, or Bridge.

int type -- If a the gender is a node then it indicates what type of node
(ALU,CU...).

int ring -- The address of the ring it is connected to.

char * address -- The address of the node being registered.

Functions Performed
Register the coordinates for the node and initializes all values.

7.1.3 Function Name: PaintTopology

Function Interface
Display thisDisplay

Window thisWindow

GC thisDisplay

struct TopologyData Topology -- Stores relevant data about the topology.

struct Monitor MonitorData

struct BridgeData Bridges -- Stores list of bridges already processed.

RTP/L3's Monitor Page - 41

Function Performed
Gets called everytime that the graphical representation of the network needs to
be redrawn. It paints the center Ring and then calls DrawTop() to recursively
paint the rest of the topology. It also clears the previous data from the data
structures topology and bridges, and clears the window.

7.1.4 Function Name: DrawTop

Function Interface
Display thisDisplay

Window thisWindow

GC thisGC

struct topologyData Topology[] - Stores relevant data about the topology.

struct Monitor MonitorData

struct ringData RingData 0 -- Stores relevant data about the rings and their
coordinates.

int Current -- Index of the current node we are inspecting.

int Tmp -- Index used to walk through the list of nodes.

int RingTop -- Index of the top of the current ring we are processing.

struct BridgeData Bridges -- Stores list of bridges already processed.

int Ring -- Ring currently processing.

int BridgeMatched -- ID of the bridge just matched.

Functions Performed
Recursive function that draws the network topology of the underlying hardware
system.

7.1.5 Function Name: DrawChildRing

Function Interface
Display thisDisplay

Window thisWindow

RTP/L3's Monitor Page - 42

GC thisGC

struct ringData RingData H -- Stores relevant data about the rings and their
coordinates.

int Ring -- Index of the ring to paint.

int CurrentRing -- Index of the parent ring.

struct parentData ParentData -- Relevant data of the parent Ring.

Function Performed
Given a parent ring and its relevant data this function will draw a child ring with
the appropriate length connector lines and in the correct place.

7.1.6 Function Name: DrawBridge

Function Interface
Display thisDisplay

Window thisWindow

GC thisGC

struct ringData RingData[] -- Stores relevant data about the rings and their
coordinates.

struct topologyData Topology[] -- Stores relevant data about the topology.

int Ring -- The index of the ring that the bridge will extend from.

int currentNodePtr -- Index of the node from where the bridge will extend.

Function Performed
Given a ring and its relevant information this function will draw a bridge that
will connect this ring to another ring.

7.1.7 Function Name: DrawNode

Function Interface
Display thisDisplay

RTP/L3's Monitor Page - 43

Window thisWindow

GC thisGC

struct ringData RingData [1 -- Stores relevant data about the rings and their
coordinates.

struct topologyData Topology[] -- Stores relevant data about the topology.

int currentNodePtr -- Index of the node from where the node will extend.

int Ring -- The index of the ring that the bridge will extend from.

Function Performed
Given a ring and its relevant information this function will draw a node that will
extend from the ring.

7.2. File: MISC.0

7.2.1 Function Name: Unregisterbutton

Function Interface
int buttonIndex -- Index of the button to unregister.

Function Performed
This function will unregister (remove the entry from the data structure) of the
button whose index is passed. The button is the button used in a dialog box to
allow the user to select a function to be performed within the dialog box.

7.2.2 Function Name: RegisterButton

Function Interface
int buttonX, buttonY -- X,Y coordinates of the upper left corner.

int Width -- Width of the button.

int Height -- Height of the button.

char *String -- String to appear inside the button.

void (*Function)0 -- Name of the function to call when the button is pressed.

RTP/L3's Monitor Page - 44

Function Performed
This function will register the button (enter the relevant data into a data
structure). This data is used when a user presses the mouse to detect if the
pointer was within the button registered.

7.2.3 Function Name: DetectButtonPress

Function Interface
Display thisDisplay

Window thisWindow

GC thisGC

int thisX, thisY -- X, Y coordinate of the pointer when the mouse button was
pressed.

struct Monitor MonitorData

Function Performed
This function will check the registered buttons and return the index of the
registered button to the caller. The caller will then have access to the relevant
data for this button.

7.2.4 Function Name: PaintZoomWindow

Function Interface
Display thisDisplay

Window thisWindow

GC thisGC

struct Monitor MonitorData

Function Performed
This function is called each time the node zoom window needs to be updated
with the latest information as received from the simulation.

RTP/L3's Monitor Page - 45

7.2.5 Function Name: PaintTokenWindow

Function Interface
Display thisDisplay

Window thisWindow

GC thisGC

struct Monitor MonitorData

Function Performed
This function is called each time the network statistics window needs to be
updated with the latest information as received from the simulation.

7.3. Equipment Configuration

The monitor will run on any X Window based system. This include Sun Worksta-
tions, DEC Workstations, HP Workstations, and PC based systems running UNIX and
the X Window System. With the support of the underlying X Window System it should
run on any network supported by X. These systems must also have a mouse to
manipulate the objects and to select monitoring activities.

7.4.Implementation Language & Window System

RTP/L3s monitor was written entirely in the C programming language. The
system runs under the X Window System environment. The X library, known as Xlib
is the C language programming interface to Version 11of the X Window System. This
library enables a programmer to write applications with an advanced user interface
based on windows on the screen, with complete network transparency, that will run
without changes on many types of workstations and personal computers [13].

The X window system was developed jointly by MIT's Project Athena and Digital
Equipment Corporation. Currently, Version 11 is available and is used in this project.

RTP/L3's Monitor Page - 46

8. System Evaluation
At the time this paper was written all modules were tested stand alone. The

monitor and simulation have not yet been integrated, therefore each module that
needed simulation information, has a special test driver written that will simulate data
that would normally arrive from the simulation. There are several components of the
monitor that required such a test driver: Network Topology Table, Node Zoom, Ring
Statistics, and ProcessTracking.

8.1. Network Topology Table

To test the graphical display of the network topology I needed to simulate
receiving the NTT from the simulation. The test driver reads a ascii flat file that
describes the network topology. It is in the same format as would be the data that would
be sent by the simulation. When the monitor and simulation are integrated the only
changes that need to be made to accommodate the real data is to read from the
reporting mechanism rather than the flat file. This change should be a minor one.

When the monitor starts up it would normally request from the simulation the
network topology table, instead the monitor reads this information from the file
described above.

8.2. NodeZoom

When the user wants to zoom in on a node within the network topology the
simulation would respond with the appropriate data as requestedby the monitor. To
facilitate the zoom option with data to be displayed a test driver just displays hard coded
values. These values will normally be requested by the monitor and the simulation
would respond with the current node statistic. This function will need to be rewritten
slightly when the monitor and simulation are integrated.

8.3. Ring Statistics

The continuous data that this window needs is currently being read from a flat ascii
file. If the simulation was feeding us with information to monitor the selected ring it
would send us this CM type response every clock tick or some other periodic frequency.
To simulate continuous monitoring of the ring, each time the mouse button is pressed
the next input values are read from the file. When the simulation and monitor are
integrated once the monitor requests this information from the simulation it will

RTP/L3's Monitor Page - 47

receive the relevant data and it would appropriately update the screen with the latest
information. This change, again, should be simple.

8.4. ProcessTracking

Process tracking requires relevant process information at every clock tick or some
periodic frequency. Therefore, to simulate this without actually receiving this data
from a simulation, the test driver reads the information from a flat ascii file, like above,
whenever the user presses the mouse button. When the simulation and monitor are
integrated this information will be feed to the simulation by the monitor at regular
intervals. The monitor would then update the network graph to indicate the current
status of the process being tracked.

8.5. Other modules

All other modules which did not require any test data were tested and debugged
thoroughly, however, like with any large system bugs may have gone undetected. These
modules were called with different parameters and tested in stress situations. All
discovered bugs were noted and immediately resolved. The real test will be when the
simulation and monitor are integrated and users begin to use all the features of the
monitor and simulation.

8.6. Special Cases

Special cases such as:

• Rings without components (nodes)

• Rings with many components (nodes)

• Simulation process crashes

• Reporting mechanism

were tested by running the monitor with dozens of different NTT's. Each NTT was
configured with a different number of components per ring, different number of rings
and networks with different topologies. These special cases were tested to show how
process tracking would be affected. Each ring was assumed to have at least one bridge
connected to it. This bridge serves as the connector for disparate rings. Each case was
successfully tested for functional correctness.

The other special cases of simulation crashes and reporting mechanism crashes
are resolved through the alertness of the reporting mechanism. If the socket connec-

RTP/L3's Monitor Page - 48

tion no longer exists, the monitor is alerted to this and is gracefully exited with out
causing delayed reactions to user responses.

RTP/L3's Monitor Page - 49

9. Future Extensions
Some of the most important future extensions should be: tracking multiple

processes, monitoring processes through critical paths, transferring the monitor to a
unobtrusive real-world component, allowing multiple instances of the same reporting
window, and the capability to monitor multiple simulations with the same monitor.

One way to provide a real-world unobtrusive monitor may be to base the reporting
mechanism gatherer on a separate token ring connected to each node on the network.
This alleviates the contention that may be caused by sending monitoring data over the
same communication wire as the bus of the system uses. Another way is to treat the
monitor as just another component on the network ring. All servicing would be similar
to the way current components are serviced.

10. Conclusion
This paper has described briefly the intent of the RTP/L3 project and has provided

the user with information about Real-TV. From the Previous Work section and the
details given about Real-TV one can understand why such a tool is needed. The
distributed nature of the project made it more difficult to design and develop. Secondly,
because of the "predictability" the system is built upon, the design of the reporting
mechanism was not as straight forward as first conceived. These issues added to the
overall development time and because of them we have not been able to thoroughly
integrate the monitor and the simulation as of this writing.

The RTP/L3 system described will undoubtedly be a very useful tool for providing
students with a teaching platform and for verifying fundamental research in the field
of real-time computing. Real-TV will provide users and researchers with the tool
required to measure system performance, evaluate different hardware configurations
and provide a level of system insight. Future extension to the project will migrate any
knowledge gained from this experience and hopefully be able to transform the monitor
into a real-world system; thus providing the optimal tool.

We hope this project will become a permanent fixture within the academic world
for teaching and research and hope that some of the development tools, such as the
schedulability analyzer, can be used within industry.

RTP/L3's Monitor Page - 50

References

[1] Alexander D. Stoyenko, Predictable Real-Time Systems: A Challenge for Computer
Science and Engineering Curricula, Department of Computer and Information Science,
New Jersey Institute of Technology, 1991

[2] Hideyuki Tokuda, Makoto Kotera and Clifford W. Mercer, A Real-Time Monitor
for a Distributed Real-Time Operating System, Computer, March 1990

[3] Liba, Svobodova, Performance Monitoring in Computer Systems: A Structured Ap-
proach, M.I.T. Laboratory for Computer Science, Cambridge, Mass., 1980

[4] Bernhard, Plattner, Real-Time Execution Monitoring, IEEE Trans. Software Eng.,
Vol. SE-10, No. 6, Nov 1984

[5] Jeffrey J.P. Tsai, Kwang-Ya Fang, and Horng-Yuan Chen, A Noninterference
Monitoring and Replay Mechanism for Real-Time Software Testing and Debugging,
IEEE, 1990

[6] Jeffrey J.P. Tsai, Kwang-Ya Fang, and Horng-Yuan Chen, A Noninvasive Architec-
ture to Monitor Real-Time Distributed Systems, Computer, March 1990

[7] R.L. Glass, Real-Time: The 'lost world' of software debugging and testing, Com-
munication Ass. Computing Machinery, vol. 23, May 1980

[8] Wolfgang A. Halang and Alexander D. Stoyenko, Constructing Predictable Real-
Time Systems, 1991

[9] Alexander Stoyenko and Lonnie Welch, A System for Teaching and Research in
Predicatable Real-Time Systems, Department of Computer and Information Science,
New Jersey Institute of Technology, 1991

[10] Richard Czop and Richard Meyer, RTP/L3 Monitor Reporting Mechanism, New
Jersey Institute of Technology, Newark, NJ, Class Project for Predictable Real-Time
Systems, 1991.

[11] Matt Harelicks class presentation on RTP/L3s Architecture, 1991

[12] Lonnie R. Welch and Alexander D. Stoyenko, A Multicomputer for Real-TIme
Software Constructed from Reusable Components

[13] Nye, Adrian, Xlib Programming Manual, O'Reilly & Associates, Inc.

RTP/L3's Monitor Page - 51

[14] Haban, Dieter and Wybranietz, Dieter, A Hybrid Monitor for Behavior and Perfor-
mance Analysis of Distributed Systems, IEEE Transactions on Software Engineering,
Vol 16, No. 2, February 1990

[15] Jeffrey Joyce, Greg Lomow, Konrad Slind, and Brian Unger, Monitoring Dis-
tributed Systems, ACM Transactions on Computer Systems, Vol. 5, No. 2, May 1987,
Pages 121-150

[16] Bernhard Plattner and Jurg Nievergelt, Monitoring Program Execution: A Survey,
Computer, November 1981

[17] A. D. Stoyenko, A Real-Time Language with A Schedulability Analyzer, Ph.D.
Thesis, Department of Computer Science, University of Toronto, 1987

[18] A. D. Stoyenko, V. C. Hamacher, R. C. Holt, Analyzing Hard Real-Time Programs
for Guaranteed Schedulability, IEEE Transactions on Software Engineering, August
1991.

[19] L. R. Welch, Architectual Support for, and Parallel Execution of, Programs Con-
structed from Reusable Software Components, Ph. D. Thesis. Department of Computer
Science, Ohio State University, December 1990.

[20] B. Bates and J.C. Wileden, High-level debugging of distributed systems: The be-
havioral abstraction approach, J. System Software, March 1983.

[21] H. Garcia-Molina et al., Debugging a distributed system, IEEE Trans. Software Eng.,
vol SE-10, No 2. March 1984.

[22] P.K. Harter, D.M. Heimbigner, and R. King, IDD: An interactive distributed
debugger, in Proc. 5th Int. Conf. Distributed Computing Systems, May 1985.

[23] S. H. Jones, R.H. Barkan, and L.D. Wittie, Bugnet: A real-time distributed debugging
system, Proc. 6th Symp. Reliability in Distributed Software and Database Systems,
March 1987.

[24] D. Ferrari and V. Minetti, A hybrid measurement tool for minicomputer, Ex-
perimental Computer Performance and Evaluation, Amsterdam, The Netherlands:
North Holland, 1981.

[25] L. Svobodova, Online system performance measurements with software and hybrid
monitors, Operating Systems Review, Vol 7, No 4, October 1973.

[26] E. M. Herbst,N. Metropolis, and M.B. Wells, Analysis of the Problem Codes on the
MANIAC, Math Tables and Other Aids to Computation, Vol. 9, No 49, January 1955.

RTP/L3's Monitor Page - 52

[27] E.F. Miller, Bibliography on Techniques of Computer Performance Analysis, Com-
puter, Vol. 5, No. 5, September/October 1974.

[28] Balzer, R. M. EXDAMS-EXtendable debugging and monitoring systems, Proceed-
ings of AFOPS SPring Joint Computer Conference. AFIPS Press, Reston, VA. 1969.

RTP/L3's Monitor Page - 53

Appendix A - Source Code Listing

RTP/L3's Monitor Page - 54

/* FILE: MONITOR.0
AUTHOR: RICHARD CZOP
DATE: 12/13/91
REAL-TV

*/

/* Include file for Monitor */
#include "monitor.h"
#include "menus.h" /* defines all menus and menu function calls */
#include <math.h>

#include "process.h"

char AppName[] = ("Real-TV (Real-Time Visualizer)") ;

Display *mainDisplay ;
Window mainWindow, aboutWindow, trafficWindow, zoomWindow, tokenWindow, legendWindow, bridgeWindow ;
Window processWindow ;
GC mainGC, aboutGC, trafficGC, zoomGC, tokenGC, legendGC, bridgeGC, processGC ;
XEvent mainEvent ;
KeySym mainKey ;
XSizeHints mainHint, aboutHint, trafficHint, zoomHint, tokenHint, legendHint, bridgeHint, processHint ;
int mainScreen ;
XWindowAttributes windowAttributes ;

struct RegButtons RegisteredButtons ;
struct RegNodes RegisteredNodes ;
struct Process ProcessData ;
struct P_Test ProcessTest[MAXPROCESSTEST] ;

unsigned long myforeground, mybackground ;
int i ;
char text[10] ;
int done ;

struct Monitor MonitorData ;
struct topologyData Topology[MAXNODES] ;
struct BridgeData Bridges[MAXBRIDGES] ;
struct BarData tokenBarData[MAXBARS] ;

/* DEBUG and TEST Struct */
struct BarData testBarData[MAXBARS] ;

main (argc, argv)
int argc ;
char **argv ;
C

int TotalNodes=0, TotalRings=0 ;
int cnt ;
int rt_value ;

MonitorData.trafficWindow = FALSE ;
MonitorData.zoomWindow = FALSE ;
MonitorData.processWindow = FALSE ;
MonitorData.tokenWindow = FALSE ;
MonitorData.aboutWindow = FALSE ;
MonitorData.bridgeWindow = FALSE ;
MonitorData.legendWindow = FALSE ;

MonitorData.trafficButlndex = EMPTY ;
MonitorData.zoomButlndex = EMPTY ;
MonitorData.processButlndex = EMPTY ;
MonitorData.tokenButIndex = EMPTY ;
MonitorData.aboutButlndex = EMPTY ;
MonitorData.bridgeButlndex = EMPTY ;
MonitorData.legendButlndex = EMPTY ;

ProcessData.status = TRACKING_OFF ;
ProcessData.started = FALSE ;
ProcessData.Testlndex = 0 ;/* DEBUG and TEST ONLY */
ProcessData.Processing = FALSE ;
ProcessData.NODE_Index = EMPTY ;
ProcessData.LASTOP_Index = EMPTY ;

for (cnt = 0 ; cnt < MAXNUMBEROFBUTTONS; cnt++)
RegisteredButtons.ButtonPtrEcntLX = EMPTY ;

/* initialize the bar data to empty */
for (cnt = 0 ; cnt < MAXBARS; cnt++)
C

tokenBarDatal cnt].percent = EMPTY ;

testBarData[cnt].percent = EMPTY ;

if (argc == 1)
C

fprintf(stderr, "Error usage: %s <topology file>\n", argv[0]);
exit(-1) ;

)
RegisteredButtons.numberOfButtons = 0 ;

MonitorData.currentMenuSet = MAINMENUSET ;
MonitorData.buttonSelected = -99 ;/* Indicate no button selected */

MonitorData.quit = FALSE ;
MonitorData.startTraffic = FALSE ;

