
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Theses Electronic Theses and Dissertations

10-31-1992

Porting COSMOS expert system from UNIX to DOS Porting COSMOS expert system from UNIX to DOS

Ching-Jeng Chiu
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

 Part of the Databases and Information Systems Commons, and the Management Information

Systems Commons

Recommended Citation Recommended Citation
Chiu, Ching-Jeng, "Porting COSMOS expert system from UNIX to DOS" (1992). Theses. 2240.
https://digitalcommons.njit.edu/theses/2240

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons
@ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F2240&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=digitalcommons.njit.edu%2Ftheses%2F2240&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/636?utm_source=digitalcommons.njit.edu%2Ftheses%2F2240&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/636?utm_source=digitalcommons.njit.edu%2Ftheses%2F2240&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/2240?utm_source=digitalcommons.njit.edu%2Ftheses%2F2240&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

Porting COSMOS Expert System
Form UNIX To DOS

by
Ching-Jenq Chiu

COSMOS is an object-oriented Knowledge Based System building Tools

(KBSTs) to solve problem in engineering industry. COSMOS stands for C++

Object-oriented System Made for expert System development.

In order to provide more people those who don't have a Sun workstation

to use this expert system, our task is porting COSMOS form UNIX to DOS.

Because the differents of workstation environment, the user interface and

structure of original COSMOS no longer can be used, therefore we made some

necessary change before we porting it to IBM Personal Computer.

In stead of X Window system®, we implemented ObjectWindows® runs

on Microsoft WindowsTM. substitute AT&T C++ with Borland® C++, and

because YACC is not a standard feature of DOS we consider the Window of

Inference Engine Monitor as an independent object, create it by either system

call or makefile at run time.

PORTING COSMOS EXPERT SYSTEM
FROM UNIX TO DOS

by
Ching-Jenq Chiu

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science
Department of Computer and Information Science

October, 1992

APPROVAL PAGE

Porting COSMOS Expert System
From UNIX to DOS

by
Ching-Jenq Chiu

Dr. David T. Wang, Thesis Adviser

Assistant Professor of Computer and Informat. n Science, NJIT

Dr. Daniel Yuh'elhao, Thesis Co-adviser

Assistant Professor of Computer and Information Science, NJIT

Dr. Dao-Chuan Hung, Committee Member

Assistant Professor of Computer and Information Science, NJIT

BIOGRAPHICAL SKETCH

Author: Ching-Jenq Chiu

Degree: Master of Science in Computer and Information Science

Date: October, 1992

Date of Birth:

Place of Birth:

Undergraduate and Graduate Education:

• Master of Science in Computer and Information Science, New Jersey
Institute of Technology, Newark, NJ, 1992

• Master of Science in Chemical Engineering, New Jersey Institute of
Technology, Newark, NJ, 1990

• Bachelor of Science in Chemical Engineering, Tamkang University,
Taipei, Taiwan, 1986

Major: Computer and Information Science

iv

This thesis is dedicated to my parents,

Ching-Sung Chiu and Lung-Mey Chang

v

ACKNOWLEDGMENT

The author wishes to express his sincere gratitude to his supervisor,

Professor David T. Wang, for his guidance, friendship, and moral support

throughout this research.

Special thanks to Professors Daniel Chao and Dao-Chuan Hung for serving

as members of the committee.

The author is grateful to the Professor Sriram and Albert Wong in IESL,

Massachusetts Institute of Technology for providing X-Windows version of

COSMOS for this project.

The author appreciates the timely help and suggestions form the COSMOS

group members, including: James Tasy, Oscar Colpas, Cecille Soliven, Dongsu

Jeon, Steve Passaro, Grace Ramos, Ali Jafry Alex Shinkar and Manu Jetley.

And finally, a thank you to Jigna Patel, Saumil Patel, Dung Dinh, Jagath

Kankanamge, Jothy Jacob and Kirk Lue for their help.

vi

TABLE OF CONTENTS

Page

1 INTRODUCTION 1

1.1 What Is KBESs 1

1.2 What Kind of Engineering Problems Can be Solved on This

System? 3

1.3 Structure of COSMOS 4

1.4 Our Goal 6

2 WHY WINDOWS 3.0? 7

2.1 Three Windows Operating Modes 10

2.2 Object-Oriented Windows Design 11

2.2.1 Designing for Users 11

2.2.2 What's the Computer Really Doing? 13

2.2.3 Partitioning Procedures and Protocols 14

2.2.4 Designing Classes 15

2.2.5 Multiple Application Instances 16

2.2.6 Object-Oriented Design for GUIs 16

2.2.7 Open Activity Chains 17

2.2.8 Factoring Command Methods 17

2.3 Windows Memory Management Design 18

2.3.1 Types of Data Storage 20

2.3.2 Discardable Memory 20

2.4 Advance Memory Management 21

2.4.1 Standard Mode 21

vii

2.4.2 386 Enhanced Mode 21

3 OBJECTWINDOWS 25

3.1 The ObjectWindows Hierarchy 25

3.1.1 Window Objects 26

3.1.2 Dialog Objects 26

3.1.2 Control Objects 27

3.2 Object-Oriented Design for MS-Windows 27

3.3 Hierarchical Menus 30

3.4 Handling Large Complex Menu Systems 30

4 ABOUT THE EXPERT SYSTEM 31

4.1 The Ultimate Goal of Expert System Technology 32

4.1.1 Solving the Problem 33

4.1.2 Explaining the Results 33

4.1.3 Learning from Experience 34

4.1.4 Restructuring Knowledge to Fit the Environment 34

4.1.5 Making Exceptions 35

4.1.6 Awareness of Limitations 35

4.1.7 State-of-the-Art Technology Development 35

4.2 The Three Stages of Expert System Technology Growth 36

4.3 The Basic Structure of Expert Systems 37

4.3.1 Knowledge Base 37

4.3.2 Inference Engine 41

4.3.3 Forward Chaining 42

viii

4.3.4 Backward Chaining 43

4.3.5 Human-Machine Interface 44

5 FORWARD-CHAINING IN COSMOS 47

5.1 The RETE Algorithm 47

5.1.1 Production Systems and the RETE Philosophy 47

5.1.2 Representation of the RETE Network 49

5.1.3 Improvements on RETE 50

5.2 Basic Components 51

5.2.1 Functional Description 51

5.2.2 Detailed Description 54

5.3 Symbolic Information 57

5.3.1 Tokens 57

5.3.2 Symbols and Expressions 59

5.4 Network Hierarchy 64

5.4.1 Functional Description 64

5.4.2 Detailed Description 66

5.5 Network Interpretation 69

5.5.1 Token Flow 69

5.5.2 Matching 70

5.5.3 Merging 73

5.6 Conflict Resolution 74

5.6.1 Introduction 74

5.6.2 Conflict Set Data Structure 74

ix

5.6.3 Conflict Types 75

5.6.4 Consistency of the Network 76

5.7 Detailed Example 78

5.7.1 Generation of the Network 78

5.7.2 Processing 79

6 SUMMARY 82

6.1 User-Interface Objects Between X Window and ObjectWindows 83

6.1.1 The Window 84

6.1.2 Icons 86

6.1.3 Menus 87

6.1.4 Scroll Bars 90

6.1.5 Dialog Boxes 92

6.1.6 Dialog Box Controls 93

6.2 Recommendations 95

APPENDICES 96

Appendix A: Windows of Inference Engine Module 96

Appendix B: C++ Programs for Inference Engine 100

BIBLOGRAPHY 131

x

LIST OF TABLES

Table Page

2.1 Type of Data Storage in Windows 20

4.1 One-to-One Correspondence in Expert System and Software Program
Technologies 32

4.2 Frames of Car 39

5.1 Ie Class 53

5.2 WorkingMemory Class 54

5.3 WMelement Class 55

5.4 ReteNet Class 56

5.5 ConflictSet Class 56

5.6 Token Class 58

5.7 Symbol Class 61

5.8 Binding Class 62

5.9 Basic_Expr*Mixin Class 62

5.10 Expression Class 63

5.11 ReteNode Class 66

5.12 Terminal Link Mixin Class 67

xi

LIST OF FIGURES

Figure Page

1.1 Schematic View of a Complete Knowledge-Based Expert 2

1.2 Structure of COSMOS 5

2.1 Graphic User Interface of Microsoft Window 3.0 8

3.1 The ObjectWindows Hierarchy 26

5.1 Objects Access in the Forward-chainer 48

5.2 RETE Network for one Rule 49

5.3 Has-part Relations Between Basic Components 51

5.4 Token Class 57

5.5 Symbol Types 59

5.6 Expression Hierarchy 60

5.7 Hierarchy of the RETE Classes 64

5.8 An Example of RETE 65

5.9 Flow in the Network 69

5.10 Conflict-Set Structure 75

5.11 Dependence Between wmes and Tokens 77

5.12 Instantiation of the Network After Parsing 79

5.13 JoinNode State 80

5.14 End of Processing 81

6.1 Layout of the Inference Engine Monitor Window 82

6.2 Widget Hierarchy of the Inference Engine Window 83

6.3 Icons in the COSMOS 87

xii

6.4 The System Menu 88

6.5 Three Types of Menus 88

6.6 Vertical Scroll Bars 91

A.1 Inference Engine Monitor Window 97

A.2 Rule File Select Dialog 97

A.3 Working Memory Select Dialog 98

A.4 Instruction Prompt 98

A.5 Input Dialog 99

A.6 Final Report Window 99

xiii

CHAPTER 1

INTRODUCTION

1.1 What Is KBESs

Knowledge-base is a collection of general facts, rules of the problem. The main

purpose of KBES is to solve problem in engineering industry. The solution

comes from skillful manipulation of large quantities of knowledge. It starts out

with certain assumption and hypothesis and revises these assumptions and

hypotheses until the solution is achieved.

KBES typically consist of the following three components (Figure 1.1)

1. Knowledge-base is a collection of general facts, rules of thumb and

causal models of the behavior of the problem domain. A number of

formalisms have been used to represent knowledge and the most widely

used one is the production system model. In this formalism, the

knowledge is encoded in the form of antecedent-consequent pairs or IF-

THEN rules and uncertainty in the knowledge is represented by means

of confidence factors. Other forms of representations commonly used

are logic and frame-based schemes.

2. Context is a workspace for the solution constructed by the inference

mechanism from the information provided by the user and the

knowledge-base.

3. Inference mechanism is used to monitor the execution of the program

by using the knowledge-base to modify the context. A number of

problem solving strategies (control strategies) exist in current KBES.

1

Figure 1.1 Schematic View of a Complete Knowledge-Based Expert

Several domain independent KBES shells have been developed for solving

certain classes of problems. Programming using these shells involves encoding

the knowledge of a particular domain, while the problem solving strategies are

provided by the inference mechanism.

Apart from the components described above, there are three more modules

which are desired in any expert system: a graceful user interface; an explanation

facility; and a knowledge acquisition facility.

3

1.2 What Kind of Engineering Problems Can be Solved on This System?

Most of the engineering problems full on derivation-formation spectrum. In

derivation type of problems, the solution comes from the identification of the

solution path. And problem conditions are part of solution description. In

derivation problems, we can follow the following process to solve the problem.

I. Diagnosis: The task is to involve reasons based on incomplete and

inexact data or wrong sensors of the system.

2. Interpretation: The analysis is done only on complete and reliable

data.

3. Monitoring: Signals are interpreted.

4. Control: Based on signal interpretation, the system is regulated.

5. Education: The users must have some knowledge to identify the

problem and must respond to the various problems.

6. Simulation: When a problem is solved and we are satisfied with the

results.

On the other hand, in the formation problems, the solution must satisfy as

a whole. But, in KBES, we do not get an exact solution. By using inference

mechanism, we can get the solution which provides the knowledge in the

knowledge-base.

I. Planning: Some actions should be taken in order to use the resources

and achieve some goals.

4

2. Design: Large problems can be broken down into some small

pieces(problems). For example, top down design. And, small problems

must interact properly.

1.3 Structure of COSMOS

COSMOS consists of the following modules: 1) User Interface; 2) Object

Manager; 3) Rule-base/Parser; and 4) Inference Mechanism. These modules are

briefly described below. Detailed descriptions of some of these modules are

provided in the following sections.

User Interface. The User Interface module consists of the Expert System

Development Tool (ESDT) and the Expert System End User Tool (ESEUT).

ESDT is used by a knowledge engineer to input objects and rules. ESEUT is

used by an end-user to run the knowledge-base expert system.

Object Manager. The Object Manager module is responsible for the

maintenance of all classes and objects created at runtime, record keeping on the

extension (all the instances) and intention (contents) of classes, access, retrieval

and interaction functions at runtime on request from the user-interface and the

inference engine, and persistence management of data and inference states across

sessions.

Rule-base/Parser. The input to the Parser is the code generated

(knowledge base) by the knowledge editor of ESDT. As its output, the Parser

generates two data structures used by the Inference Mechanism. The first data

structure is an inference network that is used by the backward chaining (BC)

mechanism. The second data structure is an intermediate data structure, used

by the RETE network building algorithm of the forward chaining (FC)

mechanism of the inference engine of COSMOS to generate the RETE network.

Figure 1.2 Structure of COSMOS

Inference Mechanism. The Inference Mechanism consists of two problem

solving strategies: forward chain and backward chaining. The forward chaining

strategy consists of a modified object-oriented RETE network. The backward

chaining strategy utilizes an object-oriented inference network, and is based on

the techniques used in the KAS system(1).

6

1.4 Our Goal

Our goal is porting COSMOS to IBM PC, extend C++ to support object

evaluations, develop friendly user interfaces for C++ objects and rules, Provide

problem solving support, make source code available so that parts of COSMOS

can be integrated into engineering software, support links to external programs

and run COSMOS on any PC supporting MS Windows 3.0.

CHAPTER 2

WHY WINDOWS 3.0?

With the advent of Microsoft Windows 3.0 (Figure 2.1). everything has changed.

For the first time, users of DOS computers have a graphical user interface

flexible and powerful enough to support applications of every kind and of every

level of complexity and ambition. The release of Microsoft Windows 3.0

represents the best implementation of a graphical environment for PC users

available anywhere. The first two version of Windows were suitable mostly for

graphics applications and for rare programs like Microsoft Excel, which seemed

more significant for the glimpse they gave of Windows' potential futures than

they were for themselves. The third version of Windows is suitable for almost

anything.

Over a million users rushed to take advantage of Windows 3.0 in the

months after its release, and every major software vendor that doesn't already

have a Windows-based product on the market is hurrying to fill the gap.

Microsoft's public-relations blitz for Windows is only partly responsible for this

stunning effect on the PC market. The real reason for Windows' meteoric

success is the confluence of three major factors.

First, an enormous range of Windows applications is available now .

Windows users don't have to wait years for the kinds of applications promised,

but not yet delivered, for OS/2. With this major new release of the Windows

Graphics User Interface (GUI), there is now precious little real difference

between the software styles of the leading computers, and there fore, precious

little reason to pay extra for it. This environment is bound to delight all sorts

7

8

of Windows users, form neophytes to power users, to programmers. Windows 3.0

features the same screen design used in OS/2 1.2. But since Windows 3.0 offers

compatibility with current Windows programs and a 386 mode that runs

multiple DOS sessions, it is an irresistible alternative for power-hungry users

aching to break out of DOS's 640K limit.

Figure 2.1 Graphic User Interface of Microsoft Window 3.0

Second, unlike the Macintosh, with its relatively small installed base and

notoriously expensive hard ware, Windows runs on tens of millions of DOS-

based machines. In fact, Windows can run on virtually any DOS-based machine

9

with a suitable graphics adapter and monitor. Adequate performance calls for

added memory and a speedy processor, but Windows 3.0 made its appearance at

an ideal historical moment when RAM is plentiful and cheap, and fast 386SX

and 386-based machines are cheaper than ever.

Third, Window 3.0 is able to push any PC to its limits in ways that few

other programs can. It exploits the powers of a 386 or 486 machine(with at

least 2MB of RAM) by letting you multitask DOS sessions while you also run

multiple Windows applications. Windows 3.0 not only lets Windows applications

use all the memory in the system, but it multitasks so smoothly on a 386 or

486 that you can easily use it as a front end for all of your DOS applications.

Even on a 286 machine Windows lets you multitask Windows applications and

access up to 16MB of RAM. Although Windows' speed and abilities are

constrained by an 8088-class computer, even those machines let Windows 3.0 use

expanded memory and multitask all but a few especially demanding

applications.

This upgrade has raised talk of trouble for Apple and NeXT, and it's not

hard to see why. The clean design of the icon-based screen, the fast response

time, and the ease with which most anyone can get up and running under

Windows 3.0. puts everything in an entirely different perspective.

Any DOS application can become an icon in a Windows folder. Just

double-click and run, quit an return to Windows. Forget about batch files and

paths; you tell Windows about the path once, and be done with it.

With a DOS application running in Windows 386 mode, a quick Ctrl-Esc

key sequence will switch you back to your Windows Program Manager and off

to yet another DOS application. The same kind of program switching is possible

on 286 and 8088 PCs, but at a speed that most people won't find tolerable.

10

There's a lot here for everyone, but it can be totally confusing without a

basic understanding of the three distinct operating modes.

2.1 Three Windows Operating Modes

Real mode is the ground floor. It's really here for compatibility; it's the only

mode that 8086s and 8080s can use, and it's the only mode that will run the

Windows applications that are currently shipping. It looks better than Windows

2.01, since it's icon based and uses shading to accent screen objects. It falls

short if you want to go beyond DOS's 640K barrier, though.

Standard mode is for 286s and 386s. new versions of Windows applications

will let you use all of the available system memory, and that's going to provide

a major performance boost to memory-constrained programs like PageMaker and

Microsoft Excel. The Windows programs you now own won't run in this mode

(unless you recently bought Microsoft's newest version of Excel or word for

Windows), but software publishers are ready with upgrades for just about every

application.

