
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Theses Electronic Theses and Dissertations

10-31-1992

Automatic motion analysis of colliding spheres Automatic motion analysis of colliding spheres

John Vijayakumar Caesar
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

 Part of the Mechanical Engineering Commons

Recommended Citation Recommended Citation
Caesar, John Vijayakumar, "Automatic motion analysis of colliding spheres" (1992). Theses. 2226.
https://digitalcommons.njit.edu/theses/2226

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons
@ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F2226&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/293?utm_source=digitalcommons.njit.edu%2Ftheses%2F2226&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/2226?utm_source=digitalcommons.njit.edu%2Ftheses%2F2226&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

Automatic Motion Analysis of
Colliding Spheres

by

John Vijayakurnar Caesar

Motion analysis is useful to compute linear and angular velocities and

acceleration of an object from a sequence of images. This thesis is part of an

investigation to compute the translation and rotation velocities needed to

determine the collision parameters of two colliding spheres. This involves the

tracking of the spheres and feature points on the spheres over a time interval.

An experimental setup releases two spheres such that they collide and a high

speed imaging system, i.e., Kodak Ektapro 1000 is utilised to record the motion

of the spheres. The imaging system is capable of recording at a speed of 1000

frames/sec with an image resolution of 239 x 192 for each frame. Selected

images are analyzed in a PC 486 using programs developed with the Visilog

software from Noesis 1. Edge data from the images allow the feature points and

the locations of the spheres to be detected and their locations recorded. Centers

of the circles are computed using the Hough transform technique. Correspon-

dence of the feature points from frame to frame is achieved using the proximal

uniformity constraint. Suggestions for future work are given.

1. Visilog is a trademark of Noesis S.A.R.L.

AUTOMATIC MOTION ANALYSIS OF

COLLIDING SPHERES

by

John Vijayakumar Caesar

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science
Department of Mechanical and Industrial Engineering

October 1992

APPROVAL PAGE

Automatic Motion Analysis of Colliding Spheres

by

John Vijayakumar Caesar

/1/,), F-7 7:2

Dr. Rajesh N. Dave, Thesis Advisor

Assistant Professor of Mechanical Engineering, NJIT

)

Dr. Anthony Rosato, Committee Member

Assistant Professor of Mechanical Engineering, NJIT

g I 99Z
L..7

Dr. Ian S. Fischer, Committee Member

Associate Professor of Mechanical Engineering, NJIT

BIOGRAPHICAL SKETCH

Author: John Vijayakumar Caesar

Degree: Master of Science in Mechanical Engineering

Date: October, 1992

Date of Birth:

Place of Birth:

Undergraduate and Graduate Education:

• Master of Science in Mechanical Engineering,
New Jersey Institute of Technology, Newark, NJ, 1992

• Bachelor of Engineering in Mechanical Engineering,
R. V. College of Engineering, Bangalore, India, 1990

Major: Mechanical Engineering

Presentations:

Caesar, John. "Automatic Tracking of Multiple Spheres Using a High Speed

Imaging System." Presented at Region-II Graduate Student Technical

Conference, Steven's Institute of Technology, April, 1992.

iv

This Thesis is Dedicated

To my Parents

v

ACKNOWLEDGMENT

I take this opportunity to express my gratitude to Dr. Rajesh N. Dave,

Assistant Professor, Mechanical Engineering Department of N.J.I.T. for his

encouragement and valuable guidance throughout the course of this thesis

work. His helpful hints, suggestions and patience were of immense help.

I am also very thankful to Dr. Anthony Rosato and Dr. Ian Fischer for

reviewing my work and providing me with their useful suggestions.

I also thank my colleagues Summit Sen, Kimberly Hrnciar, Jerry Volcy,

Avadhani Ashok and Kurra Bhaswan who have lent a helping hand at various

times during the course of this thesis work.

vi

TABLE OF CONTENTS

Page

1. INTRODUCTION 1
1.1 Overview Of The Problem 1

1.2 Automatic Motion Analysis 2

1.3 Statement Of The Problem 3

1.4 Overview Of The Remaining Chapters 4

2. LITERATURE REVIEW 6

2.1 Edge Detection 6

2.1.1 First Derivative Edge Operators 6

2.1.1.1 L. G. Robert's Operator 6

2.1.1.2 Sobel's Operator 7

2.1.1.3 Canny's Operator 8

2.1.2 Second Derivative Edge Operators 11

2.1.2.1 Marr & Hildreth 11

2.2 Circle Detection Techniques 12

2.2.1 Hough Transform Based Techniques 12

2.3 Motion Analysis And Feature Point Correspondences 14

3. DESCRIPTION OF THE VISION SYSTEM 17

3.1 Hardware Used 17

3.2 Software Used 19

3.3 Description And Working Of The Set-up 23

3.3.1 Description 23

3.3.2 Working 23

4. PREPROCESSING USING VISILOG 27

4.1 Introduction To Visilog 27

4.2 Accessing Images In Visilog 29

4.2.1 Image 29

4.2.2 Acessing Images 29

4.3 Program Description 31

vii

4.3.1 A brief description of the algorithm and

functions used 31

4.3.2 Initialize() 32

4.3.3 Edge(char* name,int frame) 32

4.3.4 Hough(input,frame) 36

4.3.5 Marker(char* name,int frame) 39

5. ESTABLISHING CORRESPONDENCE 42

5.1 Definition 42

5.2 Proximal Uniformity Function 42

5.3 Implementation of the Algorithm 44

5.4 The Occlusion Problem 45

6. RESULTS AND CONCLUSION 47

6.1 Results 47

6.2 Conclusion 64

APPENDIX 66

REFERENCES 89

viii

LIST OF TABLES

Table Page

1 Coordinates of the markers on the left sphere before achieving
correspondence 57

2 Coordinates of the markers on the left sphere after achieving
correspondence 57

3 Coordinates of the markers on the right sphere with a point missing in the
3rd frame before correspondence 62

4 Coordinates of the markers on the right sphere after achieving
correspondence 62

ix

LIST OF FIGURES

Figure Page

2.1 Canny's Non-Maximum Suppression Operator 10

3.1 A Typical System Configuration 21

3.2 System with Imaging Board 22

3.3 Schematic view of the communications and experimental setup 26

4.1a Shows the grey level image 35

4.1b Image after Sobel's operator 35

4.1c Image after Non-Maximum Suppression 35

4.1d Edge image after thresholding 35

4.2 Relationship between (x,y,O) and center parameters (a,b) for a circle . . . 37

4.3 Shows the circle center using Hough transform 37

4.4 Shows multiple circle detection 38

4.5 Shows the markers and displays the number located 41

6.1a Shows the grey level image of the two spheres in the collision space . . . 49

6.1b Shows the edge image obtained from the grey level image using the Sobel
and Canny edge operators. The centers of the spheres are also marked
using the Hough transform technique 50

6.1c Shows that all the markers have been successfully located and the
number of markers found is displayed on the image 51

6.2 Shows a sequence of grey level images recorded at 1000 frames/sec . . 52

6.3 Shows the edge image for the sequence of frames 53

6.4 Shows that the markers have been successfully located and the number
of markers found is displayed 54

6.5 Shows the first and last frames superimposed. The trajectories for each
of the markers are displayed 55

6.6a Shows the trajectories of the spheres and its mirror image. The spheres
were released at an angle of 15° 56

6.6b Shows the trajectories of the markers on the spheres 56

6.7a Shows the trajectories of the spheres and its mirror image. The spheres
were released at an angle of 25° 58

6.7b Shows the trajectories of the markers on the spheres 58

6.8 Shows the sequence of edge images when the spheres were released at an
angle of 10° 59

6.9 Shows the marker locations found in all the frames except in the 3rd
frame, where only 9 have been found 60

6.10 Shows the superimposed image of the first and last frames. The
trajectories for the feature points are displayed 61

6.11a Shows the trajectories of the spheres and its mirror image. The spheres
were released at an angle of 10° 63

6.11b Shows the trajectories of the markers on the spheres 63

xi

CHAPTER I

INTRODUCTION

1.1 Overview of the Problem

Analysis of a sequence of images is of primary importance to certain machine

vision applications, where objects are to be detected and tracked over a period of

time for later analysis. Meaningful measurements of their movements, such as

linear and angular velocities, rotation and acceleration[1], can be obtained from

these analysis. Some of the fields of application involving motion tracking

include:

(a) Computer vision: detection, recognition and tracking of moving
objects.

(b) Industry: robot vision and vehicle navigation.

(c) Communications: video signal compression using motion-
compensated coding.

(d) Biomedical imaging: study of the heart and cell motion.

(e) Meteorology: examination of atmospheric processes using satellite
images.

(f) Transportation: highway traffic monitoring.

Some difficult problems are encountered as the automatic analysis of moving

images is highly dependent on the recording capabilities, facilities and

environment in which the vision system is used. A few of the problems are listed

below.

1) Moving objects tend to have a blurring effect on the recording

tape or film and detecting the boundaries of these objects is

1

2

difficult.

2) As a large number of frames are to be processed, analyzing

procedures must be efficient.

3) Shapes of objects could change from frame to frame and efficient

algorithms are to be developed to identify it and achieve

correspondence.

4) An inherent problem in the analysis of moving images is

occlusion, since different objects move in different directions

at different velocities.

1.2 Automatic Motion Analysis

Motion analysis can be conducted in a controlled, as well as uncontrolled

environment. In either case, one needs extensive image processing techniques

for the analysis of the images, which include pre-processing, edge detection,

segmentation, Hough transform techniques for line and curve detection[2],

finding features points to track and finding the correspondence of the points.

The image processing task can be made simpler by using a high speed recording

system and good lighting techniques.

The moving light display (MLD) technique[3] is quite popular in many motion

analysis schemes. These can be produced by attaching small glass reflectors or

fluorescent markers on the points of interest. A new technique is being

developed where a remote tracer is tracked[4]. An emitter is embedded in the

particle to be tracked. Receivers are used to pick up signals from the emitter,

which is used to track the particle in 3-D. The emitter is an rf transmitter and

the receivers are loops of coil (receiving antenna), which are magnetically

coupled. Another approach is to mark white objects with some distinct black

geometries like circles (spots), rectangles or any random shape which can be

easily discernible by the vision system. Such strategies enable high contrast

images to be obtained. Images recorded with a single camera provide the study

3

of motion analysis in 2-D. Three dimensional motion analysis is possible if a

second camera is strategically placed to record the motion.

Motion analysis can be generalized to consist of the following:

• Setting up the experiment, including lights, lenses, camera location, etc...

• Recording the movement of objects in space.

• Analysis of each frame to identify and locate the position of the object.

a) Noise filtering by applying a smoothing operator

b) Edge detection operator

c) Search the edge image for required objects

d) Find location information (position and orientation) of the object

1.3 Statement of the Problem

This thesis is part of an investigation into the study of particle collision, where

the collision parameters are to be studied. Tracking of a particle in free space

has some constraints due to the particle moving too fast or in an unsuitable

environment.

The problem here is to detect and track, in a controlled environment, the

motion of two spheres colliding in 3-D space. A high speed imaging system i.e.,

the Kodak Ektapro 1000, is used to record the collision of the two spheres at

various angles of incidence. The imager is capable of recording at a speed of up

to 1000 frames per second, with a maximum recording time of 35 seconds. The

playback capability is at the rate of 30 frames per second, which allows for

visually checking the quality of the images obtained, before further processing.