MonitorData.tokenNewView = FALSE;/* Only used for testing and debugging */

MenuSet[MAINMENUSET = MainMenu ;
MenuSet[LOADMENUSET] = LoadMenu ;
MenuSet[CONFIGMENUSET] = ConfigMenu ;
MenuSet[WINDOWMENUSET = WindowMenu ;

/* THIS IS FOR DEBUGGING AND TESTING THE STANDALONE SYSTEM ONLY! */
StuffTokenData();
StuffProcessData();

InitWindowEnv(argc, argv) ;

/* Reads in the network topology information used to build graphical network map */
StuffTopology(&Topology, argv[1], &TotalNodes, &TotalRings) ;
MonitorData.Nodes = TotalNodes ;
MonitorData.Rings = TotalRings ;

/*fprintf(stderr, "Total Nodes = %d TotalRings = %d \n", TotalNodes, TotalRings) ;
*/

/*fprintf(stderr, "Before Parse \n") ;
if (argc > 1)

ParseCommandLine(argc, argv, &MonitorData) ;

fprintf(stderr, "After Parse \n") ;
*/

/* Main event-reading loop */
done = 0 ;
while (MonitorData.quit == FALSE)
C

TestStuff(&MonitorData) ; /* This function only is necessary for showing test data */

/* DEBUG and TESTING */
if (ProcessData.status == TRACKING_ON)

ProcessNext(mainDisplay, mainWindow, mainGC, ProcessTest[ProcessData.Testlndex].Address) ;

/* read the next event */
XNextEvent (mainDisplay, &mainEvent) ;
switch (mainEvent.type)
C

/* repaint window on expose event */
case Expose :

if (mainEvent.xexpose.count == 0)
C

/* Should Check what window this expose is */
/* issued for */
if (mainEvent.xexpose.window == mainWindow)
C

PaintTopology (
mainEvent.xexpose.display,
mainEvent.xexpose.window,
mainGC,
Topology,
&MonitorData,
&Bridges) ;

PaintWindowBorders(
mainEvent.xexpose.display,
mainEvent.xexpose.window,
mainGC,
BUTTONTOP) ;

/* If process tracking was happening when the repaint

was called for */
if (ProcessData.status == TRACKING ON)
C

MarkCU(mainDisplay, mainWindow, mainGC,
RegisteredNodes.NodeInfo[ProcessData.CU_Index].x,
RegisteredNodes.NodeInfo(ProcessData.CU_Index7.y,
NODERADIUS);

MarkToken(mainDisplay, mainWindow, mainGC,
RegisteredNodes.NodeInforProcessData.NODE_Index7.x,
RegisteredNodes.NodeInfoProcessData.NODE_Index7.y,
NODERADIUS);

if (ProcessData.Processing == TRUE)
MarkBusy(mainDisplay, mainWindow, mainGC,
ProcessData.NODE_Index) ;

)

DisplayMenu(mainEvent.xexpose.display,
mainEvent.xexpose.window,
mainGC,
MenuSetE MonitorData.currentMenuSet],
&MonitorData) ;

if (MonitorData.startTraffic == TRUE)
C

TrafficWindow(mainEvent.xexpose.display,
trafficWindow,
trafficGC,
&MonitorData) ;

)
)
else if (mainEvent.xexpose.window == aboutWindow)
C

/* Repaint About Window */
/* Must reset here */

/* Paints buttons and text */
PaintAboutBox(mainEvent.xexpose.display,

mainEvent.xexpose.window,
aboutGC,&MonitorData) ;

)
else if (mainEvent.xexpose.window == tokenWindow)
C

/* Paints buttons and text */
PaintTokenWindow(mainEvent.xexpose.display,

mainEvent.xexpose.window,
tokenGC) ;

AvgTokenPaint(mainEvent.xexpose.display,
mainEvent.xexpose.window,
tokenGC, testBarData[0].percent, !ADD_DATA, &MonitorData);

)
else if (mainEvent.xexpose.window == legendWindow)
C

/* Paints buttons and text */
PaintLegendBox(mainEvent.xexpose.display,

mainEvent.xexpose.window,
legendGC, &MonitorData) ;

)
else if (mainEvent.xexpose.window == zoomWindow)
C

/* Paints buttons and text */
PaintZoomWindow(mainDisplay,

zoomWindow,
zoomGC,
&MonitorData) ;

)
else if (mainEvent.xexpose.window == processWindow)
C

/* Paints buttons and text */
PaintProcessWindow(mainDisplay,

processWindow,
processGC,
&MonitorData) ;

)

else if (mainEvent.xexpose.window == trafficWindow)

PaintWindowBorders(
mainEvent.xexpose.display,
mainEvent.xexpose.window,
trafficGC,
BUTTONRIGHT) ;

/* Paints buttons and text */
PaintTrafficWindow(mainEvent.xexpose.display,

mainEvent.xexpose.window,
trafficGC,
&MonitorData) ;

)

)

break ;

/* process keyboard mapping changes */
case MappingNotify :

XRefreshKeyboardMapping (&mainEvent) ;
break ;

/* process mouse-button presses */
case ButtonPress :

/* If a mainmenu button was depressed this function will automatically
call the function mapped to that menu choice ONLY after
that function is run to completion will it return here

*/

if (mainEvent.xbutton.window == mainWindow)
C

int ButtonPressed = EMPTY, NodeType = EMPTY;
/* Call CheckButtonPress Only for menus NOT dialog boxes */
CheckButtonPress(mainEvent.xbutton.display,

mainEvent.xbutton.window,
mainGC,
mainEvent.xbutton.x,
mainEvent.xbutton.y,
&MonitorData,
MenuSet[MonitorData.currentMenuSet]) ;

NodeType = CheckNodePress(mainEvent.xbutton.display,
mainEvent.xbutton.window,
mainGC,
mainEvent.xbutton.x,
mainEvent.xbutton.y,
&MonitorData) ;

switch (mainEvent.xbutton.button)
C

case LEFTBUTTON:

break ;
case CENTERBUTTON:

switch (NodeType)
C

case RING:
break ;
/*case BRIDGE:
if (MonitorData.bridgeWindow == TRUE)
C
PaintBridgeWindow(mainDisplay,
bridgeWindow,
bridgeGC,
&MonitorData) ;
)
else
C
BridgeWindow(mainDisplay,
bridgeWindow,
bridgeGC,
&MonitorData);
MonitorData.bridgeWindow = TRUE ;
)
break ;
*/
case NODE:
case BRIDGE:
if (MonitorData.zoomWindow == TRUE)
C
/* Windows open just paint new stats */
PaintZoomWindow(mainDisplay,

zoomWindow,
zoomGC,
&MonitorData) ;
)
else
{
ZoomWindow(mainDisplay,
zoomWindow,
zoomGC,
&MonitorData);
MonitorData.zoomWindow = TRUE ;
)
break ;

)
break ;

case RIGHTBUTTON:
switch (NodeType)

case RING:
/* Only for testing and debugging */
if (MonitorData.tokenWindow == TRUE)
C
/* Windows open just paint new stats */
AvgTokenPaint(mainDisplay,
tokenWindow,
tokenGC,
35,
!ADD DATA,
&MonitorData) ;
)
else
C

TokenWindow(mainDisplay,
tokenWindow,
tokenGC,
&MonitorData);
MonitorData.tokenWindow = TRUE ;

break ;
)
break ;

)

}
/* If close button in about window button was pressed */
else if (mainEvent.xbutton.window == aboutWindow)
C

/* Call DetectButtonPress Only for dialog boxes NOT menus */
rt_value = DetectButtonPress(

mainEvent.xbutton.display,
mainEvent.xbutton.window,
mainGC,
mainEvent.xbutton.x,
mainEvent.xbutton.y,
&MonitorData
) ;

if (rt_value != -99)
C

UnRegisterButton(MonitorData.aboutButlndex) ;
XUnmapWindow(mainEvent.xbutton.display, aboutWindow) ;
MonitorData.aboutWindow = FALSE ;
MonitorData.aboutButlndex = EMPTY ;

/* If close button in traffic window button was pressed */
else if (mainEvent.xbutton.window == trafficWindow)
C

/* Call DetectButtonPress Only for dialog boxes NOT menus */
rt_value = DetectButtonPress(

mainEvent.xbutton.display,
mainEvent.xbutton.window,
mainGC,
mainEvent.xbutton.x,
mainEvent.xbutton.y,
&MonitorData

) ;
if (rt_value != -99)
C

UnRegisterButton(MonitorData.trafficButlndex) ;

XUnmapWindow(mainEvent.xbutton.display, trafficWindow) ;
MonitorData.trafficWindow = FALSE ;
MonitorData.trafficButlndex = EMPTY ;

)

)
/* If tokenWindow close button was pressed */
else if (mainEvent.xbutton.window == tokenWindow)

/* Call DetectButtonPress Only for dialog boxes NOT menus */
rt_value = DetectButtonPress(

mainDisplay,
tokenWindow,
tokenGC,
mainEvent.xbutton.x,
mainEvent.xbutton.y,
&MonitorData
) ;

if (rt_value != -99)
C

UnRegisterButton(MonitorData.tokenButlndex) ;
/*TokenWindow(mainDisplay,

tokenWindow,
tokenGC,
&MonitorData);*/

XUnmapWindow(mainEvent.xbutton.display, tokenWindow) ;

MonitorData.tokenWindow = FALSE ;
MonitorData.tokenButlndex = EMPTY ;

)

)
/* If close button in legend window button was pressed */
else if (mainEvent.xbutton.window == legendWindow)
C

/* Call DetectButtonPress Only for dialog boxes NOT menus */
rt_value = DetectButtonPress(

mainEvent.xbutton.display,
mainEvent.xbutton.window,
mainGC,
mainEvent.xbutton.x,
mainEvent.xbutton.y,
&MonitorData
) ;

if (rt_value 1 = -99)
C

UnRegisterButton(MonitorData.legendButlndex) ;
XUnmapWindow(mainEvent.xbutton.display, legendWindow) ;
MonitorData.legendWindow = FALSE ;
MonitorData.legendButlndex = EMPTY ;

)

)

/* If processWindow close button was pressed */
else if (mainEvent.xbutton.window == processWindow)
C

/* Call DetectButtonPress Only for dialog boxes NOT menus */
rt_value = DetectButtonPress(

mainDisplay,
processWindow,
processGC,
mainEvent.xbutton.x,
mainEvent.xbutton.y,
&MonitorData
) ;

if (rt_value != -99)
C

UnRegisterButton(MonitorData.processButlndex) ;
XUnmapWindow(mainEvent.xbutton.display, processWindow) ;
MonitorData.processWindow = FALSE;
MonitorData.processButlndex = EMPTY ;
ProcessData.status = TRACKING_OFF ;
ProcessData.started = FALSE ;
ProcessData.TestIndex = 0 ;

)
)

/* If zoomWindow close button was pressed */
else if (mainEvent.xbutton.window == zoomWindow)

/* Call DetectButtonPress Only for dialog boxes NOT menus */
rt_value = DetectButtonPress(

mainDisplay,
zoomWindow,
zoomGC,
mainEvent.xbutton.x,
mainEvent.xbutton.y,
MonitorData
) ;

if (rt_value != -99)

UnRegisterButton(MonitorData.zoomButlndex) ;
XUnmapWindow(mainEvent.xbutton.display, zoomWindow) ;
MonitorData.zoomWindow = FALSE;
MonitorData.zoomButlndex = EMPTY ;

)

break ;

/* process keyboard input */
case KeyPress

i = XLookupString(&mainEvent, text, 10, &mainKey, 0) ;
if (i == 1 && text [0] == icr)

done = 1 ;
break ;

)
) /* while */
/* Termination and Cleanup */
XFreeGC (mainDisplay, mainGC) ;
XDestroyWindow (mainDisplay, mainWindow) ;
XCloseDisplay (mainDisplay) ;
exit (0) ;

)

ParseCommandLine(argc, argv, thisDisplay, MonitorData)
int argc ;
char **argv ;
Display *thisDisplay ;
struct Monitor MonitorData ;

int ParamOkay = FALSE ;

int loop ;
for (loop=0; loop < argc; loop++)

if (strcmp(argv[loop], "-T") ==0)

ParamOkay = TRUE ;
MonitorData.startTraffic = TRUE ;
)

if (ParamOkay == FALSE)

fprintf(stderr, "USAGE: monitor (-7 -Ssimulation name) \n") ;
exit(-1) ;

/* FILE: INIT.0
AUTHOR: RICHARD CZOP
DATE: 12/13/91
REAL-TV

*/

#include "monitor.h"

void
InitWindowEnv(argc, argv)
int argc ;
char **argv ;

char *display_name = NULL; /* server to connect to; NULL means */
/* connect to server specified in */
/* environment variable DISPLAY */

/* Initialize Window Environment */

/* The display_name argument to XopenDisplay specifies which server */
/* to connect to. When display_name is not specified by the user, it*/
/* should be set to NULL, which causes XopenDisplay to connect to */
/* the server listed in the UNIX environment DISPLAY variable. */
if ((mainDisplay=XOpenDisplay(display_name)) == NULL)
C

(void) fprintf(stderr,
"ERROR: MONITOR cannot connect to X server %s\n",
XDisplayName(display_name));

exit(-1);

mainScreen = DefaultScreen (mainDisplay) ;

/* default pixel values */
mybackground = WhitePixel (mainDisplay, mainScreen) ;
myforeground = BlackPixel (mainDisplay, mainScreen) ;

/* Before mapping the window(which display it on the screen), */
/* an application must set the standard properties to tell the*/
/* window manager a few essential things : */
/* */
/* . Window name */

/* . Icon name */

/* . Icon Pixmap */

/* . Command name and arguments */

/* . Number of arguments */

/* . preferred window sizes */

/* default program-specified window postion and size */
mainHint.x = MAINWINDOWX ;
mainHint.y = MAINWINDOWY ;
mainHint.width = MAINWINDOWWIDTH ;
mainHint.height = MAINWINDOWHEIGHT ;
mainHint.flags = PPosition 1 PSize 1 PMinSize 1 PMaxSize;
mainHint.min_width = MAINWINDOWMINWIDTH ;
mainHint.min_height = MAINWINDOWMINHEIGHT ;
mainHint.max_width = MAINWINDOWMAXWIDTH ;
mainHint.max_height = MAINWINDOWMAXHEIGHT ;

aboutHint.x = ABOUTWINDOWX ;
aboutHint.y = ABOUTWINDOWY ;
aboutHint.width = ABOUTWINDOWWIDTH ;
aboutHint.height = ABOUTWINDOWHEIGHT ;
aboutHint.flags = PPosition 1 PSize 1 PMinSize ;
aboutHint.min_width = ABOUTWINDOWMINWIDTH ;
aboutHint.min_height = ABOUTWINDOWMINHEIGHT ;

trafficHint.x = TRAFFICWINDOWX ;
trafficHint.y = TRAFFICWINDOWY ;
trafficHint.width = TRAFFICWINDOWWIDTH ;
trafficHint.height = TRAFFICWINDOWHEIGHT ;
trafficHint.flags = PPosition 1 PSize 1 PMinSize 1 PMaxSize;
trafficHint.min_width = TRAFFICWINDOWMINWIDTH ;
trafficHint.min_height = TRAFFICWINDOWMINHEIGHT ;
trafficHint.max_width = TRAFFICWINDOWMAXWIDTH ;
trafficHint.max_height = TRAFFICWINDOWMAXHEIGHT ;

zoomHint.x = ZOOMWINDOWX ;
zoomHint.y = ZOOMWINDOWY ;

zoomHint.width = ZOOMWINDOWWIDTH ;
zoomHint.height = ZOOMWINDOWHEIGHT ;
zoomHint.flags = PPosition 1 PSize PMinSize 1 PMaxSize;
zoomHint.min_width = ZOOMWINDOWMINWIDTH ;
zoomHint.min_height = ZOOMWINDOWMINHEIGHT ;
zoomHint.max_width = ZOOMWINDOWMAXWIDTH ;
zoomHint.max_height = ZOOMWINDOWMAXHEIGHT ;

processHint.x = PROCESSWINDOWX ;
processHint.y = PROCESSWINDOWY ;
processHint.width = PROCESSWINDOWWIDTH ;
processHint.height = PROCESSWINDOWHEIGHT ;
processHint.flags = PPosition 1 PSize 1 PMinSize 1 PMaxSize;
processHint.min_width = PROCESSWINDOWMINWIDTH ;
processHint.min_height = PROCESSWINDOWMINHEIGHT ;
processHint.max_width = PROCESSWINDOWMAXWIDTH ;
processHint.max_height = PROCESSWINDOWMAXHEIGHT ;

tokenHint.x = TOKENWINDOWX ;
tokenHint.y = TOKENWINDOWY ;
tokenHint.width = TOKENWINDOWWIDTH ;
tokenHint.height = TOKENWINDOWHEIGHT ;
tokenHint.flags = PPosition 1 PSize 1 PMinSize 1 PMaxSize;
tokenHint.min_width = TOKENWINDOWMINWIDTH ;
tokenHint.min_height = TOKENWINDOWMINHEIGHT ;
tokenHint.max_width = TOKENWINDOWMAXWIDTH ;
tokenHint.max_height = TOKENWINDOWMAXHEIGHT ;

bridgeHint.x = BRIDGEWINDOWX ;
bridgeHint.y = BRIDGEWINDOWY ;
bridgeHint.width = BRIDGEWINDOWWIDTH ;
bridgeHint.height = BRIDGEWINDOWHEIGHT ;
bridgeHint.flags = PPosition 1 PSize 1 PMinSize 1 PMaxSize;
bridgeHint.min_width = BRIDGEWINDOWMINWIDTH ;
bridgeHint.min_height = BRIDGEWINDOWMINHEIGHT ;
bridgeHint.max_width = BRIDGEWINDOWMAXWIDTH ;
bridgeHint.max_height = BRIDGEWINDOWMAXHEIGHT ;

legendHint.x = LEGENDWINDOWX ;
legendHint.y = LEGENDWINDOWY ;
legendHint.width = LEGENDWINDOWWIDTH ;
legendHint.height = LEGENDWINDOWHEIGHT ;
legendHint.flags = PPosition 1 PSize 1 PMinSize ;
legendHint.min_width = LEGENDWINDOWMINWIDTH ;
legendHint.min_height = LEGENDWINDOWMINHEIGHT ;

/* window creation */
mainWindow = XCreateSimpleWindow (mainDisplay,

DefaultRootWindow(mainDisplay),
mainHint.x,
mainHint.y,
mainHint.width,
mainHint.height,
10,
myforeground,
mybackground) ;

/* window creation */
aboutWindow = XCreateSimpleWindow (mainDisplay,

DefaultRootWindow(mainDisplay),
ABOUTWINDOWX,
ABOUTWINDOWY,
ABOUTWINDOWWIDTH,
ABOUTWINDOWHEIGHT,
5,
myforeground,
mybackground) ;