386 Enhanced mode pulls out all the stops. Going even beyond OS/2, it

lets you multitask DOS applications. What can you do in this mode? Start a

coffee-break-long-number-crunching session, and then switch to another DOS

application. Now switch to Windows. Start as many separate sessions as you

like--The numbers will keep crunching at a respectable rate.

Not even RAM is a limit, since Enhanced mode will page data to disk

when it rims out of memory. You won't want to let it run out of RAM,

though; you system will snap, crackle, and pop its way through commands so

quickly that you'll be heading out to the store for extra RAM chips if it ever

starts paging to disk.

11

This is the level of performance that has gotten developer like Lotus and

Software Publishing to change their OS/2-based strategy to include Windows.

2.2 Object-Oriented Windows Design

This chapter concerns several different issues in object-oriented design for the

Windows environment. There are tow basically different viewpoints represented

here: design with respect to the user, and design with respect to the resources

of the computer. As a reflection of this, the chapter is divided into roughly two

different parts. The first part deals with object-oriented design, both generally

and in the Windows environment. It does this from the point of view of the

application, without reference to the issues of memory management on the

computer. The second part takes up the latter issue, and, in particular, covers

the topics of: 1) memory management in Windows 3.0, and 2) object-oriented

memory management.

2.2.1 Designing for Users

The first principle of software design is that software must be designed to be

used by someone, and therefore, its design must be conducted from the point of

view of the people who will be the intended users. Although everyone will agree

with this principle, it continues to be violated far more frequently than it is

followed. It cannot be true that the principle is so seldom adhered to because of

the sheer incompetence of software designers. The fact of the matter is that

there is still very much to learn, and a surprising amount to take into

consideration when designing for users. As all programmers know, a computer

must be first loaded with data before its instructions are executed. A human

being can begin to engage in a activity and then go out in search of the data

that will be needed to carry out or complete the activity. Obviously, it is

sometimes very important to a particular type of human work that it be able to

12

proceed in precisely this way. Software applications have to be designed with

this sort of thing in view. Although these are very sweeping generalities, I have

in mind some very specific examples.

Most readers will be familiar with popular paint programs, like the

paintbrush application that comes as an accessory with Windows 3.0 an later. In

these programs there will typically be a toolbox composed of icons that stand

for different kinds of operation that a user might want to perform. The aspiring

electronic artist feels at home with this to a certain degree. Just as a traditional

painter often uses a paintbox with different colors that can be dipped into with

a brush, the electronic artist can use the mouse to dip into different drawing

tools. The graphics tools are verbs and the graphics lines and shapes are the

nouns of a sentence that this kind of program speaks. Sometimes you must first

select the noun before selecting the verb, but with the paintbox style, the

typical case is the reverse: you first choose the verb and then create or add to

the noun. On the whole, this can work well for creating things like drawings,

because there is no set place where you have to work next. You can stay with

one tool for a while, going from one area of a drawing to another and using it

where it seems needed. As long as the final result is what you want, the order

in which you do things doesn't really matter.

It is interesting to compare this with applications that involve sequential

rather than spatial compositions, such as music compositions, animations, and

computer programs. Here you are by no means as free to browse about at will

within the work that's being created. It has to unfold as a continuous sequence,

so there usually is a next place where you have to work. This next frame, next

measure, or next line is the natural, built-in focal point. It is the noun that is

primary over any verb. What's important is how the next noun behaves, not

what tool you happen to be using. As a matter of fact, if elaborate tools are

13

attempted in this type of application, they can end up getting in the way to

the extent that the result is unusable for many people. The reason is that you

end up imposing a style of working on the user that is rather foreign to the

type of work being done, and many people will refuse to accept that.

2.2.2 What's the Computer Really Doing?

The second principle of software design is that programs must, to the greatest

degree possible, reflect the primary function for which the hardware is being

used. In designing any artifact that is to be used repeatedly--so in designing

computer programs--you also need to ask what primary function the machine is

really performing for the user. As obvious as this sounds, it is overlooked

surprisingly often. What is the main function that personal computers generally

perform today? I suggest that it is this:

One of the most important roles of desktop computers is that of allowing a

very large amount of information to be made visible rapidly at one time, in a

way that can be easily modified as desired.

A key word here is 'visible'. Computers excel at making graphic, textual,

and numeric information visible. If this is true, then it follows that the best

designed software applications are those that allow this function to be performed

the best.

It's the users who ultimately decide, but it's the designer's job to

anticipate them as much as possible. If you design an application so that you

allow the users to see as much or as little information at one time on the

screen as they wish, and provide a wide variety of options for how that

information is displayed, it's hard to see how you will be going wrong. As basic

a principle as this is, it is surprising how many commercially available programs

violate it.

14

2.2.3 Partitioning Procedures and Protocols

The first step in designing an object-oriented system is making lists of the

important data items and procedures that the application will require. This is

probably not something that's going to remain fixed throughout the course of

the program's life, but the important thing is to get off to good start by

developing a reasonable partitioning of some of the essential things the program

will be dealing with. If the essentials are clarified and understood, the details

can be added to this. Then the initial skeleton will have muscle connected to it.

Once you have an idea of what the main classes will be for your application,

then you will need to design a message protocol for it. A message protocol

includes a plan of which messages will be understood by which objects, and how

These messages will circulate through the program, and how descendant classes

will utilize them.

The use of formal classes has an important role in the design of object-

oriented systems. One of their most important features is providing functionality

that is of the greatest generality without specifics that are useless for many

applications. When an ancestor class has features that are undesirable, they

have to be overridden by descendant classes, which means redefining them. This

means additional labor and potential problems Ideally, a set of formal classes

should be designed so that nothing ever has to be overridden. Though it's

impossible to completely achieve this, it should be one of the goals of object-

oriented design.

In an object-oriented system the typical situation is that there is more

than one possible design solution to creating a system of objects to fulfill a

given program requirement. Quit often there are actually several solutions.

Which one is selected depends on the main goals and criteria that have to be

solved. There are consequently at least two levels to object-oriented design: the

15

strategic level and the tactical. At the tactical level, design does not occur apart

form coding. It is primarily the result of trying out the coding of an initial

design that results in redesign and recording, and ultimately proves which

design option works best. At the strategic level, the view is toward the perfect

generic design where no line of code is wasted or redundant. Wherever code can

be reused it is inherited rather than rewritten, both within an application, and

across many similar programs.

2.2.4 Designing Classes

There are really several different viewpoints from which considerations can be

made for designing classes. From a strictly formal viewpoint, you can consider

all the variables that are nearly always used together with the same procedures

and package them together into a class. Or you can look at the full scope of

not just a single application, but all similar ones, and design a class that will

play a desired role within a functional hierarchy. This latter approach is

particularly clear, for example, when designing a formal or abstract class. It's

often advantageous to create a new specialized subclass object for a special job,

so that because of he design of the new object, the coding becomes

tremendously simplified.

For the advanced designer of object-oriented systems, it is not only the

current application that is kept in view when a system of classes are being

designed, but many other applications that can or may be written as well. The

very nature of object-oriented systems is that a host of different application

programs can be assembled from a growing set of autonomously functioning

classes. To make good on this inherent quality of the technology the designer

has to look to the desirable applications that can be built while designing the

current application that will be built. Ideally, there will be a kernel of classes

16

from the application that will form the basis for many applications in the future

as well as for the current one.

2.2.5 Multiple Application Instances

It is often desirable to design applications in such a way that there can be

multiple instances present at the same time. It is when an application consists

of a number of cooperating objects that send messages to one another that

special design considerations are needed. The reason is that to send messages,

each object has to know the name of the instance of the object in its particular

copy of the application. For multiple instances of the whole multiobject

application to work properly, the names of corresponding objects have to be

different, and each object within an application must know the name of those

objects in the same copy of the application as itself. From this, it's clear that

the instance names cannot appear in the code directly. The solution is simple

and elegant. First, some mechanism must be adopted for generating unique

names for the instances. Second, each object has instance variables that hold the

names of the objects to which it must send messages. Messages access these

instance variables to determine the object to which they will be sent. Here we

see yet another important technique in which instance variables play the key

role.

2.2.6 Object-Oriented Design for GUIs

The following sections describe some very prevalent issues and problems all

graphic user interface (GUI) developers must face and attempt to show how

object-oriented techniques can be a major help in addressing them. An

important question to ask before getting absorbed in various details is whether

object-oriented design makes any difference to end user or whether it is a

refinement that only affects developers. Initially, it may seem that the benefits

17

of object-oriented systems are only for the programmers who do the

development work on applications. However, it is becoming clear that if the

object-oriented methodology is carried to its consistent logical conclusion, then it

is also quite relevant to what the end user will be seeing in the way of

applications. In the future, there will be a different type of application program

emerging from which users will also derive great benefit.

In commercial programming, another important issue to consider in

designing programs and user interfaces is portability to different computer

platforms. For example, if a programmer wants to port a program being written

under Windows to the Macintosh or X Windows, then there are some general

thing to consider to make this easier. For example, there is mouse control. The

Macintosh has only a one button mouse. Therefore in developing a class for

mouse control it is important to remember that it must be possible to produce

a version of one's program that can work with only a single mouse button.

2.2.7 Open Activity Chains

One thing that will help in designing object-oriented software is to have

something to fasten onto that can allow the designer to realistically anticipate

what users will expect out of program. This is always going to be a very large

challenge, but I would like to suggest some concepts that may often be of help.

A useful concept is that of open activity chains.

2.2.8 Factoring Command Methods

As discussed in the previous chapter, one of the enemies of complex menu

systems in GUIs is the proliferation of very long sequences of case statements

that can be very difficult to debug. The strategy of object-oriented programming

(OOP) is based on building functioning packages that will always work, even

though any number of new ones are added to the system. This implies that

18

good object-oriented design requires avoiding a single large command method for

processing all menus whenever possible. As was seen earlier, by using the

technique of factoring the processing of windows command messages into a

number of separate command methods each of which can work independently,

and also in cooperation with other menus, programs compile faster, are simpler

to debug, use up less memory resources, and are considerably easier to update.

2.3 Windows Memory Management Design

In a multitasking system like Windows, There are often several different

applications that will be requesting memory during the same Windows session.

Memory management facilities are available to make sure that all applications

retain access to the memory needed in as efficient manner as possible.

Developers of Windows applications must make use of these facilities to ensure

that their application is using the least amount of memory necessary at any

given time. Windows has a total of forty different memory management

functions to allow the application developer to address both the issues and the

memory. In the following paragraphs, I will present a concise overview of the

way memory management is handled under MS-Windows.

In Windows, memory can be allocated in two ways: from the global heap

and from the local heap. The global heap comprises memory that is available to

all applications. A local heap provides memory for just a single application. In

Windows, memory is allocated in blocks and is relocatable. It can be moved

around and even discarded. Movable memory blocks do not have fixed

addresses. At any time, Windows can move them to a different location.

Movable memory blocks allow free memory to be consolidated into the largest

possible blocks. If an allocated block of memory lies between two free areas, the

allocated block can be moved so that the two free areas are combined into one

19

block of consecutive addresses. Discardable memory is memory that can be freed

and reallocated. Naturally, this involves destroying any data that may have

been contained in it. When a block of memory is allocated in Windows, a

handle to it is returned to the application requesting it. This handle is not an

address but rather a means of retrieving whatever the memory block's current

address may be.

Accessing memory blocks involves locking the memory handle. While the

handle is locked Windows cannot move or discard it. An address pointer for the

beginning of the block is returned, and the application is given reliable access to

the memory. Unlocking the memory handle is up to the application. This means

that to provide for the most efficient memory management, developers should

adopt the rule that when an application is finished using a block of memory, its

handle should be unlocked as soon as possible.

Most Windows applications use mixed memory models. The recommended

method is with small code segments of about 4K each so that Windows can

easily move these segments about in memory. Applications can allocate memory

from either the global heap or from local heaps. The main consideration as to

which heap will be used is usually the amount of memory needed. Larger

memory blocks are usually allocated from the global heap where it is possible to

allocate single blocks larger than 64K. The main Windows function for managing

the global heap are Global Alloc. GlobalLock, GlobalUnlock, GlobalCompact,

and GlobalFree. An application's local heap is the free memory in its data

segment that can be allocated for various purposes. The local heap is not

automatically assigned by Windows but must be requested with the HEAPSIZE

statement. Normally, the local heap cannot be larger than 64K, which is the

size of an application's data segment.

2.3.1 Types of Data Storage

In Windows, seven different types of data storage may be used:(Table 2.1)

Windows applications that are conversant with advanced memory

management issues have to be able to respond to the WM_COMPACTING

message.

Table 2.1 Types of Data Storage in Windows

Static data Used for static variables such as those defined by the
static and extern keywords in C

Automatic data Used for variables already on the stack when
functions are called.

Local dynamic data Any data in memory areas allocated using
LocalAlloc.

Global dynamic data Any data in memory areas allocated using
GlobalAlloc.

Window extra bytes Used for additional storage that may be requested for
a window class.

Class extra bytes Used for additional storage that may be allocated
after the WNDCLASS structure.

Resources Memory used for resources in an application's .EXE
file that have been loaded into memory.

2.3.2 Discardable Memory

In Windows, creating applications with discardable memory must be done

explicitly. To create a discardable memory block, both the GMEM_MOVEABLE

and the GMEM _DISCARDABLE options to the Global Alloc function must be

used. For example, in C the declaration would be:

hMem = GlobalAlloc(GMEM MOVEABLE GMEM_discardable, 4096L);

Windows will discard discardable memory when it gets allocation requests that

need to be met. Windows determines which discardable blocks to actually

discard based on a least recently used algorithm. Using the GlobalDiscard

21

Windows function discards the data stored in the block but retains its handle.

The GlobalReAlloc function makes nondiscardable memory blocks discardable

and vice versa.

2.4 Advance Memory Management

In the following two paragraphs two advanced Windows memory configurations

will be described, the standard and 386 Enhanced Mode configurations.

2.4.1 Standard Mode

The standard mode Windows memory configuration is the default on 286

computers with at least one megabyte(1M) of memory and 386 with more than

one but less than 2 megabytes (2M). Windows uses the protected mode of the

80286 and 80386 processors in the standard memory mode. When Windows runs

in this mode, the global heap is usually made up of three distinct blocks of

memory. The first block is usually the 640K DOS segment. The second block is

in extended memory, which is allocated using the extended memory device

driver, but then is accessed directly. Finally, the third block in standard mode

is the high memory area (HMA), which is only available if no other software

has been loaded into high memory before launching Windows. The Windows

global heap is formed by linking these three blocks of memory together.

Discardable memory segments are allocated from the top of the heap, fixed

segments from the bottom, and movable code and data from just above the

fixed segments.

2.4.2 386 Enhanced Mode

with 386 computers with 2M or more of extended memory, Windows can be run

in the 386 Enhanced Mode. In this mode Windows provides a virtual memory

scheme that utilizes both extended memory and hard disk space to allow

22

memory spaces as large as 64M. In the enhanced mode, the Windows global

heap is composed of a large single virtual address space. The size of this space

available. Because the structure of this virtual memory space is composed of a

single large block, it resembles that of basic memory configuration, and its

layout is actually strongly analogous to it, though of course it includes a far

larger address space.

The release of Microsoft Windows 3.0 represents the best implementation

of a graphical environment for PC users available anywhere.

Windows 3.0 not only lets Windows applications use all the memory in the

system, but it multitasks so smoothly on a 386 or 486 that you can easily use it

as a front end for all of your DOS applications.

Windows 3.0 features the same screen design used in OS/2 1.2. But since

Windows 3.0 offers compatibility with current Windows programs and a 386

mode that runs multiple DOS sessions, it is an irresistible alternative for power-

hungry users aching to break out of DOS's 640K limit.

This upgrade has raised talk of trouble for Apple and NeXT, and it's not

hard to see why. The clean design of the icon-based screen, the fast response

time, and the ease with which most anyone can get up and running under

Windows 3.0. puts everything in an entirely different perspective.

Any DOS application can become an icon in a Windows folder. Just

double-click and run, quit an return to Windows. Forget about batch files and

paths; you tell Windows about the path once, and be done with it.

With a DOS application running in Windows 386 mode, a quick Ctrl-Esc

key sequence will switch you back to your Windows Program Manager and off

to yet another DOS application. The same kind of program switching is possible

on 286 and 8088 PCs, but at a speed that most people won't find tolerable.

23

There's a lot here for everyone, but it can be totally confusing without a

basic understanding of the three distinct operating modes.

With the advent of Microsoft Windows 3.0, everything has changed.

For the first time, users of DOS computers have a graphical user interface

flexible and powerful enough to support applications of every kind and of every

level of complexity and ambition. The first two version of Windows were

suitable mostly for graphics applications and for rare programs like Microsoft

Excel, which seemed more significant for the glimpse they gave of Windows'

potential futures than they were for themselves. The third version of Windows

is suitable for almost anything.

Over a million users rushed to take advantage of Windows 3.0 in the

months after its release, and every major software vendor that doesn't already

have a Windows-based product on the market is hurrying to fill the gap.

Microsoft's public-relations blitz for Windows is only partly responsible for this

stunning effect on the PC market. The real reason for Windows' meteoric

success is the confluence of three major factors.

First, an enormous range of Windows applications is available now.

Windows users don't have to wait years for the kinds of applications promised,

but not yet delivered, for OS/2.

Second, unlike the Macintosh, with its relatively small installed base and

notoriously expensive hard ware, Windows runs on tens of millions of DOS-

based machines. In fact, Windows can run on virtually any DOS-based machine

with a suitable graphics adapter and monitor. Adequate performance calls for

added memory and a speedy processor, but Windows 3.0 made its appearance at

an ideal historical moment when RAM is plentiful and cheap, and fast 386SX

and 386-based machines are cheaper than ever.

24

Third, Window 3.0 is able to push any PC to its limits in ways that few

other programs can. It exploits the powers of a 386 or 486 machine(with at

least 2MB of RAM) by letting you multitask DOS sessions while you also run

multiple Windows applications. Even on a 286 machine Windows lets you

multitask Windows applications and access up to 16MB of RAM. Although

Windows' speed and abilities are constrained by an 8088-class computer, even

those machines let Windows 3.0 use expanded memory and multitask all but a

few especially demanding applications.