The purpose of the thesis was to set-up the imaging system with lights and

mirrors so that good dual images are obtained. The spheres selected were white

with randomly marked black spots on them. Programs were developed on the

PC so that images acquired sequentially from the Kodak system are

pre-processed to compute edges. This edge information is utilised to find the

sphere centers using the Hough transform technique[5]. The marker locations

4

were detected by a simple algorithm. Correspondence of the markers from frame

to frame was achieved by minimizing the proximal uniformity constraint[6],

which limits the search space. Trajectories of the markers are displayed on the

monitor to check that correct correspondence has been achieved. Information of

the locations of the markers and spheres obtained from frame to frame can be

used to analyze the translational and rotational distances, velocities and

accelerations.

1.4 Overview of the Remaining Chapters

The chapter 2 briefly surveys other techniques in the area of edge detection,

Hough transform techniques, Fuzzy clustering methods and correspondence of

feature points. Emphasis has been placed on the methods related to what has

been done in this thesis.

Chapter 3 gives a little insight into the type of vision system used. Some

salient features of the hardware involved and software used have been

highlighted and a brief description of the experimental setup has been given.

Chapter 4 discusses the capabilities of the software Visilog, for accessing

images, and processing images at the pixel level. A brief description has been

given on some of the routines used in the program, to obtain the edge image,

multiple circle detection using Hough transform, and finding the feature points

or markers on the spheres.

Chapter 5 deals with the correspondence problem and its implementation.

An algorithm proposed by Rangarajan and Shah[6], has been discussed in detail

and a solution to occlusion has also been studied.

Chapter 6 presents the results of the work conducted. Conclusions drawn

from the experiments have also been discussed. A note on direction for future

research is also given.

Appendix A gives specifications of some of the high speed imaging equipment

used.

5

Appendix B gives a brief description of the Visilog functions used in the

programs.

Appendix C contains a listing of some of the programs used.

CHAPTER II

LITERATURE REVIEW

2.1 Edge Detection

Edge Detection algorithms drastically reduce the image content thus making

post-processing of these images computationally less expensive. Extracting

edges from digital images is an important aspect in any machine vision system,

where it is necessary for object recognition, feature extraction, or for other image

processing applications. A brief survey was made on some of the popular edge

detection operators before choosing an appropriate combination. The two major

classifications of edge detectors are based depending on whether they use first or

second derivative properties.

2.1.1 First Derivative Edge Operators

2.1.1.1 L.G. Robert's Operator: L.G. Robert[7] was one of the first few

who developed an edge operator which used a 2 x 2 region of pixels at each

point. Estimates of the magnitude of the image gradient over a 2 by 2 region are

perhaps the simplest edge operators. The Robert's magnitude operator R1,

estimates the derivatives diagonally, i.e.,

d1 = f(i,j) - f(i+1, j+1) (E2.1)

d2 = f(i+1, j) - f(i, j+1) (E2 . 2)

R
1
 = [d12 d22]1/2 (E2.3)

6

7

Instead of calculating the square root of the sum of squares in the

equation(E2.1), a computationally simpler operator is the Robert's absolute

value estimate R2 of the gradient given by

R2 = IdiI + I d2 I (E2.4)

2.1.1.2 Sobel's Operator: The Sobel's Operator is probably the most

wide-spread image processing operator of all categories. According to Sobel[8,9],

the idea is to estimate the gradient (fx, fy) employing the eight neighbor pixels

with equal weight. However, because the corner pixels are further apart (with a

factor !2) and because their difference vectors make 45° with the two main

directions (another factor J) they should contribute to both fx and fy with a

factor of 2 less than the four pixels in the main directions. Therefore the Sobel

operator pair (Sx, Sy) written as a convolution kernel is the following:

10-1 r
-1 -2 -1

Sx = 20-2 Sy = 0 0 0 1
10-1 1 2 1J

A digital gradient may be computed by convolving the two windows with an

image, one window giving the x component fx of the gradient and the other giving

the y component f3,.

fx(i, j) = Sx . n(i, j) (E2.5)

fY' (i j) = Sy * n(i, j) (E2.6)

where n(i, j) is some neighborhood of (i, j) and . represents the sum of the

products of the corresponding terms. The Sobel operator is a nonlinear compu-

tation of the edge magnitude at (1, j) defined by

gm(i, j) = ,1(x +./.;) (E2 . 7)

8

and its angle is defined by

ifx
ga(i, j) = tan . (E2.8)

2.1.1.3 Canny's Operator: Canny[10] has formulated an edge operator

that follows three main performance criteria for edge detection. Assuming that

edge detection is performed by convolving the noisy edge with a spatial function

f (x) and by marking edges at the maxima in the output of this convolution, three

performance criteria are specified.

• Good Detection: There should be a low probability of failing to

mark real edge points and low probability of falsely marking non-edge

points. This criterion corresponds to maximizing signal to noise ratio.

• Good Localization: The points marked as edges by the operator

should be as close as possible to the center of the true edge

• Only One Response to a Single Edge i.e., multiple response to

edges must be avoided.

The mathematical forms for the first two criteria are easily obtained, which

gives a product of the localization term and signal to noise ratio. Using the

criteria for edge detection as a set of functionals of the unknown operator f,

variational techniques are used to find the function that maximizes the criteria.

These two criteria on their own are inadequate to produce a useful edge detector

and the addition of the third criterion gives an operator that has a very low

probability of giving more than one response to a single edge. It also provides a

finite limit for the product of localization and signal to noise ratio. An analytic

form for the operator was found, which is a sum of four complex exponentials

and is approximated by the first derivative of a Gaussian. In one dimension the

maxima in the output of this first derivative operator correspond to the zero-

crossings in the output of a second derivative operator. The detector should be

9

directional, the more directional the better. To obtain a good edge the directional

output is used and the output of less directional neighbors is suppressed.

A non-maximum suppression scheme[11] was described, where the gradient

magnitude is non-maximum suppressed in the gradient direction. This

algorithm uses a nine pixel neighborhood as shown in the figure 2.1. The

Interpolated Gradient is given as

ux uy ux
 G (x, y+ 1) G 1 = G (x+ 1, y+ 1) +

u (E2.5)
y y

and in the opposite direction it is

ux u — u
G2=

u
G (x-1, y-1) + y x G (x, y-1) (E2.6)

y uy

Px
,
 y is considered maximum if G(x,y) > G1 and G(x,y) > G2.

10

Figure 2.1 Canny's Non-Maximum Suppression Operator

11

2.1.2 Second Derivative Edge Operators

In this case, edges are detected as the point where the second derivatives of the

image crosses zero. Marr operators[12] also called the "Mexican hat" operators

are filters of the form V2 G where V2 is the Laplacian and G is the two

dimensional Gaussian distribution. The main idea behind these filters is to first

smooth the image with a Gaussian shaped filter and then find the edges (using

the laplacian) in the smoothed image. One of the widely used operators in this

class has been proposed by Marr & Hildreth[13].

2.1.2.1 Marr & Hildreth[13]: They propose using zero crossings of the

operator D2G (x, y) on the given image, where G (x, y) is a two-dimensional (2-D)

Gaussian distribution and D2 is the second derivative operator for detecting

intensity changes in the image. The Gaussian operator is used to satisfy

localization requirements in both the spatial and the spectral domains. Localiza-

tion in the spatial domain arises because most intensity changes are spatially

localized; hence, the output of the filter should be a smooth function of the

nearby points. Localization in the spectral domain arises to reduce the range

over which intensity changes take place. The Gaussian filter satisfies both these

requirements. For the sake of reducing computations, the operator D2G is

replaced by the rotation invariant operator V2 G, where V2 is the Laplacian.

By using V2 G with different widths, zero crossings of V2 G at different scales

are obtained.

12

2.2 Circle Detection Techniques

Some of the methods available for circle detection are Least square approach,

Hough transforms and a more recent method is the Fuzzy clustering technique.

These techniques are efficient in detecting circles but each has its own

constraints. If edge data are available in the form of a list of the circle itself the

least square technique can be applied, but the problem occurs when there is

noise or if the objects are spread out over the image space. Fuzzy clustering

techniques may be used to find circles. In objective functional based fuzzy

clustering algorithms the weighted sum of the distances of the feature vectors

from cluster prototypes are minimized. The fuzzy memberships are utilized as

weighting factors. The cluster prototype can be a point or a line or a plane,

etc.[28]. The Fuzzy c-shell clustering (FCS) method as introduced by Dave[29]

assumes a cluster structure that is of some s-dimensional hyperspherical shells

which are simply circles when s=2. Hypersphers refer to boundaries (surfaces

for s>2). The prototypes do not include interiors-whence the word "shells" to

descnbe the cluster prototypes. The FCS algorithm uses the Euclidean norm

and as a result a certain measure of error results from measuring distances that

are not Euclidean. This technique does have some problems like, it is sensitive

to noise, sensitve to outliers, etc. The Hough transform is more robust and extra

data in the image are not too much of a problem.

2.2.1 Hough Transform Based Techniques

The Hough Transform, HT was first introduced by P.V.C. Hough[14] as a method

of detecting complex patterns of points in binary image data. Some of the many

desirable features of this technique are described. Each image point is treated

independently and therefore the method can be implemented using more than

one processing unit. It can recognize partial or slightly deformed shapes. The

HT method is very robust and random image points are unlikely to contribute

13

much to the accumulator bin. The HT can also simultaneously accumulate evi-

dence for several examples of a particular shape occurring in the same image.

For the most part HT has been used to detect straight lines.

Kimme, Ballard and Sklansky[15] have shown that circular arcs can be

detected and applied their technique to a medical image processing task.

Essential to their method was the use of edge direction information to constrain

the range of parameters addressed. Parabolas and ellipses have also been

investigated by several authors[16,17].

Circles are usually described by three parameters their center coordinates

(a,b) and its radius r. However, if we use extra information concerning the edge

direction of image features then the circle detection problem can be decomposed

into a two stage process which involves a 2-D HT to find estimates of the center

parameters(a,b) [5], followed by a trivial 1-D HT or histogramming step, to find

the best value of the circle radius. The circle center finding involves intersection

of straight lines in the 2-D parameter space. Chapter 4 explains this concept in

a little more detail.

There has been a reasonable amount of progress in techniques to achieve

storage and computation savings. Illingworth and Kittler[5,18] have developed

an iterative coarse-to-fine search strategy for detecting lines and circles in 2-D

and 3-D parameter spaces. Their implementation is called the adaptive Hough

transform, AHT. It uses a small accumulator array which is thresholded and

then analyzed by a connected components algorithm. The shape and extent of

the connected components determine the parameter limits which are used in the

next iteration. Limits can be decreased, expanded, rotated or translated depend-

ing on the distribution of the counts in the accumulator. A simple example[5]

involving searching for circles in a 3-parameter space showed that it was several

hundred times faster than the standard method.

The HT has proved a valuable method in a large number of machine vision

and related areas. It is a very robust method in the presence of extra data and

14

can cope well with situations where some data are missing. Its major problems

have been that in its simplest implementation it requires a lot of computation

and a lot of storage for high dimensional arrays. However, it can be seen that a

lot of research has been focussed on approaches that have led to very fast and

space efficient digital implementations.

2.3 Motion Analysis and Feature Point Correspondences

Motion analysis and matching of feature points has always been an intriguing

aspect of image processing. Motion analysis and matching of points are inter-

related and the former cannot do without the latter. Motion analysis is possible

only when feature points in one frame can be matched accurately with

corresponding points in the next frame. Deriving motion information of an

object from a sequence of images is a challenging research area in computer

vision. Processing a sequence of images is definitely complex but the amount of

information obtained, far outweighs its computational disadvantages. In this

thesis more emphasis has been placed on feature point correspondence rather

than the analysis of motion.

Ullman[19] has proposed a minimal mapping theory for correspondence.