/* window creation */
trafficWindow = XCreateSimpleWindow (mainDisplay,

DefaultRootWindow(mainDisplay),
TRAFFICWINDOWX,
TRAFFICWINDOWY,
TRAFFIcWINDOWWIDTH,
TRAFFICWINDOWHEIGHT,
5,
myforeground,
mybackground) ;

/* window creation */
zoomWindow = XCreateSimpleWindow (mainDisplay,

DefaultRootWindow(mainDisplav

ZOOMWINDOWX,
ZOOMWINDOWY,
ZOOMWINDOWWIDTH,
ZOOMWINDOWHEIGHT,
5,
myforeground,
mybackground) ;

/* window creation */
processWindow = XCreateSimpleWindow (mainDisplay,

DefaultRootWindow(mainDisplay),
PROCESSWINDOWX,
PROCESSWINDOWY,
PROCESSWINDOWWIDTH,
PROCESSWINDOWHEIGHT,
5,
myforeground,
mybackground) ;

/* window creation */
tokenWindow = XCreateSimpleWindow (mainDisplay,

DefaultRootWindow(mainDisplay),
TOKENWINDOWX,
TOKENWINDOWY,
TOKENWINDOWWIDTH,
TOKENWINDOWHEIGHT,
5,
myforeground,
mybackground) ;

/* window creation */
/*bridgeWindow = XCreateSimpleWindow (mainDisplay,

DefaultRootWindow(mainDisplay),
BRIDGEWINDOWX,
BRIDGEWINDOWY,
BRIDGEWINDOWWIDTH,
BRIDGEWINDOWHEIGHT,
5,
myforeground,
mybackground) ;

*/

/* window creation */
legendWindow = XCreateSimpleWindow (mainDisplay,

DefaultRootWindow(mainDisplay),
LEGENDWINDOWX,
LEGENDWINDOWY,
LEGENDWINDOWWIDTH,
LEGENDWINDOWHEIGHT,
5,
myforeground,
mybackground) ;

/* set properties for window manager. */
/* The UNIX shell command name and arguments are passed into */
/* MAIN in the standard fashion from the command line, as argv */
/* and argc. these can be used directly as arguments in the */
/* call to set the standard properties. */

/* Lets window manager and other windows know about us */
XSetStandardProperties (mainDisplay, mainWindow, AppName, AppName,

None, argv, argc, &mainHint) ;

XSetStandardProperties (mainDisplay, aboutWindow, "About Real-TV", AppName,
None, argv, argc, &aboutHint) ;

XSetStandardProperties (mainDisplay, trafficWindow, "Monitor Traffic", AppName,
None, argv, argc, &trafficHint) ;

XSetStandardProperties (mainDisplay, zoomWindow, "Node Statistics", AppName,
None, argv, argc, &zoomHint) ;

XSetStandardProperties (mainDisplay, processWindow, "Process Statistics", AppName,
None, argv, argc, &processHint) ;

XSetStandardProperties (mainDisplay, tokenWindow, "Ring Statistics", AppName,
None, argv, argc, &tokenHint) ;

/* XSetStandardProperties (mainDisplay, bridgeWindow, "Bridge Statistics", AppName,
None, argv, argc, &bridgeHint) ;

*/

XSetStandardProperties (mainDisplay, legendWindow, "Network Legend", AppName,
None, argv, argc, &legendHint) ;

/* GC creation and initialization */
mainGC = XCreateGC (mainDisplay, mainWindow, 0, 0) ;
XSetBackground(mainDisplay, mainGC, mybackground) ;
XSetForeground(mainDisplay, mainGC, myforeground) ;

aboutGC = XCreateGC (mainDisplay, aboutWindow, 0, 0) ;
XSetBackground(mainDisplay, aboutGC, mybackground) ;
XSetForeground(mainDisplay, aboutGC, myforeground) ;

trafficGC = XCreateGC (mainDisplay, trafficWindow, 0, 0) ;
XSetBackground(mainDisplay, trafficGC, mybackground) ;
XSetForeground(mainDisplay, trafficGC, myforeground) ;

zoomGC = XCreateGC (mainDisplay, zoomWindow, 0, 0) ;
XSetBackground(mainDisplay, zoomGC, mybackground) ;
XSetForeground(mainDisplay, zoomGC, myforeground) ;

processGC = XCreateGC (mainDisplay, processWindow, 0, 0) ;
XSetBackground(mainDisplay, processGC, mybackground) ;
XSetForeground(mainDisplay, processGC, myforeground) ;

tokenGC = XCreateGC (mainDisplay, tokenWindow, 0, 0) ;
XSetBackground(mainDisplay, tokenGC, mybackground) ;
XSetForeground(mainDisplay, tokenGC, myforeground) ;

/*bridgeGC = XCreateGC (mainDisplay, bridgeWindow, 0, 0) ;
XSetBackground(mainDisplay, bridgeGC, mybackground) ;
XSetForeground(mainDisplay, bridgeGC, myforeground) ;
*/
legendGC = XCreateGC (mainDisplay, legendWindow, 0, 0) ;
XSetBackground(mainDisplay, legendGC, mybackground) ;
XSetForeground(mainDisplay, legendGC, myforeground) ;

/* input event selection */
XSelectlnput (mainDisplay, mainWindow, ButtonPressMask I KeyPressMask

ExposureMask) ;

XSelectlnput (mainDisptay, aboutWindow, ButtonPressMask I KeyPressMask
ExposureMask) ;

XSelectlnput (mainDisplay, trafficWindow, ButtonPressMask I KeyPressMask
ExposureMask) ;

XSelectlnput (mainDisplay, zoomWindow, ButtonPressMask 1 KeyPressMask
ExposureMask) ;

XSelectinput (mainDisplay, processWindow, ButtonPressMask I KeyPressMask
ExposureMask) ;

XSelectlnput (mainDisplay, tokenWindow, ButtonPressMask 1 KeyPressMask
ExposureMask) ;

/*XSelectinput (mainDisplay, bridgeWindow, ButtonPressMask I KeyPressMask
ExposureMask) ;

*/
XSelectlnput (mainDisplay, legendWindow, ButtonPressMask I KeyPressMask

ExposureMask) ;

/* window mapping */
XMapRaised (mainDisplay, mainWindow) ;

)

void
PaintWindowBorders(thisDisplay, thisWindow, thisGC, buttonPosition)
Display *thisDisplay ;
Window thisWindow ;
GC thisGC ;
int buttonPosition ;
i

/* Get the current attributes of the window so we can repaint it properly */
XGetWindowAttributes(thisDisplay, thisWindow, &windowAttributes) ;

/* Menu Delimiters */
/* Top Menu Line */
if (buttonPosition == BUTTONTOP)
C

XDrawLine (thisDisplay,

thisWindow,
thisGC,
TOPLINEINDENT,
MENUTOPLINE,
windowAttributes.width - TOPLINEINDENT,
MENUTOPLINE) ;

)
else if (buttonPosition == BUTTONRIGHT)
C

XDrawLine (thisDisplay,
thisWindow,
thisGC,
TOPLINEINDENT,
MENUTOPLINE,
windowAttributes.width - TOPLINEINDENT - 70,
MENUTOPLINE) ;

)
if (buttonPosition == BUTTONTOP)
C

/* Bottom Menu Line */
XDrawLine (thisDisplay,

thisWindow,
thisGC,
TOPLINEINDENT,
MENUBOTTOMLINE,
windowAttributes.width - TOPLINEINDENT,
MENUBOTTOMLINE) ;

)

if (buttonPosition == BUTTONLEFT)
C

/* Left Side Line */
XDrawLine (thisDisplay,

thisWindow,
thisGC,
TOPLINEINDENT + 70,
MENUTOPLINE,
TOPLINEINDENT + 70,
MENUTOPLINE+((windowAttributes.height-MENUBOTTOMLINE)-TOPLINEINDENT)) ;

)
else if (buttonPosition == BUTTONRIGHT)
C

/* Left Side Line */
XDrawLine (thisDisplay,

thisWindow,
thisGC,
TOPLINEINDENT,
MENUTOPLINE,
TOPLINEINDENT,
MENUBOTTOMLINE+
((windowAttributes.height-MENUBOTTOMLINE)-TOPLINEINDENT)) ;

)
else if (buttonPosition == BUTTONTOP)
C

/* Left Side Line */
XDrawLine (thisDisplay,

thisWindow,
thisGC,
TOPLINEINDENT,
MENUBOTTOMLINE,
TOPLINEINDENT,
MENUBOTTOMLINE+((windowAttributes.height-MENUBOTTOMLINE)-TOPLINEINDENT)) ;

}

if (buttonPosition == BUTTONRIGHT)
C

/* Right Side Line */
XDrawLine (thisDisplay,

thisWindow,
thisGC,
windowAttributes.width - TOPLINEINDENT - 70,
MENUTOPLINE,
windowAttributes.width - TOPLINEINDENT - 70,
MENUBOTTOMLINE+
((windowAttributes.height-MENUBOTTOMLINE)-TOPLINEINDENT)) ;
/*MENUTOPLINE+(windowAttributes.height-TOPLINEINDENT)) ; */

)
else
C

/* Right Side Line */
XDrawLine (thisDisplay,

thisWindow,
thisGC,
windowAttributes.width - TOPLINEINDENT,
MENUBOTTOMLINE,
windowAttributes.width - TOPLINEINDENT,
MENUBOTTOMLINE+((windowAttributes.height-MENUBOTTOMLINE)-TOPLINEINDENT)) ;

)

if (buttonPosition == BUTTONBOTTOM)
C

/* Bottom Screeen Line */
XDrawLine (thisDisplay,

thisWindow,
thisGC,
TOPLINEINDENT,
MENUBOTTOMLINE+
((windowAttributes.height-MENUBOTTOMLINE)-TOPLINEINDENT) - 70,
windowAttributes.width - TOPLINEINDENT,
MENUBOTTOMLINE+
((windowAttributes.height-MENUBOTTOMLINE)-TOPLINEINDENT) - 70) ;

)
else if (buttonPosition == BUTTONRIGHT)
C

/* Bottom Screeen Line */
XDrawLine (thisDisplay,

thisWindow,
thisGC,
TOPLINEINDENT,
MENUBOTTOMLINE+
((windowAttributes.height-MENUBOTTOMLINE)-TOPLINEINDENT),
windowAttributes.width - TOPLINEINDENT - 70,
MENUBOTTOMLINE+ ((windowAttributes.height-MENUBOTTOMLINE)-TOPLINEINDENT)) ;

)
else if (buttonPosition == BUTTONTOP)
C

/* Bottom Screeen Line */
XDrawLine (thisDisplay,

thisWindow,
thisGC,
TOPLINEINDENT,
MENUBOTTOMLINE+
((windowAttributes.height-MENUBOTTOMLINE)-TOPLINEINDENT),
windowAttributes.width - TOPLINEINDENT,
MENUBOTTOMLINE+ ((windowAttributes.height-MENUBOTTOMLINE)-TOPLINEINDENT)) ;

)

)

/* FILE: MISC.0
AUTHOR: RICHARD CZOP
DATE: 12/13/91
REAL-TV

*/

#include "monitor.h"

Pause(length)
long length ;
C

long count ;
for(count=0; count < length; count++)

)

UnRegisterButton(buttonlndex)
int buttonlndex ;
C

extern struct RegButtons RegisteredButtons ;

if (buttonlndex >= 0)
C

/* Unregisters the button index passed in */
RegisteredButtons.ButtonPtr[buttonIndex).X = EMPTY ;
RegisteredButtons.ButtonPtr[buttonIndex].Y = EMPTY ;
RegisteredButtons.ButtonPtr[buttonIndexl.string = NULL ;
RegisteredButtons.ButtonPtr[buttonIndex).Func = NULL ;

)

)

int
RegisterButton(thisDisplay, thisWindow, thisGC, buttonX, buttonY, Width, Height, String, Function)
Display *thisDisplay ;
Window thisWindow ;
GC thisGC ;
int buttonX ;
int buttonY ;
int Width ;
int Height ;
char *String ;
void (*Function)() ;
f

int cnt = 0 ;

/* NOTE: Currently I am assuming that only one Button is registered per dialog box */

extern struct RegButtons RegisteredButtons ;

/*if ((RegisteredButtons.numberOfButtons + 1) > MAXNUMBEROFBUTTONS)
C

fprintf(stderr, "ERROR: function RegisterButton button overflow \n") ;
exit(-1) ;

)
*/

/* Find the next available button place */
for (cnt = 0 ; cnt < MAXNUMBEROFBUTTONS; cnt++)

if (RegisteredButtons.ButtonPtr[cnt].X == EMPTY)
break ;

RegisteredButtons.ButtonPtr[cnt].X = buttonX ;
RegisteredButtons.ButtonPtr[cnt).Y = buttonY ;
RegisteredButtons.ButtonPtrEcnt).string = String ;
RegisteredButtons.ButtonPtrfcnt).Func = Function ;

/*RegisteredButtons.numberOfButtons++ ;*/
fprintf(stderr, "Button registered index = %d \n", cnt) ;

return cnt ; /* Return the index of the registered button */
)

/* Draws buttons for menus boxes NOT dialog boxes */

DrawMenuButton(thisDisplay, thisWindow, thisGC, buttonX, buttonY, Width, Height, String)
Display *thisDisplay ;
Window thisWindow ;
GC thisGC ;
int buttonX ;

int buttonY ;
int Width ;
int Height ;
char *String ;
f

/* Draw rectangular Button */
XDrawRectangle(thisDisplay,

thisWindow,
thisGC,
buttonX, /* Upper x Left of rectangle */
buttonY, /* Upper y Left of rectangle */
Width, /* Width of button */
Height /* Height of button */
) ;

/* Draw Bottom Shadow */
XDrawLine (thisDisplay,

thisWindow,
thisGC,
buttonX+3,
buttonY+Height+1,
buttonX+Width+1,
buttonY+Height+1) ;

/* Draw Right Side Shadow */
XDrawLine (thisDisplay,

thisWindow,
thisGC,
buttonX+Width+1,
buttonY+3,
buttonX+Width+1,
buttonY+Height+1) ;

XDrawlmageString (
thisDisplay,
thisWindow,
thisGC,
buttonX + 10,
buttonY + 20,
String,
strlen(String)) ;

)

/* Draws buttons for dialog boxes NOT menus */
int
DrawButton(thisDisplay, thisWindow, thisGC, buttonX, buttonY, Width, Height, String, Function, registerButton)
Display *thisDisplay ;
Window thisWindow ;
GC thisGC ;
int buttonX ;
int buttonY ;
int Width ;
int Height ;
char *String ;
void (*Function)() ;
int registerButton ;
(

/* Draw rectangular Button */
XDrawRectangle(thisDisplay,

thisWindow,
thisGC,
buttonX, /* Upper x Left of rectangle */
buttonY, /* Upper y Left of rectangle */
Width, /* Width of button */
Height /* Height of button */
) ;

/* Draw Bottom Shadow */
XDrawLine (thisDisplay,

thisWindow,
thisGC,
buttonX+3,
buttonY+Height+1,
buttonX+Width+1,
buttonY+Height+1) ;

/* Draw Right Side Shadow */
XDrawLine (thisDisplay,

thisWindow,

thisGC,
buttonX+Width+1,
buttonY+3,
buttonX+Width+1,
buttonY+Height+1) ;

XDrawlmageString (
thisDisplay,
thisWindow,
thisGC,
buttonX + 10,
buttonY + 20,
String,
strlen(String)) ;

if (registerButton == TRUE)
return RegisterButton(thisDisplay,

thisWindow,
thisGC,
buttonX,
buttonY,
Width,
Height,
String,
Function) ;

else
return EMPTY ;

)

/* Detects button presses for dialog boxes NOT menus */
int
DetectButtonPress(thisDisplay, thisWindow, thisGC, thisX, thisY, MonitorData)
Display *thisDisplay ;
Window thisWindow ;
GC thisGC ;
int thisX ;
int thisY ;
struct Monitor MonitorData ;
t

extern struct RegButtons RegisteredButtons ;

int loopCnt = 0 ;
int buttonPressed ;

buttonPressed = -99 ; /* Dummy Flag */

for (loopCnt = 0 ; loopCnt < MAXNUMBEROFBUTTONS ; loopCnt++)
f

if (RegisteredButtons.ButtonPtr[loopCnt].Y == EMPTY)
continue ;

if ((thisY >= RegisteredButtons.ButtonPtrIloopCntLY) &&
(thisY <= (RegisteredButtons.ButtonPtrIloopCnt3.Y+BUTTONHEIGHT)))

4
if ((thisX >= RegisteredButtons.ButtonPtrEloopCnt3.X)

&& (thisX <= (RegisteredButtons.ButtonPtr[loopCnt).X+BUTTONWIDTH+1)))
f

/*RegisteredButtons.numberOfButtons = 0 ;*//* Reset buttons */
UnRegisterButton(loopCnt) ;
buttonPressed = loopCnt ;

/*ShowButtonPress(thisDisplay,
thisWindow,
thisGC,
RegisteredButtons.ButtonPtr[loopCnt].X) ;

*/
break ;

)
)

)

if ((buttonPressed != -99) &&
(RegisteredButtons.ButtonPtrIbuttonPressed).Func != NULL))
/* Button was pressed */
(*RegisteredButtons.ButtonPtr[buttonPressedl.Func) (thisDisplay,

thisWindow,
thisGC,
MonitorData

) ;

return buttonPressed ;
}

void
Windows(thisDisplay, thisWindow, thisGC, MonitorData)
Display *thisDisplay ;
Window thisWindow ;
GC thisGC ;
struct Monitor MonitorData ;
C

MonitorData.currentMenuSet = WINDOWMENUSET ;
MonitorData.buttonSelected = -99 ;/* Indicate no button selected */

DisplayMenu(thisDisplay,
thisWindow,
thisGC,
MenuSet[MonitorData.currentMenuSet],
&MonitorData) ;

)

PaintTrafficWindow(thisDisplay, thisWindow, thisGC, MonitorData)
Display *thisDisplay ;
Window thisWindow ;
GC thisGC ;
struct Monitor MonitorData ;
C

int buttonIndex, registerButton = FALSE ;

PaintWindowBorders(thisDisplay, thisWindow, thisGC, BUTTONRIGHT) ;

if (MonitorData.trafficButIndex == EMPTY)
registerButton = TRUE ;

buttonIndex = DrawButton(thisDisplay,
thisWindow,
thisGC,
TRAFFICWINDOWWIDTH-70,
(TRAFFICWINDOWHEIGHT-40-(BUTTONHEIGHT+15)),
BUTTONWIDTH,
BUTTONHEIGHT,
"CLOSE",
NULL,
registerButton) ;

if (registerButton == TRUE)
MonitorData.trafficButlndex = buttonIndex ;