With this major new release of the Windows Graphics User Interface

(GUI), there is now precious little real difference between the software styles of

the leading computers, and there fore, precious little reason to pay extra for it.

This environment is bound to delight all sorts of Windows users, form

neophytes to power users, to programmers.

CHAPTER 3

OBJECTWINDOWS®

ObjectWindows is an language-independent application framework that works

with Actor, Turbo Pascal for Window, Turbo C++ and Borland C++. The

beauty of using an application frame work that supports a variety of languages

is that you can do development in the language of your choice and later

translate your program to other languages as required. ObjectWindows programs

written in Borland C++ and Turbo Pascal for Windows match one another

almost exactly on a line-for-line basis. Now with Borland's integrated

development environments operating directly under Microsoft Windows, Actor

and Smalltalk no longer provide the only development platforms that eliminate

switching back and forth between Windows and DOS when constructing and

testing programs. In addition, ObjectWindows takes much of the grief out of

developing Windows programs. With Object Windows, it's just as easy to write

programs for Windows as for DOS.

3.1 The ObjectWindows Hierarchy

ObjectWindows can also be describe as a library of hierarchical classes that

allows the programmer to take full advantage of the object-oriented feature of

inheritance. The data member and member function that are in ObjectWindows

class allows the programmer of the Windows applications program with

ease. (Figure 3.1)

25

Figure 3.1 The ObjectWindows Hierarchy

3.1.1 Window Objects

Window objects are interface objects that are associated with window elements.

A Window object is an interface object and has a corresponding interface

element. In order to create a window, you must first define the object and then

create the interface element.

3.1.2 Dialog Objects

Dialog objects are special purpose child windows that are used as user interfaces

input-related tasks. Dialog Boxes are defined in resource files and are referced in

an application by the dialog box ID specified in the resource file.

27

3.1.3 Control Objects

Control objects are special windows that serve as user interface elements.

Control objects include buttons, scroll bars, list boxes, check boxes, group boxes, edit

controls.

When object-oriented programming was introduced, it was not thought

that it would become such a big thing. The way things are going today, it can

be easily predicted that by the next decade, we would see nothing more but

object-oriented programming. And it would be because of applications like

Object Windows that every programmer would be able to write his own

applications with great ease in the wonderful and mythical environment of

Windows, where Multi-tasking and Multi-programming exists which have always

been the dream of programmers.

3.2 Object-Oriented Design for MS-Windows

One of the original object-oriented design models is the Model-View-Controller

architecture, or M-V-C for short. A key aspect of this architecture is the idea

that modularity should prevail between the way information is organized and

stored and the way it is accessed and displayed. In other words, the data for an

application is stored in an appropriate set of objects, and this data model is

independent of the of the way the information will be ultimately displayed to

the user. A number of different objects can be designed for viewing the same

data in alternate ways. A standard protocol is usually devised for showing a

given set of data in these alternate viewing models. Although this idea may

seem obvious or rudimentary, it is by no means the case that mainstream

programming has operated in this way. In fact, the contrary has been the rule

rather than the exception.

28

It will be useful to consider a concrete example. In the fields of document

processing and desktop publishing, it has become popular to utilize special files

known as style sheets. Although the applications that utilize them were not

necessarily developed using object-oriented programming, there is a similarity

between the use of style sheets and the M-V-C model we are discussing. The

similarity lies in the idea of storing the text data in one file, and the style

format by which it will be viewed and printed in another. In this way, alternate

viewing styles can be quickly and easily assigned to the same text data. The

advantages of doing things in this way have been clearly recognized in the

industry, and there are many document processing applications that currently

use this approach.

The modularity of the M-V-C architecture is, of course, far more

fundamental and far-reaching than that of style sheets. The design embraces not

just disk files, but application memory as well. And it invites levels of

modularity that can have a very noticeable effect on how applications are used.

At this point, there have been three main object-oriented Windows

programming systems: Actor, Views, and CommonView. There are striking

differences in the approaches taken by all three as is clearly evident in their

respective class hierarchies. The C++ Views approach is an explicit

implementation of the M-V-C architecture. Views uses the Notifier class, a

direct descendant of the root class Object, as the key to its control layer

mechanism. In any given application there is always one and only one instance

of the Notifier class, which is always globally assigned the name notifier. The

main event loop of applications is incorporated in the notifier object. All

applications also have a top view object that is an instance of a subclass of

AppView. All messages between the Views object system and Windows are

conducted through the notifier, which waits for the start message before it

29

begins processing events. The formal Window class provides methods to respond

to messages of every event type.

The Views Window and View classes are similar to the Actor

WindowsObject and Window classes, respectively. View has an instance variable

called model that is used to store the ID of objects that provide the data model

for and application. Views uses three classes to implement menu systems: Menu,

PopupMenu, and MenuItem.

Views differs from Actor in forming separate classes for different types of

button, such as PushButton, CheckBox, RadioButton, and TriState. Another

major difference is that the TextEditor class is a descendant of Control rather

than View, as it would be if a design like that used in Actor were followed.

Another major design difference is that the Views Dialog class is a descendant

of View. If a design like Actor were followed, Dialog would have instead been a

direct descendant of Window and a peer of View, Menu bars in Views are

created by making an instance of the Menu class and attaching instances of the

PopupMenu class to it.

The difference in the design approaches used by Actor and Views can be

quite readily seen in the way these two object-oriented Windows systems

implement text editing Views provides a class called TextEditor, which is a

descendant of Control and a direct and be aligned and justified. TextEditor

objects are designed to work as part of a composite of subjects also from the

String, Stream, and FileStream classes. This composite still has to be integrated

into a larger composite that constitutes the main window, particularly if file

operations are to be added. The ControlView class is designed to allow instances

of the ControlWindow classes to be integrated as child views of a complete

application. This handles list box controls, among other things.

30

3.3 Hierarchical Menus

Hierarchical or cascading menus offer a ready means of packing a lot of

functionality into a single menu bar while at the same time avoiding a cluttered

screen. Yet their use can certainly be overdone. Using a hierarchical menu

resembles introducing the equivalent of an additional menu bar of options.

Screen space is needed for those options that pop out to the side of the main

menu rectangle. For my taste, two hierarchical menus is the most that should

be attempted in a single window. Although hierarchical menus can be created

either dynamically or statically, it turns out that the static resource script

approach to creating them is so simple, that this very often is going to be the

way to go right from the outset.

3.4 Handling Large Complex Menu Systems

There are important considerations with at least two different design levels for

arriving at the optimal user interface design. First, there is the layout of the

menu bar. As mentioned earlier, given the familiar layout, it is still quite

possible to create user interfaces that can range from excellent to almost

unusable. There is as yet not instant method for producing the optimal designs

in user interfaces or any other area of OOP.

CHAPTER 4

ABOUT THE EXPERT SYSTEM

The structure of an expert system resembles a conventional software program,

as shown in Table 4.1. The major components of an expert system are

knowledge base, inference engine, user interface mechanism (including

explanation facility), and data, but data is not critical; the major components of

conventional programs are data (or data base), code, interpreter/compiler, and

sparse user interface mechanism, but the interpreter/compiler is not obvious to

the user. Expert systems are capable of symbol processing, inferencing, and

explaining because of the inference engine and the knowledge base; conventional

programs are generally strong in numerical processing and algorithms because of

programs and extensive data. In general, the user interface mechanism of the

expert system is more extensive than that of conventional programs; semi- or

full-natural languages may be employed to enhance user-friendliness.

In terms of terminology used, expert systems can be considered as an

advanced form of programming. The terminology of expert systems can be

mapped up on a one-to-one basis to that of software programs as shown in

Table 4.1. For example, a knowledge base of an expert system that contains

rules (likely IF-THEN rules) and facts matches the program (code) of a software

program. However, a knowledge base does not correspond to a data base. A

knowledge base is executable, but a data base is not. A data base can only be

queried and updated.

31

32

Table 4.1 One-to-One Correspondence in Expert System and Software Program
Technologies

Expert Systems Software Programs

Knowledge base Program

Inference engine Interpreter

Expert system tool/shell Programming Language

Knowledge engineers Software engineers/programmer analysts

Like an interpreter that evaluates a program in the source code and

executes the statements, the inference engine takes the statements in a

knowledge base and executes them because it contains search control and

reasoning mechanisms. Expert system tools/shells that are used to build expert

systems are very high-level programming languages with many unconventional

conveniences such as explanation facility and trace. Even though they are

different from conventional software programming languages (e.g., Fortran or C),

they are programming languages in nature.

Often expert systems can be employed as intelligent front ends to facilitate

the use of complex software packages because an expert system may contain the

heuristic knowledge of its experienced user and contain user-friendly natural

language query and explanation facilities.

4.1. The Ultimate Goal of Expert System Technology

The term "expert systems" suggests mimicry of human experts in a particular

field. The ultimate goal of expert system technology is to equal the performance

of human experts. In everyday life, we encounter many people whom we

consider experts; they can be physicians, lawyers, engineering designers, or

security brokers. They all share an important common characteristic: They must

33

make accurate decisions in environments that are fraught with uncertainty and

risks, and they possess superior ability to do so as a result of training,

experience, and professional practice. We generally visualize experts as having

the following characteristics: quick, confident judgment made under pressure, a

reassuring manner, and an ability to receive unusual or rare events.

The nature of the expertise we encounter in our day-to-day association

with experts can be summarized as follows:

• Proficiency at arriving at quick, accurate solutions to problems

• Proficiency at explaining the results to the layperson

• Proficiency at learning from experience

• Proficient at restructuring knowledge to fit the environment

• Capability to make exceptions Awareness of their limitations

4.1.1 Solving the Problem

A solution to the problem is usually the most direct and important benefit we

expect from experts who are capable of comprehending a particular type of

problem that few other people would even attempt to solve. The focus here is

the ability to solve a complex problem effectively and quickly-- the performance

of an expert. This criterion not only helps us to narrow the selection of experts,

but also leads us to take greater care in choosing the expert system task we

intend to model. On the sole basis of performance, a general agreement as to

who qualifies as an expert is easier to establish for some fields (e.g., medicine,

geological exploration) than for others (e.g., stock trading, weather forecasting).

The selection of experts and tasks is discussed later.

4.1.2 Explaining the Results

An expert can usually explain the results of his or her problem-solving to

nonexperts in terms that they understand. An expert can respond intelligently

34

to inquiries concerning the reasons for the results, the logical processes derived,

and the implications of the results. Normally, the inquirers can question the

expert in lay terminology and receive modified outcome that is closer to the

given condition perceived by them. The ability to explain the results thus

enhances an expert's performance in solving the right problem.

4.1.3 Learning from Experience

Experts must learn from their own experience, as well as the experience of

others; experts must further enhance this experience through various means

(e.g., daily practice or trade journals) and must Update their knowledge bases

and modify reasoning processes. Experts who do not keep up with their field

quickly become obsolete, particularly in the present era of rapid technological

development. This ability to maintain a high level of expertise also improves the

expert's performance in problem-solving.

4.1.4 Restructuring Knowledge to Fit the Environment

Experts' effectiveness in problem-solving differs from that of a novice in that

experts are proficient at restructuring and reorganizing knowledge to fit the

environment:

• By subdividing their knowledge base and using the critical portion of
knowledge so that the search time for the right answer can be
reduced.

• By putting the problem in a different perspective using various
portions of their knowledge

• By applying knowledge to the problem at different levels or angles

For example, When solving the problem of a malfunctioning computer

system, the expert first uses a top-down rough organization chart of the

system's main components to locate the most likely failed parts. The expert

then applies the knowledge regarding the schematic of the part to identify the

35

problematic electronic device in the part. The expert's speed and effectiveness in

performing these tasks determine the proficiency in solving the problem.

4.1.5 Making Exceptions

Great writers often deviate from grammatical rules. Experts can perceive rare

and unusual events or occurrences and make exceptions from their usual modes

of judgment. For example, an experienced stock analyst will discard a regular

analytical pattern regarding a company's stock prices in response to news of the

crash of the company jet in which its CEO was a passenger. An expert has this

general ability to make exceptions to match previously unanticipated and

unusual events.

4.1.6 Awareness of Limitations

Experts can assess the relevance of their expertise to a given problem and

determine whether or not the problem is within their sphere of expertise. They

also know when to refer inquiries to other experts. Experts became less

proficient at solving problems when they reach the limits of their expertise.

They can bow out gracefully with "qualified" answers; they know when to

acknowledge their limits.

4.1.7 State-of-the-Art Technology Development

The "state-of-the-art" or "the land of accepted wisdom" expert system

technology contains two aspects of experts' expertise: an ability to solve

problems quickly and accurately, and an ability to explain the results in terms

understandable to a nonexpert. The first generation of expert system technology

focused on problem-solving performance. Such systems include DENDRAL [12]

and MACSYMA [14]. The second generation systems began to explore

36

characteristics such as explanation (the Digitalis Advisor) and even a small

portion of learning from experience, knowledge acquisition (TEIRESLAS [5]).

Some emerging expert systems may incorporate additional aspects of an

expert's expertise such as learning. These emerging systems are largely confined

to academic laboratories (e.g., MIT's computer diagnosis, Stanford's hardware

diagnosis, UCLA's automated testing for electronic design). This new technology

is based on representation and use of knowledge about structure, function, and

design of physical systems. It extends the frontier of computer cognizance into

reasoning beyond the rules in knowledge base. For more discussion of the

development path of expert system technology, see Davis [5]

4.2 The Three Stages of Expert System Technology Growth

Human experts require time to mature from apprenticeship to mastership;

expert systems can be improved through use to attain a certain degree of

maturity. The three stages are

• Assistant: the expert system performs as an assistant to the user--an
assistant system

• Colleague: the expert system performs as a colleague to the user--a
colleague system

• Advisor: the expert system performs as an advisor toe the user--an
advisor system.

The differences in these systems are based on the level of expertise: an

assistant system performs at a level much inferior to that of a human expert; a

colleague system performs at a level slightly inferior to that of a human expert;

an advisor performs at a level equal to that of human experts.

The delineation of these stages is relatively subjective. In general, the large

systems like XCON that employ more than 1,000 rules and sophisticated

structure can perform at the level of a human specialist; they perform with high

37

confidence as an advisor to human specialists. On the other hand, very small

systems like PUFF (which has 64 rules) may perform as assistants to human

experts or specialists to undertake a repetitive and tedious decision making task

under their constant supervision and evaluation. The medium-sized systems

(between the large and the small) can be subjectively described as a colleague

system. Most commercial expert systems fall within this category.

4.3 The Basic Structure of Expert Systems

The three basic elements of an expert system are a knowledge base, an inference

engine, and a user or person-machine interface. The knowledge base contains

facts and heuristics, the inference engine performs interpretation (reasoning) and

control of search for solutions, and the user interface provides the user with

semi- or full-natural language, or ultimately pictures and verbal responses. We

will discuss (1) the knowledge Base, (2) the inference engine, (3) the person-

machine interface, (4) uncertainty of knowledge, and (5) less frequently used

features.

4.3 Knowledge Base

Let us assume that you, as a software engineer, are asked by the sales

department of a Car & Automobile Repair (CAR) company to build a simple

expert system, named COSMOS, to assist sales representatives in determining

the operational and economic potential of implementing CARS onto various

malfunctions that can happen to a car. The sample set of possible malfunctions

is:

1. The battery is dead

2. The ignition system is bas

3. The fuel system is faulty

4. The car is out of gas

38

5. The starter is bad

6. The engine is flooded

The symptoms for the car malfunctions are:

1. The key is in the ignition and is turned on

2. The fuel gauge shows empty

3. The engine is turning over

4. The headlights are dim or dead

5. The carburetor smells like gasoline

6. There are sparks at teh spark plugs

The software engineer can use three types of knowledge to build expert

systems: (1) rules of thumb, (2) facts and relations among components, and (3)

assertions and questions (that sales representatives can direct to customers). To

represent these types of knowledge in the knowledge base, methods are used:

• Rules to represent rules of thumb

• Frames to represent facts and relations

• Logic to represent assertions and questions

Rules are conditional sentences; they are expressed in the following form:

IF (premise) FACT 1, FACT 2, ...
THEN (conclusion) FACT 9, FACT 10, ...

These groups of rules in response to operational and economic potential of

CARS in motors were extracted from various experienced sales engineers, and

are written in an Object-Orient programming language, C++. for example, rule

la of "dead battery" can be explained as follows:

IF (Problem is in Starting System and Headlights Dim or Dead)
THEN (Battery is Dead)

Other rules can be explained in the same manner.

39

Frames A frame contains the hierarchies of objects (components), the

attributes of objects that can be assigned, inherited from other frame, or

computed through procedures or other computer programs The attributes are

filled in the "slots" of a frame.

Table 4.2 Frames of car

class car:
public root

{
public:

char* engine_ turning_ over ;
char* ignition_key ;
char* starting_ system ;
char* headlights ;
char* init_problem ;
char* spark_plug_spark ;
char* Fuel_gauge_reading ;
char* carburetor_gas ;
char* problem ;
char* car_ make ;
car(char* instance_ name, char* c _ name)

{
strcpy(name, instance_name);
strcpy(classname, c_name);
generate_askable_slot_list();

engine_turning_over = NULL;
ignition_key = NULL;
starting_ system = NULL;
headlights = NULL;
init_problem = NULL;
spark_plug_spark = NULL;
Fuel_gauge_reading = NULL;
carburetor_gas = NULL;
problem = NULL;
car _make = NULL;
}

car() { }

40

};

void make_instance()
{

ptr = new car(name,classname);
}

Thar()
{

delete engine _turning_over;
delete ignition_key;
delete starting_ system;
delete headlights;
delete init_problem;
delete spark_plug_spark;
delete Fuel_gauge_reading;
delete carburetor_gas;
delete problem;
delete car _make;

}
void printout() ;
int put_value(args* params, char* slot value, char* index = 0);
char* get_value(args* params, char* slot_type, char* index = 0);
int set _low(args* params, char* lowvalue, char* index = 0);
int set_high(args* params, char* highvalue, char* index = 0);
int write_object(FILE* fout);
root* read_object(FILE* fin);
void invoke method(char* method name); _ _
char* get_low (args* params, char* slot type, char* index = 0);
char* get_high (args* params, char* slot_type, char* index = 0);
char* ask_ slot _string(char*, char* index = 0);
void generate askable slot list(); _ _ _
slot_ value_ list* ask_ slot _values(char*, char* index = 0);

Table 4.2 shows a sample frame, CAR, that contains the attributes of this

special type of CAR. The frame shows that the CAR is part of root, many of

its features are inherited from Frame root, it is installed to an induction motor,

and it has two slots--car and mechanist. Each slot represents a special attribute

41

of the frame, its type, and value. The value can be computed by procedure or

inherited from another frame (e.g., CAR). Rules can also be contained in the

value of a slot as shown in the last slot of Table 4.2. Like an array, a frame or

an attribute slot of the frame can be called upon by rules or logic expressions.