His approach is probabilistic in nature and he assumes that each point is

moving independent of every other point. One limitation of this assumption, is

that if the points being tracked belong to the same object, they move as a rigid

structure, thus violating the independence assumption. But, when the points in

a frame belong to different moving objects, the points on different objects move

independently of each other and the minimal mapping theory works well. At low

velocities the cost function used by Ullman reduces to the distance.

Jenkin[3] presented a method for tracking the 3-D motion of points from

their 2-D images as viewed from a nonconvergent binocular vision system. This

scheme used the concept of velocity smoothness. Position and velocity of points

in 3-D were tracked, given the initial 3-D positions and velocity of the points and

15

a sequence of images. Two frames were considered at any instant of time and

each frame had a left stereo image and a right stereo image. The stereo

correspondence and the velocity in the first frame are known and the stereo

correspondence and the velocity in the next frame are to be determined. A

greedy strategy was used to obtain the best solution.

Barnard and Thompson[20] use an iterative algorithm to match feature

points selected in two different frames taken in a small time interval. Initial

probabilities for matches between pairs of points are made based on a common

motion heuristic. It restricts the potential match for a point, assuming that a

point does not move a large distance between frames. The probabilities are then

refined to strengthen common motion of neighboring points. The algorithm

terminates when all the probabilities of matches between pairs of points are

close either to 1 or to 0.

Sethi and Jain[211 have proposed two iterative algorithms GE (Greedy

Exchange) and MGE (Modified Greedy Exchange), which minimize the cost

function called path coherence. Initial correspondence is assumed to be known

between frame 1 and 2 in GE. Then it extends the trajectories frame by frame

starting with an assumption that the nearest match is a correspondence. An

iterative loop exchanges correspondences which improves the cost function

value. This process continues till correspondence in all the frames is

established. The difference between GE and MGE is that in MGE initial

correspondence is not assumed and the process is repeated in the forward and

backward directions, which could alter the initially assumed correspondence.

One of the more recent advances in this area has been by Rangaragan and

Shah[6] who propose a proximal uniformity constraint to solve the correspon-

dence problem. According to this constraint, most objects in the real world

follow smooth paths and cover a small distance in a small time. Therefore, given

a location of a point in a frame, its location in the next frame lies in the proximity

of its previous location. An efficient non-iterative algorithm is proposed which

16

minimizes the proximal uniformity cost function and establishes correspondence over a

sequence of frames. The assumption in this approach is that initial correspondence in

the first two frames is known. A more detailed description of this approach is discussed

in chapter 5.

CHAPTER III

DESCRIPTION OF THE VISION SYSTEM

3.1 Hardware Used

The Advanced Frame Grabber (AFG) is a high performance member of Imaging

Technology Incorporated's VISONplus-AT family of board-level image processors.

The AFG is a two-slot, PC AT based image processor that combines many

important elements for advanced image processing applications. The AFG is a

high-resolution video digitizer, frame memory and image processor capable of

digitizing and displaying RS-170, CCIR and non-standard video images. The

digitized images are stored in a special on-board image memory. The AFG

includes the Texas Instruments TMS34010 Graphics Subsystem Processor

(GSP) for fast graphics, image processing and display control.

The AFG is a two board set, that plugs directly into two adjacent expansion

slots in the PC AT. The AFG digitizes the incoming video signal to eight bits of

resolution. The AFG supports non-standard image sources and line scanners,

as well as standard RS-170 and CCIR video sources. The AFG memory is 1024

by 1024 pixels by 16-bits and stores 8-bit, 12-bit and 16-bit image data. The

AFG provides a separate 512K byte auxiliary memory for the GSP. The image

memory and auxiliary memory are both mapped in the GSP address space. This

allows the images to move from one memory to the other to gain additional

processing space or continue processing in parallel with acquisition.

17

18

The Kodak Ektapro 1000 motion analyzer consists of an imager, processor,

controller and a monitor. The imager has an image intensifier assembly behind

the lens and in front of the sensor. The image intensifier functions as an

electronic shutter and light amplifier. This increases the imagers ability to

capture events in low light and to reduce the blurring of objects moving through

the field of view rapidly. The imager converts the light entering the lens into an

electrical or video signal. The video signal created in the imager is amplified and

processed so that it can be transmitted through the imager cable to the

processor. The main component of the imager is the sensor which is a "solid

state imaging array". The motion analyzer achieves a frame rate of 1000 frames

per second by scanning sixteen rows of pixels simultaneously, for a full frame

image of resolution 239 x 192.

The Ektapro 1000 processor contains an electronics card bin, a tape

transport and the power supplies to the system. The processor card bin

contains eleven printed circuit cards which are required to control the system

and process the video. The keypad is used to set the operating parameters and

configure the system for the desired mode of operation. The system operates in

either the live, record or play mode.

The controller provides power and control signals to the image intensifier

assembly. The controller is powered by 110 volts AC and receives a synchroniz-

ing signal from the strobe trigger output of the processor. The gain and gate can

be adjusted from the controller to vary the light amplification and amount of

time the electronic shutter is open during each frame respectively.

The monitor is connected to the processor using the coaxial cable supplied

with the system. The resolution of the monitor is 239 x 192

The Kodak Communication Interface (CI) sets the communication protocol

for control and access with a computer or a terminal which supports the RS-

232-C protocol or IEEE-488 (GPIB) protocol. The CI board supports both serial

communication and parallel communication. The CI provides a means of

19

externally controlling the EKTAPRO 1000 motion analyzer and accessing the

internal data.

A 486 PC is used for communicating with the processor i.e., to issue

commands, download and upload images, pre-processing the images using Visi-

log and to compute the correspondence.

3.2 Software Used

Visilog[22] is a computer vision software from Noesis which incorporates both

image processing and analysis libraries and a command monitor. The standard

Visilog distribution includes

• Image processing and analysis algorithms libraries

• A set of development tool libraries, to create or access

images, control display, etc...

• The source code of a command monitor, which can generate

the executable task associated with this monitor

• A number of source code of basic programs to illustrate

the development of new functions of Visilog

• Technical documentation

This software package can run on a large number of system configurations,

from simple PC or PC-compatible systems to scientific workstations and main-

frame computers. A typical system configuration is shown in the figure 3.1. The

system configuration to run Visilog and its monitor is composed of:

• a computer running on MS-DOS, a Microsoft C compiler

and a disk to store data

• a display device which is an additional image display

board supported by NOESIS

• a control terminal from which to issue commands to the

system with a mouse device

20

• An acquisition device, i.e., camera input and image digiti-

zation

The system configuration for the system used in this set-up is shown in

figure 3.2. The Visilog package manipulates images, a set of two-dimensional

data stored on disk files or in the image memory. These images are visualized on

the display memory and its associated display screen. This display memory is

just a window of the image memory available to display data and processed

results. In our case the display memory is identical to the image memory as

they are actually the same additional board.

Figure 3.1 A Typical System Configuration
N
I-,

Figure 3.2 System with Imaging Board
tv
tv

23

3.3 Description and Working of the Setup

3.3.1 Description

Giving a brief description of the experimental set-up, it consists of the following:

• Two tubes wider than the spheres with settings to vary the

angle.

• Two spheres with randomly placed markers on it.

• Two solenoids mounted on the tubes and connected to a

triggering device.

• A mirror placed behind the expected collision space at an

angle of approximately 45°.

• Suitably placed lights to illuminate the collision area.

• A computer to control the triggering device, recording and

to process the downloaded images.

• A high speed imaging system i.e., Kodak Ektapro 1000,

with its accessories like the camera, processor, controller,

etc.

3.3.2 Working:

The experimental set-up has been designed keeping certain constraints in view.

Collision of the two spheres is expected every time they are released in an

obstacle free environment. There must be provision to vary the angle at which

the spheres are released. The spheres must roll through the tubes smoothly

with little or no friction from the tubes. The triggering mechanism must release

both the spheres at the same time instant to enable collision.

The tubes are made of plastic and they are wider than the spheres to provide

smooth rolling. The tubes are mounted on stands that are capable of rotating

about their base and the tubes themselves can also be rotated and set at the

24

desired angle. A mirror is placed right behind the collision space at an angle of

45° to obtain the top view of the spheres. Solenoids mounted on the end of the

tube allow the sphere to rest at the beginning of the tube before release. The

solenoids are connected to a triggering device with a +24 volt supply. The

triggering device can be activated by the computer using the software VID2 [23].

This triggers the solenoids which releases the spheres and after a short time

interval activates the recorder.

The imager is placed such that the collision area is in focus and the mirror

image is also within the field of view. The lighting arrangements are made so as

to provide a clear image with little or no glare and proper distribution of light

over the set-up. The camera is connected to the processor and the controller. A

communication link exists between the PC486 and the processor. Images can be

observed on the monitor. The communication network of the various

components are shown in a schematic view in the figure 3.3. The recording

speed of the imaging system is set at 1000 frames per second and it has a

playback capability of 30 frames per sec. It can be further slowed down by

jogging the frames step by step. This allows the collision of the spheres to be

observed at an extremely slow rate.

After the collision of spheres has been recorded, it is replayed and a sequence

of image frames before and after collision are selected for image processing.

These image frames are transferred from the tape to the PC486 disk using

VID2[23]. Now the images are processed individually to find the edges, 2-D

circle and marker coordinates, which is the main area of interest in this thesis.

The marker coordinates are later matched from frame to frame to track the

trajectories of these markers.

The Kodak Ektapro imager has a frame resolution of 239 x 192, which is

scanned from left to right, bottom to top, row by row. As a result the coordinates

of the image begin at the lower left hand corner, with the origin starting at (1, 1).

25

Images in Visilog are read differently from the imager i.e., the image is read

from left to right, top to bottom, row by row. This puts the origin at the top left

hand corner, with the origin starting at (1, 1). This has got to be kept in mind

when transferring images from the Kodak Ektapro to the Visilog system.

Figure 3.3 Schematic view of the communications and experimental setup

N
O)

CHAPTER IV

PREPROCESSING USING VISILOG

4.1 Introduction to Visilog

visilog[221 is a computer vision software package which incorporates both image

processing and analysis libraries and a command monitor. This package can be

used as a set of libraries, which can be combined by the user to perform certain

specific vision tasks and to develop standalone programs more specific to the

users requirement or area of interest. It can also be used as a Computer Vision

development environment, where over two hundred Vision operations are

activated using the command interpreter.

Standard image processing tools, such as arithmetic and logic operations

between images, display and acquisition control, convolution and elementary

high or low pass filtering and standard edge detection algorithms are included in

this package. It also incorporates some of the most advanced vision tools, rang-

ing from Mathematical Morphology operations to Modern Edge Detection

schemes. A more detailed description of Visilog is given in the appendix.

Standalone programs have been developed in this Thesis which provide a

greater flexibility in performing the vision functions, allows new image

processing tasks to be coded in 'C' and also removes the necessity of the user to

key in commands after every step through the interpreter. Standalone programs

are designed to run outside the interpreter context, with a minimum of

interaction with the user. There is a set of global variables which describe the

27

28

display configuration, the image memory size and content, etc... These variables

are necessary and must be initialized prior to any call to a Visilog routine. Such

initialization takes place in the starting phase of Visilog and has been grouped in

one function, which must be called prior to any image access or operation in a

standalone program.

Giving a brief description of the computer implementation of the Visilog

functions, the program can be considered as divided into three main

subroutines with other supporting subroutines. The three main subroutines

being

• Edge()

• Hough()

• Marker()

Before these subroutines can be executed there are certain procedures and

functions to be followed which are a vital part of the program. As mentioned

earlier the function to be called before any image processing operation can be

performed is stclain (). When this function is called a set of global variables are

automatically allocated and initialized. The declaration of this function is:

stdaln (flag, argc, argv)

long *flag;

int argc;

char *argil];

The flag pointer points to 0 for standalone applications. The argc, argv

arguments are the standard command line processing arguments of 'C'. Once

stdaln () is called, the application program knows of the image memory, the

display memory, their type or configuration and will permit access to images,

acquisition display and processing functions.