)

char *
NodeTypeIs(nodeType)
int nodeType ;
C

char nodeTypeIs[NODETYPELEN];

switch (nodeType)
C

case CU:
strcpy(nodeTypeIs, "CU 1.);

break ;
case ALU:

strcpy(nodeTypeIs, "ALU 11);

break ;
case REGISTER:

strcpy(nodeTypeIs, "REGISTER ");

break ;
case PSW:

strcpy(nodeTypeIs, "PSW ..);

break ;
case IOPROCESSOR:

strcpy(nodeTypeIs, "I0 PROCESSOR 11);

break ;
case MAINMEMORY:

strcpy(nodeTypeIs, "MAIN MEMORY 11);

break ;
case SECONDARYMEMORY:

strcpy(nodeTypels, "SECONDARY MEMORY ");
break ;

case COMMANDPROCESSOR:
strcpy(nodeTypeIs, "COMMAND PROCESSOR ");
break ;

case OSKERNEL:
strcpy(nodeTypeIs, "OS KERNEL);

break ;
default:

strcpy(nodeTypeIs, "BRIDGE);

break ;

return nodeTypeIs;

void
PaintZoomWindow(thisDisplay, thisWindow, thisGC, MonitorData)
Display *thisDisplay ;
Window thisWindow ;
GC thisGC ;
struct Monitor MonitorData ;

char nodeType[NODETYPELEN 7 ;
char dispString[60 ;
int X = 30, label=0, cnt, buttonIndex, registerButton = FALSE;

int percent = 50 ;
buttonIndex = MonitorData.zoomButlndex ;

PaintWindowBorders(thisDisplay, thisWindow, thisGC, BUTTONTOP) ;

sprintf(dispString, "Node Label: %d", MonitorData.typeSelected) ;
XDrawlmageString (

thisDisplay,
thisWindow,
thisGC,
X,
70,
dispString,
strlen(dispString)) ;

strcpy(nodeType, NodeTypeIs(MonitorData.typeSelected));
sprintf(dispString, "Node Type: %s", nodeType) ;
XDrawlmageString (

thisDisplay,
thisWindow,
thisGC,
X,
85,
dispString,
strlen(dispString)) ;

sprintf(dispString, "Node Address: %s", MonitorData.addSelected);
XDrawlmageString (

thisDisplay,
thisWindow,
thisGC,
X,
100,
dispString,
strlen(dispString)) ;

sprintf(dispString, "Member of ring: %d", MonitorData.ringSelected);
XDrawlmageString (

thisDisplay,
thisWindow,
thisGC,
X,
115,
dispString,
strlen(dispString)) ;

sprintf(dispString, "Utilization :");
XDrawlmageString (

thisDisplay,
thisWindow,
thisGC,
X,
150,
dispString,
strlen(dispString)) ;

X = 135 ;

/* Draw X axis line */

XDrawLine (thisDisplay, thisWindow, thisGC, X, 155, X+100, 155);

/* Draw X axis delimiters */
for (cnt = 0; cnt < 6; cnt ++)

XDrawLine (thisDisplay, thisWindow, thisGC, X, 152, X, 158);
sprintf(dispString, "%d", label) ;
XDrawlmageString (thisDisplay,thisWindow,thisGC,X,170, dispString, strlen(dispString)) ;
label = label + 20 ;
X = X + 20 ;

X = 135 ;

XFillRectangle (thisDisplay, thisWindow, thisGC, X, 145, percent, 5) ;

X = 30 ;

sprintf(dispString, "Max. idle time: %f", 15.54);
XDrawlmageString (

thisDisplay,
thisWindow,
thisGC,
X,
190,
dispString,
strlen(dispString)) ;

sprintf(dispString, "Avg. idle time: %f", 8.32);
XDrawlmageString (

thisDisplay,
thisWindow,
thisGC,
X,
205,
dispString,
strlen(dispString)) ;

sprintf(dispString, "Max busy time: %f", 2.34);
XDrawlmageString (

thisDisplay,
thisWindow,
thisGC,
X,
220,
dispString,
strlen(dispString)) ;

sprintf(dispString, "Avg. busy time: %f", 2.01);
XDrawlmageString (

thisDisplay,
thisWindow,
thisGC,
X,
235,
dispString,
strlen(dispString)) ;

sprintf(dispString, "Current Activity: %s", "IDLE");
XDrawlmageString (

thisDisplay,
thisWindow,
thisGC,
X,
265,
dispString,
strlen(dispString)) ;

if (MonitorData.zoomButlndex == EMPTY)
registerButton = TRUE ;

buttonlndex = DrawButton(thisDisplay,
thisWindow,
thisGC,
20,
10,
BUTTONWIDTH,
BUTTONHEIGHT,
"CLOSE",
NULL,
registerButton) ;

if (registerButton == TRUE)
MonitorData.zoomButIndex = buttonIndex ;/* Index of the button registered */

)

void
ZoomWindow(thisDisplay, thisWindow, thisGC, MonitorData)
Display *thisDisplay ;
Window thisWindow ;
GC thisGC ;
struct Monitor MonitorData ;

extern Window zoomWindow ;

if (MonitorData.zoomWindow == TRUE)
C

MonitorData.zoomWindow = FALSE ;
MonitorData.zoomButIndex = EMPTY ;/* Indicates that no button is registered for this window */
XUnmapWindow(thisDisplay, zoomWindow) ;

else

MonitorData.zoomButlndex = EMPTY ;/* Indicates that no button is registered for this window */

/* window mapping */
XMapRaised (thisDisplay, zoomWindow)

/* Delay Painting of the button and text */
while(XCheckTypedEvent(thisDisplay, Expose, &mainEvent)) ;

sleep(1) ;

PaintZoomWindow(thisDisplay, zoomWindow, zoomGC, MonitorData) ;
MonitorData.zoomWindow = TRUE ;

)

int
PaintTokenWindow(thisDisplay, thisWindow, thisGC, MonitorData)
Display *thisDisplay ;
Window thisWindow ;
GC thisGC ;
struct Monitor MonitorData ;

void TokenWindow();

double index ;
int cnt, xOffset = 8, yOffset, dispHeight, dispWidth, y, percent = 100, buttonlndex, registerButton = FALSE;
char strPercent[5];

/* Get the current attributes of the window so we can repaint it properly */
XGetWindowAttributes(thisDisplay, thisWindow, &windowAttributes) ;

dispHeight = ((MENUBOTTOMLINE+((windowAttributes.height-MENUBOTTOMLINE)-TOPLINEINDENT)) - MENUBOTTOMLINE) ;
dispWidth = ((windowAttributes.width - TOPLINEINDENT) - TOPLINEINDENT) ;

yOffset = (dispHeight / 5) ;

XClearArea(thisDisplay,
thisWindow,
0,
0,
windowAttributes.width,
windowAttributes.height,
FALSE) ;

/* Right Side Line */
XDrawLine (thisDisplay,

thisWindow,
thisGC,
windowAttributes.width - TOPLINEINDENT - 30,
MENUBOTTOMLINE,
windowAttributes.width - TOPLINEINDENT - 30,
MENUBOTTOMLINE+((windowAttributes.height-MENUBOTTOMLINE)-TOPLINEINDENT)) ;

/* Top Line */
/*XDrawLine (thisDisplay,

thisWindow,
thisGC,

TOPLINEINDENT,
MENUBOTTOMLINE,
windowAttributes.width - TOPLINEINDENT - 30,
MENUBOTTOMLINE) ;

*/

/* Bottom Screeen Line */
XDrawLine (thisDisplay,

thisWindow,
thisGC,
TOPLINEINDENT,
MENUBOTTOMLINE+
((windowAttributes.height-MENUBOTTOMLINE)-TOPLINEINDENT),
windowAttributes.width - TOPLINEINDENT - 30,
MENUBOTTOMLINE+ ((windowAttributes.height-MENUBOTTOMLINE)-TOPLINEINDENT)) ;

/* Left Side Line */
XDrawLine (thisDisplay,

thisWindow,
thisGC,
TOPLINEINDENT,
MENUBOTTOMLINE,
TOPLINEINDENT,
MENUBOTTOMLINE+((windowAttributes.height-MENUBOTTOMLINE)-TOPLINEINDENT)) ;

/* Right Side Line graph delimiters*/
for (cnt = 0; cnt < 6; cnt++)
C

XDrawLine (thisDisplay,
thisWindow,
thisGC,
windowAttributes.width - TOPLINEINDENT - 30,
MENUBOTTOMLINE+y,
windowAttributes.width - TOPLINEINDENT - 30 + 5,
MENUBOTTOMLINE+ y) ;

sprintf(strPercent, "%d", percent) ;
percent-=20 ;
XDrawlmageString (

thisDisplay,
thisWindow,
thisGC,
windowAttributes.width - TOPLINEINDENT + x0ffset - 30 + 5,
MENUBOTTOMLINE+ y,
strPercent,
strlen(strPercent)) ;

y += yOffset ;

if (MonitorData.tokenButlndex == EMPTY)
registerButton = TRUE ;

buttonlndex = DrawButton(thisDisplay,
thisWindow,
thisGC,
TOKENWINDOWWIDTH-80,
4,
BUTTONWIDTH,
BUTTONHEIGHT,
"CLOSE",
NULL,
registerButton) ;

if (registerButton == TRUE)
MonitorData.tokenButlndex = buttonlndex ;

)

void
TokenWindow(thisDisplay, thisWindow, thisGC, MonitorData)
Display *thisDisplay ;
Window thisWindow ;
GC thisGC ;
struct Monitor MonitorData ;
C

extern Window tokenWindow ;
int cnt;

if (MonitorData.tokenWindow == TRUE)
C

MonitorData.tokenWindow = FALSE ;
MonitorData.tokenButIndex = EMPTY ;/* Indicates that no button is registered */

XUnmapWindow(mainDisplay, tokenWindow) ;

/* initialize the bar data to empty */
/*
for (cnt = 0 ; cnt < MAXBARS; cnt++)
C

tokenBarData[cnt].percent = EMPTY ;
testBarData[cnt].percent = EMPTY ;

)
*/

)
else
C

MonitorData.tokenButIndex = EMPTY ;/* Indicates that no button is registered */

/* window mapping */
XMapRaised (mainDisplay, tokenWindow) ;

/* Delay Painting of the button and text */
while(XCheckTypedEvent(mainDisplay, Expose, &mainEvent)) ;

sleep(1) ;

/* Paints buttons and text */
PaintTokenWindow(mainDisplay, tokenWindow, tokenGC, MonitorData) ;

MonitorData.tokenWindow = TRUE ;
)

void
BridgeWindow(thisDisplay, thisWindow, thisGC, MonitorData)
Display *thisDisplay ;
Window thisWindow ;
GC thisGC ;
struct Monitor MonitorData ;
C

extern Window tokenWindow ;
int cnt;

if (MonitorData.bridgeWindow == TRUE)
C

MonitorData.bridgeWindow = FALSE ;
MonitorData.bridgeButlndex = EMPTY ;/* Indicates that no button is registered */

XUnmapWindow(mainDisplay, bridgeWindow) ;
)
else
C

/* window mapping */
XMapRaised (mainDisplay, bridgeWindow) ;

/* Delay Painting of the button and text */
while(XChecklypedEvent(mainDisplay, Expose, &mainEvent)) ;

sleep(1)

/* Paints buttons and text */
PaintBridgeWindow(mainDisplay, bridgeWindow, bridgeGC, MonitorData) ;

MonitorData.bridgeWindow = TRUE ;
)

PaintBridgeWindow(thisDisplay, thisWindow, thisGC, MonitorData)
Display *thisDisplay ;
Window thisWindow ;
GC thisGC ;
struct Monitor MonitorData ;
C

char nodeType[NODETYPELEN ;
char dispString[60] ;
int X = 30, label=0, cnt, buttonIndex, registerButton = FALSE;

int percent = 50 ;

PaintWindowBorders(thisDisplay, thisWindow, thisGC, BUTTONTOP) ;

sprintf(dispString, "Node Label: %d", MonitorData.typeSelected) ;
XDrawlmageString (

thisDisplay,
thisWindow,
thisGC,
X,
70,
dispString,
strlen(dispString)) ;

strcpy(nodeType, NodeTypeIs(MonitorData.typeSelected));
sprintf(dispString, "Node Type: %s", nodeType) ;
XDrawlmageString (

thisDisplay,
thisWindow,
thisGC,
X,
85,
dispString,
strlen(dispString)) ;

sprintf(dispString, "Node Address: %s", MonitorData.addSelected);
XDrawlmageString (

thisDisplay,
thisWindow,
thisGC,
X,
100,
dispString,
strlen(dispString)) ;

sprintf(dispString, "Member of ring: %d", MonitorData.ringSelected);
XDrawlmageString (

thisDisplay,
thisWindow,
thisGC,
X,
115,
dispString,
strlen(dispString)) ;

sprintf(dispString, "Utilization :");
XDrawlmageString (

thisDisplay,
thisWindow,
thisGC,
X,
150,
dispString,
strlen(dispString)) ;

X = 135 ;

/* Draw X axis line */
XDrawLine (thisDisplay, thisWindow, thisGC, X, 155, X+100, 155);

/* Draw X axis delimiters */
for (cnt = 0; cnt < 6; cnt ++)

XDrawLine (thisDisplay, thisWindow, thisGC, X, 152, X, 158);
sprintf(dispString, "%d", label) ;
XDrawlmageString (thisDisplay,thisWindow,thisGC,X,170, dispString, strlen(dispString)) ;
label = label + 20 ;
X = X + 20 ;

}
X = 135 ;

XFillRectangle (thisDisplay, thisWindow, thisGC, X, 145, percent, 5) ;

X = 30 ;

sprintf(dispString, "Max. idle time: %f", 15.54);
XDrawlmageString (

thisDisplay,
thisWindow,
thisGC,
X,
190,
dispString,
strlen(dispString)) ;

sprintf(dispString, "Avg. idle time: %f", 8.32);

XDrawlmageString (
thisDisplay,
thisWindow,
thisGC,
X,
205,
dispString,
strlen(dispString)) ;

sprintf(dispString, "Max busy time: %f", 2.34);
XDrawlmageString (

thisDisplay,
thisWindow,
thisGC,
X,
220,
dispString,
strlen(dispString)) ;

sprintf(dispString, "Avg. busy time: %f", 2.01);
XDrawImageString (

thisDisplay,
thisWindow,
thisGC,
X,
235,
dispString,
strlen(dispString)) ;

sprintf(dispString, "Current Activity: %s", "IDLE");
XDrawlmageString (

thisDisplay,
thisWindow,
thisGC,
X,
265,
dispString,
strlen(dispString)) ;

if (MonitorData.bridgeButIndex == EMPTY)
registerButton = TRUE ;

buttonlndex = DrawButton(thisDisplay,
thisWindow,
thisGC,
20,
10,
BUTTONWIDTH,
BUTTONHEIGHT,
"CLOSE",
NULL,
registerButton) ;

if (registerButton == TRUE)
MonitorData.bridgeButlndex = buttonlndex ;/* Index of the button registered */

)

void
TrafficWindow(thisDisplay, thisWindow, thisGC, MonitorData)
Display *thisDisplay ;
Window thisWindow ;
GC thisGC ;
struct Monitor MonitorData ;
(

extern Window trafficWindow ;

if (MonitorData.trafficWindow == TRUE)
(

MonitorData.trafficWindow = FALSE ;
MonitorData.trafficButlndex = EMPTY ;/* Indicates that no button is registered */

XUnmapWindow(thisDisplay, trafficWindow) ;
)
else
(

MonitorData.trafficButlndex = EMPTY ;

/* window mapping */
XMapRaised (thisDisplay, trafficWindow) ;

/* Delay Painting of the button and text */

while(XCheckTypedEvent(thisDisplay, Expose, &mainEvent)) ;
sleep(1) ;

/* Paints buttons and text */
PaintTrafficWindow(thisDisplay, trafficWindow, trafficGC, MonitorData) ;
MonitorData.trafficWindow = TRUE ;

)
)

void
Legend(thisDisplay, thisWindow, thisGC, MonitorData)
Display *thisDisplay ;
Window thisWindow ;
GC thisGC ;
struct Monitor MonitorData ;
C

extern Window legendWindow ;

if (MonitorData.legendWindow == TRUE)
C

MonitorData.legendWindow = FALSE ;
MonitorData.legendButIndex = EMPTY ;

XUnmapWindow(thisDisplay, legendWindow) ;
)
else
C

/* window mapping */
XMapRaised (thisDisplay, legendWindow) ;

/* Delay Painting of the button and text */
while(XCheckTypedEvent(thisDisplay, Expose, &mainEvent)) ;

sleep(1) ;

/* Paints buttons and text */
PaintLegendBox(thisDisplay, legendWindow, legendGC, MonitorData) ;
MonitorData.legendWindow = TRUE ;

)
)

PaintLegendBox(thisDisplay, thisWindow, thisGC, MonitorData)
Display *thisDisplay ;
Window thisWindow ;
GC thisGC ;
struct Monitor MonitorData ;
C

char description[21], id[4], dispString[26] ;
int buttonlndex, registerButton = FALSE ;

int X = 5 ;
int Y = 60 ;

FILE *fileptr ; /* ptr to file */

/* Attempt to open the file */
if ((fileptr=fopen("legend.txt", "r")) == NULL)
C

printf("Can't open file: legend.txt\n");
exit(-1);

)

XClearWindow(thisDisplay, legendWindow);

while (fscanf(fileptr, "%20s 73s", description, id) != EOF)

sprintf(dispString, "%-20s %3s", description, id) ;
XDrawlmageString (

thisDisplay,
thisWindow,
thisGC,
X,
Y,
dispString,
strlen (dispString)) ;

Y = Y + 20 ;
)

fclose(fileptr) ;

if (MonitorData.legendButIndex == EMPTY)
registerButton = TRUE ;

buttonIndex = DrawButton(thisDisplay,
thisWindow,
thisGC,
LEGENDWINDOWWIDTH-80,
4,
BUTTONWIDTH,
BUTTONHEIGHT,
"CLOSE",
NULL,
registerButton) ;

if (registerButton == TRUE)
MonitorData.legendButlndex = buttonIndex ;

)

void
AboutBox(thisDisplay, thisWindow, thisGC, MonitorData)
Display *thisDisplay ;
Window thisWindow ;
GC thisGC ;
struct Monitor MonitorData ;
(

extern Window aboutWindow ;

if (MonitorData.aboutWindow == TRUE)
(

MonitorData.aboutWindow = FALSE ;
MonitorData.aboutButlndex = EMPTY ;

XUnmapWindow(thisDisplay, aboutWindow) ;
)
else
C

/* window mapping */
XMapRaised (thisDisplay, aboutWindow) ;

/* Delay Painting of the button and text */
while(XCheckTypedEvent(thisDisplay, Expose, &mainEvent)) ;

sleep(1) ;