The main difference between frame and rule is that under a frame we can

represent default values, references (pointers) to other frames, rules, procedures

for which values can be specified, and terms and conditions of any action that

needs to be taken. The ability to represent procedures and terms and conditions

with values or actions that are required is useful in connecting the many

components of information in that expert system. This feature enables us to

represent a flow of instruction in the sequence of activities. This type of

representation is sometimes called procedural representation, in contrast to

descriptive representation, Which is simply an assertion of a fact or an event. In

frames, we can integrate the two representations effectively.

Logic expressions consist of predicates and values to assess facts of the real

world. A predicate is a statement concerning an object such as

kind-of (HONDA, CAR)

It may be interpreted as an HONDA, a kind of CAR. The object may be

either a constant or a variable that may change over time. A predicate may

have one or more arguments that are the objects it describes.

4.3.2 Inference Engine

Once the knowledge base is completed, it needs to be executed by a reasoning

mechanism and search control to solve problems. The most common reasoning

method in expert systems is the application of the following simple logic rule

(also called modus pollens):

42

IF A is true, THEN B is true in a statement of "IF A, THEN B."

The implication of this simple rule is that

IF B is not true, THEN A is not true in the same statement.

Another implication of the simple logic rule is that

Given: IF A, THEN B and
IF B, THEN C

Conclusion: IF A, THEN C.

In other words, IF A is true, THEN we can conclude C is also true.

These three simple reasoning principles are used to examine rules, facts,

and relations in expert systems to solve problems. However, to minimize the

reasoning time, search control methods are used to determine where to start the

reasoning process and to choose which rule to examine next when several rules

are conflicting at the same point. The two main methods of search are forward

and backward chaining. The two methods of chaining may be combined in use

in an expert system for maximum efficiency of search control.

4.3.3 Forward Chaining

When the rule interpreter is forward chaining, if premise clauses match the

situation, then the conclusion clauses are asserted. For examples, in Rule dead

battery of Append B, if the real situation matches the premise (that is, the

problem is in starting system and headlights dim or dead), the problem of

CARS will be battery is dead. Once the rule is used or "fired," it will not be

used again in the same search; however, the fact concluded as the result of that

rule's firing will be added to the knowledge base. This cycle of finding a

43

matched rule, firing it, and adding the conclusion to the knowledge base will be

repeated until no more matched rules can be found.

In the case of COSMOS, the inference built into the C++ code is a

simplified forward chaining that traverses the rules only once and in a

predetermined order (i.e., if one rule is to affect another, it must appear before

that rule). Part of the reason for this simplification is that a cumulative

uncertainty probability function (to be discussed in certainty factor) is used in

calculating the feasibility of an CAR'S being installed to a given motor. Rules

are used once so that their probability will be accounted for only once.

4.3.4 Backward Chaining

A backward chaining mechanism attempts to prove the hypothesis from facts. If

the current goal is to determine the fact in the conclusion (hypothesis), then it

is necessary to determine whether the premises match the situation. Since

COSMOS does into use backward chaining, a different example is used to

demonstrate.

Rule One:

IF you lose the key and the gas tank is empty

THEN the car is not running

Rule Two:

IF the car is not running and you have no cash

THEN you are going to be late

Fact One: you lost the key

Fact Two: the gas tank is empty

For instance, if we want to prove the hypothesis that "you are going to be

late," given the facts and rules in the knowledge base (Facts 1 and 2, Rules 1

and 2), a backward chaining must be applied to determine whether the premises

44

match the situation. Rule 2, which contains the conclusion, would be fired first

to determine whether the premises match the fact. Because the knowledge base

does not contain the facts in the premises of Rule 2, "the car is not running"

and "you have no cash,""the car is not running" becomes the first subgoal. Rule

1 will then be fired to assert whether the premises "you lost the key" and "the

gas tank is empty" match the facts. Because the facts (Facts 1 and 2) in the

knowledge base match the premise of Rule 1, the subhypothesis is proven.

However, the system still has to prove that "you have no cash," which is not

contained in the knowledge base and cannot be asserted through rules since no

rule is related to it. The system will then ask the user, "IS IT TRUE THAT:

you have no cash?" if the answer is "yes," then the second subgoal is also

satisfied and the original hypothesis is there fore proven, concluding that "you

are going to be late."

4.3.5 Human-Machine Interface

The Human-machine interface mechanism produces dialogue between the

computer and the user. The current expert system may be equipped with

"menus" or natural language to facilitate its use, and an explanation module to

allow the user to challenge and examine the reasoning process underlying the

systems answers.

Menu refer to groups of simplified instructional statements that appear on

the computer screen and can be selected by the user by pushing designated

buttons on a mouse or designated keys on the keyboard. The user does not have

to type instructions. A semi or full-natural language interface is more

sophisticated than a menu interface; it allows computer systems to accept inputs

and produce outputs in a language closer to a conventional language such as

English. Several expert systems incorporate primitive forms of natural language

45

in their user interface to facilitate knowledge base development. Explanation

modules generate output statements of expert systems in language that can be

understood by noncomputer professional users.

The three aspects of user interface mechanism that affect its efficiency are

• user modes: client, tutor, and pupil

• Interface purpose: testing, applications, and modifications

• User groups: domain expert, knowledge engineer, and general public

User mode is defined as how users are going to use the expert system

when they interface with it. Three different user modes are associated with an

expert system in comparison with the single mode of obtaining answers to

problems characteristic of general computer application. Users can act as clients

to obtain answers to problems from the expert system, as tutors to increase or

improve the knowledge of the expert system, and as pupils to harvest the

knowledge of the expert system for increasing their skill in a specified subject.

Interface purpose is defined as the objective of the user's interacting with the

expert system. Interface with the expert system can occur for testing the expert

system before it is completely refined, for applying it to the real world situation

for consultation on problems, and for modifying it when the experts find the

answers are invalid or insufficient. Users are classified into three groups: domain

experts, knowledge engineers, and general public. Domain experts are specialists

in a given application field who assist in building the expert system initially,

test it, and then apply it to solve problems when it is completely robust.

Knowledge engineers are computer programmers who obtain knowledge from

experts to develop expert systems and then refine the system; they frequently

apply the system to real world problems. The general public does not develop or

refine the system, but benefits using expert systems. The effectiveness of

46

human-machine interface for an expert system can be determined once the three

aspects are identified.

User interface is the weakest but most critical element of expert systems

because it determines how well the systems will be accepted by the end users.

Major research efforts have been undertaken in natural language interface, voice

recognition, and voice synthesis to make expert systems more user-friendly.

CHAPTER 5

FORWARD-CHAINING IN COSMOS

The forward chainer is based upon a variant of the RETE algorithm, originally

introduced by Charles Forgy[8] .

Two features make this implementation more efficient than OPS5:

1. An object-oriented design, which makes it easy to modify and

understand the RETE network. This design should be suitable for

using on a parallel architecture.

2. A new conflict-set support, which allows very fast modifications of the

RETE network.

5.1 The RETE algorithm

5.1.1 Production Systems and the RETE Philosophy

RETE algorithm has been designed to perform faster pattern-matching in large

production systems. Usually, a production system is defined by a set of rules

together with a collection of current assertions, or facts consisting the working-

memory. The rules usually consist of a Left-Hand-Side (LHS) or condition part,

and a Right-Hand-Side (RHS) or action part. Inferences are achieved by

repeating match-select-execute cycles on the working-memory.

Basically, a cycle consists in:

1. matching data elements against LHS of rules. The set of rules which

LHS has been matched form the conflict-set.

2. selecting one of the rules in the conflict-set.

3. executing the RHS of the rule.

Figure 5.1 illustrates this scheme.

47

48

Figure 5.1 Objects Access in the Forward-chainer

RETE exploits two characteristics of such systems[2] .

1. While a data base may contain many facts, the percentage of data

elements added or modified during a single cycle tends to be low.

2. Rules tend to share LHS conditions. Therefore, rules compiled into a

network can share information.

From these two considerations follows the principle of the RETE

algorithm. The idea is to manage a network - embedding rules and data

elements - incrementally updated through cycles of inference. According to point

1, this updating should be fast. According to point 2, the network should be a

good encoding of the rule-base, since redundancies are eliminated.

49

5.1.2 Representation of the RETE Network

To illustrate the RETE network, consider the following rule:

if (CE1, ..., CEn) then A1, ..., Ap

The LHS has the condition elements CEi and the RHS has the actions Ai.

The RETE network representing this rule is shown in Figure 5.2.

Figure 5.2 RETE Network for one Rule

When a new fact is added to the working-memory, a token2 is created and

sent to the network. When a token traverses the network, it is matched against

CEi. Tokens which satisfy condition-elements are stored in alpha-memories.

Templates of alpha-memories are joined together by two-inputs nodes that test

for consistent variables bindings. The joined tokens are stored in beta-memory

and eventually reach the action-node. The last event results in a change in the

conflict-set.

50

5.1.3 Improvements on RETE

Two directions have already been explored to improve the RETE algorithm:

• Reduce the time and space complexity of the algorithm. Miranker has

introduced the TREAT algorithm which seems to be better than RETE

in both time and space, according to the benchmarks reported in [14].

Briefly, TREAT does not use beta memories but rather sophisticated

alpha-memories. This allows a reduction in space (size of the beta-

memories) and in time, through a faster updating of the conflict-set.

• Improve the generation of the network. From a same rule-base, one can

generate many RETE networks. These networks may not be equivalent

during execution time. Bridgeland and Lafferty [2] have discussed a

method for determining which of these networks is optimal. It is not

clear, yet, if this search is worthwhile or not.

We introduce a third option which has not been explored yet: an object-

oriented representation of the network. Miranker points out the difficulties

encountered in porting RETE to a parallel environment. An object-oriented

approach, we believe, should reduce these difficulties. Furthermore, we can work

in a full object-oriented framework where the data-base is filled with classes and

instances of classes, and the inference mechanism reduces to a set of nodes

exchanging messages.

• As we shall see, it will also lead to a reduced cost for updating the

conflict-set.

• In the following sections, we describe a representation of the RETE

network in terms of classes and objects. When describing the different

classes, we will skip some of their attributes, for the sake of clarity.

51

5.2 Basic Components

In this section we introduce the basic classes needed for inferencing, namely: the

Inference engine (class Ie), a working-memory (class WorkingMemory), the

RETE network (class ReteNet), and the conflict-set (class ConflictSet). Figure

5.3 illustrates the relation between these classes. Typically, there is one and

only one instance of the above classes during run-time. But, if needed, several

instantiations of these objects could be used simultaneously (each one carrying a

specific knowledge, for example).

Figure 5.3 Has-part Relations Between Basic Components

5.2.1 Functional Description

(a) The instance of Ie, named thelnferenceEngine, monitors the whole

inferencing mechanism, and is the interface between the forward-chainer

and the rest of COSMOS. The only way one can access the forward-

52

chainer - to run it, load instances, browse the working-memory, and so

on...- is to send a message to thelnferenceEngine.

(b) The instance of WorkingMemory consists basically of a list of

WMelements (wme). It also has a counter which is a time reference.

This counter is incremented every the WorkingMemory is accessed, and

is used mainly by the conflict-set to determine the regency of an object.

The WorkingMemory is needed for the following reasons:

• It ensures that objects and Inference engine are fully decoupled.

• We can use only the portion of the object base which is needed for

inferencing. This is especially important for large data-bases.

• A working-memory element is more than a pointer to an object.

Information regarding inferencing (last update, location(s) in the

network, influence in the conflict-set) is stored in the wme. This

information is needed only by the inference engine and is local to

this process.

(c) An instance of ReteNet is created every time the parser reads a new rule

file. The whole RETE architecture is built, whose top-node is an instance

of RootNode. This node is attached to the ReteNet which, in turn, is

attached to theInferenceEngine. Further details are provided in Section

5.5.

(d) The ConflictSet instance contains all the actions (RHS of rules plus

bindings) which can be fired at a given cycle of inference. Several

methods for conflict-resolution are discussed in Section 5.6.

5.2.2 Detailed Description

The declaration of Ile class is shown in Table 5.1. The methods are explained

below:

53

• reset() sets the cycle_time to 0, and calls the reset() method of the

WorkingMemory.

• set_ strategy() allows the user to define the current strategy used by

the ConflictSet.

• load_ wme() loads a list of wmes into the WorkingMemory.

Table 5.1 Ie Class

class Ie

Private:
WorkingMemory *wmem; //pointer to the Working-Memory

ReteNet *rete; // point to the Rete Network

int cycle_ time; // cycle counter

char *strategy; // name of the strategy

public:
ConflictSet *cs; //pointer to the Conflict-Set

Ie(); // Constructor

// method for end user:

void reset(); // init method

void set _strategy(char *); // changes strategy

void load _wme(root *); // loads a list of wme

void loadl _wme(root *); // loads only one wme

void remove _wme(WMelement *); // remove a wme
void run(); // starts inferencing
// methods for be

void record _change_object(root *);

void record_ use_ rule(char *);

// other methods

char *describe();

void attach_rete(ReteNet *r); // set the pointer to Rete

• remove_ wine() removes a wme from the WorkingMemory. The Rete

network is updated accordingly.

54

• run() begins inferencing. All the new wmes recently loaded in the

WorkingMemory are propagated in the network. Rules present in the

ConflictSet are fired, and a new cycle begins.

• record change_ object() is called by the Backward-chainer every time

an object is modified. When backward-chaining ends, the forward-

chainer is able to propagate these changes in the Rete Network to

maintain the consistency.

• record_ use_ rule() is called by the Backward-chainer every time a rule

is used. This rule will not be fired again when updating of the Rete

network occurs.

The declaration of WorkingMemory class is shown in Table 5.2

Table 5.2 Working Memory Class

class WorkingMemory : public ObjectB

private:

Tlist(WMelement lwme); // list of wme

int access _time; // time reference

public:

void del _wme(WMelement *);
void add _wme(WMelement *);
char *describe();

void reset();

WorkingMemory(); //constructor

The methods are explained below:

• del wine() deletes a wine from the Rete network. The algorithm used

is explained in section 5.6.4. Then the wme is removed from lwme.

• add wine° just pushes a wme on lwme. access time is

incremented.

55

• reset() sets the access time to 0, then calls del wme method for

every wme in lwme. At the end of the procedure, the Rete network

is empty.

The declaration of WMelement class is shown in Table 5.3

WMelement Class

class WMelement : public ObjectB

friend WorkingMemory;

friend Ie;
friend ConflictSet;

private:
int cycle _time; // last cycle when the wme was modified

int load _time; // last load in the WorkingMemory
Tlist(Destroy_element) Idel; // map into the Rete network

public: root *proot; // pointer to the actual object

void keep_track(Token *, Tlist(Token));

void keep_track _cs(Token *, Action *);
char describe();
// Constructors WMelement (root *0);

WMelement (root *o, int t);

The methods are explained below:

• keep_track() allows a wme to record its location in the network at

one stage of processing. Its successive locations are kept in the map

ldel.

• keep_track_cs() same as above to record a location in the ConflictSet.

The declaration of ReteNet Class is shown in Table 5.4

56

Table 5.4 ReteNet Class

class ReteNet

private:

RootNode *rootnode;

public:

ReteNet (RootNode *r); // Constructor

int process _token(Token *); // starts inferencing

char *describe();

One method is explained below:

process_token() takes a Token and sends it to the RootNode of the Rete

network.

The declaration of ConflictSet class is shown in Table 5.5

Table 5.5 ConflictSet Class

class ConflictSet

friend ActionNode;

friend DestroyInConflict Set;

private:

int strategy; // current strategy

Tlist(Action) llaction; // list of current instantiations of

rules

public:

Action *select();

int fire();

void set _strategy(int s);

ConflictSet();

The methods are explained below:

• select() uses the current strategy to choose among the rules kept in

llaction.

• fire() first selects the action. Then takes the selected action and

executes its RHS.

• set_strategy() allows a private access to the slot strategy.

57

5.3 Symbolic Information

5.3.1 Tokens

5.3.1.1 Functional Description

The Token class establishes the link between the working-memory and the

network. Indeed, at a given cycle of inference, all current matchings, bindings

are stored in the network. When a change occurs in the working-memory (a new

fact is deduced by a rule, or added by the user), this information must be

propagated in the network. This is the basic principle of incremental updating

of RETE, outlined in Section 5.2. What is actually propagated in the network is

an instance of Token.

Definition 1 A token is a triplet <1w, lb, lc>, where lw is a list of wine's, lb is

a list of Bindings, and /c is a list of Checks.

Bindings are created after pattern-matching, Checks are special kinds of

tests which could not be performed (for some variables were unknown). They

are discussed in Section 5.5.2. Figure 5.4 illustrates the Token class.

Figure 5.4 Token Class

58

5.3.1.2 Detailed Description

The declaration of Token class is shown in Table 5.6.

The methods are explained below:

• duplicate() generates a copy of the Token itself.