29

4.2 Accessing Images in Visilog

4.2.1 Image

Images are formed of picture elements or pixels of a specific arithmetic format.

The data is organized according to some pre-defined rules which must be

specified. In Visilog the images are considered to gather three classes of infor-

mation:

• Image Header, describing the arrangement of the image

information, type of arithmetic format, image size, etc.

• Image User Header, user stored customized information.

• Image Pixels, stored as rows of consecutive pixels.

Whenever image data is to be accessed, the headers and the pixel informa-

tion

are also simultaneously accessed.

4.2.2 Accessing Images

Accessing images is very similar to the standard file access routines in 'C'. The

task is to open the files, read the input file, modify the information, write the

new information to the output file and then close all the open files. Images are

referenced by their name from the user point-of-view. To access images in

programs an image handle is obtained, which is associated to the image name.

An image handle is a new 'C' object which is declared as

IMAGE nf,

Each time a valid image handle is retrieved, information to the image header

and pixels is simultaneously accessed. Image handles are opaque structures

defined in the visilog.h include file. An image handle returns a pointer to a

structure of type image, that is a pointer to some place in the CPU memory of the

system. This pointer is not initialized and as such cannot be used. When

functions like image_0, xgrakf) or dupnf (), are enlled enough memory space to

30

hold a structure of type image is first dynamically allocated, then the structure

fields are filled with proper values, then the valid pointer to that allocated space

is returned, which can be used. One of the functions which returns a valid

image handle important to the program is image_(). The declaration of this

function is:

IMAGE image_(name, mode, verify, control)

char *name;

char *mode;

char *verify;

IMAGE *control;

The argument name points to the name of the image.

The mode argument specifies the type of access required for the image and

contains one of the list [e,s,c,t].

• "e" specifies that the image already exists.

• "s" specifies image to be created if it does not exist or over

write if it does exist.

• "c" specifies image will be created even if it already

existed.

• "t" specifies that a temporary image is created and will be

destroyed when the handle is released.

The verify argument specifies type of verification to perform on the size and

arithmetic format of the image, an empty string " " checks nothing.

The control argument is a free IMAGE handle used to specify the image

header information. Free IMAGE handles are obtained by calling the dupnf (

)function, such as

control = dupnf (NULL);

Once the IMAGE handles have been obtained it is important to release these

handles. To release the IMAGE handle the name of the image is passed by

31

address to the function ferrnnf ().

Accessing images in Visilog can be generalized by paying attention to the

following points:

• Declare image handles

IMAGE handle;

• Retrieve proper image handles

handle = image_();

• Release handles when no longer required

fermnf (&handle);

4.3 Program Description

4.3.1 A brief description of the algorithm and functions used

1) Initialize(): Initializes and clears the image memory.

2) Check(name): Assuming that a maximum of 20 frames are stored in the

hard-disk a check is made to see if the sequence of images named exists or

not.

3) Starting(name): Starts a loop which sends the name of the images to be

processed one at a time till all the frames are processed for a maximum of 20

frames.

4) Process(name,namel,frame): This passes the name of the image to functions

where the images are called and processed.

5) Flush_marker(): Array locations which store the coordinates of the centers of

the spheres and markers are initialized to 0.

6) Edge(name,frame): Image from the disk is called and its edges are obtained.

7) Hough(image,frame): Multiple circle detection is done using the hough

transform technique for a maximum of 4 spheres.

32

8) Marker(name,frame): Markers in the image are detected in the lower two

spheres.

9) Check_points(name,frame): Markers obtained in the previous function are

superimposed on the original image to make a visual check for accuracy.

10) Storing(name,frame): In this function the coordinates obtained for the

centers of the spheres and the markers are stored in two separate output

files.

A listing of the programs used is available in the appendix. Of all the func-

tions used in this program only a few need to be explored in detail.

4.3.2 Initialize()

Initialization must be done before proceeding onto the image accessing/process-

ing routines. This is accomplished by the function initialize(). The 256 x 256

image memory partitioning is selected and the Visilog default image format and

image tables are initialized. The display memory and the CPU memory are

cleared and any images stored in this location are lost.

4.3.3 Edge(char* name,int frame)

The name of the image and the frame number being processed are passed as

arguments to this function. The first step performed in this function is to

declare all the image handles necessary within the function. A control image

structure is created with a call to dupnf O, and since no reference image is

needed the argument to this function is NULL and default image parameters are

assigned to that structure. An image handle is declared to obtain an existing

image from the disk and another is created to store this image into the display

memory with calls to the image_() function. Linear black and white look-up

tables are defined with a call to x/utst () and the zoom factor is set at two using

xzoom () i.e., a 256 x 256 window is set. This allows the image to be displayed

over the whole screen of the Visilog monitor, as the image size obtained from the

33

disk is 239 x 192. The image from the disk is copied into the image memory with

the scopy_()) function and is displayed onto the monitor with the function

xvisu O. As the control structure with default parameters is no longer required

the control image handle is released with a call to ferninf O. Another control

structure is created, with the image obtained from the disk passed as an address

to the dupnf () function so that its physical parameters are referenced. Other

image handles are created with this control structure and passed as addresses

to the function sedge3_(O. This function performs an elementary edge detection

with the Sobel[9] mask. The X gradient and Y gradient images are computed

from the input image. This function does not yield a gradient amplitude image

which is then obtained by using the function scrnpas_().

Next a non-maximum suppression function is applied to get a good edge

image following a method proposed by Canny[111. This function is called

srmcsup_(), it takes the X gradient image, Y gradient image and the gradient

amplitude image as the input and returns a pointer to the output edge image.

The X and Y gradient images are used to determine the gradient orientation and

only points for which the gradient amplitude is a local maxima are marked as an

edge. Resulting edges retain the original gradient amplitude and form curves

and lines of thickness one. The resulting edge image can be displayed on the

monitor with xvisu_(). A threshold is set on the image so that only relevant edge

points are retained and the rest can be deleted. This helps to remove all

unwanted data and any extraneous information that is not required can be

eliminated, drastically reducing the image content, thus making post-processing

of these images computationally less expensive. The function used in this case

is called sthr O, which returns a binary output. As the output is binary, the

control handle must be reset with the correct arithmetic format using set code())

and an image handle assigned to the output image. The input image is the edge

image from the previous function and an array of low and high thresholds are

the parameters to this function. The output points of the binary image obtained

34

are defined as:

0(n, rn) = 1 iff low <= I(n,m) <= high, I(n,m) is input image

0(n,rn) = 0 otherwise. 0(n, m) is output image

This gives a good edge image of the spheres with the markers on it. Since the

images have been recorded in 2-D the spheres are represented as circles in the

image. The edge image obtained in the above procedure is stored onto the disk

so that it can be accessed by other routines and the image memory is not

overloaded. The subroutine hough() is now called for the detection of circles. All

the image handles which were used within this function now have to be released

with individual calls to the fermi-if () function to allow the memory locations to

be free for the next operation. The figure 4.1 shows a good example of an image

and the results obtained using the Sobel's operator, non-maximum suppression

and thresholding.

35

Figure 4.1 a) Shows the grey level image
b) Image after Sobels operator
c) Image after Non-Maximum Suppression
d) Edge image after thresholding

36

4.3.4 Hough(input,frame)

The edge image and the frame number being processed are passed as arguments

to this function. This subroutine detects the centers of circles using the Hough

Transform technique[5,24]. In this routine the images are accessed at the pixel

level as compared to the functions used so far which take advantage of the

elementary Visilog routines. Image handles are declared and a null control

structure is created. The edge image stored in the disk in the previous function

is recalled for further processing.

To locate the circle centers we incorporate a constraint that the vectors which

are normal to the circle boundary must all intersect at the circle center(ao, bo).

Estimates of these normal directions are obtained from local gray-level edge

detection operators, i.e., the Sobel operator. The figure 4.2 illustrates how the

knowledge of (x, y, 0) leaves only (a, b) as parameters. Mapping (x, y, 0) triplets

into 2-D parameter space produces a straight line. The intersection of many of

these lines identifies the circle center coordinates.

Since the circle finding problem has been formulated to produce a two stage

algorithm which involves a 2-D HT to find the estimates of the center parameters

(a, b), the accumulator array can be considered as a 2-D image of the Hough

transform. This algorithm has been implemented in this thesis.

An image is created to store the 2-D accumulator array and initialized to

zero. A check is made in the edge image for the edge points using the function

readpx () and at every edge point the X and Y gradients are computed from the

original image and the direction angle is found. For the image parameter range

the HT is accumulated and every increment is updated in the accumulator

image using the writpx () function. The accumulator image is analyzed for local

maxima and its coordinates give the center of the circle.

This method can be extended to detect multiple spheres in an image. After

the first center has been found, a region of 10 x10 pixels are reduced to zero

around that center, and a search for maxima is made again. This can continue

37

for a predetermined threshold value below which no circle is assumed to be

detected. The robust nature of the HT algorithm is seen in figure 4.3 where the

presence of noise does not affect the center of the circle and figure 4.4 shows

that multiple circles are detected quite accurately

Figure 4.2 Relationship between (x, y, 0) and center parameters

(a, b) for a circle.

Figure 4.3 Shows the circle center using Hough transform

Figure 4.4 Shows multiple circle detection

38

39

4.3.5 Marker(char* name,int frame):

The name of the image and the frame number being processed are passed as

arguments to this function. All the image handles and variables necessary

within the function are declared. The main aim of this routine is to locate all the

markers on the lower two spheres in the image which is accomplished with a

simple heuristic approach. The display memory is cleared with a call to visclr ()

and a control image structure is created with a call to dupnf (NULL). The thresh-

olded image stored in the disk, in the function edge, is accessed and displayed.

Extra data in the image is eliminated with a call to elimin() which deletes all

information outside the radius of the circles whose coordinates were found in

the function hough(). Labelling of the image is done for which the parameters of

the control structure is changed by set code(). The labelling operation is

performed by slabel () with a binary image as its input. Starting from the binary

image, it gives a grey level image where all the pixels of a connected component

have a unique grey level value, thus labelling each connected component. The

number of connected components is computed from the labelled image using the

function snumbe_().

Now that the connected components are labelled, each labelled object is

analyzed separately to find the markers. Separating every labelled object for

analysis, from the main image poses a problem. This problem is alleviated due

to the fact that every labelled component in the labelled image has a unique grey

level which can be thresholded. A simple algorithm is incorporated at this point

to locate the markers.

• For i = 1 to number of components do

• Threshold to separate the object of component number i

• Find area of the component i

• If area lies within the specified range do

• Compute inertia moments of component i

• Check if the component lies within the bounds specified

40

• Check if the component location is within the radius of the

lower two spheres

• If above conditions are satisfied the component is one of

the required markers

• Increment component number and begin loop again

A temporary image is created which can store a binary image. The labelled

image is thresholded with a call to sthr () and the number of the component

itself is used as the low and high level of the threshold. This gives us an image of

that particular numbered component stored in the temporary image handle as a

binary image. The first component is now separated from the labelled image and

is available for further processing. The area of the component is found by using

the function sarea () which computes the surface area of the binary image as

the sum of non-zero pixels. Area of the component is now checked against the

range of size of the markers. If within the range then siriert () gives the inertia

moments of the binary image which are computed as below:

moment(0) =
NEX,

1
moment(11 =

NEY,

Where N is the number of non-zero pixels, (Xn,Yn) the coordinates of such

pixels. A check is made to make sure the component is bounded within a

certain box and the location of their X and Y coordinates are within the radius of

the two spheres. When these conditions are satisfied, the component is termed

as a marker and its location is stored. The figure 4.5 shows that marker

locations have been located.