/* Paints buttons and text */
PaintAboutBox(thisDisplay, aboutWindow, aboutGC, MonitorData) ;
MonitorData.aboutWindow = TRUE ;

)

)

PaintAboutBox(thisDisplay, thisWindow, thisGC, MonitorData)
Display *thisDisplay ;
Window thisWindow ;
GC thisGC ;
struct Monitor MonitorData ;
C

int buttonIndex, registerButton = FALSE ;
int X = 55 ;
int Y = 45 ;

char *linel=" Real-TV" ;
char *line2=" Real-Time Visualizer" ;
char *line3="Monitor Real-Time System Simulation" ;
char *line4=" Author: Richard Czop" ;
char *line5=" 1991" ;

XDrawlmageString (
thisDisplay,
aboutWindow,
aboutGC,
X,
Y,
linel,
strlen (linel)) ;

XDrawlmageString (

thisDisplay,
aboutWindow,
aboutGC,
X,
Y+(1*20),
line2,
strlen (line2)) ;

XDrawlmageString (
thisDisplay,
aboutWindow,
aboutGC,
X,
Y+(2*20),
line3,
strlen (line3)) ;

XDrawlmageString (
thisDisplay,
aboutWindow,
aboutGC,
X,
Y+(3*20),
line4,
strlen (line4)) ;

XDrawlmageString (
thisDisplay,
aboutWindow,
aboutGC,
X,
Y+(4*20),
line5,
strlen (line5)) ;

if (MonitorData.aboutButlndex == EMPTY)
registerButton = TRUE ;

else
registerButton = FALSE ;

fprintf(stderr,"About Box() registerButton = %d \n",registerButton) ;

buttonlndex = DrawButton(thisDisplay,
aboutWindow,
aboutGC,
(ABOUTWINDOWWIDTH/2)- (BUTTONWIDTH/2),
ABOUTWINDOWHEIGHT-75,
BUTTONWIDTH,
BUTTONHEIGHT,
"Okay",
NULL,
registerButton) ;

if (registerButton == TRUE)
MonitorData.aboutButlndex = buttonlndex ;

)

void
Load(thisDisplay, thisWindow, thisGC, MonitorData)
Display *thisDisplay ;
Window thisWindow ;
GC thisGC ;
struct Monitor MonitorData ;
C

MonitorData.currentMenuSet = LOADMENUSET ;
MonitorData.buttonSelected = -99 ;/* Indicate no button selected */

DisplayMenu(thisDisplay,
thisWindow,
thisGC,
MenuSet[MonitorData.currentMenuSet],
MonitorData) ;

)

void
LoadMainMenu(thisDisplay, thisWindow, thisGC, MonitorData)
Display *thisDisplay ;
Window thisWindow ;
GC thisGC ;
struct Monitor MonitorData ;

C
MonitorData.currentMenuSet = MAINMENUSET ;
MonitorData.buttonSelected = -99 ;/* Indicate no button selected */

DisplayMenu(thisDisplay,
thisWindow,
thisGC,
MenuSet(MonitorData.currentMenuSet),
&MonitorData) ;

)

void
Connect(thisDisplay, thisWindow, thisGC, MonitorData)
Display *thisDisplay ;
Window thisWindow ;
GC thisGC ;
struct Monitor MonitorData ;
(

)

void
Stats(thisDisplay, thisWindow, thisGC, MonitorData)
Display *thisDisplay ;
Window thisWindow ;
GC thisGC ;
struct Monitor MonitorData ;
(

MonitorData.currentMenuSet = STATSMENUSET ;
MonitorData.buttonSelected = -99 ;/* Indicate no button selected */

DisplayMenu(thisDisplay,
thisWindow,
thisGC,
MenuSet[MonitorData.currentMenuSet 3,
&MonitorData) ;

)

void
Keyboard(thisDisplay, thisWindow, thisGC, MonitorData)
Display *thisDisplay ;
Window thisWindow ;
GC thisGC ;
struct Monitor MonitorData ;
t

/* fork() and exec() the keyboard interface */
static char *nargv[1 = C (char *) 0);
if (fork() > 0)
C

execvp("ctty", nargv) ;
perror("ctty error\n");
exit(1);

)
)

void
RecordSession(thisDisplay, thisWindow, thisGC, MonitorData)
Display *thisDisplay ;
Window thisWindow ;
GC thisGC ;
struct Monitor MonitorData ;
C

)

void
LoadReplay(thisDisplay, thisWindow, thisGC, MonitorData)
Display *thisDisplay ;
Window thisWindow ;
GC thisGC ;
struct Monitor MonitorData ;
C

)

void
CleanUp(thisDisplay, thisWindow, thisGC, MonitorData)

Display *thisDisplay ;
Window thisWindow ;
GC thisGC ;
struct Monitor MonitorData ;
C

MonitorData.quit = TRUE ;
)

void
Configurel (thisDisplay, thisWindow, thisGC, MonitorData)
Display *thisDisplay ;
Window thisWindow ;
GC thisGC ;
struct Monitor MonitorData ;
C

)

void
Configure2 (thisDisplay, thisWindow, thisGC, MonitorData)
Display *thisDisplay ;
Window thisWindow ;
GC thisGC ;
struct Monitor MonitorData ;
C

)

void
Configure3 (thisDisplay, thisWindow, thisGC, MonitorData)
Display *thisDisplay ;
Window thisWindow ;
GC thisGC ;
struct Monitor MonitorData ;
f

)

/* FILE: STATS.0
AUTHOR: RICHARD CZOP
DATE: 12/13/91
REAL-TV

*/

#include "monitor.h"

/* DEBUGGING AND TESTING OF STANDALONE SYSTEM ONLY */
StuffTokenData()

char str_percent[3+1] ;
int percent, index = 0 ;

FILE *fileptr ; /* ptr to file */

/* Attempt to open the file */
if ((fileptr=fopen("tokendata.test", "r")) == NULL)
C

printf("Can't open file: tokendata.test\n");
exit(-1);

while (fscanf(fileptr, "%3s", str_percent) != EOF)
testBarData[index++].percent = atoi(str_percent) ;

fclose(fileptr) ;
)

/* DEBUGGING AND TESTING OF STANDALONE SYSTEM ONLY */
TestStuff(MonitorData)
struct Monitor MonitorData ;
C

static int delay = 0;

/* This prevents the test data to go to fast */
if (delay == 0)
C

if (MonitorData.tokenWindow == TRUE)
ShowNextTokenStat(MonitorData) ;

if (delay == 100)
delay = 0 ;

)

/* DEBUGGING AND TESTING OF STANDALONE SYSTEM ONLY */
ShowNextTokenStat(MonitorData)
struct Monitor MonitorData ;
C

static int index=];
AvgTokenPaint(mainDisplay, tokenWindow, tokenGC, testBarData[index++].percent, ADD_DATA, MonitorData);

if (index > 20)
index = 0 ;

)

DrawBar(thisDisplay, thisWindow, thisGC, X, Y, maxHeight, maxWidth, percent)
Display *thisDisplay ;
Window thisWindow ;
GC thisGC ;
int X ;
int Y
int maxHeight ;
int maxWidth ;
int percent ;
C

int height, width ;

width = maxWidth
height = ((maxHeight * percent) / 100);

XClearArea(thisDisplay, thisWindow, X, Y-maxHeight, width, maxHeight, FALSE) ;
XFillRectangle (thisDisplay, thisWindow, thisGC, X, Y-height, width, height) ;
)

/* Displays the average data inside of Packet */

AvgTokenPaint(thisDisplay, thisWindow, thisGC, percent, mode, MonitorData)
Display *thisDisplay ;
Window thisWindow ;
GC thisGC ;
int percent ;
int mode ;
struct Monitor MonitorData ;
C

extern struct BarData tokenBarData[] ;
static int topIndex = 0 ;
static double averageSize = 0, sizeTotal=0, numberOfTest=0;
static char string[60 7 ;

int X, Y, dispHeight, dispWidth, maxBars, barWidth = 10, xOffset = 8, cnt, index ;

/* Get the current attributes of the window so we can repaint it properly */
XGetWindowAttributes(thisDisplay, thisWindow, &windowAttributes) ;

dispHeight = ((MENUBOTTOMLINE+((windowAttributes.height-MENUBOTTOMLINE)-TOPLINEINDENT)) - MENUBOTTOMLINE) ;
dispWidth = ((windowAttributes.width - TOPLINEINDENT) - TOPLINEINDENT) ;

X = (windowAttributes.width - TOPLINEINDENT - x0ffset - 30 - 7) ;
Y = (MENUBOTTOMLINE + dispHeight - 2) ;

/* maximum number of bars that could fit in this window */
maxBars = ((dispWidth / (barWidth+2)) - 4) ;

if (topIndex > maxBars)
topindex = 0 ;

if (mode == ADD DATA)
C

tokenBarData[topindex].percent = percent ;
numberOfTest++;
sizeTotal += percent ;

averageSize = (sizeTotal / numberOfTest) ;

sprintf(string, "Ring #: %d Address: %s",
MonitorData.ringSelected, MonitorData.addSelected) ;
XDrawlmageString (thisDisplay,thisWindow,thisGC,20,10,string,strlen(string)) ;

sprintf(string, "Average Data Size: %f", averageSize) ;
XDrawImageString (thisDisplay,thisWindow,thisGC,20,30,string,strlen(string)) ;

)

index = topindex ;

for (cnt = 0; cnt < maxBars; cnt++)
C

if (tokenBarData[index].percent < 0)
C

if (cnt==0)
topIndex = 0 ;

break ;

else

C
X -= 12 ;
DrawBar(thisDisplay, thisWindow, thisGC, X, Y, dispHeight, 10, tokenBarData[index7.percent) ;

)
index--
if (index == -1)

index = maxBars-1 ;
)

if (mode==ADD_DATA)
topIndex++ ;

if (cnt==0)
topIndex = 0 ;

/* FILE: TRACKING.0
AUTHOR: RICHARD CZOP
DATE: 12/13/91
REAL-TV

*/
#include "monitor.h"
#include <math.h>
#include <X11/cursorfont.h>
#include "topology.h"
#include "process.h"

StuffProcessData()
C

int index = 0 ;

char Address[NODEADDRESS+1] ;
int ProcessState ;
char Source[NODEADDRESS+1] ;
char Desc[NODEADDRESS+1] ;
int Interval ;

FILE *fileptr ; /* ptr to file */

/* Attempt to open the file */
if ((fileptr=fopen("process.test "r")) == NULL)
C

printf("Can't open file: process.test \n");
exit(-1);

)
/* FILE PROCESS.TEST

node address, process type (CU=1,TOKEN=2,PROCESSING=3), src address, dest address, processing time
*/

while (fscanf(fileptr, "%5s %id %5s %55 %3d", Address, &ProcessState, Source, Desc, &Interval) != EOF)
C

strcpy(ProcessTest[index].Address, Address) ;
strcpy(ProcessTest(index].Source, Source) ;
strcpy(ProcessTest(index].Desc, Desc) ;
ProcessTest[index].ProcessState = ProcessState ;
ProcessTest[index].Interval = Interval ;

index++ ;
if (index > MAXPROCESSTEST)
C

fprintf(stderr, "OVERFLOW ERROR: ProcessTest[] \n ") ;
exit(-1) ;

)

ProcessTest[index].ProcessState = EMPTY ;

fclose(fileptr) ;

)

/* Starts the process tracking -- sets up all the data structs and Marks controlling CLU and current place of
process on the network graph

Called only ONCE to start process tracking
*/
ProcessTrack(thisDisplay, thisWindow, thisGC, MonitorData)
Display *thisDisplay ;
Window thisWindow ;
GC thisGC ;
struct Monitor MonitorData ;
C

/* Put up a window for the process tracking statistics */
ProcessWindow(thisDisplay, thisWindow, thisGC, MonitorData) ;

if (ProcessData.status == TRACKING_OFF)
ProcessData.status = TRACKING_ON ;

ProcessData.pid = 1345 ;
ProcessData.activeTime = 0 ;
strcpy(ProcessData.p_Name, "SimpleMath") ;

/*ProcessNext(thisDisplay, thisWindow, thisGC, ProcessTest(ProcessData.TestIndex].Address) ; */
)

/* Called x number of times after ProcessTrack() has been called to init process tracking
This function will show the next move of the process migration path
and update the correct data structures

*/

ProcessNext(thisDisplay, thisWindow, thisGC, nodeAddress)
Display *thisDisplay ;
Window thisWindow ;
GC thisGC ;
char *nodeAddress;
C

extern struct topologyData Topology[] ;
int index ;

if (ProcessData.started == FALSE)
C

ProcessData.started = TRUE ;

/* Initialize the data structure and mark CU */
for(index=0; index <= RegisteredNodes.numberOfNodes; index ++)
C

if (strcmp(nodeAddress,RegisteredNodes.NodeInfo[index].address) == 0)
C

MarkCU(thisDisplay, thisWindow, thisGC,
RegisteredNodes.NodeInfo[index].x,
RegisteredNodes.NodeInfo[index].y, NODERADIUS);

RegisteredNodes.NodeInfo[index].nodeMarked = TRUE ;
RegisteredNodes.NodeInfo[index].processState = CU ;
ProcessData.CU_Index = index ;
ProcessData.Testlndex++ ;/* TEST and DEBUG */

break ;
)

)
else
C

/*fprintf(stderr, "Address '%s' State %d \n", nodeAddress,
ProcessTest[ProcessData.TestIndex].ProcessState) ;

*/
if (ProcessTest[ProcessData.TestIndex].ProcessState == EMPTY)
C

fprintf(stderr, "End of Process test data \n") ;
RestoreNode(thisDisplay, thisWindow, thisGC) ;

ProcessData.Testlndex = 0 ;

else
C

/* Clear previously marked node and restore it to original state -- if not a CU, a node, and not
currently processing

*/
if (ProcessTest[ProcessData.TestIndex].ProcessState I= CU

&& ProcessData.NODE_Index != EMPTY
&& RegisteredNodes.NodeInfo[index].processState != PROCESSING)
RestoreNode(thisDisplay, thisWindow, thisGC) ;

/* Show next migration on network graph & update process window */
for(index=0; index <= RegisteredNodes.numberOfNodes; index ++)
C

if (strcmp(nodeAddress,RegisteredNodes.NodeInfo[index].address) == 0)
C

if (ProcessTest[ProcessData.TestIndex].processState == PROCESSING)
C

if (ProcessData.Processing == TRUE)
C

ProcessData.Elapsed++ ;/* Increment Elapsed Time */

if(--ProcessData.Interval == 0)
C

ProcessData.Processing = FALSE ;
ProcessData.Testlndex++ ;/* TEST and DEBUG */

)
)
else
C

ProcessData.Processing = TRUE ;
ProcessData.Interval = ProcessTest[ProcessData.TestIndex].Interval ;
ProcessData.Elapsed = 0 ;/* Reset elapsed time */
RegisteredNodes.NodeInfo[index].processState = PROCESSING ;
RegisteredNodes.Nodelnfo[index].nodeMarked = TRUE ;
ProcessData.NODE_Index = index ;
ProcessData.LASTOP_Index = index ;

MarkBusy(thisDisplay, thisWindow, thisGC, index) ;

else

if (ProcessTest[ProcessData.TestIndex1.ProcessState == TOKEN)
C

MarkToken(thisDisplay, thisWindow, thisGC,
RegisteredNodes.NodeInfo[index].x,
RegisteredNodes.NodeInfo[index].y, NODERADIUS);

RegisteredNodes.NodeInfo[index].processState = TOKEN ;
ProcessData.NODE_Index = index ;
RegisteredNodes.NodeInfo(index1.nodeMarked = TRUE ;

}

ProcessData.Testlndex++ ;/* TEST and DEBUG */

break ;
)
)

}

PaintProcessStats() ;

PaintProcessStats ()
C

static activeTime = 0;
char char_activeTime(5], char_Elapsed[5], char_pid[5] ;
char nodeTypeIs(NODETYPELEN+1 1;

sprintf(char_pid, "%d", ProcessData.pid) ;
/* Process ID */
XDrawlmageString (

mainDisplay,
processWindow,
processGC,
150,
200,
char_pid,
strlen(char_pid));

/* Process Name */
XDrawlmageString (

mainDisplay,
processWindow,
processGC,
150,
220,
ProcessData.p_Name,
strlen(ProcessData.p_Name)) ;

sprintf(char_activeTime, "%d", ProcessData.activeTime++)
XDrawlmageString (

mainDisplay,
processWindow,
processGC,
150,
240,
char_activeTime,
strlen(char_activeTime)) ;

XDrawlmageString (
mainDisplay,
processWindow,
processGC,
150,
260,
RegisteredNodes.NodeInfo[ProcessData.CU_Index].address,
strlen(RegisteredNodes.NodeInfo[ProcessData.CU_Index].address)) ;

XDrawlmageString C
mainDisplay,
processWindow,
processGC,
150,
280,

RegisteredNodes.Nodelnfo[ProcessData.NODE_Index].address,
strlen(RegisteredNodes.Nodelnfo[ProcessData.NODE Index] .address)) ;

strcpy(nodeTypels, Nodelypels(RegisteredNodes.Nodelnfo[ProcessData.NODE Index] .type)) ;
XDrawlmageString (

mainDisplay,
processWindow,
processGC,
150,
300,
nodeTypels,
strlen(nodeTypels));

sprintf(char_Elapsed, "%d", ProcessData.Elapsed);
XDrawlmageString (

mainDisplay,
processWindow,
processGC,
150,
320,
char_Elapsed,
strlen(char_Elapsed));

if (ProcessData.LASTOP_Index EMPTY)
C

strcpy(nodeTypels, NodeTypeIs(RegisteredNodes.NodeInfo[ProcessData.LASTOP_Index].type)) ;
XDrawlmageString (

mainDisplay,
processWindow,
processGC,
150,
353,
nodeTypeIs,
strlen(nodeTypels));

RestoreNode(thisDisplay, thisWindow, thisGC)
Display *thisDisplay ;
Window thisWindow ;
GC thisGC ;
C

int mainScreen;
char nodeld[2] ;

/* Create a GC for a blank line */
GC localGC = XCreateGC (thisDisplay, thisWindow, 0, 0) ;
mainScreen = DefaultScreen (mainDisplay) ;
XSetBackground(thisDisplay, localGC, WhitePixel(thisDisplay, mainScreen)) ;
XSetForeground(thisDisplay, localGC, WhitePixel(thisDisplay, mainScreen)) ;

/* Clear Node & Repaint */
XFillArc(thisDisplay, thisWindow, localGC,

RegisteredNodes.NodeInfo[ProcessData.NODE_Index].x-NODERADIUS,
RegisteredNodes.NodeInfolProcessData.NODE_Indexl.y-NODERADIUS,
2*NODERADIUS, 2*NODERADIUS, 0, 360*64) ;