• add binding() tries to add a Binding to the current binding-list lbind.

If the Binding is not compatible with an existing one, returns FAIL.

• print_bindings() is used mainly for debugging purposes.

• unify() tries to merge two Tokens into a new one. The operation is

successful if and only if all Bindings are compatible.

• del_tok() destructor for the Token class.

Table 5.6 Token Class

class Token : public ObjectB

public:
Tlist(WMelement) lwme;
Tlist(Binding) lbind;
Tlist(Check) lcheck;

Token *duplicate();
int add_ binding(Binding *);
char *describe();
void print_ bindings();
Token *unify(Token *);
void del tok();
// constructors
Token();
Token(WMelement *w);

59

5.3.2 Symbols and Expressions

5.3.2.1 Functional Description

What inferencing does is actually to deduce values of objects' slots, and update

these objects. These values are either known constants, retrieved from other

slots, or computed (basic arithmetic for example). During inferencing, every

value handled by the forward-chainer is stored in a Symbol or an Expression.

• A Symbol instance contains information regarding the type of the

symbol, and its external form (i.e. a printable name). In this sense, it

is quite similar to a LISP symbol.

Symbol types:

- string
- variable
- integer
- float
- root object
- expression
- WMelement

Figure 5.5 Symbol Types

During processing, symbols can be bound to variables which are

special type of symbols. Note that they are not stored in variables,

and thus a variable may be bound to several symbols. The

combination of a variable name and a symbol is an instance of

Binding.

• An Expression is a special class whose instances are able to evaluate

themselves. Typically, an instance of expression represents a value

60

which needs some computation to be determined fully. Some example

of extrusions are given below:

(3.14 * 6)2

($pi * $radius)2

In the above examples, $pi represents a variable whose name is pi.

Attributes of an expression are sexpr: the string which represents the

external form, var _list: a list of variables contained in the expression , and

prog: a program which can be executed to compute the value (provided that all

variables are bound). This framework is powerful for as soon as an instance of

Expression is created, an instance of Prog is created after parsing. Then, one

can evaluate the expression with different bindings without parsing it again.

Figure 5.6 Expression Hierarchy

Figure 5.6 shows that both classes Expression and Parser inherit from the

same attributes. A Parser instance is able to translate a string into a Prog,

collecting the variables which appear in the string. All Expression instances use

an instance of the same Parser to evaluate themselves.

61

5.3.2.2 Detailed Description

The declaration of Symbol class is shown in Table 5.7.

The declaration of Binding class is shown in Table 5.8

The methods are explained below:

• compatible() compares two Bindings. Returns SUCCESS if they are

compatible, Fail otherwise.

• equal() returns SUCCESS if two Bindings are equal, FAIL otherwise.

Table 5.7 Symbol Class

class Symbol : public ObjectB

private:
char str[50]; // string description of the Symbol

public:

char type;

union {

int i;

float f;

char *s, *v;

Expression *e;
root *p;

WMelement *w; } value;

char *describe();

void fill(char , char *);

// constructors

Symbol();

Symbol(char , char *0);

Symbol(char , WMelement *);

62

Table 5.8 Binding Class
class Binding : public ObjectB
friend Expression;
friend Stack;
private:
char *variable;
Symbol *symbol;

public:
char *describe();
int compatible(Binding *);
int equal(Binding *);
binding(char *, Symbol *); // constructor

The declaration of Basic_Expr_Mixin class is shown in Table 5.9. This Mixin is

designed for the only purpose of inheritance.

Table 5.9 Basic Expr Mixin Class

class Basic_Expr_Mixin

protected:
char *sexpr; // string representing the Expression
Prog *prog; // the program
Tlist(Symbol) var list; // list of variables

Basic Expr_Mixin(); // Constructor

The declaration of Expression class is shown in Table 5.10.

63

Table 5.10 Expression class
class Expression : private Basic Expr Mixin
public: void parse();
void append(Expression *);
void print();
Prog* set_prog();
Tlist(Symbol) get_var()
int is _evaluable(Tlist(Binding));
Symbol *eval(Tlist(Binding));
// constructors
Expression(char *);
Expression(char *, int);

The methods are explained below:

• parse() takes a string and parses it. The result is an executable

program stored in prog. The parser recognizes arithmetic expressions

and strings.

• append() takes two Expressions and merges them. The prog and

var list slots are concatenated.

• print() outputs a string representing an Expression.

• get_prog() and get_var() provide private access to prog and var_list.

• is_ evaluable() checks if the program in prog is executable, given a list

of Bindings.

• eval() executes prog.

64

5.4 Network Hierarchy

In this section, we deal with the design of the RETE network in terms of

classes.

5.4.1 Functional Description

Figure 5.7 Hierarchy of the RETE Classes

Figure 5.7 shows the hierarchy. The top class is ObjectB, which contains

methods for objects to describe themselves (a kind of vanilla flavor).

• ReteNode is the superclass for all the nodes in the RETE network

(ActionNode is a special cases). It contains general attributes of

nodes: a list of successors, a method to distribute forward a token, a

method to process a token (each node redefines this virtual method

according to its own function), and a method to link a node to

another (used mainly while building the network).

• Terminal_ Link _Mixin is a superclass of both FilterNode and

JoinNode. It allows two instances of these classes to establish a link

with an ActionNode (terminal node).

65

Before describing the different node classes, we first sketch how instances

of nodes are organized inside an actual network. Figure 5.8 illustrates this

architecture.

Figure 5.8 An Example of RETE

• The RootNode is at the top of the network. It links together the

different Classnodes.

• ClassNodes and FilterNodes together check the status of a condition-

element. The Classnode checks for the classname of an object and the

FilterNode checks if the object's attributes match a given Pattern.

Further details on pattern-matching are given in Section 5.5.2.

66

• JoinNodes link two FilterNodes together. They have a right-

memory and a left—memory which play the role of a beta-memory.

Another attribute is a the type of the node: this type may be AND

or OR; in a rule, condition-elements are linked by logical connectors

(AND or OR) and the JoinNode will have different behaviors

depending on its type.

• ActionNodes are equivalent to RHS of rules. They have attributes

rulename and priority, and a list of Expressions which will be

evaluated if the rule is fired.

5.4.2 Detailed Description

The declaration of ReteNode class is shown in Table 5.11

Table 5.11 ReteNode Class

class ReteNode : public ObjectB

Protected:

Tlist(ReteNode) lnext; // successors of the node

protected:

virtual int distribute _token(Token *);

public:

virtual int process_token(Token *, ReteNode *);

virtual int link(ReteNode *);

ReteNode(); // Constructor

the methods are explained below:

• distribute token() sends a copy of the current processed Token to

each of the successors of the node (members of lnext). This virtual

method may be redefined by some of the nodes.

• process_token() is redefined by each specialization of ReteNode. This

method contains the know-how of each node.

67

• link() allows a node to be linked with another. The other node is then

pushed onto lnext. This method is used during the generation of the

Rete network.

Table 5.12 Terminal Link Mixin Class

class Terminal Link Mixin

protected:
ActionNode *action;

public:
void link action();

The declaration of Terminal Link Mixin class is shown in Table 5.12.

This Mixin allows a node to be linked with an ActionNode. The method

link action() is used for that purpose during the Rete network generation.

The declaration of ClassNode class is shown in Table 5.13. One method is

explained below:

• process_token() checks if the received Token belong to the class

specified by classname. If not, the Token is disgarded. If context is

non NULL, a Binding is created between the variable context and

the object pointed by the slot proot of the Token. Then,

distribute_ token() is invoked.

The declaration of FilterNode class is shown in Table 5.14. The methods

are explained below:

• process_token() carries out the pattern-matching between the

processed Token and the reference Pattern, refpattern. The

algorithm is explained in Section 5.5.2. Then, distribute token() is

invoked.

68

• add pattern(pushes new Patterns onto refpattern. It is used

during generation of the Rete network.

• link() pushes a JoinNode onto lnext. It also places the FilterNode

on the appropriate channel of the JoinNode (one may be already

used).

The declaration of JoinNode class is shown in Table 5.15. The methods are

explained below:

• install_ channel° is used to establish a link with a FilterNode or

another JoinNode during the generation of the Rete network.

• process_token° tries to join a received Token with others from its

right_ memory or lef t_ memory. If the type of the Node is OR,

then the Token is immediately distributed. Otherwise, the type is

AND, and the merge operation is performed as explained in Section

5.2.3.

• link() has the same functionality as the FilterNode's one.

The declaration of ActionNode class is shown in Table 5.16. The methods

are explained below:

• add_ to_ conflict_ set° creates an Action out of the received Token and

a pointer to the ActionNode itself. Then, this Action is sent to the

ConflictSet.

• add_ action() is used during generation of the Rete network to add a

newly parsed expression to laction.

• fire() is used, once a rule has been selected, to execute its RHS.

Every Expression in laction is evaluated given the list of Bindings.

• set_rulenaine° and set_priority() provide private access to rulename

and priority.

69

The following section will describe the actual processing of a token by the

network.

5.5 Network Interpretation

In this section, we describe how the inferencing is performed.

5.5.1 Token Flow

Figure 5.9 illustrates what happens when a change occurs in the working

memory. A Token is created and sent to the RootNode of the network. Then,

the token is sent from node to node and if all matchings succeed, a with

associated bindings is sent into the ConflictSet.

Figure 5.9 Flow in the Network

70

Actually, if the token match several patterns, this path may be followed

by several copies of the token. It results in different bindings for each copy, and

thus a same wme may trigger may rules.

5.5.2 Matching

The left-hand-side of a rule is a list of tests or statements. Each statement

checks the state of a working-memory element. When all the tests succeed, then

the rule matches and is a candidate for firing. There are two basic kinds of

operations allowed on the LHS of a rule: testing and binding.

Depending on the form of the statement, different operations are

performed. A statement has the general form: (<classname> [<context>][<slot

><lop><value>]).

Suppose that a token is processed in the network. Let us examine the

various match operation between the token and a statement:

A first test occurs to check that the wme belongs to the specified class.

This is done by the ClassNode. Then, the FilterNode checks each <slot> <lop>

<value>. Each FilterNode has an attribute which is a list of Pattern instances.

Each Pattern has the attributes: slot, operator, value. The pattern-

matching between a Token and a Pattern is described below:

(a) Simple test: Where <value> is a constant, e.g.: a string, a float, or even

a point. The operation performed is a test.

71

Example: radius == 3.

Suppose that a wme of class "circle" is processed and its radius is 4. The

above test will return a false value and the Token will be rejected.

(b) Simple binding:, where <value> is a variable, and <lop> is the operator

equal:

Example: radius == $X

$X will be bound to 4, and added to the token's bindings. If $X was

previously bound to another value, the token would be rejected.

(c) Complex Binding:, for all the other cases. This case could also be called

delayed check since no test can be performed at once. The rule statement

72

involves variables - not bound yet - in a complex expression such as: slot

== 2 * $X + 1 - $Y2 or slot > $X+1 and so on. Note that this kind of

matching is not available in any other existing tool. Usually, the kind of

pattern allowed in a LHS is of type 1 and 2 only (see in [3]). When one

wants to perform a complex test in OPS5, one must use a Lisp-

dependent hack.

In COSMOS, we make the assumption that if a complex test is used, the

variables appearing in this test must be bound somewhere else in the

LHS. The check algorithm is the following:

The check occurs in the next stage of processing, and is carried out by a

JoinNode.

Example: radius > $X

The Check (4 > $X) is built, and will be evaluated by a JoinNode where

$X will be bound to a specific value.

73

5.5.3 Merging

JoinNodes are two inputs nodes which receive tokens in their left or right-

memory. Basically, a JoinNode performs a logical operation (AND or OR) on

two statements, or condition-elements.

5.5.3.1 AND Case

This is the most common case, and the only one considered in Forgy's

implementation. Suppose a Token enters the right or left channel of a JoinNode

J. J will try to merge the received token with all the tokens stored in the

opposite memory. If Checks are satisfied, and Bindings are compatible, then,

tokens are merged.

Definition 2 Two bindings <v1,s1>, <v2,s2> are compatible

iff (vi # v2) v (vi = V2 A S1 = S2)

Definition 3 Let t1 =<1w1, 1b1, 1c1> and t2 =<1w2, 1b2, 1c2> be two tokens.

The Merge operation is defined by:

Merge(t1, t2) = <1w1 U 1w2, lb1 U 1b2, 1c1 U 1c2>

Note that before the Merge operation, some Checks may have been deleted from

lw if they were satisfied.

*If a Token enters the right-memory, the opposite-memory is the left-memory,

and vice-versa.

5.5.3.2 OR Case

The algorithm is straightforward: as soon as a token enters the JoinNode, it

exits it, i.e., no merging is necessary. The OR-test has been added for

convenience but is very restrictive. Indeed, an OR between two condition-

elements should be performed only if these elements are ground, i.e.: none of

74

the tests contains any variable (example: color = "blue" or price < 300).

Otherwise, the consistence in the network could not be maintained anymore.

5.6 Conflict Resolution

5.6.1 Introduction

There are two aspects of management in the conflict-set:

(a) when there is more than one rule in the conflict-set, only one must be

fired. A conflict resolution strategy must be chosen.

(b) If one adds a wme to the working-memory, a rule may be added to the

conflict-set. But what happens when a wme is removed? Some rules in

the conflict-set may become invalid and should thus be removed.

This section shows how these two issues are addressed in COSMOS. In

particular, we show that issue 2 is solved more efficiently than Forgy's

algorithm. We begin by introducing the conflict-Set structure.

5.6.2 Conflict Set Data Structure

The Conflict Set is a class whose instance is an essential part of

theInferenceEngine. Figure 6.12 shows its structure.

It consists basically of a list of Actions, also called rules instantiations

(slot llaction), and a strategy. The strategy indicates to the ConflictSet

which conflict-resolution method to choose during the select part of the

inferencing cycle (see next section). An Action (we will denote it as Action <lt,

anode>) consists of a list of Tokens (along with Bindings) which have passed

through the RETE network, and an instance of ActionNode which contains the

RHS of the rule to be fired.

75

Figure 5.10 Conflict-Set Structure

5.6.3 Conflict Types

Currently, there are two strategies implemented in the forward-chainer: LEX

and RPR. One can easily add a new strategy if needed.

5.6.3.1 LEX

We use the following sequence of steps, as reported in [3]. The LEX strategy

proceeds in two steps:

(a) refraction. A rule which has been previously fired is disgarded from the

conflict-set. Note, however, if one of the wme's of the instantiation has

been modified, the rule won't be eliminated.

(b) LEXical ordering. We order the instantiations remaining in the conflict-

set on the basis of the regency of the time tags of the wme's in these

instantiations. All instantiations which have the largest time-tag are kept

in the conflict-set, others are disgarded. Then the process is repeated for

the second largest time-tag, and so on. If these attempts fail to determine

a unique instantiation, an arbitrary one is chosen.

Note, that unlike in OPS5, the specificity test is not implemented.

76

5.6.3.2 RPR

RPR stands for rule priority. This strategy is convenient because it is simple

and much faster than the previous one. In many cases, controlling inferencing

through ordering of rules may be suited to the problem one has to solve.

The strategy is straight-forward. At a given cycle, sort the rules in the

conflict-set according to their priority. If several rules have the same priority,

then choose one randomly.

5.6.4 Consistency of the Network

When a wme is modified, many Tokens which depend on it must be modified

accordingly.

Definition 4 A Token t<lw,lb,lc> depends on a wme w iff: we lw.

By transitivity, an Action in the ConflictSet may depend on a wme:

Definition 5 An Action A<lt,anode> depends on a wme w iff: 3 t E It such

that: t depends on w.

When, a wme is removed from the memory, the following actions must be

taken:

(a) Update the network to maintain consistency. It means that the wme

should be removed from all its locations in the network.

(b) Update the conflict-set. Every instantiation of a rule which involves the

given wme must removed from the conflict-set.

This is an important problem since it usually consumes a considerable

amount of the inferencing time. Indeed, this update occurs at every call to a

Remove operator or a Modify operator (a Modify operation can be viewed as a

Remove followed by a Make).

This issue was addressed in [8] by searching the network to find the

location at the given wme. For example one can send the token in the network

77

with an appropriate tag (a delete tag). The inferencing is carried out the same

way as usual, except that the wme is deleted from the network instead of being

added.

Our algorithm is based on the following reasoning. Why not use the time

when the token is added to the network to record its locations in a data-

structure called a map? When a deletion occurs, one just has to look at this

map and remove the wme instantaneously. If we add to the map the locations

where the wme appears in the conflict-set, we address issue 2, as well.

The gain in speed must involve an extra space occupancy. We can show

that this is not a major problem, for the size of a map can be reasonable.

Figure 5.11 shows our implementation of this map: each wme has a slot

ldel which is a list of DestroyElements. The first time a wme is created, a

Token is sent to the network. Every beta-memory where this Token <lw,lb,lc>

is stored, is recorded in the DestroyElements of all wmes in 1w. This establishes

the causal relation "depends-on" (as defined above) between all the wmes in lw

and the Token. We do the same thing when a Token is sent into the

ConflictSet as part of an Action.

Figure 5.11 Dependence Between wmes and Tokens

78

Now, whenever a wme is removed from the WorkingMemory, we remove

all Tokens and Actions which depend on it.

5.7 Detailed Example

In this section we will illustrate the generation of the RETE network for a

particular case, along with the processing that occurs in the network.

Consider the following rule:

(RULE aRule

IF (CLASS: Container

(base == $BASE) AND

(height == $HEIGHT) AND

(name == $NAME1))

AND

(CLASS: Liquid

(volume < $BASE*$HEIGHT) AND

(name == $NAME2))

THEN

(PRINT $NAME2 " fits in " $NAME1))

We illustrate the following steps:

(a) Parsing and the generation of the RETE network

(b) Processing of some objects in the network

5.7.1 Generation of the Network

Building is carried out by performing the following subtasks:

(a) Parse the rule and generate the intermediate structure.

(b) Instantiate the objects representing the nodes of the RETE network.