41

Figure 4.5 Shows the markers and displays the number located

CHAPTER V

ESTABLISHING CORRESPONDENCE

5.1 Definition

Given n frames taken at different time instants and m points in each frame, the

problem of motion correspondence is to map a point in one frame to another

point in the next frame such that no two points map onto the same point[6].

This definition of the problem and the method for its solution as proposed by

Rangarajan and Shah has been studied in this thesis.

5.2 Proximal Uniformity Function

The aim is to obtain a one to one correspondence ctok between points of the kth

frame and the (k + 1)th frame. It is assumed that objects in space move a small

distance in a small amount of time and their motion is smooth or uniform.

Therefore the location of a point from one frame to the next will be in the

proximity of the previous location and the objects are assumed to follow a

proximal uniform path. A proximal uniformity function 6, was proposed which

• obeys the following criteria.

• In the two successive frames selected the speed of the

objects does not change much.

• Direction in the two successive frames do not change

much.

42

43

• There is very small displacement between any two successive

frames.

The proximal uniformity function is defined as follows:

where 1 __ p, q, r S m; 2 Skm-1; q = (13k-1(p); Xq' Xr
k+ 1
 is the

vector from point q in frame k to the point r in frame k + 1 and I X denotes the

magnitude of the vector X. The ith point in the jth frame is denoted by the vector

Xi in 2-D coordinates.

The first term in the proximal uniformity function represents a relative

change in velocity and the second term represents a relative displacement. The

numerator in each term is an absolute quantity and the denominators represent

sums of absolute quantities for all possible matches. The first term takes care of

smooth and uniform trajectories and the second term forces proximal matches.

A major assumption being made with this proximal uniformity function is

that (1)1, an initial correspondence, is known. Knowing the initial correspon-

dence the algorithm correctly marks the trajectories of the points from frame to

frame. The correspondence cbk is determined by minimizing the cost function

Es(xk-1 k k+1\
P ' Xq' Xr 1 •

44

5.3 Implementation of the Algorithm

It is a non-iterative greedy algorithm A, assigning correspondence of points in

one frame to the points in the next frame.

Algorithm A

Fork■ = 2 to n - 1 do

• A matrix M (m * m) is constructed, where

—1 k
MU, = o (Xp , Xq, Xr

k +1
) , when (13k-1(p) = L Points

from the kth frame are along the rows and points from

(k+ 1)th frame along the columns.

• For a = 1 to m do

i. The minimum element Li, It] in each row i of M is

identified.

ii. A priori matrix B is computed, such that for each i,

BU, =

in

M j] + E m [k, /i]

j =1,j#1, k=1,k#i

iii. The El, 1t] pair with highest priority value B[1, is

selected and clik(i) = li is assigned.

iv. The row i and the column Ii in M is masked.

45

5.4 The Occlusion Problem

The algorithm A above does not provide for the occlusion of points. Occlusion is

an inherent problem in the tracking of feature points. An object is considered to

be occluded if it does not appear in the image due to other objects overlapping on

it and feature points in that part are missed. Another reason for missing feature

points is because they may not have been detected by the image processing

algorithm even though they were present in the image. The different cases of

occlusion can be due to the following occurrences:

• Points visible in frame k may not be visible in frame k+1

• Points occluded in frame k become visible in frame k+1

• Points visible in frame k get occluded in frame k+1 and

some points occluded in frame k become visible in frame

k+1.

An assumption is made that there is no occlusion in the first two frames that

are being analyzed and all points are visible in these frames. The first time a

case of occlusion occurs it is a case 1 occlusion. The modified algorithm detects

this case of occlusion and fills up for the missing point in the (k+ 1)th frame and

hence the algorithm never comes across the cases 2-3. Modifications to the

algorithm A yields the algorithm B.

Algorithm B

• Fork = 2 to n - 1 do

• A matrix M (m * mk+1) is constructed, where

MIL
k

= 6 (Xp — 1Xcr
kX k + 1

) , when 4)k-1(p) = L

mk points from the lcth frame are along the rows and

mk+1 points from (k+1)th frame along the columns.

• If (mk+1 < mk) then it is a case of occlusion so do

i. For a = 1 to mk+i do

* The minimum element (h, j] in each column j of M is

identified.

46

* The priority matrix B is computed such that

m

13[1,i7 = E m [i, ii •
i = i, i# ii

* The pair [!i, j] with the highest priority value B[!i, j]

is selected and assignment cl3k(1) = j is made.

* Row !i and column j are masked in M.

ii. The points mk - mk+1 for which correspondence

has not been found are identified. New feature

points are created in frame ki-1 for the missing

points by extrapolating the correspondence from

frame k - 1 to frame k.

iii. Set rrik+i = m

else there is no occlusion

i. Algorithm A

Points in the frame k that do not have corresponding points in the frame

k+ 1 are identified and new points are created corresponding to those missing

, k, points. If a point a in frame k with coordinates kxa
k
' ya) which correspond to a

,,
point c in frame k - 1 with coordinates (xc

k —1
 , y

k
c

—
1) does not have a corre-

sponding point in the frame k + 1, then a point b with coordinates

+1 k+1,
(xb ,y b 1) is created to correspond to point a with the equations,

k+1 k + k k-1 xb = xa (xa —xc)

k+1 k k k— 1
Yb = Ya+ (Ya — Yc)

This extrapolation ensures smoothness in velocity, both in magnitude and

direction.

CHAPTER VI

RESULTS AND CONCLUSIONS

6.1 Results

In this chapter, the results are presented for the experiments conducted on two

spheres colliding in space at various angles of incidence. Good images were

recorded by varying the gain and gate to control the light intensity and the

electronic shutter speed. Selected images were processed and excellent edge

images and marker locations were obtained. The algorithm proposed by Ranga-

rajan and Shah[6], was implemented and found to work quite efficiently. The

figures, tables and graphs presented in this chapter give a good illustration of

automatic image analysis.

Figure 6.1 illustrates the effectiveness of the procedure adopted and program

developed using Visilog. Figure 6.1b, is a typical example of obtaining an edge

image of single pixel width, using the Sobel and Canny edge operators. It also

shows the efficiency and robust nature of the Hough transform technique in

finding multiple circle center locations. Figure 6.1c is the result of locating the

markers and their positions.

Figures 6.2, 6.3, 6.4, 6.5 show a sequence of 7 frames that are processed to

find sphere centers, marker locations and trajectories of the markers. Figure 6.6

is a graph to show the trajectory set for the spheres and markers. The numbers

on the graph give the frame number at which the coordinates were found. It is

observed that collision has occured in the 4th frame.

47

48

An example of correspondence is shown using another set of data where,

Table 1 and Table 2 show the marker locations for the sphere on the left side

before and after correspondence and its related graph is shown in figure 6.7.

The various markers are matched correctly without any false matches taking

place.

Figures 6.8, 6.9, 6.10, show another sequence of 7 frames. In figure 6.9 it is

observed that in the 3rd frame a marker in the right sphere is not located. The

tabulations for marker locations on the spheres at the right side of the frame,

before correspondence is shown in Table 3, where the missing marker in the 3rd

frame has been assigned (0, 0) as its coordinates. Tabulations for the corre-

sponded marker locations are shown in the Table 4. We find that the matching

algorithm correctly interpolates the coordinates for the missing point and

assigns it to its proper position. This an excellent illustration of the correspon-

dence algorithm where the problem of occlusion is taken care of. Figure 6.11 is

a graphical representation of the trajectories of the spheres and markers for this

sequence of images.

49

Figure 6.1a Shows the grey level image of the two spheres in the col-
lision space.

50

Figure 6.1b Shows the edge image obtained from the grey level image
using the Sobel and Canny edge operators. The centers
of the spheres are also marked using the Hough trans-
form technique. The robust nature of this technique to
multiple center detection in the presence of noise i.e.,
edge points other than that of the circles, is clearly seen.

51

Figure 6.1c Shows that all the markers have been succesfully located
and the number of markers found is displayed on the
image. The algorithm used is quite accurate.

52

Figure 6.2 Shows a sequence of grey level images recorded at
1000frames/sec

53

Figure 6.3 Shows the edge image for the sequence of frames

54

Figure 6.4 Shows that the markers have been successfully located and
the number of markers found is displayed.

55

Figure 6.5 Shows the first and the last frames superimposed. The
trajectories for each of the markers are displayed.

56

Figure 6.6a Shows the trajectories of the spheres and its mirror image.

The spheres were released at an angle of 15°

Figure 6.6b Shows the trajectories of the markers on the spheres.

57

Table 1: Coordinates of the markers on the left sphere before
achieving correspondence

frame marker 1 marker 2 marker 3 marker 4 marker 5

1 (95.14, (81.07, (87.22, (81.57, (96.00,
91.36) 93.71) 99.67) 109.79) 108.88)

2 (105.07, (92.00, (95.24, (86.07, (100.07,
97.29) 95.21) 102.47) 109.36) 114.36)

3 (102.62, (103.47, (115.00, (92.20, (104.13,
97.85) 106.13) 105.33) 109.47) 118.80)

4 (113.42, (99.86, (111.13, (122.58, (108.00,
102.67) 109.79) 111.00) 114.42) 123.00)

5 (112.64, (97.07, (108.13, (118.20, (101.47,
111.27) 114.71) 118.67) 124.50) 129.29)

6 (95.00, (110.67, (104.20, (94.76, (112.45,
120.50) 121.42) 127.07) 135.59) 135.55)

7 (93.07, (107.87, (100.00, (88.94, (105.77,
126.57) 132.07) 135.57) 141.35) 146.62)

Table 2: Coordinates of the markers on the left sphere after
achieving correspondence

frame marker 1 marker 2 marker 3 marker 4 marker 5

1 (95.14, (81.07, (87.22, (81.57, (96.00,
91.36) 93.71) 99.67) 109.79) 108.88)

2 (105.07, (92.00, (95.24, (86.07, (100.07,
97.29) 95.21) 102.47) 109.36) 114.36)

3 (115.00, (102.62, (103.47, (92.20, (104.13,
105.33) 97.85) 106.13) 109.47) 118.80)

4 (122.58, (113.42, (111.13, (99.86, (108.00,
114.42) 102.67) 111.00) 109.79) 123.00)

5 (118.20, (112.64, (108.13, (97.07, (101.47,
124.50) 111.27) 118.67) 114.71) 129.29)

6 (112.45, (110.67, (104.20, (95.00, (94.76,
135.55) 121.42) 127.07) 120.50) 135.59)

7 (105.77, (107.87, (100.00, (93.07, (88.94,
146.62) 132.07) 135.57) 126.57) 141.35)

58

Figure 6.7a Shows the trajectories of the spheres and its mirror image.

The spheres were released at an angle of 250

Figure 6.7b Shows the trajectories of the markers on the spheres.

59

Figure 6.8 Shows a sequence of edge images when the spheres were
released at an angle of 10°

60

Figure 6.9 Shows the marker locations found in all the frames except
in the 3rd frame, where only 9 have been found.

61

Figure 6.10 Shows the superimposed image of the first and last
frames. The trajectories for the feature points are
displayed.