DrawCircle(thisDisplay, thisWindow, thisGC,
RegisteredNodes.NodeInfo[ProcessData.NODE_Index].x,
RegisteredNodes.Nodelnfo[ProcessData.NODE_Index].y,
NODERADIUS)

sprintf(nodeld, "%d", RegisteredNodes.NodeInfo[ProcessData.NODE_Index].type) ;

/* Repaint node identifier */
XDrawlmageString (thisDisplay, thisWindow, thisGC,

RegisteredNodes.NodeInfo[ProcessData.NODE_Index].x,
RegisteredNodes.NodeInfo[ProcessData.NODE_Index].y,
nodeld,
strlen(nodeld)) ;

)

/* Puts up a window for the process statistics */
ProcessWindow(thisDisplay, thisWindow, thisGC, MonitorData)
Display *thisDisplay ;
Window thisWindow ;
GC thisGC ;
struct Monitor MonitorData ;
C

extern Window processWindow

if (MonitorData.processWindow == TRUE)
i

MonitorData.processWindow = FALSE ;
MonitorData.processButlndex = EMPTY ;/* Indicates that no button is registered for this window */
XUnmapWindow(thisDisplay, processWindow) ;

)
else
t

MonitorData.processButlndex = EMPTY ;/* Indicates that no button is registered for this window */

/* window mapping *1
XMapRaised (thisDisplay, processWindow) ;

/* Delay Painting of the button and text */
while(XCheckTypedEvent(thisDisplay, Expose, &mainEvent)) ;

sleep(1) ;

PaintProcessWindow(thisDisplay, processWindow, processGC, MonitorData) ;
MonitorData.processWindow = TRUE ;

)
)

PaintProcessWindow(thisDisplay, thisWindow, thisGC, MonitorData)
Display *thisDisplay ;
Window thisWindow ;
GC thisGC ;
struct Monitor MonitorData ;
f

int registerButton = FALSE, buttonindex, mainScreen ;

/* Create a GC for a blank line */
GC localGC = XCreateGC (thisDisplay, thisWindow, 0, 0) ;
mainScreen = DefaultScreen (mainDisplay) ;
XSetBackground(thisDisplay, localGC, WhitePixel(thisDisplay, mainScreen)) ;
XSetForeground(thisDisplay, localGC, WhitePixel(thisDisplay, mainScreen)) ;

/* Draw Legend */
/* Draw Controlling CU */
DrawCircle(thisDisplay, thisWindow, thisGC, 50, 75, NODERADIUS) ;
MarkCU(thisDisplay, thisWindow, thisGC, 50, 75, NODERADIUS) ;
XDrawlmageString (

thisDisplay,
thisWindow,
thisGC,
100,
75,
"Controlling CU",
strlen("Controlling CU")) ;

/* Draw current Node with data */
DrawCircle(thisDisplay, thisWindow, thisGC, 50, 115, NODERADIUS) ;
MarkToken(thisDisplay, thisWindow, thisGC, 50, 115, NODERADIUS) ;
XDrawlmageString (

thisDisplay,
thisWindow,
thisGC,
100,
115,
"Current Process Location",
strlen("Current Process Location")) ;

DrawCircle(thisDisplay, thisWindow, thisGC, 50, 155, NODERADIUS) ;
XFillArc(thisDisplay, thisWindow, thisGC, 50-4, 155-4,

2*4, 2*4, 0, 360*64) ;
XDrawlmageString (

thisDisplay,
thisWindow,
thisGC,
100,
155,
"Processing Current Process",
strlen("Processing Current Process")) ;

/* Statistics */
XDrawlmageString (

mainDisplay,
processWindow,
processGC,
7,
200,

"Process ID • : ",

strlen("Process ID : ..));

XDrawlmageString (
mainDisplay,
processWindow,
processGC,
7,
220,

"Process Name : ",

strlen("Process Name : ")) ;
XDrawlmageString (

mainDisplay,
processWindow,
processGC,
7,
240,

"Process Active For (units) " •
strlen("Process Active For (units) ",

.
•)) ; .

XDrawlmageString (
mainDisplay,
processWindow,
processGC,
7,
260,

"Controlling CU (address)", • .
strlen("Controlling CU (address)")) ; • .

XDrawlmageString (
mainDisplay,
processWindow,
processGC,
7,
280,

"Process at component : (address)",
strlen("Process at component : (address)")) ;

XDrawlmageString (
mainDisplay,
processWindow,
processGC,
7,
300,

"Processing at component: ",
strlen("Processing at component: "));

XDrawlmageString (
mainDisplay,
processWindow,
processGC,
7,
320,

"Processing elapsed time: ",
strlen("Processing elapsed time: "));

XDrawlmageString (
mainDisplay,
processWindow,
processGC,
7,
340,

"Last operation ",
strlen("Last operation "));

XDrawlmageString (
mainDisplay,
processWindow,
processGC,
7,
353,

"performed at • 1. :
strlen("performed at : "));

XDrawLine(thisDisplay, thisWindow, thisGC, 5, 7+BUTTONHEIGHT+5, PROCESSWINDOWWIDTH-5, 7+BUTTONHEIGHT+5) ;
XDrawLine(thisDisplay, thisWindow, thisGC, 5, 180, PROCESSWINDOWWIDTH-5, 180) ;

if (MonitorData.processButlndex == EMPTY)
registerButton = TRUE ;

buttonlndex = DrawButton(thisDisplay,
thisWindow,
thisGC,
20,

7,
BUTTONWIDTH,
BUTTONHEIGHT,
"DONE",
NULL,
registerButton) ;

if (registerButton == TRUE)
MonitorData.processButlndex = buttonIndex ;/* Index of the button registered */

)

MarkBusy(thisDisplay, thisWindow, thisGC, nodelndex)
Display *thisDisplay ;
Window thisWindow ;
GC thisGC ;
int nodelndex ;
C

static int radius = 4 ;

int mainScreen;
int centerX, centerY;

/* Create a GC for a blank line */
GC localGC = XCreateGC (thisDisplay, thisWindow, 0, 0) ;
mainScreen = DefaultScreen (mainDisplay) ;
XSetBackground(thisDisplay, localGC, WhitePixel(thisDisplay, mainScreen)) ;
XSetForeground(thisDisplay, localGC, WhitePixel(thisDisplay, mainScreen)) ;

centerX = RegisteredNodes.NodeInfo[nodeIndexl.x ;
centerY = RegisteredNodes.NodeInfo[nodeIndex].y ;

/* Clear Node & Repaint */
XFillArc(thisDisplay, thisWindow, localGC, centerX-NODERADIUS, centerY-NODERADIUS,

2*NODERADIUS, 2*NODERADIUS, 0, 360*64) ;

DrawCircle(thisDisplay, thisWindow, thisGC, centerX, centerY, NODERADIUS) ;

XFillArc(thisDisplay, thisWindow, thisGC, centerX-radius, centerY-radius,
2*radius, 2*radius, 0, 360*64) ;

radius = radius+1 ;
if (radius >= NODERADIUS-4)

radius = 4 ;

)

MarkCU(thisDisplay, thisWindow, thisGC, centerX, centerY, radius)
Display *thisDisplay ;
Window thisWindow ;
GC thisGC ;
int centerX ;
int centerY ;
int radius ;
(

int thisradius, mainScreen ;

/* Create a GC for a blank line */
GC localGC = XCreateGC (thisDisplay, thisWindow, 0, 0) ;
mainScreen = DefaultScreen (mainDisplay) ;
XSetBackground(thisDisplay, localGC, WhitePixel(thisDisplay, mainScreen)) ;
XSetForeground(thisDisplay, localGC, WhitePixel(thisDisplay, mainScreen)) ;

thisradius = NODERADIUS-2 ;
XFillArc(thisDisplay, thisWindow, thisGC, centerX-thisradius, centerY-thisradius,

2*thisradius, 2*thisradius, 0, 360*64) ;
)

MarkToken(thisDisplay, thisWindow, thisGC, centerX, centerY, radius)
Display *thisDisplay ;
Window thisWindow ;
GC thisGC ;
int centerX ;
int centerY ;
int radius ;
C

int mainScreen, thisradius ;

/* Create a GC for a blank line */
GC localGC = XCreateGC (thisDisplay, thisWindow, 0, 0) ;
mainScreen = DefaultScreen (mainDisplay) ;
XSetBackground(thisDisplay, localGC, WhitePixel(thisDisplay, mainScreen)) ;

XSetForeground(thisDisplay, localGC, WhitePixel(thisDisplay, mainScreen)) ;

thisradius = NODERADIUS-2 ;
XFillArc(thisDisplay, thisWindow, thisGC, centerX-thisradius, centerY-thisradius,

2*thisradius, 2*thisradius, 0, 360*64) ;

thisradius = NODERADIUS-(NODERADIUS-6) ;
XFillArc(thisDisplay, thisWindow, locaIGC, centerX-thisradius, centerY-thisradius,

2*thisradius, 2*thisradius, 0, 360*64) ;

)

/* FILE: MENUS.0
AUTHOR: RICHARD CZOP
DATE: 12/13/91
REAL-TV

*/

/* Menus handling routines */

#include "monitor.h"

/* Detects button presses for menus NOT dialog boxes */

int
CheckButtonPress(thisDisplay, thisWindow, thisGC, thisX, thisY, MonitorData, MenuName)
Display *thisDisplay ;
Window thisWindow ;
GC thisGC ;
int thisX ;
int thisY ;
struct Monitor MonitorData ;
struct Menu MenuName[] ;

C
int loopCnt = 0 ;
int currentX = MAINMENUBUTTONX ;

MonitorData.buttonSelected = -99 ;/* Dummy Flag */

/* Pointer coordinate is within the menu bar */
if ((thisY >= MENUTOPLINE+5) && (thisY <= (MENUTOPLINE+5+MENUBUTTONHEIGHT+1)))

C
for(loopCnt = 0; loopCnt < MonitorData.menultems; loopCnt++)
C

/* Pointer within a menu button */
if ((thisX >= currentX) && (thisX <= (currentX+MENUBUTTONWIDTH+1)))

C
MonitorData.buttonSelected = loopCnt ;
ShowButtonPress(thisDisplay,

thisWindow,
thisGC,
currentX) ;

break ;
)
else

currentX = (MENUBUTTONXSPACE + (currentX + MENUBUTTONWIDTH));

)

if ((MonitorData.buttonSelected != -99) &&
(MenuName[MonitorData.buttonSelected].Func != NULL))
/* Button was pressed */
(*MenuName[MonitorData.buttonSelected].Func) (thisDisplay,

thisWindow,
thisGC,
&MonitorData) ;

)

ShowButtonPress(this_Display, this_Window, this_GC, Xcoordinate)
Display *this_Display ;
Window this_Window ;
GC this_GC ;
int Xcoordinate ;
C

int buttonY = MENUTOPLINE + 5 ;
int buttonX = Xcoordinate ;
int count ;
GC buttonGC ;

static char gray_bits =
0x88, 0x88, 0x22, 0x22, 0x88, 0x88, 0x22, 0x22,
0x88, Ox88, 0x22, 0x22, 0x88, 0x88, 0x22, 0x22,
0x88, 0x88, 0x22, 0x22, Ox88, 0x88, Ox22, 0x22,
0x88, 0x88, 0x22, 0x22, Ox88, 0x88, Ox22, 0x22) ;

for (count=0; count<3; count++)

(
XDrawRectangle(this_Display,

this_Window,
this_GC,
++buttonX, /* Upper x Left of rectangle */
++buttonY, /* Upper y Left of rectangle */
MENUBUTTONWIDTH, /* Width of button */

MENUBUTTONHEIGHT /* Height of button */
) ;

)
)

void
DisplayMenu (thisDisplay, thisWindow, thisGC, MenuName, MonitorData)
Display *thisDisplay ;
Window thisWindow ;
GC thisGC ;
struct Menu MenuName[) ;
struct Monitor MonitorData ;
C

int menuIndex = 0 ;
int buttonX = MAINMENUBUTTONX ;
int buttonY = MENUTOPLINE + 5 ;

/* Get the current attributes of the window so we can repaint it properly */
XGetWindowAttributes(thisDisplay, thisWindow, &windowAttributes) ;

XClearArea(thisDisplay,
thisWindow,
TOPLINEINDENT,
MENUTOPLINE+2,
windowAttributes.width - (2*TOPLINEINDENT),
(MENUBOTTOMLINE - MENUTOPLINE) - 2,
FALSE) ;

MonitorData.menultems = 0 ;

/* Given a Menu Struct This algorithm will draw a Menu */
while (MenuName[menuIndex).choiceName != NULL)

C

MonitorData.menultems++ ; /* How many items in this menu */

/*XDrawArc(thisDisplay,
thisWindow,
thisGC,
buttonX,
buttonY,
MENUBUTTONWIDTH,
MENUBUTTONHEIGHT,
0,
360 * 64) ;

*/

DrawMenuButton(thisDisplay,
thisWindow,
thisGC,
buttonX,
buttonY,
MENUBUTTONWIDTH,
MENUBUTTONHEIGHT,
MenuName(menuIndex 1.choiceName) ;

if (MonitorData.buttonSelected == menuIndex)
ShowButtonPress(thisDisplay, thisWindow, thisGC, buttonX) ;

buttonX = (MENUBUTTONXSPACE + (buttonX + MENUBUTTONWIDTH));

menulndex++ ;
)

)

/* FILE: TOPOLOGY.0
AUTHOR: RICHARD CZOP
DATE: 12/13/91
REAL-TV

*/

#include "monitor.h"
#include <math.h>
#include <X11/cursorfont.h>
#include "topology.h"

int
CheckNodePress(thisDisplay, thisWindow, thisGC, x, y, MonitorData)
Display *thisDisplay ;
Window thisWindow ;
GC thisGC ;
struct Monitor MonitorData ;
C

int radius,
cnt;

double X, Y, power=2 ;
int NodeType = EMPTY;

for (cnt=0; cnt < RegisteredNodes.numberOfNodes; cnt++)
C

switch (RegisteredNodes.NodeInfo[cnt].gender)
C

case NODE: /* component is a Node */
radius = NODERADIUS;
break ;

case RING: /* component is a Ring */
radius = (2*NODERADIUS) ;
break ;

case BRIDGE: /* component is a Bridge */
radius = BRIDGERADIUS;
break ;

default:
fprintf(stderr, "Error: CheckNodePress() \n") ;
exit(-1) ;

)

X = pow(((double)x-(double)RegisteredNodes.NodeInfo[cnti.x), power) ;
Y = pow(((double)y-(double)RegisteredNodes.NodeInfo[cntl.y), power) ;
if ((X+Y) <= pow((double)radius,power))
C

NodeType = RegisteredNodes.NodeInfo[cnt].gender;
MonitorData.ringSelected = RegisteredNodes.Nodelnfo[cnt].ring ;
strcpy(MonitorData.addSelected, RegisteredNodes.NodeInfo[cntl.address) ;
MonitorData.typeSelected = RegisteredNodes.NodeInfo[cnt].type ;

/*fprintf(stderr, "Node clicked: ring = %d type = %d gender = %d address = %s \n",
RegisteredNodes.NodeInfo[cntl.ring,
RegisteredNodes.NodeInfoEcntl.type,
RegisteredNodes.NodeInfo[cnt].gender,
RegisteredNodes.NodeInfo[cntl.address) ;

*/
break ;

return NodeType ;

/* Register the coordinates for the node */
RegisterNode(centerX, centerY, gender, type, ring, address)
int centerX ;
int centerY ;
int gender ;
int type ;
int ring ;
char* address ;
C

int index ;

index = RegisteredNodes.currentlndex ;
RegisteredNodes.numberOfNodes++ ;

RegisteredNodes.NodeInfo[index].x = centerX ;
RegisteredNodes.NodeInfo[index].y = centerY ;
RegisteredNodes.NodeInfo[index].gender = gender ;
RegisteredNodes.NodeInfo[index).type = type ;
strcpy(RegisteredNodes.NodeInfo[index].address, address) ;
RegisteredNodes.NodeInfo[index].ring = ring ;

RegisteredNodes.currentlndex++ ;

)

double
AnglelnRadians(numberOfNodes)
int numberOfNodes ;
(

return (double) ((2 * PI) / numberOfNodes) ;/* Calculate the angle between connectors in radians */
)

PaintTopology(thisDisplay, thisWindow, thisGC, Topology, MonitorData, Bridges)
Display *thisDisplay ;
Window thisWindow ;
GC thisGC ;
struct topologyData Topology[] ;
struct Monitor MonitorData ;
struct BridgeData Bridges[] ;
C

Cursor clockCursor, defaultCursor ;

char string_RingId[3] ;
int cnt,

Nodes,
LineLen,
Ring,
centerWindowWidth,
centerWindowHeight,
CenterX,
CenterY,
TokenRingRadius;

struct ringData RingData[MAXRINGS];
double Rads ;

clockCursor = XCreateFontCursor(thisDisplay, XC_watch) ;
defaultCursor = XCreateFontCursor(thisDisplay, XC_gumby) ;

XDefineCursor(thisDisplay, thisWindow, clockCursor) ;

/* Clear all bridges from processed list */
for(cnt = 0; cnt < MonitorData.Bridges; cnt++)

Bridges[cnt].BridgeID = 0 ;

/* Clear all Ring Data */
for(cnt = 1; cnt <= MonitorData.Rings; cnt++)

RingData[cnt].processed = FALSE ;

/* Clear all Registered Nodes */
RegisteredNodes.currentIndex = 0 ;
RegisteredNodes.numberOfNodes = 0 ;

Nodes = NumberOfNodesOnRing(0, MonitorData.Nodes, Topology) ;
Rads = (double) AnglelnRadians(Nodes) ;
LineLen = ConnectLength(Rads) ;
Ring = 1 ;

/* Get the current attributes of the window so we can repaint it properly */
XGetWindowAttributes(thisDisplay, thisWindow, &windowAttributes) ;

centerWindowWidth = (windowAttributes.width / 2) ;
centerWindowHeight = (windowAttributes.height / 2) ;

CenterX = centerWindowWidth ;
CenterY = centerWindowHeight ;

XClearWindow(thisDisplay, thisWindow) ;

/* Put up processing message */
XDrawlmageString (

thisDisplay,
thisWindow,
thisGC,
MAINWINDOWX+MAINWINDOWWIDTH - 200,
30,
"Building network topology...",
strlen("Building network topology...")) ;

/* Draw Initial Token Ring */
TokenRingRadius = NODERADIUS + NODERADIUS ;
DrawCircle(thisDisplay, thisWindow, thisGC, CenterX, CenterY, TokenRingRadius) ;
DrawCircle(thisDisplay, thisWindow, thisGC, CenterX, CenterY, TokenRingRadius-5) ;
RegisterNode(CenterX, CenterY, RING, 0, Ring, "00000") ;

sprintf(string_RingId, "%d", Ring) ;