The first step is carried out by the parser (see Parser chapter). Then

instanciation of nodes proceeds as follow:

79

(a) Instantiate the top of the network: RootNode, ClassNodes and

FilterNodes as given by the intermediate structure.

(b) Loop on every rule structure and instantiation of all JoinNodes between

two FilterNodes. Redundancies are eliminated.

The network generated is given in Figure 5.12

Figure 5.12 Instantiation of the Network After Parsing

5.7.2 Processing

Suppose the following instance is created in the working-memory (either by the

user or by the firing of a rule):

80

instance: my_tea
name: "my tea"

volume: 30

Since this is a change in the working-memory, a Token is created and sent

to the RootNode. The Token will match the ClassNode which test for the class

Liquid, and will be sent to FilterNodes it is linked with. At this stage, one

simple binding is performed between NAME2 and "my tea". Then, a Check is

created since none of the variables HEIGHT and BASE are known at this stage.

The value of volume is retrieved (which is 30) and the Check (30 <

$HEIGHT*$BASE) is created. The Token is sent to the right channel of the

JoinNode and it stays there. The JoinNode state is shown if Figure 6.15.

Figure 5.13 JoinNode State

Assume that a second instance is created:

instance: my_mug

name: "my mug"

base: 12

height: 4

A token is sent through the network and ClassNode which tests for the

class Container is passed. Then, three simple bindings are created involving

HEIGHT, BASE, and NAME1. The Token is sent to the left channel of the

81

JoinNode and the merging process begins. Since there aren't any inconsistent

bindings between my_mug and my_tea, binding-lists are merged. Now, the

Check can be evaluated since all variables are bound. The check is successful

since 30 < 12*4, and the merged token is sent to the next node. The next node

is actually an ActionNode and the following instanciation of the rule will sent to

the Conflict-Set:

• The expression representing the executable action

• The Token, including its binding-list and wme-list

Figure 5.14 shows the state of the network at the end of processing.

Figure 5.14 End of Processing

CHAPTER 6

DISCUSSION

The Inference Engine Monitor module provides the facilities for starting and

monitoring the inferencing process, as well as checking the status of the working

memory. The main interface function is the callback iemonitor() which initializes

the widget tree and maps it onto the screen. The layout and widget hierarchy

are shown in Figure 6.1 and Figure 6.2

Figure 6.1 Layout of the Inference Engine Monitor Window

We described the forward-mechanism in COSMOS. It is based upon a

variant of the RETE algorithm. However we have shown that our version is

more powerful than OPS5.

82

83

The C++ implementation consists in definition of about 30 classes for the

whole forward-chainer and their associated methods (about 130).

The size of the above implementation is about 5000 lines of C++ code. In

appendices, we just list some of the programs.

Figure 6.2 Widget Hierarchy of the Inference Engine Monitor Window

6.1 User-Interface Objects Between X Window and ObjectWindows

Windows has built-in support for a number of user-interface objects: windows,

icons, menus, dialog boxes, etc. Built-in support means that the amount of

effort required to create and maintain these objects is fairly minimal. In

particular, if you were to write your own code to support these objects, it would

require a vast amount of effort on your part. And the results would probably

not be as flexible nor as robust as the user-interface objects that Windows

provides.

Taking advantage of what these user-interface objects can provide requires

you to understand how each is implemented. As we look at the different types

of user-interface objects, we'll provide some insights into the design and

84

implementation of each. In many case, this will mean a discussion of the

messages that are associated with a given user-interface object. In other case,

this means delving into the various Windows library routines that control each

type of object. For now, we're going to introduce you to the user-interface

objects and describe the role of each in the user interface.

Among user-interface objects, the most important is the window. Any

program that wishes to interact with the user must have a window, since a

window receives mouse and keyboard input and displays a program's output. All

other user-interface objects, like menus, scroll bars, and cursors, play supporting

roles for the leading character: the window.

6.1.1 The Window

The window is the most important part of the user interface. Form the

perspective of a user, a window provides a view of some data object inside the

computer. But it is more than that, since to a user, a window is an application.

When the user starts to run an application, a window is expected to appear. A

user closes a window to shut down an application. To decide the specific

application to be worked with, a user selects the application's window.

To programmers, a window represents several things. It serves to organize

the other user-interface objects together and directs the flow of messages in the

system. A window provides a display area that can be used to communicate

with the user. Input is channeled to a window and thereby directed to the

program. Applications also use windows to subdivide other windows. For

example, dialog boxes are implemented as a collection of small windows inside a

larger window.

Every window is created from a window class. A window class provides a

template from which to create windows. Associated with every window class--

85

and therefore with every window--is a special type of subroutine called a

window procedure. The job of a Windows, you can imagine that this is an

important task. In fact, most of the work that you will do as a Window, which

arrives in the form of messages. It receives notifications about other events of

interest, such as changes in the size and location of a window. Here is an

example in COSMOS

n = 0;
XtSetArg(wargs[n], XmNtitle, "COSMOS: Inference Engine Monitor");

n++;
XtSetArg(wargs[n], XmNiconName, "IE Monitor"); n++;

Widget toplevel = XtAppCreateShell("ieMonitor", "COSMOS",

applicationShellWidgetClass,

display0, wargs, n);

Widget *topl = (Widget *)XtMalloc(sizeof(Widget));

*topl = toplevel;
submenu 1[quit_entry].data = (caddr t)topl; _ _

In X Window, Rather than dealing directly with windows, applications

built using the Xt Intrinsics use Widgets In addition to the ID of the X

window used by the widget, the widget structure contains additional data

needed by these procedures.

The shell widget serves as a wrapper around its child, providing an

interface between the child widget and the window manager. Applications that

use multiple, independent windows must create an additional shell widget for

each top-level window. The function

XtCreateWidget()

provides the general mechanism for creating all widgets except shell widgets.

To create a second (or third, or whatever) top-level shell widget, using

XtCreateApplicationShell() or XtAppCreateShell()-- The later for

those who have Release 4 of the X Window System. You can use this second

86

top-level shell as a parent to create a child widget, and then create many more

child widgets of that child, and so on, just like we've done in our application

In the other hand, life in a ObjectWindows program starts in the

WinMain function. Most OWL programs will have a WinMain function that

look like IE2's:

int PASCAL WinMain(HANDLE hInstance,
HANDLE hPrevinstance,

LP STR 1pCmdLine,
int nCmdShow)

{
Tie2 ie2 ("COSMOS: Inference Engine Monitor", hlnstance,

hPrevinstance, 1pCmdLine, nCmdShow);

MakeHelpPathName(szHelpFileName);

ie2.Run();

return ie2.Status;
}

An application object is created and run.

6.1.2 Icons

An icon is a symbol that serves as a reminder to the user. GUI systems are

built on the principle that what is concrete and visible is more easily

understood than what is abstract and invisible. Icons provide a concrete, visible

symbol of a command, a program, or some data. By making such things visible,

a Windows program makes them accessible. By making all of a user's choices

visible, Windows programs lessen the user's dependence on memorized

information.

87

Figure 6.3 Icons in the COSMOS

Examples of icons include standard window ornaments: the system menu

box, the minimize box, and the maximize box. As depicted in Figure 6.3, one of

the most common uses of an icon is to represent a program. In the program

Manager's window, an icon reminds the user of the programs that are available

to be run. On the desktop, an icon serves to remind the user of the programs

that are currently running, but whose windows have been closed. Icons can also

be used to represent commands.

6.1.3 Menus

A menu is a list of commands and program options. Windows has five types of

menus: system menus, menu-bar menus, pull-down menus, nested menus, and

tear-off menus. The system menu, shown in Figure 6.4, provides a standard set

of operations that can be performed on a window. These operations are referred

to as "system commands." Users expect to find a system menu on the top-level

window of every program they run. System commands require very little work

on the part of a program, since Windows itself does everything to make system

commands operational and uniform throughout the system.

88

Figure 6.4 The System menu

Figure 6.5 shows the three types of menus that are connected together:

The menu-bar menu connects to the top of a window, popup menus appear

when a menu-bar item is selected, and nested menus are displayed when a

popup menu item that has an arrow is selected. Applications can nest menus as

far as they'd like, although in general programmers should avoid nesting too

deeply, since this can disorient the user.

Figure 6.5 Three Types of Menus

In Motif, the menu structure is clearly defined by the menubar arrays.

Adding a new entry requires only defining a callback function and adding an

entry to the array that describes the menu.

89

The xc _ create _ menu _buttons() function loops through the array of menu

entries creating an appropriate widget for each entry. Here is how Motif version

COSMOS create menu:

static menu struct submenu 22[] = { _ _
{ "LEX", (XtCallbackProc)set_crs, NULL },

{ "Rule Priority", (XtCallbackProc)set_crs, NULL }

1;
static menu struct submenu 2[] = { _ _

{ "Specify Rule File...", (XtCallbackProc)specify_rule_file, NULL },

{ NULL, NULL, NULL },

{ "Conflict Resolution Strategy", NULL, NULL,

submenu_22, XtNumber(submenu _22), NULL },

static menu _struct MenuData[] = {

{"File", NULL, NULL, submenu_1, XtNumber(submenu _1), NULL },

{"Inference", NULL,NULL,submenu_2,XtNumber(submenu_2), NULL },

{"Browse",NULL, NULL, submenu_3, XtNumber(submenu_3), NULL },

{"Help", (XtCallbackProc)HelpCB,NULL},

1;

Widget menubar = XmCreateMenuBar(main, "menubar", NULL, 0);

xc _ create _ menu _buttons(NULL, menubar, MenuData,

XtNumber(MenuData));

In ObjectWindows, an application accesses its attached resources by

specifying the resource ID. This ID is an integer, such as 101, or a string

identifier, such as "IDM _LEX". An application distinguishes one menu selection

from another by the menu ID associated with each menu item. Here is the

resource of menu and how the main program create the menu.

IE MENU

BEGIN

90

POPUP "&Inference"

BEGIN

MENUITEM "&Specify Rule File",IDM_SPECIFYRULEFILE

POPUP "&Conflict Resolution Strategy"

BEGIN

MENUITEM "&LEX", IDM LEX

MENUITEM "&Rule Priority",IDM_RULEPRIORITY

END

...

void TMainWindow::GetWindowClass(WNDCLASS _FAR & AWndClass)

{
TDialog::GetWindowClass(AWndClass);

AWndClass.hlcon = Loadlcon(AWndClass.hlnstance, "IE");

AWndClass.lpszMenuName = (LPSTR)"IE";

AWndClass.hCursor = LoadCursor(AWndClass.hlnstance, "IE");

}

In Motif version Cosmos, they use ruleiname as a flag to check the rule

file specified or not, in program iemon.c:

if (rule _ Lame == NULL) {

xc _warning("Specify the rule file first!");

return;

The method we used is set the menu items Forward Chainer and Backward

chainer to GRAY before rule file is specified (Figure 6.5). It disables the

command and grays the displayed text. The shading lets the user know the

command is not currently available.

6.1.4 Scroll Bars

When a scroll bar is shown in a window, the user knows that the data object is

larger than the window, Scroll bars provide a menus by which the user can

control the display of such objects and also see at a glance the relative location

91

of an object that is being viewed. Figure 6.6 shows one of the two types of

scroll bars: vertical.

Figure 6.6 Vertical Scroll Bars

XmCreateScrolledList() creates a scrolled window widget and then a list

widget as a child of the scrolled window widget in Motif. A scrolled window

widget is first created and then a text widget is created as a child of the

scrolled window. Here is an example in COSMOS.

Widget inst _list = XmCreateScrolledList(form,

"instanceList", wargs, n);

A scroll bar is installed in a regular window that was created with either

the WS _ HSCROLL or WS _VSCROLL style bits. Also listboxes and edit

controls can be created with a built-in scroll bar. Here is how we create a scroll

bar in Figure 6.6.

92

CONTROL "", ID_DLIST, "LISTBOX", LBS STANDARD I
WS CHILD I WS VISIBLE I WS HSCROLL, 91, 47, 64, 51

6.1.5 Dialog Boxes

Dialog boxes, also known as dialogs, provide a standard way to receive input

from users. In particular, when a user has entered a command for which

additional information is required, dialog boxes are the standard way to retrieve

that input. While browsing though a windows program, you often see an ellipsis

(...) as part of a menu name. This indicates that a dialog box will appear when

the menu item is selected.

One dialog box that is quite common is displayed whenever the user asks

for a file to be opened. It is the file-open dialog box, shown in Figure **. This

dialog box provides the user with the opportunity of typing in a file name. It

also shows two lists: one of file names and the other of directory names and

disk drives. If the user is unable to remember a specific file name, he can

browse the directories until he find the desired file.

Notice that this dialog box has two pushbuttons: one marked "Ok" and

the other marked "Cancel." In general, pushbuttons in dialog boxes are used to

request an action. For this dialog box, there are two possible actions. The Ok

pushbutton tells the program to accept the values that the user has entered.

The Cancel pushbutton tells the program to ignore the values that have been

entered in the dialog box. In general, wherever possible, programs should allow

a user to withdraw a request without incurring any damage to files or data.

Widget form = XmCreateFormDialog(parent, "instSelectionDialog",

NULL, 0);

93

To create a dialog box object in ObjectWindows, you will want to use the

new keyword. This is the safest approach to take, since it works for both modal

and modeless dialog boxes. Once a dialog box object has been created, you'll

call one of two TApplication member functions to create the MS-Windows

dialog box: ExecDialog (for a modal dialog box) or MakeWindow (for a

modeless dialog box). Here is how we do it in Inference Engine Monitor Module.

GetApplication()->ExecDialog(

new TDLG STARTD1g(this, "DLG START"))

Working Memory Select Dialog show in Figure A.3.

6.1.6 Dialog Box Controls

Most widgets allow the programmer to affect the way the widget appears or

behaves in X Window by specifying values for resources used by the widget.

Here, the term resource simply means any data used by the widget. The

function XtCreateWidget() allows the programmer to pass an array specifying

these resources. It is often more convenient for the programmer to use the

macro XtSetArg(arg, name, value) to set a single value in a previously allocated

argument list. For example:

XmString tcsl = XmStringCreateLtoR(prompt.

(XmStringCharSet)XmSTRING DEFAULT CHARSET);

XtSetArg(wargs[n], XmNselectionLabelString, tcs1); n++;

XmString tcs2 = XmStringCreateLtoR(tmp,

(XmStringCharSet)XmSTRING DEFAULT CHARSET);

XtSetArg(wargs[n], XmNdirMask, tcs2); n++;

XtSetArg(wargs[n], XmNnoResize, False); n++;

Widget w = XmCreateFileSelectionDialog(parent, "fileSelectionDialog",

warps, n);

94

Like all dialog boxes, the file-open dialog in ObjectWindows is a window

that holds individual windows that either display information or accept input

from the user. Each of these tiny windows is called a dialog box control. For

example, the file-open dialog contains nine dialog box controls: two pushbuttons

(Ok and Cancel), two listboxes, an edit control, and four static text controls,

Windows has six predefined window classes from which dialog box controls are

created: button, combobox, edit, listbox, scroll bar, and static. Here is resource

code of file-open dialog. Here is how we create the file open dialog in resource

file.

IE FILEOPEN DIALOG DISCARDABLE LOADONCALL PURE

MOVEABLE 5, 17, 165, 166

CAPTION "fileSelectionDialog_popup"

FONT 8, "Helv"

CLASS "BorDlg"

STYLE WS TILED I WS_CAPTION I WS_SYSMENU I DS_SETFONT

I DS_MODALFRAME
BEGIN

CONTROL ''", -1, SHADE_CLASS, 1, 4, 2, 156, 30

CONTROL "", ID_FNAME, "EDIT", WS_CHILD I WS_VISIBLE I

WS BORDER I WS_TABSTOP I ES_AUTOHSCROLL,

24, 116, 128, 14

CONTROL "", ID_FPATH, "STATIC", WS_CHILD I WS_VISIBLE

I WS_GROUP, 10, 20, 146, 9

CONTROL "", ID_FLIST, "LISTBOX", LBS_STANDARD I
WS_CHILD I WS_VISIBLE I WS_HSCROLL, 9, 47, 64, 51

CONTROL "", ID_DLIST, "LISTBOX", LBS_STANDARD I

WS_CHILD I WS_VISIBLE I WS_HSCROLL, 91, 47, 64, 51

CONTROL "", IDOK, BUTTON_CLASS, BS_DEFPUSHBUTTON I

WS_CHILD I WS_VISIBLE I WS_TABSTOP, 9, 137, 37, 24

CONTROL "", IDCANCEL, BUTTON_CLASS, BS_PUSHBUTTON I

WS_CHILD I WS_VISIBLE I WS_TABSTOP, 118, 138, 36, 24

CONTROL "&Path:", -1, "STATIC", SS_LEFT, 8, 8, 38, 12

CONTROL " &Files", -1, SHADE_CLASS, 1, 4, 34, 74, 67

CONTROL " &Directories", -1, SHADE_CLASS, BSS_GROUP I

95

WS GROUP, 86, 35, 74, 67
CONTROL " Input the rule file name:", -1, SHADE_CLASS,

BSS GROUP I WS CHILD I WS VISIBLE, 4, 105, 156, 28

CONTROL "", -1, SHADE_CLASS, 2 I WS GROUP, 0, 134, 165, 2

END

6.2 Recommendations

The recommendations are:

1. Provide interfacing with other programs such dBase IV, Lotus 1-2-3, Poet,

and Symphony. An SQL interface for building client-server connectivity to

other databases is a big help.

2. Creating interactive graphic objects, creating an application iconically under

Windows is of great value. Color changes remind user of what he or she has

chosen, speeding up the process considerably.

3. Improve in error-handling capabilities. Let user go back to previous points in

development, and provide input-completion and consistency-checking

facilities.