62

Table 3: Coordinates of the markers on the right sphere with a point
missing in the 3rd frame before correspondence

frame marker 1 marker 2 marker 3 marker 4 marker 5

1 (156.07, (142.46, (148.26, (156.13, (141.57,
92.57) 90.69) 84.68) 75.93) 75.07)

2 (149.07, (136.62, (143.35, (153.71, (139.14,
90.57) 85.85) 81.18) 74.41) 70.14)

3 (142.08, (138.56, (150.07, (137.23, (0.00, *
87.77) 77.06) 72.93) 65.69) 0.00)

4 (136.58, (127.57, (136.00, (148.06, (137.45,
84.50) 74.14) 73.50) 72.35) 62.36)

5 (136.00, (150.88, (139.00, (131.00, (143.92,
81.80) 73.94) 71.00) 69.00) 60.69)

6 (136.57, (152.94, (142.59, (135.77, (150.73,
77.93) 74.94) 68.18) 64.15) 60.36)

7 (154.42, (138.07, (146.94, (157.42, (154.42,
75.47) 72.93) 65.87) 60.58) 75.47)

Table 4: Coordinates of the markers on the right sphere after
achieving correspondence

frame marker 1 marker 2 marker 3 marker 4 marker 5

1 (156.07, (142.46, (148.26, (156.13, (141.57,
92.57) 90.69) 84.68) 75.93) 75.07)

2 (149.07, (136.62, (143.35, (153.71, (139.14,
90.57) 85.85) 81.18) 74.41) 70.14)

3 (142.08, (130.78, * (138.56, (150.07, (137.23,
87.77) 81.01) 77.06) 72.93) 65.69)

4 (136.58, (127.57, (136.00, (148.06, (137.45,
84.50) 74.14) 73.50) 72.35) 62.36)

5 (136.00, (131.00, (139.00, (150.88, (143.92,
81.80) 69.00) 71.00) 73.94) 60.69)

6 (136.57, (135.77, (142.59, (152.94, (150.73,
77.93) 64.15) 68.18) 74.94) 60.36)

7 (138.07, (142.08, (146.94, (154.42, (157.42,
72.93) 59.54) 65.87) 75.47) 60.58)

63

Figure 6.11a Shows the trajectories of the spheres and its mirror image.

The spheres were released at an angle of 10°

Figure 6.11b Shows the trajectories of the markers on the spheres.

64

6.2 Conclusions

The high speed imaging system i.e., Kodak Ektapro 1000 has been effectively

utilised to obtain clear images of the two colliding spheres. The Sobel and Canny

edge detection techniques have been successfully used to get good edge images

as well as gradient images.

The Hough transform technique has proved once again to be robust and the

detection of multiple circle centers poses no problem even in the presence of

noise. This technique has been implemented in a PC 486 with the help of

Visilog and the AFG card. The computational excesses of HT are significantly

reduced by using the gradient information from the edge image and the parame-

ters being reduced to two. This makes the accumulator array to be just 2

dimensional. Implementation of this technique in the PC was made possible due

to the fact that Visilog considers images as 2-D objects, hence the accumulator

array was converted into an image and stored in the image memory provided by

the AFG card.

The method used in this thesis gives a fairly good result for the detection of

multiple circle centers, but still the accuracy is limited to a pixel. Subpixel

accuracy can be obtained by using the adaptive Hough transform technique and

further research must be conducted in this area.

Once the sphere centers are found, the markers were easily located by

searching the space within the spheres for connected components having a

specified area range. Centroids of these connected components were then

found, which give the coordinates of the markers. One of the disadvantages of

this method is that if the markers are a little blurred due to poor lighting and

focussing, its area may lie outside the specified range and fail to be counted as a

marker.

65

Correspondence is achieved using the proximal uniformity constraint[6],

proposed by Rangarajan and Shah, the assumptions being that initial corre-

spondence is given and that all points are visible in the first two frames. This

algorithm is found to work quite well for most of the sessions conducted. Track-

ing of the markers was possible when they were well spread over the sphere, but

when the markers were too close to each other in a cluster the algorithm failed to

make a correspondence. Occlusion of any marker is not a problem as the

algorithm first makes a correspondence of all the markers that are found and

then interpolates a value for the one that is not found.

If the algorithm is used by itself then the assumptions themselves are also

found to be the limitations of this algorithm. This is true considering that

human intervention is necessary to give an initial correspondence between the

first two frames and the idea of automation is lost. A gradient based optical

flow[30] method can be used for establishing the correct initial correspondence

which was not incorporated in this thesis. Another limitation or assumption

that was missed by the authors[6] was that if some other feature points are

detected other than the ones required, then the algorithm fails completely i.e.,

no new points must be found in the entire sequence of images. This is a major

limitation as the main focus is to track all the points observed in the entire

sequence.

Overall it can be summarized that all the methods implemented performed

reasonably well and allowed us to track the markers over a series of image

frames with correct correspondence. Further work is necessary in motion

tracking to incorporate the third dimension, i.e., to track 3-D coordinates of the

feature points.

APPENDIX A

SPECIFICATIONS OF THE KODAK SYSTEM

PROCESSOR

Controls

Menu-driven Keypad: LCD display provides user access to all system

functions. Includes six dedicated functions keys

and ten-multi-function keys.

Power Switch: Easily accessible.

Eject Switch: Ejects tape cassette.

Operating Features:

Recording Technique: Linear FM.

Recording Medium: 1/2" high density tape.

Tape Handling: Cassette (700ft.)

Frame Rates: Records at 30, 60, 125, 250, 500, 1000

full frames/sec. Up to 6000 pictures/sec.

Frame Formats: 1, 2, 3, 4 or 6 pictures/frame

Recording Time: A minimum of 16 minutes at 30 fps and a

minimum of 30 seconds at 1000 fps.

Normal Playback: 30 frames per second.

Single Step: Displays one frame at a time, forward or reverse.

Jog: Displays successive frames, forward or reverse,

at a slow, continuous rate.

Fast Forward/Rewind: Moves tape at 300 ips forward or reverse. This

66

67

rate is faster than the highest recording speed.

BOT/EOT: Optically senses the beginning of tape and the

end of tape to prevent overruns.

Search: Moves the tape to a given video frame.

Heads

Record & Playback: Two Microgap heads, each providing 19

channels-- 16 video, 2 timing, and 1

unsupported.

Erase: Permanent magnet.

Video Output

Compatible with: NTSC or PAL

Gamma Correction: Variable from 0.1 to 1.0

Grey Sr.ale: 256 levels.

Size: 17"x22"x12 1/4".

Weight: Approximately 80 lbs.

Power: 110/220 VAC, 60/50 Hz, 8 amps/4 amps.

IMAGER

Control Keys: Live, Record & Stop

I/O Jacks: Video, Audio, & Remote Trigger.

Sensor: 192x240 pixel NMOS array.

Lens Mount: C-Mount, with electronic remote control

capability for zoom, focus and exposure.

Tripod Mount: 1/4-20 and 3/8-16 with standard ANSI hole

pattern.

Cables: 15 ft. standard.

Size: Approximately 9"x4"x5"

Weight: Approximately 5 lbs.

68

Power: Derived from processor.

KEYPAD

Dedicated-function Keys

Live: Displays live image on viewfinder and monitor.

Record: Starts recording.

Stop: Stops recording or playback and freezes the last

image in frame store.

Replay: Moves tape to first frame of most recent

recording session and plays back at 30 fps.

Play: Plays a recording in any selected playback mode.

Help: Provides short cut paths through menu tree.

System Software Menu

System Setup: Controls Imager selection, overlay format,

position and size, frame rate and division factor,

automatic lens functions and session numbers.

Move Tape: Controls playback mode and event markers.

Video Display: Enables reticle, gamma adjustment, interlaced

video and saved image.

Environment: Controls time and date.

APPENDIX B

SOME DEVELOPMENT TOOLS IN VISILOG

Image Access Routines

dupnf_() Retrieves a free image handle

C Definition IMAGE dupnfinj);

IMAGE *rtj Pointer to reference image.

image() Retrieves IMAGE handle of a given image object

C Definition IMAGE irnage_(name,mode,verify,nfc);

char *name; Pointer to the image name.

char *mode; Pointer to the access type.

char *verify; Pointer to verification flags.

IMAGE *nfc; Pointer to the control image.

readpx () Read a pixel

C Definition void readpx (nf,x,y,buffer);

IMAGE *nf; Pointer to the image.

long *x, *y; Pointer to the position.

char *val;

writpx () Writes a pixel

C Definition void writpx_(nf,x,y,buffer); Pointer to the image.

IMAGE *nf; Pointer to the image.

long *x, *y; Pointer to the position.

char *val;

69

70

Display And Acquisition Routines

visclr () Clears the display memory

C Definition int visclr ();

xiutst () Sets the lookup tables to pre-defined tables

C Definition int xlutst (type);

long *type; Pointer to table type.

xvisu_() Positions the display window on an image

C Definition IMAGE *a Pointer to the image.

xzoom_() Sets the hardware zoom factor

C Definition int xzoom (n);

long *n; Pointer to the zoom factor.

zgrtxt () Draws text onto an image

C Definition int zgrtxt (nf,test,coor;lcol,size,bcol,orient);

IMAGE *n_f; Pointer to the image.

char *text; String to write.

long corrf2J; X & Y left upper coordinates

long *lcol; Pointer to the letter level.

long size[2]; Pointer to the X,Y letter size.

long *bcol; Pointer to the background

level.

long *orient; Pointer to the orientation flag.

71

Point To Point Operations

sarit () Arithmetic operations

C Definition void sarit (nfil,nfi2,nfo,topp,tfg);

IMAGE *nfil; Pointer to input image 1.

IMAGE *nfi2; Pointer to input image 2.

IMAGE *nfo; Pointer to the output image.

long *top; Pointer to the operation code.

long *tfg; Pointer to the operation type.

sthr () Thresholding of images

C Definition void sthr (nfi,nfo,level,value,option);

IMAGE *nfi; Pointer to the input image.

IMAGE *nfo; Pointer to the output image.

long level[2]; Low and high threshold.

long value[3]; Low, mid & high output values

long *option; Pointer to the operation code.

Analysis Operations

sarea_()) Surface of binary image

C Definition void sarea (nfi,area);

IMAGE *nfi; Pointer to the input image.

long *area; Pointer to the surface

parameter.

sinert_() Inertia moments

C Definition void sinert (nfi,moment);

IMAGE *nfi; Pointer to the input image.

72

float moment[5]; Array of inertia moments.

snumbe_() Number of connected components

C Definition void snumbe_(nfi,nfw,number);

IMAGE *nfi; Pointer to the input image.

IMAGE *nfw; Pointer to the work image.

long *number; Pointer to the number of cells.

Morphology Operations

slabel_() Labelling of connected components

C Definition void slabel (nAnfo);

IMAGE *nfi; Pointer to the input image.

IMAGE *nfo; Pointer to the output image.

Edge Detection Operations

scmpas () Compass gradient

void scmpas_(nfi,nfg,nfo,ty,scale,red);

IMAGE *nfi; Pointer to the input image.

IMAGE *nfg; Pointer to gradient amplitude.

IMAGE *nfo; Pointer to orientation image.

long *typ; Pointer to the kernel indicator.

long *scale; Pointer to the scaling factor.

long *red; Pointer to the reduction factor.

sedge3_() 3 x 3 Edge detectors

C Definition void sedge3_(nfi,nfx,nfy,ty,scale,red);

73

IMAGE *nft Pointer to the input image.

IMAGE *nfx; Pointer to X gradient image.

IMAGE *nfy; Pointer to Y gradient image.

long *typ; Pointer to the kernel indicator.

long *scale; Pointer to the scaling factor.

long *red; Pointer to the reduction factor.

srnxsup_() Detection of the local crest lines in gradient

C Definition void smxsupinfx,nfy ,nfi 1 t, nfe);

IMAGE *nfx; Pointer to X gradient image.

IMAGE *nfy; Pointer to Y gradient image.

IMAGE *nfi iv Pointer to gradient amplitude.