XDrawlmageString (
thisDisplay,
thisWindow,
thisGC,
CenterX,
CenterY,
string_RingId,
strlen(string_RingId)) ;

RingData[1].centerX = CenterX ;
RingData[1].centerY = CenterY ;
RingData[1).radians = Rads ;
RingDataIll.currentRadians = 0 ;
RingData[1].lineLength = LineLen ;

DrawTop(thisDisplay, thisWindow, thisGC,
Topology, MonitorData, &RingData,
0, 0, 0,
Bridges, Ring,
0) ;

XDefineCursor(thisDisplay, thisWindow, defaultCursor) ;

)

int
ConnectLength(Radians)
double Radians ;
C

int tmpLine, NodeRadius, LineLength ;

NodeRadius = NODERADIUS;
tmpLine = ((2*NodeRadius) /2) ;

LineLength = (int) (tmpLine / sin((.5*Radians))) ;
if (LineLength < MINLINELENGTH)

LineLength = MINLINELENGTH ;

return LineLength ;
)

int
NumberOfNodesOnRing(TopPtr, nodes, Topology)
int TopPtr ;
int nodes ;
struct topologyData Topology[] ;

C
int currentNodePtr = TopPtr,

numberOfNodes ;

/* Calculate the number of nodes on the current ring */
for (numberOfNodes = 0; currentNodePtr <= nodes; currentNodePtr++)
C

if (atoi(Topology[currentNodePtr l.nodeId) == ENDOFRING)
break ;

numberOfNodes++ ;
)
return numberOfNodes ;

3

int
DrawTop(thisDisplay, thisWindow, thisGC,

Topology, MonitorData, RingData,
Current, Tmp, RingTop,
Bridges, Ring,
BridgeMatched)

Display *thisDisplay ;

Window thisWindow ;
GC thisGC ;
struct topologyData Topology[] ;
struct Monitor MonitorData ; /* Global monitor data-number of elements in topology file */

struct ringData RingData[] ; /* Relevant data to draw ring and nodes */

int Current ; /* Pointer to the current node we are inspecting */

int Tmp ; /* Pointer used to walk down list of node in current ring */
int RingTop ; /* Pointer to the top of the current ring being processed */
struct BridgeData Bridges() ; /* Struct holding bridges processed already */

int Ring ; /* Ring currently Processing */
int BridgeMatched ; /* ID of bridge just matched */
C

char tempstring(10 7 ;

int Bridge = 0 ;
int Nodes = 0 ;
int CurrentRing = Ring;
struct parentData ParentData ;

RingData[Ring 7.ringTop = RingTop ;
white (TRUE)
C

if ((Current >= MonitorData.Nodes) 1: (Tmp >= MonitorData.Nodes))

C
RingData[Ring).processed = TRUE;
return 0 ;

/* Back to the bridge already matched-entire ring painted return */
if (atoi(Topology(Current).nodeId) == BridgeMatched)
C

/* Mark ring as processed */
RingData[Ring).processed = TRUE;
return 0 ;

)

if (atoi(Topology(Current].nodeId) == ENDOFRING)
C

Current = RingData[RingLringTop ;
Tmp = Current ;
continue ;

if (atoi(Topology[Current].nodeId) > ENDOFRING)/* Node-process it */

C
DrawNode(thisDisplay, thisWindow, thisGC, RingData, Topology, Current, Ring) ;
Current++ ; /* Move to the next node */
Tmp++ ;

1
else if ((atoi(Topology[Current].nodeId) < ENDOFRING) &&

(BridgePainted(atoi(TopologyICurrent].nodeId), Bridges, MonitorData) == FALSE))
C

/* Finished processing all nodes */
if ((Ring==1) && (atoi(Topology[Current].nodeld)==ENDOFRING))

return 0 ;

DrawBridge(thisDisplay, thisWindow, thisGC, RingData, Topology, Ring, Tmp) ;
ParentData.centerX = RingData[Ring].centerX ;
ParentData.centerY = RingData[Ring].centerY ;
ParentData.lineLength = RingData[Ring].lineLength ;
ParentData.BridgeX = RingData[Ring].BridgeX ;
ParentData.BridgeY = RingData[Ring].BridgeY ;

Bridge = atoi(Topology[Current].nodeld) ;
RingTop = Tmp ;

Tmp++;
RingTop++ ;
while (TRUE)
C

if (atoi(Topology[Tmp].nodeId) == ENDOFRING)
C

ParentData.currentRadians = RingData[Ring].currentRadians ;
if ((Ring==1) && (atoi(Topology[Current].nodeld)==ENDOFRING) &&

(AllRingsProcessed(RingData, MonitorData.Rings) == TRUE))
return 0 ;

CurrentRing++ ;
Tmp++;
RingTop = Tmp ;

if (atoi(Topology[Tmp).nodeld) == Bridge)

C
SetMatchedBridge(Bridges, Bridge, MonitorData) ;

Nodes = NumberOfNodesOnRing(RingTop,
MonitorData.Nodes,
Topology) ;

RingData(CurrentRingLradians = AnglelnRadians(Nodes) ;
RingData[CurrentRing].lineLength = ConnectLength(RingDataICurrentRingLradians) ;
RingDataICurrentRingl.currentRadians = ParentData.currentRadians+(180*ONERADIAN) ;

DrawChildRing(thisDisplay, thisWindow, thisGC,
RingData, Ring, CurrentRing, ParentData) ;

RingData[Ring].currentRadians += RingDataIRingLradians ;

DrawTop(thisDisplay, thisWindow, thisGC,
Topology, MonitorData, RingData,
Tmp+1, Tmp+1, RingTop,
Bridges, CurrentRing,
Bridge);

CurrentRing = Ring ;/* Reset current ring counter */
Current++ ;
Tmp = Current ;

if ((Ring==1) && (atoi(TopologyICurrentLnodeId)==ENDOFRING))
return 0 ;

break ;
)
else
C

Tmp++ ;
)
)
)

)

)

int
AllRingsProcessed(RingData, Rings)
struct ringData RingData 0 ;
int Rings ;
{

/* Returns true if all rings 2 thru n have been processed otherwise returns false */
int cnt;
for (cnt=2; cnt <= Rings; cnt++)

C
if (RingData[cnt].processed == FALSE)

return FALSE ;
)
return TRUE ;

)

DrawChildRing(thisDisplay, thisWindow, thisGC,RingData, Ring, CurrentRing, ParentData)
Display *thisDisplay ;
Window thisWindow ;
GC thisGC ;
struct ringData RingData[] ;
int Ring ;
int CurrentRing ;
struct parentData ParentData ;
(

char string_RingId[3] ;
/* Calculate the length of the new line extending from the parent ring to the center of the

child ring

Add: Radius of token ring + Parents lineLength (extending connector) +
The bridge symbol + childs line length + the radius of a ring

*/

int ChildCenterX, ChildCenterY, ChildRingLine, LineX, LineY;
int TokenRingRadius = (2*NODERADIUS) ;
int newLineLength = TokenRingRadius+ParentData.lineLength + (2*NODERADIUS) + RingDatarRingl.lineLength +

TokenRingRadius ;

/* Calculate the center points for the child token ring */
ChildCenterY = ParentData.centerY-(newLineLength*sin(ParentData.currentRadians)) ;
ChildCenterX = ParentData.centerX+(newLineLength*cos(ParentData.currentRadians)) ;

/* Calculate the connecting line length & coordinates from the parent ring to the child ring */
ChildRingLine = newLineLength - TokenRingRadius ;
LineY = ParentData.centerY-(ChildRingLine*sin(ParentData.currentRadians)) ;
LineX = ParentData.centerX+(ChildRingLine*cos(ParentData.currentRadians)) ;

/* Draw Bridge Connector extending from child ring drawn above */
XDrawLine(thisDisplay, thisWindow, thisGC, ParentData.BridgeX, ParentData.BridgeY, LineX, LineY) ;

/* Draw Child Token Ring */
DrawCircle(thisDisplay, thisWindow, thisGC, ChildCenterX, ChildCenterY, TokenRingRadius) ;
DrawCircle(thisDisplay, thisWindow, thisGC, ChildCenterX, ChildCenterY, TokenRingRadius-5) ;

sprintf(string_RingId, "%d", CurrentRing) ;

XDrawlmageString (
thisDisplay,
thisWindow,
thisGC,
ChildCenterX,
ChildCenterY,
string_RingId,
strlen(string_RingId)) ;

/* Save coordinates of the center point for the child ring */
RingData[CurrentRing].centerX = ChildCenterX ;
RingData[CurrentRing].centerY = ChildCenterY ;
RingData[CurrentRing].currentRadians += RingData[CurrentRing].radians ;

RegisterNode(ChildCenterX, ChildCenterY, RING, 0, CurrentRing, "00000");

)

SetMatchedBridge(Bridges, id, MonitorData)
struct BridgeData Bridges[] ;
int id ;
struct Monitor MonitorData ;
{

/* Flag the bridge (id) already processed */
int cnt ;
for(cnt = 0; cnt < MonitorData.Bridges; cnt++)
C

if (Bridges[cnt].BridgelD == 0)
(

Bridges[cnt].BridgelD = id ;
break ;

)
)
)

DrawBridge(thisDisplay, thisWindow, thisGC, RingData, Topology, Ring, currentNodePtr)
Display *thisDisplay ;
Window thisWindow ;
GC thisGC ;
struct ringData RingData[] ;
struct topologyData Topology[] ;
int Ring ;
int currentNodePtr ;
C

int CircleY, CircleX, LineY, LineX, NodeY, NodeX, BridgeY, BridgeX, Bridge0ffset=0 ;

int TokenRingRadius = (2*NODERADIUS) ;

/* Calculate points on circle (start of line), points where line ends (on the node),
and center of the nodes

*/
CircleY = RingData[Ring].centerY-

(TokenRingRadius*sin(RingData[Ring].currentRadians)) ;
LineY = RingData[Ring].centerY-

((TokenRingRadius+BridgeOffset+(RingData[Ring].lineLength-NODERADIUS))*
sin(RingData[Ringl.currentRadians)) ;

NodeY = RingData[Ring).centerY-
UTokenRingRadius+RingData[Ring].lineLength+BridgeOffseWsin(RingData[Ring].currentRadians)) ;

BridgeY = RingData[Ring].centerY-
((TokenRingRadius+BridgeOffset+RingData[Ring].lineLength+NODERADIUS)*

sin(RingData[Ring].currentRadians)) ;

CircleX = RingData[Ring].centerX+
(TokenRingRadius*cos(RingData[Ring].currentRadians)) ;

LineX = RingData[Ring].centerX+

((TokenRingRadius+BridgeOffset+(RingData[Ring].lineLength-NODERADIUS))*
cos(RingData[Ring].currentRadians)) ;

NodeX = RingData[Ring].centerX+
((TokenRingRadius+BridgeOffset+RingData[Ring].lineLength)*cos(RingData[Ring].currentRadians)) ;

BridgeX = RingData[Ring].centerX+
((TokenRingRadius+BridgeOffset+RingData[Ring].lineLength+NODERADIUS)*

cos(RingData[Ring].currentRadians)) ;

/* Draw Connector */
XDrawLine(thisDisplay, thisWindow, thisGC, CircleX, CircleY, LineX, LineY) ;

/* Draw Node */
DrawCircle(thisDisplay, thisWindow, thisGC, NodeX, NodeY, NODERADIUS) ;

XDrawlmageString (
thisDisplay,
thisWindow,
thisGC,
NodeX,
NodeY,
Topology[currentNodePtr].nodeId,
strlen(Topology[currentNodePtr].nodeld)) ;

/* Save the points of the bridge */
RingData[Ring].BridgeX = BridgeX ;
RingData[Ring].BridgeY = BridgeY ;

RegisterNode(NodeX, NodeY, BRIDGE, atoi(Topology[currentNodePtr].nodeId), Ring,
Topology[currentNodePtr].nodeAddress) ;

)

int
BridgePainted (id, Bridges, MonitorData)
int id ;
struct BridgeData Bridges [] ;
struct Monitor MonitorData ;
f

/* Returns true if the bridge was already painted otherwise returns false */
int cnt;

for (cnt = 0 ; cnt < MonitorData.Bridges; cnt ++)
C

if (Bridges[cnt].BridgelD == id)
return TRUE ;

)

return FALSE ;
)

DrawNode(thisDisplay, thisWindow, thisGC, RingData, Topology, currentNodePtr, Ring)
Display *thisDisplay ;
Window thisWindow ;
GC thisGC ;
struct ringData RingData[] ;
struct topologyData Topology[] ;
int currentNodePtr ;
int Ring ;
(

int CircleY, CircleX, LineY, LineX, NodeY, NodeX ;

int TokenRingRadius = (2*NODERADIUS) ;

/* Calculate points on circle (start of line), points where line ends (on the node),
and center of the nodes

*/
CircleY = RingData[Ring].centerY-

(TokenRingRadius*sin(RingData[Ring].currentRadians)) ;
LineY = RingData[Ring].centerY-

((TokenRingRadius+(RingData[Ring].lineLength-NODERADIUS))*sin(RingData[Ring].currentRadians)) ;
NodeY = RingData[Ring].centerY-

((TokenRingRadius+RingData[Ring].lineLength)*sin(RingData[Ring].currentRadians)) ;

CircleX = RingData[Ring].centerX+
(TokenRingRadius*cos(RingData[Ring].currentRadians)) ;

LineX = RingData[Ring].centerX+
((TokenRingRadius+(RingData[Ring].lineLength-NODERADIUS))*cos(RingData[Ring].currentRadians)) ;

NodeX = RingData[Ring].centerX+

((TokenRingRadius+RingDatalRingl.lineLengthrcos(RingData[Ring].currentRadians)) ;

/* Draw Connector */
XDrawLine(thisDisplay, thisWindow, thisGC, LineX, LineY, CircleX, CircleY) ;

/* Draw Node */
DrawCircle(thisDisplay, thisWindow, thisGC, NodeX, NodeY, NODERADIUS) ;

XDrawlmageString (
thisDisplay,
thisWindow,
thisGC,
NodeX,
NodeY,
Topology[currentNodePtr].nodeld,
strlen(Topology[currentNodePtr].nodeId)) ;

/* Debug */
/*MarkCLU(thisDisplay, thisWindow, thisGC, NodeX, NodeY, NODERADIUS) ;*/
/*MarkToken(thisDisplay, thisWindow, thisGC, NodeX, NodeY, NODERADIUS) ;*/

RingData[Ring].currentRadians += RingData[Ring].radians ;

RegisterNode(NodeX, NodeY, NODE, atoi(TopologylcurrentNodePtrl.nodeId), Ring,
Topology(currentNodePtrl.nodeAddress) ;

DrawTopology (thisDisplay, thisWindow, thisGC, Topology, MonitorData)
Display *thisDisplay ;
Window thisWindow ;
GC thisGC ;
struct topologyData Topology[] ;
struct Monitor MonitorData ;
C

int atoi() ;

int X = 100,
Y = 125,
Width = TOKENRINGWIDTH,
Height = TOKENRINGHEIGHT,
CenterX = (X+(Width/2)),
CenterY = (Y+(Height/2)),
Radius = (TOKENRINGWIDTH/2),
CircleX = 0,
CircleY = 0,
LineX = 0,
LineY = 0;

int lineLength = 40,
prevLineLen,
n_Type, n_Address,
ringCnt = 0,
nodeCnt = 0,
numberOfNodes = 0,
numberOfRings = 0,
currentAngle = 0,
currentNodePtr = 0,
centerWindowWidth = 0,
centerWindowHeight = 0;

double Radians = 0,
currentRadians = 0 ;

int NodeRadius, NodeX, NodeY ;
int TokenRingRadius, tmpLine ;

/* Get the current attributes of the window so we can repaint it properly */
XGetWindowAttributes(thisDisplay, thisWindow, &windowAttributes) ;

centerWindowWidth = (windowAttributes.width / 2) ;
centerWindowHeight = (windowAttributes.height / 2) ;

CenterX = centerWindowWidth ;
CenterY = centerWindowHeight ;

numberOfRings = MonitorData.Rings ;/* Figure out the number of rings to display */

currentNodePtr = 0 ;

/* For each ring on the network */

for (ringCnt=O; ringCnt < 1; ringCnt++)

C
/*DrawToken(thisDisplay, thisWindow, thisGC, CenterX, CenterY, Radius-7) ;*/

/* Calculate the number of nodes on the current ring */
for (numberOfNodes = 0; currentNodePtr <= MonitorData.Nodes; currentNodePtr++)

C
if (atoi(Topology(currentNodePtr].nodeId) == ENDOFRING)

break ;

numberOfNodes++ ;
)

/*fprintf(stderr, "Number of Nodes = %s \n", numberOfNodes) ;
*/

/* Reset pointer to start of token ring description */
currentNodePtr = currentNodePtr - numberOfNodes ;

Radians = ((2 * PI) / numberOfNodes) ;/* Calculate the angle in radians */
currentRadians = 0 ;

/* calculate the length of the line from the angle between Line and
known radius of a node */

NodeRadius = (((2 * (lineLength+Radius)) * sin(Radians/2)) / 2) - 5 ;

NodeRadius = 15;
tmpLine = ((2*NodeRadius)) /2;
lineLength = tmpLine / sin((.5*Radians)) ;

/* Draw Token Ring */
TokenRingRadius = NodeRadius + 15 ;
DrawCircle(thisDisplay, thisWindow, thisGC, CenterX, CenterY, TokenRingRadius) ;
DrawCircle(thisDisplay, thisWindow, thisGC, CenterX, CenterY, TokenRingRadius-5) ;

/* Draw nodes and connectors */
for (nodeCnt=0 ; nodeCnt < numberOfNodes; nodeCnt++)
C

/* Calculate what type of node and address of the node */
n_Type = atoi(Topology[currentNodePtr].nodeId);
n_Address = atoi(Topology(currentNodePtr].nodeAddress);

if (n_Type < 0) /* Node is a Bridge */
4

prevLineLen = lineLength ;
lineLength = (2*lineLength) ;

)

CircleY = CenterY-(TokenRingRadius*sin(currentRadians)) ;
LineY = CenterY-((TokenRingRadius+(lineLength-NodeRadius))*sin(currentRadians)) ;

NodeY = CenterY-((TokenRingRadius+lineLength)*sin(currentRadians)) ;

CircleX = CenterX+(TokenRingRadius*cos(currentRadians)) ;
LineX = CenterX+((TokenRingRadius+(lineLength-NodeRadius))*cos(currentRadians)) ;
NodeX = CenterX+((TokenRingRadius+lineLength)*cos(currentRadians)) ;

/* Draw Connector */
XDrawLine(thisDisplay, thisWindow, thisGC, CircleX, CircleY, LineX, LineY) ;