APPENDICES

Appendix A: Windows of Inference Engine Module

96

Figure A.1 Inference Engine Monitor Window

Figure A.2 Rule File Select Dialog

97

Figure A.3 Working Memory Select Dialog

98

Figure A.4 Instruction Prompt

Figure A.5 Input Dialog

99

Figure A.6 Final Report Window

Appendix B: C++ Programs for Inference Engine

100

101

/**

*

* Source File: ie2.cpp

* Date: Wed Jul 01 04:26:38 1992

* Author: Ching-Jenq Chiu

* Supervisor: D. Wang

*
**/

#define _LIST _H //disable "classlib"include"list.h

#include <owl.h>

#include <edit.h>

#include <stdio.h>
#include <listbox.h>

#include <dialog.h>

#include <bwcc.h>

#include <bstatic.h>
#include <filedial.h>
#include <inputdia.h>

#include "ie2.h"

#include "extern.h"

#include "ie.h"

#include "moth"

#include "reteexte.h"

#define COMMANDMSG(arg) (arg.WParam)

char szHelpFileName[MAXPATH]; /* Help file name*/

unsigned char apchIEout[500];
void MakeHelpPathName(char*); /* Function deriving help file path */

int ie monitor flag = 0; _ _
static char *rule fname = NULL;

int rete _flag = 0;

Ie* theForwardChainer = new Ie();

// Define application class derived from TApplication

class Tie2 : public TApplication
{
public:

Tie2(LPSTR AName, HANDLE hlnstance, HANDLE hPrevinstance,

102

LPSTR 1pCmdLine, int nCmdShow) : TApplication(AName,
hInstance, hPrevInstance, 1pCmdLine, nCmdShow) { };

virtual void InitMainWindow();

1;

// Declare TMainWindow, a TDialog descendant
class TMainWindow : public TDialog
{
public:

TBStatic* ConflictResolution;
TMainWindow(PTWindowsObject AParent, LPSTR ATitle);
-TMainWindow();
virtual void LOADWMELEMENTS(RTMessage Msg) ;
virtual void SAVEWMELEMENTS(RTMessage Msg) ;
virtual void SPECIFYRULEFILE(RTMessage Msg);
virtual void LEX(RTMessage)

{ ConflictResolution->Clear();
ConflictResolution->SetText("LEX");}

virtual void RULEPRIORITY(RTMessage)
{ ConflictResolution->Clear();
ConflictResolution->SetText("Rule Priority"); }

virtual void FORWARD CHAINER(RTMessage Msg) ;
virtual void BACKWARDCHAINER(RTMessage Msg) ;
virtual void BROWSEWORKINGMEMORY(RTMessage Msg);

// virtual void WARNING(RTMessage Msg, LPSTR str);
virtual void PROMPT(RTMessage Msg, LPSTR str);
virtual void WMPaint(RTMessage Msg), [WM_PAINT];
virtual void WMCommand(RTMessage Msg) = [WM_COMMAND];

char path[50];
unsigned int xposition;
unsigned int yposition;
int yinc;
HDC hdc;

protected:
virtual void GetWindowClass(WNDCLASS _FAR & AWndClass);
virtual LPSTR GetClassName();
virtual void SetupWindow();

}
/**

103

* TMainWindow implementations:
**/

// Define TMainWindow, a TWindow constructor
TMainWindow::TMainWindow(PTWindowsObject AParent, LPSTR ATitle)

: TDialog(AParent, ATitle)
{

TEXTMETRIC tm;

ConflictResolution = new TBStatic(this, ID_CONFLICTRESOLUTION,
sizeof(path));

hdc = CreateDC("DISPLAY", 0, 0, 0);
GetTextMetrics(hdc, &tm);
yinc = tm.tmHeight + tm.tmExternalLeading;
DeleteDC(hdc);
strcpy(apchlEout, "I am chiu"nThis is prototype of Inference Engine"n");

}

// Define TMainWindow destructor
TMainWindow:: -TMainWindow()
{

ReleaseDC(HWindow, hdc);

}

void TMainWindow::SetupWindow()
{

TDialog::SetupWindow();
SetMenu(HWindow, LoadMenu(GetWindowWord(HWindow,

GWW HINSTANCE), "IE"));
}

LPSTR TMainWindow::GetClassName()
{

return "MainWindow";
}

void TMainWindow::GetWindowClass(WNDCLASS _FAR & AWndClass)
{

TDialog::GetWindowClass(AWndClass);
AWndClass.hIcon = Loadlcon(AWndClass.hlnstance, "IE");

104

AWndClass.lpszMenuName = (LPSTR)"IE";

AWndClass.hCursor = LoadCursor(AWndClass.hInstance, "IE");

}

// Declare TDLG_STARTD1g, a TDialog descendant

class TDLG STARTD1g : public TDialog
{
public:

int select;

TDLG STARTD1g(PTWindowsObject AParent, LPSTR AName);

virtual void Ok(RTMessage Msg) = [ID_FIRST + IDOK];

virtual void Cancel(RTMessage Msg) = [ID_FIRST + IDCANCEL];

virtual void RTDLG ALL INSTANCES(RTMessage Msg)

= [ID_FIRST + 233];

virtual void RTDLG SELECTED INSTANCES(RTMessage Msg)

= [ID_FIRST + 234];

virtual void RTDLG ADD INSTANCES(RTMessage Msg)

= [ID_FIRST + 235];

1;

// Define TDLG STARTD1g, a TDialog constructor

TDLG STARTD1g::TDLG STARTD1g(PTWindowsObject AParent,

LPSTR AName) :TDialog(AParent, AName)
{
select = 1;

}
void TDLG STARTD1g::Ok(RTMessage)
{

char ch[3];

HWND hwnd;

//Notify parent that selection has been made.

strcat(apchlEout, "You select ");

itoa(select, ch, 10);

strcat(apchlEout, ch);

strcat(apchlEout, ""n");

Destroy();
}

105

void TDLG STARTD1g::Cancel(RTMessage Msg)
{

switch(Msg.LP.Hi)
{

case BN _CLICKED :
int Selection = MessageBox(HWindow, "Exit Program?", "Good Bye",

MB YESNO I MB ICONQUESTION);

if (Selection == IDYES)

Post QuitMessage(0);
// TDialog::Cancel(Msg);

}
}

void TDLG STARTD1g::RTDLG ALL INSTANCES(RTMessage Msg)
{

switch(Msg.LP.Hi)
{

case BN CLICKED :
select = 1;

break;
}

}

void TDLG STARTD1g::RTDLG SELECTED INSTANCES(RTMessage Msg)
{

switch(Msg.LP.Hi)
{

case BN CLICKED :

select = 2;

break;
}

}

void TDLG STARTD1g::RTDLG ADD INSTANCES(RTMessage Msg)
{

switch(Msg.LP.Hi)
{

case BN CLICKED :

select = 3;

break;
}

}

106

// Declare TDLG_PROMPTD1g, a TDialog descendant
class TDLG PROMPTD1g : public TDialog
{

public:

TDLG PROMPTD1g(PTWindowsObject AParent, LPSTR AName);

-TDLG PROMPTD1g();
virtual void Ok(RTMessage Msg) = [ID_FIRST IDOK];
virtual void Cancel(RTMessage Msg) = [ID_FIRST IDCANCEL];

virtual void RTDLG PROMPTIDHELP(RTMessage Msg)

[ID_FIRST IDHELP];

1;

// Define TDLG_PROMPTD1g, a TDialog constructor

#pragma argsused
TDLG PROMPTD1g::TDLG_PROMPTD1g(PTWindowsObject AParent, LPSTR

AName) :TDialog(AParent, AName)
{
}

// Define TDLG_PROMPTD1g destructor

TDLG PROMPTD1g::"TDLG_PROMPTD1g()
{
}

void TDLG PROMPTD1g::Ok(RTMessage Msg)
{

switch(Msg.LP.Hi)
{

case BN CLICKED :

TDialog::Ok(Msg);
}

}

void TDLG PROMPTD1g::Cancel(RTMessage Msg)
{

switch(Msg.LP.Hi)
{

case BN CLICKED :

int Selection =

MessageBox(HWindow,

"Exit Program?",

107

"Good Bye", MB_YESNO I MB_ICONQUESTION);
if (Selection == IDYES)

Post QuitMessage(0);
// TDialog::Cancel(Msg);

}
}

void TDLG PROMPTD1g::RTDLG PROMPTIDHELP(RTMessage Msg)
{

switch(Msg.LP.Hi)
{

case BN CLICKED :
MessageBox(HWindow,

"this program prompt the quations "
"for you to input the symptom "
"work with inference engine",
"HELP", MB_OK);

break;
}

}

void TMainWindow::LOADWMELEMENTS(RTMessage)
{
}

void TMainWindow::SAVEWMELEMENTS(RTMessage)
{
}

void TMainWindow::SPECIFYRULEFILE(RTMessage)
{
char fileName[MAXPATH];
strcpy(fileName,"*.rul");
if(GetApplication0->ExecDialog(new TFileDialog(

this,
IE FILEOPEN,
fileName)) , IDOK)

{
strcat(apchlEout, "File you select ");
strcat(apchlEout, fileName);
strcat(apchlEout, ""n");

108

}
else
{

int Selection =
MessageBox(HWindow,

"Exit Program?",
"Good Bye", MB_YESNO I MB_ICONQUESTION);

if (Selection == IDYES)

Post QuitMessage(0);
}

}

void TMainWindow::FORWARDCHAINER(RTMessage)
{

PTWindowsObject PTWndObj;

// Create modeless dialog

if((GetApplication()->ExecDialog(

new TDLG STARTD1g(this, "DLG START"))) =---= IDOK)
{
}

}

void TMainWindow::BACKWARDCHAINER(RTMessage)
{
}

void TMainWindow::BROWSEWORKINGMEMORY(RTMessage)
{
}

/* void TMainWindow::WARNING(RTMessage, LPSTR str)
{
MessageBox(HWindow, str, "Warning", MB_OK I MB_IDSTOP);

} */

void TMainWindow::PROMPT(RTMessage , LPSTR str)
{

// Execute modal dialog
char buf[20];

strcpy(buf, "");

if(GetApplication0->ExecDialog(new TlnputDialog(

109

this,
"promptDialog_popup",
str,
buf,
sizeof (buf)

)) == IDOK)
strcat(apchlEout, ""nResopnse: ");
strcat(apchlEout, buf);

}

void TMainWindow::WMPaint(RTMessage Msg)
{

HBRUSH hbrush;

PAINTSTRUCT ps;

DWORD dwSize;

RECT r;
HDC hdc;

int xend, yend;

int i = 0;
hdc = BeginPaint(HWindow, &ps);

GetClientRect (Msg.Receiver, &r);

xposition = r.right;

xend = r.left;

yposition = r.top;

yend = r.bottom;

hbrush = CreateSolidBrush(OxFF8OFF);

SelectObject(hdc, hbrush);

Rectangle(hdc, xposition, yposition, xend, yend);

DeleteObj ect (hbrush);
SelectObject(hdc, GetStockObject(WHITE_BRUSH));

RoundRect(hdc, 10, 30, 425, 290, 15, 15);

SetTextColor(hdc, RGB(0, 128, 0));

SetBkMode(hdc, TRANSPARENT);
xposition = 25;

yposition = 50;

while(apchlEout[i] != NULL)
{

if(apchlEout[i] == '"n')
{
yposition += yinc;

110

xposition = 25;
}

else
{

TextOut(hdc, xposition, yposition,
&apchlEout[i], 1);

dwSize = GetTextExtent(hdc, SzapchIEout[i], 1);
xposition += LOWORD(dwSize);

}
i++;

}
EndPaint(HWindow, &ps);

}

void TMainWindow::WMCommand(RTMessage Msg)
{
PAINTSTRUCT ps;
HMENU hmenu;

HWND hwnd;

HDC hdc;

char buffer[80];

switch(Msg.WParam)
{
case WM PAINT:

WMPaint(Msg);

break;

// case ID_WARNING:

/1 xc warning(Msg, "test");

// break;

case IDM LOADWMELEMENTS:

LOAD WMELEMENTS(Msg);
break;

case IDM SAVEWMELEMENTS:

SAVEWMELEMENTS(Msg);

break;

case IDM_QUIT:

CloseWindow();

break;

case IDM SPECIFYRULEFILE:

SPECIFYRULEFILE(Msg);

SendMessage(HWindow, WM_COMMAND,

111

ID FILESELECTED, OL);

break;
case IDM LEX:

LEX(Msg);

break;
case IDM RULEPRIORITY:

RULEPRIORITY(Msg);
break;

case IDM BACKWARDCHAINER:

BACKWARDCHAINER(Msg);

break;
case IDM BROWSEWORKINGMEMORY:

BROWSEWORKINGMEMORY(Msg);

break;

case IDM AHELP:
WinHelp(GetFocus(),szHelpFileName,HELP_INDEX,OL);

break;
case ID FILESELECTED:

hmenu = GetMenu(Msg.Receiver);

EnableMenultem(hmenu, IDM_FORWARDCHAINER,

MF BYCOMMAND I MF_ENABLED);

break;

case IDM_FORWARDCHAINER:
FORWARDCHAINER(Msg);
hmenu = GetMenu(Msg.Receiver);

EnableMenultem(hmenu, IDM_FORWARDCHAINER,

MF_BYCOMMAND I MF_GRAYED);

// SendMessage(HWindow, WM_COMMAND,

// IE FORWARDCHAINING, OL);

// break;

case IE FORWARDCHAINING:

PROMPT(Msg, "Enter some data:");

break;
default:

MessageBox(HWindow, "Feature not implemented",

GetApplication(->Name, MB_OK);
}

}

/***

112

* Tie2App method implementations:
***/

// Construct the Tie2's MainWindow of type TMainWindow
void Tie2::InitMainWindow()
{

MainWindow = new TMainWindow(NULL,

"INFERENCE ENGINE MONITOR WIN");
}

// Main program

int PASCAL WinMain(HANDLE hInstance,

HANDLE hPrevinstance,

LPSTR 1pCmdLine,

int nCmdShow)
{
HANDLE hBorLibrary;

hBorLibrary = LoadLibrary("bwcc.dll");

if(hBorLibrary <= 32)

MessageBox(NULL, "Unable to load Borland Controls", "System Error",

MB OK I MB ICONHAND);

Tie2 ie2 ("COSMOS: Inference Engine Monitor", hlnstance, hPrevinstance,

1pCmdLine, nCmdShow);

MakeHelpPathName(szHelpFileName);
ie2.Run();

if(hBorLibrary > 32)

FreeLibrary(hBorLibrary);

return ie2.Status;
}
void MakeHelpPathName(char * szFileName)
{

strcpy(szFileName, "helpex.hlp");

return;
}

113

/**

*

* Source File: ie2.h
* Date: Wed Jul 01 04:26:36 1992

* Author: Ching-Jenq Chiu
* Supervisor: D. Wang
*
**/

// Defines for menu item IDs
#define IDM LOADWMELEMENTS 101

#define IDM SAVEWMELEMENTS 102

#define IDM_QUIT 103

#define IDM SPECIFYRULEFILE 104

#define IDM LEX 105

#define IDM RULEPRIORITY 106

#define IDM FORWARDCHAINER 107

#define IDM BACKWARDCHAINER 108

#define IDM BROWSEWORKINGMEMORY 109

#define IDM AHELP 110

#define IE FILEOPEN 111

#define ID CONFLICTRESOLUTION 112

#define ID FILESELECTED 113

#define IE FORWARDCHAINING 114

#define UI WARNING 115

114

/**

*

* Source File: ie2.rc
* Date: Wed Jul 01 04:26:44 1992

* Author: Ching-Jenq Chiu

* Supervisor: D. Wang
*
**/

#include <d:"borlandc"include"windows.h>

#include <d:"borlandc"include"bwcc.h>

#include "ie2.h"
#include "ie.mnu"
#include "ie.dlg"

IE ICON IE.ICO

IE CURSOR IE.CUR

115

/**
*

* Source File: ie2.mnu
* Date: Wed Jun 01 06:26:38 1992
* Author: Ching-Jenq Chiu
* Supervisor: D. Wang
*
**/

IE MENU
BEGIN

POPUP "&File"
BEGIN

MENUITEM "&Load WM Elements",IDM_LOADWMELEMENTS
MENUITEM "&Save WM Elements",IDMSAVEWMELEMENTS
MENUITEM SEPARATOR
MENUITEM "&Quit", IDM_QUIT

END
POPUP "&Inference"
BEGIN

MENUITEM "&Specify Rule File",IDM_SPECIFYRULEFILE

POPUP "&Conflict Resolution Strategy"
BEGIN

MENUITEM "&LEX", IDM_LEX
MENUITEM "&Rule Priority",IDM_RULEPRIORITY

END
MENUITEM SEPARATOR
MENUITEM "&Forward Chainer",IDM_FORWARDCHAINER,

GRAYED
MENUITEM "&Backward Chainer",IDMBACKWARDCHAINER,

GRAYED
END
POPUP "Browse"
BEGIN

MENUITEM "&Browse Working Memory",
IDM BROWSEWORKINGMEMORY

END
MENUITEM ""a&Help",IDM_AHELP

END

116

/**

*

* Source File: ie.dlg
* Date: Wed Jun 01 06:26:38 1992
* Author: Ching-Jenq Chiu
* Supervisor: D. Wang
*
**/

#ifndef WORKSHOP_INVOKED
#include <windows.h>
#include <bwcc.h>
#endif
#include <d:"borlandc"owl"include"owlrc.h>

INFERENCE ENGINE MONITOR WIN DIALOG 12, 33, 219, 160
CAPTION "COSMOS: Inference Engine Monitor"
STYLE WS OVERLAPPED I WS CAPTION I WS_SYSMENU I

WS MINIMIZEBOX I WS MAXIMIZEBOX
BEGIN

LTEXT "FC Conflict Resolution Strategy :", -1, 3, 4, 105, 10,
WS_CHILD I WS_VISIBLE I WS_GROUP

LTEXT "", ID_CONFLICTRESOLUTION, 110, 4, 62, 10, WS_CHILD
WS_VISIBLE I WS GROUP

END

IE FILEOPEN DIALOG DISCARDABLE LOADONCALL PURE MOVEABLE
5, 17, 165, 166

CAPTION "fileSelectionDialog_popup"
FONT 8, "Helv"
CLASS "BorDlg"
STYLE WS TILED I WS_CAPTION I WS_SYSMENU I DS_SETFONT