IMAGE *nfe; Pointer to the output edge.

APPENDIX C

PROGRAM LISTING USING VISILOG

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "../h/terminal.h" /* Tty manager */

#include "../h/visilog.h" /* Visilog structures */
#include "../h/interl.h" /* External variables */

/**/

/* THE MAIN PROGRAM *1

FILE *out_filel, *out_file2;
long coor[2], size[2], *level;
int radix = 10;
char bufj31;
char *str;
float point[20][2];
int center[4][2];
int sphere, sphl, sph2;
float dist[20];
int files = 0;
int no_markers;
int colsn = 0;

main(argc,argv)
int argc; char **argv;
{

long ttyflag = 0; argc = 0;
stdaln_(&ttyflag,argc,argv);

/* Initializes VISILOG context */

initialize0; .

74

75

starting(argv[1]);
chdir(Old_Dir);
exit(0);

1

initialize()
1

M_MMODE = 0;
vlgini_(); /* Mode 256x256 is set */
if (V ID != NO_DISPLAY)

visclr_();
if (M_ID == CPU_MEMORY)

memclr ();
printf ("\nCleared display memory. \n");

1

/* Check if the file exists */

check(char* name 1)
{

FILE *in_file;
char name[151;
int i;

for (i = 1; i <= 20; i++) /* Assume max of 20 frames to process */
{

sprintf (name, "%s.%d", name 1, i);
in_file = fopen (name, "r");
if (in_file == NULL)
1

if (i == 1)
1

printf ("\n\n\n\nImage files do not exist.\n");
1
else
1

fclose (in_file);
break;

1
1
else
{

fclose (in_file);
files = files + 1;

76

}
1
printf ("\n\n\nNumber of image files to process are %d\n", files);

1

starting(char* name 1)
1

FILE *in_file;
char name[15];
int i;

check(name 1);
sprintf (name, "%s1.dat", name1);
out_file1 = fopen(name, "w");
sprintf (name, "%s2.dat", name1);
out_file2 = fopen(name, "w");

for (i = 1; i <= files; i++) /* Assume max of 20 frames to process */
1

sprintf (name, "%s.%d", namel, i);
process(name,name l,i);

1
}

/* Image processing functions start */

process(char* name,char* namel,int frame)
1

flush_marker();
edge(name,frame); /* Edge detection process */
marker(name,frame); /* Labelling is done */

check_points(name);
storing(name l ,frame);

1

/* Function to detect the edge of the image */

edge(char* name,int frame)
{

IMAGE nffile , /* File image from CPU */

nforig , /* Input memory image *1

nfg, /* Gradient amplitude image */
nfo, /* Gradient orientation image*/
nthr, /* Threshold image */

nflab, /* Labelled image */

nfx , /* X Gradient image *1

77

nfy, /* Y Gradient image *1

nfe; /* Edge image *1

IMAGE nfc; /* Control structure *1

long typ = 0; /* Kernel indicator */

long red = 0; /* Reduction indicator */

long scale = 1; /* Scaling factor *1

long levell 1]; /* Array of low & high thres */
long value[3]; /* Array of low, mid & high */

/* Create a control image structure */

nfc = dupnf (NULL);

/* Get an existing image from file */

strcpy(nfc->file, name);
nffile = image_(nfc->file,"e","",&nfc);

/* Copy the image into memory & display */

strcpy(nfc->file,"init");
nforig = image_(nfc->file,"c","",&nfc);
xlutst_(&zero); /* Linear B&W lut's *1
xzoom_(&two); /* Zoom factor of 2 */
xvisu_(&nforig); /* Show the input image */
scopy_(&nffile,&nforig); /* Does the copying */
fermnf (&nfc);
printf ("\nProcessing image %s. \n", name);

/* Create a gradient image */

nfc = dupnf (&nforig);
nfg = image_("nfg1","s","",&nfc);
nfo = im age_("nfo 1" , " s" ,"" , &nfc);
nfx = image_(" nal","s","",&nfc);
nfy = image_("nfyl","s","",&nfc);
sedge3_(&nforig, &nfx, &nfy, &typ, &scale, &red);
scmpas j&nforig,&nfg,&nfo,&three,&one,&zero);
xvisu_(&nfg);
printf ("\nAmplitude image. \n");

/* Create an edge image */

nfe = image_("nfol","s","",&nfc);
smxsup_(&nfx,&nfy,&nfg,&nfe);
xvisu_(&nfe);

78

printf ("\nEdge Detection is Done. \n");
/*sleep(3);*/

/* To obtain a thresholded image */

set_code(nfc,I_BIN,16,2);
nthr = image_("Athr","s","",&nfc);
level[0] = 18;
level[1] = 184;
sthr_(&nfe,&nthr,level,value,&zero);
printf (" \nThresholded image. \n \n");

/* Hough Transform */

hough(&nforig,frame);

/* Close all image handles */

fermnf (&nforig); fermnf (&nfx);
fermnf (&nfy); fermnf (&nfe); fermnf (&nfc);
fermnf (&nfg); fermnf (&nfo); ferrnnf (&nthr);

1

/* Flush all previous marker & center coordinates *1

flush_marker()
{

int i;

for (i = 0; i < 4; i++)
{

center[i][0] = 0;
center[i][1] = 0;

1
for (i = 0; i < 20; i++)
1

point[i][0] = 0;
point[i][1] = 0;

1
1

/* Function to label the image and to find the centers
of the connected components */

marker(char* namel,int frame)

79

{
IMAGE nffile , /* Threshold image from CPU */

nforig , 1* Input memory image *1

nthr, /* Threshold image */

nfo,
temp,
nflab; /* Labelled image *1

IMAGE nfc; /* Control structure */

char *name = "thr"; /* Image file from disk */

int 1, j, k, 1, m, val, sum, mark, dad;
int cxl, cx2, cx3, cx4, cyl, cy2, cy3, cy4;
float x, y;
float moment[5];
long xl, yl, x2, y2;
long number;
long level[1]; /* Array of low & high thres */
long value[3]; /* Array of low, mid & high */
long area; /* Area of the image *1

coor[0] = 10; coor[1] = 30;
size[0]= 1; size[1]= 1;
(*level) = 255;

/* Get the thresholded image from the disk */
visclr_();
nfc = dupnf (NULL);
strcpy(nfc->file,name);
nffile = image Jnfc->file,"e","",&nfc);

/* Copy the image into memory & display */
strcpy(nfc->file,"ajax");
nforig = image_(nfc->file,"c","",&nfc);

xlutsti&two); /* Linear B&W lut's */

xzoom_(&two); /* Zoom factor of 2 */

xvisu_(&nforig); /* Show the input image */
scopy (&nffile,&nforig); /* Does the copying */

printf ("\nThresholded image. \n");
/*sleep(3);*/

/* Labelling the connected components */

set_code (nfc, I_LABEL, 16,2) ;
strcpy(nfc->file,"nfg1");
nflab = image_(nfc->file,"s","",&nfc);

/* Eliminate extra data */

80

elimin(&nforig, &nflab);

xvisu_(&nflab);
slabel_(&nflab, &nflab);
printf ("\nLabelling done. \n");
scopy (&nflab,&nforig);

/* To count the number of components */
snumbe J&nflab,NULL,&number);
printf ("\nNumber of connected components = %ld\n", number);

/* Finding the center of each component */
set_code(nfc,I_BIN,16,2);
temp = image_("ajax","s","",&nfc);

mark = 150;
printf ("Finding markers for image %s. \n", name1);
k = 0;
for (i = 1; i <= number; i++)
1

level[0] = i;
level[1] = i;
sthr_(&nflab,&temp,level,value,&zero);
area = 0;
sarea j&temp,&area);
if (area > /*8*/7)
{

for (j = 0; j < 5; j++)
moment[j] = 0.0;

sinert j&temp,moment);

x = moment[0];
y = moment[1];
x2 = x + 0.5;
y2= y + 0.5;

if (area <= 19/*20*/)
{

sum = 0;
for (1 = x-3/*4*/; 1 <= x+3/*4*/; 1++)

for (m = y-3/*4*/; m <= y+3/*4*/; m++)
{

xl = 1;
yi = m;
readpx_(&temp,&x1,&y1,&val);
sum = sum + val;

81

}
if ((sum==area) && (distanc aint)x,(int)y)))
{

point[k][0] = moment[0];
point[k][1] = moment[1];
scopy_(&temp, &nforig);
xvisui&nforig);
k++;
printf ("\nMarker : %d (%6.2f,%6.2f)\n", k, x, y);
/*printf ("Area of the marker = %ld\n", area);
printf ("X = %7.2f, Y = %7.2f\n", x, y);
printf ("x = %7.2f, y = %7.2f xy = %7.2f\n",

moment[2], moment[3], moment[4]);*/
str = itoa(k,buf,radix);
writpx_(&nforig,&x2,&y2,&mark);
zgrtxt j&nforig,str,coor,level,size,&zero,&zero);
sleep(2);
zgrtxt_(&nflab,str,coor,level,size,&zero,&zero);
writpx_(&nflab, &x2, &y2, &mark);
xvisu_(&nflab);

}
}

}
1
printf ("\nThe number of markers visible are : %2d\n", k);
if (frame == 1)
1

fprintf (out_filel, "%d %d \n\r", files, sphere);
fprintf (out_fi1e2, "%d %d \n\r", files, k);

1
xvisu_(&nflab);
zgrbct_(&nflab,str,coor,level,size,&zero,&zero);

/* Close all image handles */
fermnf (&nffile); fermnf (&nforig); fermnf (&nflab);
fermnf (&nfc);fermnf (&nthr); fermnf (&nfo); fermnf (&temp);

1

/* Eliminate extra data from the image before labelling */
elimin(input, output)
IMAGE *input, *output;
1

int i, j, k, val;
int cx, cy;
long x, y;

82

for (i = 0; i < sphere; I++)
1

cx = center[i][0];
cy = center[i][1];
for (j = cx-21; j <= cx+21; j++)

for (k = cy-21; k <= cy+21; k++)
{
x= j;
y = k;
readpx_(input, &x, &y, &val);
writpx_(output, &x, &y, &val);

}
}

1

/* To check if all points found are correct */

check_points(char* name)
1

IMAGE nffile , /* File image from CPU */
nforig ; /* Input memory image */

IMAGE nfc;
int i, val;
long x, y;
char beep;

/* Create a control image structure */

nfc = dupnf (NULL);

/* Get an existing image from file */

strcpy(nfc->file, name);
nffile = image_(nfc->file,"e","",&nfc);

/* Copy the image into memory & display */

strcpy(nfc->file,"init");
nforig = image_(nfc->file,"c","",&nfc);
xlutst_(&zero); /* Linear B&W lut's */
xzoom_(&two); /* Zoom factor of 2 */

xvisu_(&nforig); /* Show the input image *1
scopy_(&nffile,&nforig); /* Does the copying *1

val = 255;
beep = 7;

83

for (i = 0; i < 20; i++)
1

x = pointfill0] + 0.5;
y = point[i][1] + 0.5;
if ((x == 0) && (y == 0))

break;
writpx_(&nforig, &x, &y, &val);

1
printf ("\nProcessing of image %s completed. \n", name);
printf ("Hit any key to continue %c\n", beep);
sleep(1);
printf ("%c", beep);
getch();

fermnf (&nffile); fermnf (&nforig); fermnf (&nfc);
1

/* Detects the centre of circles using the Hough Transform technique */

hough(input,frame)
IMAGE *input;
1

IMAGE nffile, /* Threshold image from CPU */
nforig, /* Input memory image */

nfacm, /* Accumulator image */

h_t; /* " " in CPU */

IMAGE nfc;
int i, j, k, 1, n, val, vall, val2, val3, va14, val5, val6, val7, val8;
int maxi, imax, jmax, sumx, sumy, val9, van°, val11, va112;
int p, q, r, cl, c2;
int maxyl, maxy2;
long x, y, z, xl, yl, x2, y2;
double valuel, value2, dir, dirl;
char beep;