/* Draw Node */
if (n_Type > 0)

DrawCircle(thisDisplay, thisWindow, thisGC, NodeX, NodeY, NodeRadius) ;
else

lineLength = prevLineLen ;/* Reset lineLength to original */

XDrawlmageString (
thisDisplay,
thisWindow,
thisGC,
NodeX,
NodeY,
Topology[currentNodePtr].nodeId,
strlen(Topology[currentNodePtr].nodeld)) ;

currentNodePtr++ ;

currentRadians += Radians ;
)

)
)

DrawToken(thisDisplay, thisWindow, thisGC, CenterX, CenterY, Radius)

Display *thisDisplay ;
Window thisWindow ;
GC thisGC ;
int CenterX ;
int CenterY ;
int Radius ;
C

double OneRadian = .017453292,
circleRadians = 0 ;

int radCnt = 0 ;

int CircleY, CircleX,
Percision = 32 ;

circleRadians = OneRadian/Percision ;

/* Draw Circle *WARNING-DON NOT USE XDrawArc() */
for (radCnt = 0; radCnt < 10*Percision; radCnt++)
C

CircleY = CenterY - (Radius * sin(circleRadians)) ;
CircleX = CenterX + (Radius * cos(circleRadians)) ;
XDrawPoint(thisDisplay, thisWindow, thisGC, CircleX, CircleY) ;

CircleY = CenterY - (Radius-2 * sin(circleRadians)) ;
CircleX = CenterX + (Radius-2 * cos(circleRadians)) ;
XDrawPoint(thisDisplay, thisWindow, thisGC, CircleX, CircleY) ;

CircleY = CenterY - (Radius-4 * sin(circleRadians)) ;
CircleX = CenterX + (Radius-4 * cos(circleRadians)) ;
XDrawPoint(thisDisplay, thisWindow, thisGC, CircleX, CircleY) ;

circleRadians += OneRadian/Percision ;
)
)

DrawCircle(thisDisplay, thisWindow, thisGC, CenterX, CenterY, Radius)
Display *thisDisplay ;
Window thisWindow ;
GC thisGC ;
int CenterX ;
int CenterY ;
int Radius ;
C

double OneRadian = .017453292,
circleRadians = 0 ;

int radCnt = 0 ;

int CircleY, CircleX,
Percision = 1 ; /* Define the quality of the outputted circle drawn--the higher the number

the better the quality and the slower the drawing process */

circleRadians = OneRadian/Percision ;

/* Draw Circle *WARNING-DON NOT USE XDrawArc() */
for (radCnt = 0; radCnt < 360*Percision; radCnt++)
C

CircleY = CenterY - (Radius * sin(circleRadians)) ;
CircleX = CenterX + (Radius * cos(circleRadians)) ;

XDrawPoint(thisDisplay, thisWindow, thisGC, CircleX, CircleY) ;
circleRadians += OneRadian/Percision ;

)

XFlush(thisDisplay) ;
)

StuffTopology(Top, fileName, Nodes, Rings, Bridges)
struct topologyData Top[] ;
char *fileName ;
int *Nodes ;
int *Rings ;
int *Bridges ;
C

int index = 0, ringCnt = 0, numberOfBridges ;
char IDE NODEID] ;
char Address(NODEADDRESS] ;
FILE *fileptr ; /* ptr to file */

*Nodes = 0 ;

*Rings = 0 ;
*Bridges = 0 ;

/* Attempt to open the file */
if ((fileptr=fopen(fileName, "r")) == NULL)
C

printf("Can't open file: %s\n", fileName);
exit(-1);

)

while (fscanf(fileptr, "%3s %5s", ID, Address) != EOF)
(

strcpy(Top(index LnodeId, ID) ;
strcpy(Top(index].nodeAddress, Address) ;

index++ ;
if (index > MAXNODES)
C

fprintf(stderr,"Memory overflow error loading topology! \n");
fclose(fileptr) ;
exit(-1);

/* End of a ring description */
if (atoi(ID) == ENDOFRING)

ringCnt++ ;

/* Bridge */
if (atoi(ID) < 0)

numberOfBridges++;
)
fclose(fileptr) ;

Nodes = index ; / Number of nodes & rings on entire connected network */
Rings = ringCnt ; / Number of rings connected to network */
Bridges = (numberOfBridges/2) ; / Number of bridges on the network */

void Configure1() ;
void Configure2() ;
void Configure3() ;

void AboutBox() ;
void Load() ;
void Connect() ;
void Stats() ;
void Keyboard() ;
void Windows() ;

void RecordSession() ;
void LoadReplay() ;
void CleanUp() ;
void TrafficWindow() ;
void ZoomWindow() ;
void TokenWindow() ;

void LoadMainMenu() ;
void Legend();
void ProcessTrack() ;

static struct Menu MainMenu[] =
("About", AboutBox),
("File...", Load),
("Connect", Connect),
("Window...",Windows),
("Process", ProcessTrack),
("Legend", Legend),
(NULL,NULL)
) ;

static struct Menu LoadMenuEl =
("Record", RecordSession),
("Replay", LoadReplay),
("Quit", Cleanup),
("Main", LoadMainMenu),
(NULL, NULL)
) ;

static struct Menu WindowMenu[]
("Keyboard", Keyboard),
("Traffic", TrafficWindow),
("Main", LoadMainMenu),
(NULL, NULL)
) ;

static struct Menu ConfigMenu[] = (
("Config1", Configure)),
("Config2", Configure2),
("Config3", Configure3),
("Main", LoadMainMenu),
(NULL,NULL)
) ;

struct Menu *MenuSet[NUMBEROFMENUS ; /*. MainMenu, LoadMenu, ConfigMenu); */

struct RegButtons RegisteredButtons ;

/* FILE: PROCESS.H */

#define TRACKING_ON 1
#define TRACKING OFF 0

struct Process
{

int status; /* Is tracking on or off? */
int started; /* Has tracking started yet? */
int activeTime; /* Length of process activation */
int pid; /* Process ID */
char p_Name[15]; /* Process name */
int LASTOP_Index ; /* Index of the node the last operation was performed at */
int CU_Index; /* CU's index into the topology graph data */
int NODE Index; /* Index of the node that the process is currently at */
int Processing; /* Are we processing something? */
int Interval; /* Time left to process */
int Elapsed; /* Time already processed */
int Testlndex; /* TEST and DEBUG ONLY index of the next process tracking activity */

) ;

struct P_Test
{

char Address[NODEADDRESS + 1];
char Source[NODEADDRESS + 1];
char Desc[NODEADDRESS + 1];
int ProcessState;
int Interval ;

) ;

/* FILE: MONITOR.H */

/* Include file for Monitor */
/* X include files */
#include <X11/Xlib.h>
#include <X11/Xutil.h>
#include <X11/Xos.h>
#include <X11/keysym.h>
#include <X11/Xresource.h>
#include <X11/X10.h>

#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>
#include <string.h>
#include <ctype.h>

#define TRUE 1
#define FALSE 0

/* Mouse buttons */
#define LEFTBUTTON 1
#define CENTERBUTTON 2
#define RIGHTBUTTON 3

#define ADD_DATA 1
#define MAXBARS 75

#define TOPLINEINDENT 10
#define MENUTOPLINE 5
#define MENUBOTTOMLINE 45

#define BUTTONTOP 0
#define BUTTONRIGHT 1
#define BUTTONLEFT 2
#define BUTTONBOTTOM 3

#define BUTTONPRESSED 0
#define MENUBUTTONWIDTH 70
#define MENUBUTTONHEIGHT 30
#define MENUBUTTONXSPACE 15
#define MAINMENUBUTTONX 40
#define MAINMENUBUTTONTEXTY 28
#define MAINMENUITEMS 4

#define NUMBEROFMENUS 4
#define MAXNUMBEROFBUTTONS 20 /* Maximum number of buttons per dialog box */
#define BUTTONHEIGHT 30
#define BUTTONWIDTH 60

#define MAINWINDOWX 5
#define MAINWINDOWY 5
#define MAINWINDOWWIDTH 850
#define MAINWINDOWHEIGHT 700
#define MAINWINDOWMINWIDTH MAINWINDOWWIDTH
#define MAINWINDOWMINHEIGHT MAINWINDOWHEIGHT
#define MAINWINDOWMAXWIDTH MAINWINDOWWIDTH
#define MAINWINDOWMAXHEIGHT MAINWINDOWHEIGHT

#define ABOUTWINDOWX 250
#define ABOUTWINDOWY 300
#define ABOUTWINDOWWIDTH 300
#define ABOUTWINDOWHEIGHT 300
#define ABOUTWINDOWMINWIDTH 300
#define ABOUTWINDOWMINHEIGHT 300

#define TRAFFICWINDOWX MAINWINDOWX
#define TRAFFICWINDOWY (MAINWINDOWY + MAINWINDOWHEIGHT + 30)
#define TRAFFICWINDOWWIDTH MAINWINDOWWIDTH
#define TRAFFICWINDOWHEIGHT 125
#define TRAFFICWINDOWMINWIDTH MAINWINDOWWIDTH
#define TRAFFICWINDOWMINHEIGHT TRAFFICWINDOWHEIGHT
#define TRAFFICWINDOWMAXWIDTH MAINWINDOWWIDTH
#define TRAFFICWINDOWMAXHEIGHT TRAFFICWINDOWHEIGHT

#define ZOOMWINDOWX MAINWINDOWX+MAINWINDOWWIDTH+10
#define ZOOMWINDOWY MAINWINDOWY
#define ZOOMWINDOWWIDTH 275
#define ZOOMWINDOWHEIGHT 350
#define ZOOMWINDOWMINWIDTH ZOOMWINDOWWIDTH

#define ZOOMWINDOWMINHEIGHT ZOOMWINDOWHEIGHT
#define ZOOMWINDOWMAXWIDTH ZOOMWINDOWWIDTH
#define ZOOMWINDOWMAXHEIGHT ZOOMWINDOWHEIGHT

#define PROCESSWINDOWX MAINWINDOWX+MAINWINDOWWIDTH-15
#define PROCESSWINDOWY MAINWINDOWY+100
#define PROCESSWINDOWWIDTH 300
#define PROCESSWINDOWHEIGHT 450
#define PROCESSWINDOWMINWIDTH PROCESSWINDOWWIDTH
#define PROCESSWINDOWMINHEIGHT PROCESSWINDOWHEIGHT
#define PROCESSWINDOWMAXWIDTH PROCESSWINDOWWIDTH
#define PROCESSWINDOWMAXHEIGHT PROCESSWINDOWHEIGHT

#define TOKENWINDOWX MAINWINDOWX+MAINWINDOWWIDTH-135
#define TOKENWINDOWY MAINWINDOWY+ZOOMWINDOWHEIGHT+30
#define TOKENWINDOWWIDTH 400
#define TOKENWINDOWHEIGHT 350
#define TOKENWINDOWMINWIDTH TOKENWINDOWWIDTH
#define TOKENWINDOWMINHEIGHT TOKENWINDOWHEIGHT
#define TOKENWINDOWMAXWIDTH TOKENWINDOWWIDTH
#define TOKENWINDOWMAXHEIGHT TOKENWINDOWHEIGHT

#define BRIDGEWINDOWX MAINWINDOWX+MAINWINDOWWIDTH-135
#define BRIDGEWINDOWY MAINWINDOWY+ZOOMWINDOWHEIGHT+60
#define BRIDGEWINDOWWIDTH 400
#define BRIDGEWINDOWHEIGHT 350
#define BRIDGEWINDOWMINWIDTH BRIDGEWINDOWWIDTH
#define BRIDGEWINDOWMINHEIGHT BRIDGEWINDOWHEIGHT
#define BRIDGEWINDOWMAXWIDTH BRIDGEWINDOWWIDTH
#define BRIDGEWINDOWMAXHEIGHT BRIDGEWINDOWHEIGHT

#define LEGENDWINDOWX 0
#define LEGENDWINDOWY 100
#define LEGENDWINDOWWIDTH 200
#define LEGENDWINDOWHEIGHT 350
#define LEGENDWINDOWMINWIDTH LEGENDWINDOWWIDTH
#define LEGENDWINDOWMINHEIGHT LEGENDWINDOWHEIGHT
#define LEGENDWINDOWMAXWIDTH LEGENDWINDOWWIDTH
#define LEGENDWINDOWMAXHEIGHT LEGENDWINDOWHEIGHT

/* Where are we now-Are we at a Different Menu Set or Are we at a different Function */
#define MAINMENUSET 0
#define LOADMENUSET 1
#define CONFIGMENUSET 2
#define WINDOWMENUSET 3
#define STATSMENUSET 4

#define SHELL 15
#define CONNECT 16
#define LOADPARAMS 17
#define LOADREPLAY 18
#define CLEANUP 19

extern Display *mainDisplay ;
extern Window mainWindow, aboutWindow, trafficWindow, zoomWindow, tokenWindow, legendWindow, bridgeWindow ;
extern Window processWindow ;
extern GC mainGC, aboutGC, trafficGC, zoomGC, tokenGC, legendGC, bridgeGC, processGC ;
extern XWindowAttributes windowAttributes ;
extern XEvent mainEvent ;
extern KeySym mainKey ;
extern XSizeHints mainHint, aboutHint, trafficHint, zoomHint, tokenHint, legendHint, bridgeHint, processHint ;
extern int mainScreen ;
extern unsigned long myforeground, mybackground ;
extern char AppName ;
extern struct Menu *MenuSet[] ;
extern struct RegNodes RegisteredNodes ;
extern struct BarData tokenBarData[] ;
extern struct BarData testBarData0 ;
extern struct Process ProcessData ;

#define MAXPROCESSTEST 300

extern struct P_Test ProcessTest[] ;

/* */

/* Network Topology Data Structs */
/* Network Topology Defines */
#define TOKENRINGWIDTH 50

#define TOKENRINGHEIGHT TOKENRINGWIDTH
#define TOKENRINGRADIUS (TOKENRINGWIDTH / 2)

#define ONERADIAN .017453292
#define MAXNODES 1000
#define MAXRINGS 100
#define MAXBRIDGES 200
#define NODEID 4 /* Includes NULL char */
#define NODEADDRESS 6
#define ENDOFRING 0
#define TOKENFORMAT "%2s %6s"
#define NODERADIUS 15
#define BRIDGERADIUS 15

#define MINLINELENGTH 15 /* Connector Line Minimum Length */

#define NODE 0
#define RING 1
#define BRIDGE 2

#define NODETYPELEN 25

#define CU 1
#define ALU 2
#define REGISTERS 3
#define PSW 4
#define IOPROCESSOR 5
#define MAINMEMORY 6
#define SECONDARYMEMORY 7
#define COMMANDPROCESSOR 8
#define OSKERNEL 9

#define EMPTY -1

struct topologyData
C

char nodeId[NODEID] ;
char nodeAddress[NODEADDRESS] ;

) ;
extern struct topologyData Topology() ;

struct ringData
C

int ringTop ; /* index of the top of the ring definition */
int processed ; /* Is this ring finished being processed */
int centerX ; /* Center of token ring point X */
int centerY ; /* Center of token ring point Y */
double radians ; /* Current Angle to use when drawing connectors */
double currentRadians ;
int lineLength ; /* Length of the connector line */
int LineX ; /* Point X where connector ends */
int LineY ; /* Point Y where connector ends */
int NodeX ;
int NodeY ;
int CircleX ; /* Point X where connector starts */
int CircleY ; /* Point Y where connector starts */
int BridgeX ;
int BridgeY ; /* Points where the bridge line extended to */

) ;

struct parentData
C

double currentRadians ;
int centerX ;
int centerY ;
int lineLength ;
int BridgeX ;
int BridgeY ; /* Points where the bridge line extended to */

);

/* */

/* Generic Menu Structure */
struct Menu
C

char *choiceName ; /* Name of menus items */
void (*Func)() ; /* Pointer to a function that will be called */

) ;

struct Buttons /* Button defined on a screen */

C
int X ;
int Y ;
char *string ;
void (*Func)() ;

) ;

struct RegButtons /* Registered Buttons */

C
int numberOfButtons ;
struct Buttons ButtonPtr[MAXNUMBEROFBUTTONS] ;

) ;

#define PROCESSING 3
#define TOKEN 2
/* CU is already defined above */
struct NodePtr
C

int x ; /* Center X point */
int y ; /* Center Y point */

int gender ; /* Node, Ring, or Bridge */
int type ; /* alu, cu, register, etc */
char address[NODEADDRESS] ; /* network address */

int ring ; /* what ring is it a member of */
int nodeMarked ; /* TRUE or FALSE indicating if the node is marked during a process tracking */
int processState ; /* CU, TOKEN, PROCESSING which state is the marked node in */

) ;

struct RegNodes /* Registered Nodes */

C
int numberOfNodes ; /* Number of registered nodes */
int currentlndex ; /* Index of the last nodes */
struct NodePtr Nodelnfo[MAXNODES+MAXRINGS] ;

) ;

/* All Variables that keep track of the Monitors state should be wrapped into
this structure and this structure should be passed to any function
needing this information

*/

struct Monitor
C

int startTraffic; /* Flag indicating command line arg to start Trafic Monitor*/

int Nodes ; /* How many elements on the network includes delimiter */
int Rings ; /* How many total rings make up the network */

int Bridges ; /* Number of bridges in current topology */

int currentMenuSet ;
int menultems ;
int buttonSelected ;
int trafficWindow ; /* Flag indicating if window is already open */
int trafficButIndex ; /* Index of the registered dialog button*/
int zoomWindow ; /* Flag indicating if window is already open */
int zoomButlndex ; /* Index of the registered dialog button */
int processWindow ;
int processButIndex ;
int tokenWindow ; /* Flag indicating if window is already open */
int tokenButlndex ; /* Index of the registered dialog button*/
int aboutButlndex ; /* Index of the registered dialog button*/
int aboutWindow ;
int legendWindow ;
int legendButlndex ;
int bridgeWindow ;
int bridgeButlndex ;
int ringSelected ; /* Ring selected by mouse press */
char addSelected[NODEADDRESS] ; /* Address of the node selected */
int typeSelected ; /* Type of node selected */

int tokenNewView ; /* Only for testing and debugging--used to repaint the token view window */

int quit ;
) ;

struct BridgeData
C

int BridgelD ;
) ;

struct BarData

C
int percent ;

) ;

	Real-TV : RTP/L3's visual monitor
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Title Page
	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)
	Approvals
	Abstract
	1. Introduction
	2. Real-Time Monitoring
	3. Previous Work
	4. RTP/L3 Simulation Components
	5. Real-TV's Functional Specification
	6. Real-TV's Design Overview
	7. Module Specification
	8. System Evaluation
	9. Future Extensions
	10. Conclusion
	References
	Appendix A - Source Code Listing