DS MODALFRAME
BEGIN

CONTROL "", -1, SHADE_CLASS, 1, 4, 2, 156, 30
CONTROL "", ID_FNAME, "EDIT", WS_CHILD I WS_VISIBLE

WS BORDER I WS TABSTOP I ES AUTOHSCROLL,
24, 116, 128, 14

CONTROL "", ID_FPATH, "STATIC", WS_CHILD I WS_VISIBLE
WS GROUP, 10, 20, 146, 9

117

CONTROL "", ID_FLIST, "LISTBOX", LBS_STANDARD I
WS_CHILD I WS_VISIBLE I WS_HSCROLL, 9, 47, 64, 51

CONTROL "", ID_DLIST, "LISTBOX", LBS_STANDARD I
WS_CHILD I WS_VISIBLE I WS_HSCROLL, 91, 47, 64, 51

CONTROL "", IDOK, BUTTON_CLASS, BS_DEFPUSHBUTTON I
WS_CHILD I WS_VISIBLE I WS_TABSTOP, 9, 137, 37, 24

CONTROL "", IDCANCEL, BUTTON_CLASS, BS_PUSHBUTTON I
WS_CHILD I WS_VISIBLE I WS_TABSTOP, 118, 138, 36, 24

CONTROL "&Path:", -1, "STATIC", SS_LEFT, 8, 8, 38, 12
CONTROL " &Files", -1, SHADE_CLASS, 1, 4, 34, 74, 67
CONTROL " &Directories", -1, SHADE_CLASS, BSS_GROUP I

WS GROUP, 86, 35, 74, 67
CONTROL " Input the rule file name:", -1, SHADE_CLASS,

BSS GROUP I WS_CHILD I WS_VISIBLE, 4, 105, 156, 28
CONTROL "", -1, SHADE_CLASS, 2 I WS_GROUP, 0, 134, 165, 2

END

DLG START DIALOG 14, 21, 221, 117
CAPTION "startDialog_pupop"
FONT 8, "Helv"
CLASS "BorDlg"
STYLE DS MODALFRAME I WS POPUP I WS_CAPTION I

WS SYSMENU
BEGIN

CONTROL "Initializing the working memory with All instances", 233,
"BorRadio", BS_AUTORADIOBUTTON I WS_CHILD I WS_VISIBLE
I WS_TABSTOP, 14, 24, 174, 12
CONTROL "Initializing the working memory with Selected instances",

234, "BorRadio", BS_AUTORADIOBUTTON I WS_CHILD I
WS_VISIBLE I WS_TABSTOP, 14, 40, 192, 10

CONTROL "Adding Selected instances to the working memory ", 235,
"BorRadio", BS_AUTORADIOBUTTON I WS_CHILD I WS_VISIBLE
I WS_TABSTOP, 14, 54, 188, 10
CONTROL "Start inferencing by:", 236, "BorShade", BSS_GROUP I

WS_CHILD I WS_VISIBLE I WS_GROUP, 8, 10, 206, 62
CONTROL "Button", IDOK, "BorBtn", BS_PUSHBUTTON I

WS_CHILD I WS_VISIBLE I WS_TABSTOP, 42, 88, 32, 20

118

CONTROL "Button", IDCANCEL, "BorBtn", BS_PUSHBUTTON I
WS_CHILD I WS_VISIBLE I WS_TABSTOP, 128, 88, 32, 20
CONTROL "", 232, "BorShade", 2 I WS_CHILD I WS_VISIBLE,

2, 82, 216, 2
END

SD INPUTDIALOG DIALOG 14, 55, 135, 112
CAPTION "promptDialog_popup"
FONT 8, "Helv"
CLASS "BorDlg"
STYLE DS MODALFRAME I WS POPUP I WS CAPTION I

WS SYSMENU
BEGIN

LTEXT "", ID_PROMPT, 8, 19, 114, 16, SS_LEFT
CONTROL "Button", IDCANCEL, "BorBtn", BS_PUSHBUTTON

WS_CHILD I WS_VISIBLE I WS_TABSTOP, 49, 83, 32, 20
CONTROL "Button", IDOK, "BorBtn", BS_PUSHBUTTON I

WS_CHILD I WS_VISIBLE I WS_TABSTOP, 6, 83, 32, 20
CONTROL "Help", IDHELP, "BorBtn", BS_PUSHBUTTON I

WS_CHILD I WS_VISIBLE I WS_TABSTOP, 92, 83, 32, 20
CONTROL "", 102, "BorShade", 2 I WS_CHILD I WS_VISIBLE,

1, 74, 127, 2
CONTROL "", ID_INPUT, "EDIT", WS_CHILD I WS_VISIBLE I

WS BORDER I WS_TABSTOP I ES_AUTOHSCROLL, 8, 41, 114, 18

END

119

/**

**
** COSMOS
**

** Name: ie.h

** Last version: 7/25/91

** Author: Bruno Fromont

** Supervisor: D. Sriram
** Copyright@ Intelligent Engineering Systems Laboratory. MIT
**

**

** Notes: Definition of the inference engine
**
**/

/**

** This program comes without any warranty as to its performance, or
** fitness for any particular purpose.
**/

#ifndef IENGINE

#define IENGINE

#include "moth"

#include "classdec.h" //classdeclare.h

// An action is an instantiation of the RHS of a rule
// (an expression to evaluate(inside allode) + bindings (inside tok))

class Action :public ObjectB {

public:

ActionNode *allode;

Token *tok;

// Constructor

Action(ActionNode *a,Token *t) {allode = a ; tok = t;}

1;

// The Conflict Set contains:

// - a list of the current actions to be fired (11action)

// - the strategy to use to select among actions (strategy= RPR or LST)

// - the action which is being executed (the _action)

120

class ConflictSet {

friend ActionNode;

friend DestroylnConflictSet;

private:

int strategy;

Tlist(Action) llaction;

Action* the _action;

public:

// methods

Action *select();

int fire();

void set _strategy(int s){strategy = s;}

// Constructor

ConflictSet() {llaction=new Tcell(Action);

strategy = RPR;}

};

// The Ie class contains all the mechanism for the forward-chainer

// and the MORE algorithm.

class Ie {

private:

WorkingMemory *wmem;

ReteNet *rote;

int cycle_ time;

char *strategy;

public:

ConflictSet *cs;

// Constructor

Ie();

// methods for end user:

int parse(char *);

void reset();

void set _strategy(char *);

void load _wme(root *);

void load1 _wme(root *);

void run();

// methods for interfacing with other problem-solvers

void record _change_object(root *);

void record_ use _rule(char *);

121

// other methods

char *describe();

void attach _rete(ReteNet *r) {rete=r; }

void remove _wme(WMelement *);

};

#endif //IENGINE

122

**

Source File: ie2.mak

Date: Wed Jun 08 06:26:38 1992

Author: Ching-Jenq Chiu

Supervisor: D. Wang

.AUTODEPEND

Translator Definitions

CC = bcc +ie2.cfg

TASM = TASM

TLINK = tlink

Implicit Rules

.cpp.obj:
S(CC) -c {$< }

List Macros

Link Exclude = "

ie2.res

Link_ Include = "

ie2.obj ie2.def

Explicit Rules

ie2.exe: ie2.cfg $(Link Include) S(Link _Exclude)

$(TLINK) /x/c/Twe/P-
/C/Lc:"BORLANDC"LIB;c:"BORLANDC"CLASSLIB"LIB;c:"BORLANDC"OW

L"LIB (4'Szk

cOwl.obj+

ie2.obj

ie2
no map file

owl.lib+

import.lib+
tclasdll.lib+

mathwl.lib+

crtldll.lib+

123

cwl.lib
ie2.def

RC ie2.res ie2.exe

Individual File Dependancies
ie2.res: ie2.rc

RC -r -
Ic:"BORLANDC"INCLUDE;c:"BORLANDC"CLASSLIB"INCLUDE;c:"BORLAN
DC"OWL"INCLUDE -FO ie2.res ie2.RC

ie2.obj: ie2.cpp

124

. **

Source File: ie2.def
• , Date: Wed Jun 08 06:26:38 1992
; Author: Ching-Jenq Chiu

; Supervisor: D. Wang

; ***

NAME ie2

DESCRIPTION 'INFERENCE ENGINE MONITOR'

EXETYPE WINDOWS
STUB 'WINSTUB.EXE'
CODE DISCARDABLE PRELOAD

DATA PRELOAD
HEAPSIZE 4096
STACKSIZE 8192

;Definition file code regeneration bracket

125

(RULE: ProblemDeadBatteryl 10
IF
(CLASS: car OBJ: $x
((problem == "unknown") AND
((init_problem == "starting_ system") AND
(headlights ---, "dim")))
)
THEN (
(MODIFY (OBJ:$x
(problem " has a dead battery")
)10000 0.001)
)
COMMENT:"")

(RULE: ProblemDeadBattery2 10
IF
(CLASS: car OBJ: $x
((problem == "unknown") AND
(headlights == "dead"))
)
THEN (
(MODIFY (OBJ:$x
(problem " has a dead battery")
)13000 0.001)

)
COMMENT:"")

(RULE: ProblemBadIgnition 10
IF
(CLASS: car OBJ: $x
((problem == "unknown") AND
((init_problem ,----,-- "fuel_or_ignition") AND
((headlights , "working") AND
(spark_plug_spark -,---= "none"))))

)
THEN (
(MODIFY (OBJ:$x
(problem " has a bad ignition system")
)1000 0.001)

)

126

COMMENT:"")

(RULE: ProblemFuelSystem 10
IF
(CLASS: car OBJ: $x
((problem == "unknown") AND
((init_problem "fuel_or_ignition") AND
((Fuel_gauge_reading == "full") AND
(carburetor_gas == "yes"))))

)
THEN (
(MODIFY (OBJ:$x
(problem " has a faulty fuel system")
)1000 0.001)

)
COMMENT:"")

(RULE: ProblemNoGas 10
IF
(CLASS: car OBJ: $x
((problem == "unknown") AND
((init_problem == "fuel_or_ignition") AND
(Fuel_gauge_reading == "empty")))

)
THEN (
(MODIFY (OBJ:$x
(problem " is out of gas")
)1000 0.001)

)
COMMENT:"")

(RULE: ProblemBadStarter 10
IF
(CLASS: car OBJ: $x
((problem == "unknown") AND
((init_problem == "starting_system") AND
(headlights == "working")))
)
THEN (
(MODIFY (OBJ:$x

127

(problem " has a bad starter")
)1000 0.001)
)
COMMENT:"")

(RULE: ProblemFloodedEng 10
IF
(CLASS: car OBJ: $x
((problem == "unknown") AND
((init_problem == "fuel_or_ignition") AND
((carburetor_gas == "yes") AND
(spark_plug_spark == "exists"))))

)
THEN (
(MODIFY (OBJ:$x
(problem "flooded_engine")
)1000 0.001)

)
COMMENT:"")

(RULE: ProblemFuellgn 10
IF
(CLASS: car OBJ: $x
((problem == "unknown") AND
((init_problem -=--= "unknown") AND
((ignition_key == "on") AND
(engine_turning_over == "yes"))))

)
THEN (
(READ PROMPT: "how are your headlights (working/dim/dead) ?", VAR:$h,
TYPE: s)
(READ PROMPT: "and spark plug spark (none/exists)?", VAR:$s, TYPE: s)
(READ PROMPT: "status of your fuel gauge (full/empty):", VAR:$g, TYPE: s)
(READ PROMPT: "smell on your carburetor (yes/no) ?", VAR:$carbu, TYPE:
s)
(MODIFY (OBJ:$x
(init_problem "fuel_or_ignition")
(headlights $h)
(spark_plug_spark $s)
(carburetor_gas $carbu)

128

(Fuel_gauge_reading $g)
)1000 0.001)

)
COMMENT:"")

(RULE: ProblemStartSystem 10
IF
(CLASS: car OBJ: $x
((problem == "unknown") AND
((init_problem == "unknown") AND
((ignition_key == "on") AND
(engine_turning_over == "no"))))

)
THEN (
(READ PROMPT: "what about your headlights (working/dim/dead)?", VAR:$h,
TYPE: s)
(MODIFY (OBJ:$x
(init_problem "starting_system")
(headlights $h)
)2000 0.001)

)
COMMENT:"")

(RULE: Start1 20
IF
(CLASS: COSMOS_START OBJ: $x
(init_status == 1)

)
THEN (
(MAKE (CLASS:car OBJ:Acar
(problem "unknown")
(car_make "HONDA")
(ignition_key "off")

))
(MAKE (CLASS:mechanic OBJ:Amec
(first name "albert")

))
(MODIFY (OBJ:$x
(init_status 2)
)1000 0.001)

129

)
COMMENT:"")

(RULE: Start 20
IF
((CLASS: car OBJ: $x
((problem == "unknown") AND
((car_inake == $mak) AND
(ignition_key != "on")))
)AND
(CLASS: mechanic OBJ: $m
(first name == $name)

))
THEN (
(DISPLAY "TheCar.dmp")
(PRINT "Hello sir, my name is ", $name, "."n")
(PRINT "Please turn on the key of your ", $mak, "."n")
(READ PROMPT: "Is the engine turning over (yes/no)? ", VAR:$ans, TYPE:
s)
(MODIFY (OBJ:$x
(init_problem "unknown")
(ignition_key "on")
(engine_turning_over Sans)
)2000 0.001)
(MODIFY (OBJ:$m
(job "grad student")
)2000 0.001)
)
COMMENT:"")

(RULE: FinalDiagnostic 20
IF
((CLASS: car OBJ: $c
(problem != "unknown")
)AND
(CLASS: car OBJ: $c
(problem == $problem)

))
THEN (
(PRINT "sir, I guess your car ", $problem)

130

)
COMMENT:"")

(RULE: ProblemNoGas 10
IF
(CLASS: car OBJ: $x
((problem == "unknown") AND
((init_problem == "fuel_or_ignition") AND
(Fuel_gauge_reading == "empty")))

)
THEN (
(MODIFY (OBJ:$x
(problem " is out of gas")
)1000 0.001)

)
COMMENT:"")

BIBLIOGRAPHY

[1] Black, W. J. Intelligent Knowledge Based Systems. UK: Van Nostrand, 1986.

[2] Bridgeland, D., and L. Lafferty. "Scavenger: an Experimental RETE

Compiler." SPIE vol. 635, Applications of Artificial Intelligence III, 1986.

[3] Brownston, L., R. Farrell, E. Kant, and N. Martin. Programming Expert

Systems in OPS5: An Introduction to Rule-Based Programming.

Massachusetts: Addision-Wesley, 1985.

[4] Cosmos Group, "COSMOS: Design Document." IESL Memo. MIT, 1990

[5] Davis, R. "interactive Transfer of Expertise: Acquisition of New Inference

Rules." Artificial Intelligence (1979): 121-157.

[6] Ellis, M., and B. Stroustrup. "Annotated C++ Reference Manual."

Massachusetts: Adddison-Wesley, 1990.

[7] Efstathiou, J. "Non-classical Logics and the Handing of Uncertainty." British

Computer Society Specialist Group on Expert Systems Newsletter, 10,

1984.

[8] Forgy, C. "RETE: A Fast Algorithm for the Many Pattern / Many Object

Pattern Match Problem." Artificial Inteligence 19, 1982.

[9] Forsyth R. Expert Systems, Principles and Case Studies London: Chapman

and Hall , 1984.

[10] Johnson E. and K. Reichard. "Power Programming MOTIF", Oregon:

Management Information Source, 1991.

[11] Koen, B. V. "Toward a Definition of the Engineering Method", The Bent,

Spring (1985):28-33.

[12] Lindsay, Robert K., B. G. Buchanan, E. A. Feigenbaum, and J. Lederberg.

"Applications of Artificial Intelligence for Organic Chemistry." The

DENDRAL Project. New York: McGraw-Hill, 1980.

[13] Lippman, Stanley B. "C++ Primer" Massachusetts: Addison-Wesley, 1989.

131

132

[14] MACSYMA group "The MACSYMA Reference Manual." Cambridge, Mass.:
Computer Science Dept., Massachusetts Institute of Technology, 1974.

[15] McCord J. W. Developing Windows Applications with Borland C++3.

Indiana: SAMS 1992

[16] Norton P., and P. Yao. Borland C++ Programming for Windows. New

York: Bantam , 1992

[17] Reboh, R. "Knowledge Engineering Techniques and Tools in the

PROSPECTOR Environment." Technical Report No. 243, SRI
International, Menlo Park, CA, 1981.

[18] Sriram, D. Computer-Aided Engineering: The Knowledge Frontier. To be

published, IESL, Massachusetts Institute of Technology, 1992.

[19] Stefik, M. "The Organisation of Expert Systems." A Tutorial, Artificial

Intelligence. Vol. 18 No. 2, 1982.

[20] Stroustrup, B. The C++ Programming Language. Massachusetts: Addison-

Wesley, 1986

[21] Swartout, W. "Explaining and Justifying Expert Consulting programs."
IJCAI 7, (1974): 815-822.

[22] Young, D. The X Window System Programming and Applications with Xt

OSF/MOTIF Edition. New Jersey: Prentice-Hall, 1990

	Porting COSMOS expert system from UNIX to DOS
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 4)
	Table of Contents (2 of 4)
	Table of Contents (3 of 4)
	Table of Contents (4 of 4)
	Chapter 1: Introduction
	Chapter 2: Why Windows 3.0?
	Chapter 3: ObjectWindows®
	Chapter 4: About the Expert System
	Chapter 5: Forward-Chaining in Cosmos
	Chapter 6: Discussion
	Appendix A: Windows of Inference Engine Module
	Appendix B: C++ Programs For Inference Engine
	Bibliography

	List of Tables
	List of Figures (1 of 2)
	List of Figures (2 of 2)