/* Get the thresholded image from the disk */
/*visclr_();*/
nfc = dupnf (NULL);
strcpy(nfc->file,"thr");
nffile = image_(nfc->file,"e","",&nfc);

/* Copy the image into memory & display */
strcpy(nfc->file,"ajax");
nforig = image_(nfc->file,"c","",&nfc);

84

xlutst_(&two); /* Linear B&W lut's */
xzoom_(&two); /* Zoom factor of 2 */

xvisu_(&nforig); /* Show the input image */
scopy_(&nffile,&nforig); /* Does the copying */

strcpy(nfc->file,"nfg1");
nfacm = image_(nfc->file,"s","",&nfc);
sarit_(&nfacm,&zero,&nfacm,&two,&zero);

printf ("Hough Transform in progress. \n");
printf ("BE PATIENT Computations being done \n");
n = 0;
z = 0;
for (i = 1; i <= 192; i++)

for (j = 1; j <= 239; j++)
{

x= j;
Y = i;
readpx_(&nforig,&x,&y,&val.);
if (val == 1)
{

xl = x-1;
yl = y-1;
x2 = x+1;
Y2 = y+1;
readpx_(input,&xl,&y1,&val 1);
readpx_(input,&xl,&y,&val2);
readpx_(input, &x 1, &y2, &val3);
readpx_(input,&x2,&ylAval4);
readpx_(input,&x2,&y,&val5);
readpx_(input,&x2,&y2,&val6);
readpx_(input,&x,&y1,&val7);
readpx_(input,&x,&y2,&val8);
sumx = va13 + 2 * val8 + va16 - (vall + 2 * val7 + va14);
sumy = val 1 + 2 * val2 + val3 - (val4 + 2 * va15 + val6);
n++;
for (k = 1; k <= 239; k++)
{

if (sumx != 0)
{

value1 = sumx;
value2 = sumy;
dir = atan(value2/value1);
dirl = (180.0/3.142) * dir;
if (dirl < 0.0)
{

85

dirl = dirl + 180.0;
dir = dirl * 3.142/180.0;

1
if (dir != 0)
{

1= - k/tan(dir) + (i + j/tan(dir));
if ((I > 0) && (1 <= 192))
I

z++;
printf ("%ld\r", z);
xl = k;
y1 = I;
readpx_(&nfacm,&x1,&ylAval9);
vall0 = val9 + 1;
writpx_(&nfacm,&x1,&y1,&val10);

1
1

1
1

1
1
xvisu_(&nfacm);

h_t = image_("Atrough","s","",&nfc);
scopy_(&nfacm, &h_t);
beep = 7;

printf ("\n");
printf ("Number of edge points = %d\n", n);
printf ("Finding centers \n");

sphl = 0;
maxyl = 0;
for (r = 0; r < 4; r++)
{

maxx = 0;
for (i = 1; i <= 192; i++)

for (j = 1; j <= 239; j++)
{

x= j;

y = i;
readpx_(&nfacm, &x, &y, &val5);
if ((maxx < val5) && (val5 > 16))
I

maxx = val5;
imax = j;

86

jmax = i;
}

1
if (maxx != 0)
1

printf ("center(%3d,%3d) maxi = %d \n", imax, jmax, maxx);
x = center[r][0] = imax;
y = center[r][1] = jmax;
if Umax > 90) /*(maxyl <= jmax)*/
1

/*maxyl = jmax;*/
sph2 = sphl;
sphl = r;

1
vall = 250;
writpx_(&nforig,&x,&y,&val1);
for (p = imax - 16; p <= imax + 16; p++)

for (q = jmax - 16; q <= jmax + 16; q++)
1

x1 = p;
yl = q;
writpx_(&nfacm,&xl ,&y1,&zero);

1
if (r == 3)
1

sphere = 4;
printf ("\nNumber of spheres found is %d\n", sphere);

1
1
else
{

sphere = r;
printf ("\nNumber of spheres found is %d\n", sphere);
break;

}
1

if (sphere >= 2)
1
printf ("lowest 2 spheres are: (%d %d) (%d %d)\n", center[sphl][0],
center[sphl][1], center[sph2] [0], center[sph2][11);

value 1 = abs(center[sph1][0] - center[sph2][0]);
value2 = abs(center[sph1][1] - center[sph2][11);
dist[frame] = sqrt(pow(value1,2) + pow(value2,2));
printf ("dist[%d] = %6.2f\n", frame, dist[frame]);

87

if ((dist[frame] > dist[frame-11) && (colsn != 1) && (frame != 1))
1

printf ("Collision occured at the %2d frame. \n", frame-1);
colsn = 1;

1
1
xvisu j&nforig);
printf ("Hit any key to continue%c\n", beep);
sleep(1);
printf ("%c", beep);
getch();

fermnf (&nfacm); fermnf (&nfc); fermnf (&nforig); fermnf (&nfille);
fermnf (&h_t);

1

/* Check if the markers are within the lowest 2 spheres only */

distanc(x,y)
1

int e, f, valuel, value2;
double a, b, c, d;

e = x;
f = y;
a = abs(center[sph1][0] - e);
b = abs(center[sphl][1] - 0;
c = abs(center[sph2][0] - e);
d = abs(center[sph2][1] - 0;
valuel = sqrt(pow(a,2) + pow(b,2));
value2 = sqrt(pow(c,2) + pow(d,2));

/*if (((a < 21) && (b < 21)) I I ((c < 21) && (d < 21)))*/
if ((valuel < 21) I I (value2 < 21))

return 1;
else
return 0;

1

/* To place the centers and the markers in two seperate files */

storing(char* namel,int frame)
1

int i, j;
int maxy = 0;
char name[15];

88

if (frame > 1)
1

sprintf (name, "%sl.dat", name1);
out_file1 = fopen(name, "a");
sprintf (name, "%s2.dat", name1);
out_file2 = fopen(name, "a");

1
for (i = 0; i < sphere; i++)
1

fprintf (out_filel, "%d %d ", center[i][0], center[i][1]);
/*if (maxy < center[i][1])

maxy = center[i][1];*/
1
fprintf (out_file 1, "\n\r");
for (i = 0; i < 20; i++)
1

if ((point[i][0] == 0) && (point[i][1] == 0))
break;

/*if (point[i][1] < maxy-40)
continue; * /

fprintf (out_file2, "%6.2f %6.2f ", point[i][0], point[i][1]);
1
fprintf (out_file2, "\n\r");
fclose (outille1);
fclose (out_file2);

1

References

1. Tsai, R. Y., and T. S. Huang. "Uniqueness and Estimation of Three

Dimensional Motion Parameters of Rigid Objects with Curved

Surfaces." IEEE Trans. on Pattern Analysis and Machine
Intelligence. PAMI-6(1) (1984):13-27.

2. Duda, R.O., and P.E. Hart. "Use of the Hough Transformation to
detect lines and curves in pictures." Communications of ACM. 15
(1972) : 11-15.

3. Jenkin. "Tracking three dimensional moving light displays." in Pro-

ceedings, Workshop Motion: Representation Contr. Toronto. (1983):

66-70.

4. Rosato, A., R. Dave, I. Fischer, W. Carr. "Methodology of a Non-

Intrusive Particle Tracing Technique for Inclined Chute Flows."

Proceedings of the Third DOE/ NSF Workshop. Flow of Particulates

and Fluids. (1991):Oct. 23-25. Worcester, MA.

5. Illingworth, J., and J. Kittler. 'The adaptive Hough transform." IEEE
T-PA1V11. 5 (1987):690-697.

6. Rangarajan, K., and M. Shah. "Establishing Motion Correspon-
dence." CVIGP: Image Understanding 54(1) (1991):56-73.

7. Roberts, L. G. "Machine Perception of Three Dimensional Solids."

Optical and Electro-Optical Information Processing. ed. Tippet, J.
T., et al., Cambridge, Mass., MIT Press. (1965):150-197.

8. Nevatia, R. "Machine Perception." Princeton Hall. (1982).

9. Rosenfeld, A., and A. C. Kak. "Digital Picture Processing." Academic
Press, 2 (1982).

10. Canny, J. "A Computational Approach to Edge Detection." IEEE
Trans. on Pattern Analysis and Machine Intelligence, 8 (1986):
679-698.

11. Canny, J. F. "Finding Edges and Lines in Images." MIT Artificial
Intelligence Laboratory Technical Report TR-720, (1983).

12. Marr, D. Vision, W. H. Freeman and Co., San Francisco, (1982).

13. Marr, D. and E. C. Hidreth. "A Theory of Edge Detection." Phil. Trans.
Roy. Soc. London B207, (1980) : 187-217.

89

90

14. Hough, P.V.C. "Method and Means for Recognizing Complex Pat-
terns." U.S. Patent 3069654, (1962).

15. Kimme, C., D. H. Ballard, and J. Sklansky. "Finding circles by an

array of accumulators." CALM, 18 (1975):120-122.

16. Wechsler, H., and J. Sklansky. "Automatic Detection of ribs in chest
radiographs." Pattern Recognition, 9 (1977):21-30.

17. Tsuji, S., and F. Matsumoto. "Detection of ellipses by modified Hough

transformation." IEEE T-COMP, 27 (1978):777-781.

18. Illingworth, J., and J. Kittler. "A survey of Hough transform." Pattern

Recognition, (1988) :88-116.

19. Ullman, S. Interpretation of Visual Motion, MIT Press, Cambridge, MA,

(1979).

20. Barnard, S. T., and W. B. Thompson. "Disparity Analysis of Images."
Technical Report 79-1, Computer Science Dept., University of

Minnesota, (1979).

21. Sethi, I. K., and R. Jain. "Establishing Correspondence of Non-rigid

Objects Using Smoothness of Motion," Technical Report CRUM-

10-84, University of Michigan Center for Research on Integrated

Manufacturing, (1984).

22. Visilog, Prografruners Guide, Noesis, (1988).

23. Volcy, J., "Kodak Ektapro 1000 Serial Interface for IBM PCs," Techni-
cal report, NJIT, (1991).

24. Ballard, D.H. "Generalizing the Hough transform to detect arbitrary
shapes." Pattern Recognition, 13 (1988): 111- 122.

25. Kodak Ektapro 1000, Reference Manual.

26. Ballard, D.H., and Brown, C. M. Computer Vision, Prentice Hall,
Englewood Cliffs, New Jersey, (1982).

27. Horn, B. K. P. Robot Vision, The MIT Press, Cambridge, Mass.
(1986).

28. Bezdek, J. C., Coray, C., Gunderson, R., and Watson, J. Detection

and characterization of cluster substructure, SIAM J. Appl. Math,
40 (1981):339-372.

91

29. Dave, R. N. "Fuzzy Shell Clustering and Applications to circle Detec

lion in Digital Images." International J. of General Syatems,

(1990).

30. Little, Henirich, and Poggio. "Parallel optical flow using local voting."

Proceedings of Second /CCV, (1988):454-459.

	Automatic motion analysis of colliding spheres
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents
	Table of Contents (2 of 2)
	Chapter I: Introduction
	Chapter II: Literature Review
	Chapter III: Description of the Vision System
	Chapter IV: Preprocessing using Visilog
	Chapter V: Establishing Correspondence
	Chapter VI: Results and Conclusions
	Appendix A
	Appendix B
	Appendix C
	References

	List of Tables
	List of Figures (1 of 2)
	List of Figures (2 of 2)

