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ABSTRACT 

Automatic Motion Analysis of 
Colliding Spheres 

by 

John Vijayakurnar Caesar 

Motion analysis is useful to compute linear and angular velocities and 

acceleration of an object from a sequence of images. This thesis is part of an 

investigation to compute the translation and rotation velocities needed to 

determine the collision parameters of two colliding spheres. This involves the 

tracking of the spheres and feature points on the spheres over a time interval. 

An experimental setup releases two spheres such that they collide and a high 

speed imaging system, i.e., Kodak Ektapro 1000 is utilised to record the motion 

of the spheres. The imaging system is capable of recording at a speed of 1000 

frames/sec with an image resolution of 239 x 192 for each frame. Selected 

images are analyzed in a PC 486 using programs developed with the Visilog 

software from Noesis 1. Edge data from the images allow the feature points and 

the locations of the spheres to be detected and their locations recorded. Centers 

of the circles are computed using the Hough transform technique. Correspon-

dence of the feature points from frame to frame is achieved using the proximal 

uniformity constraint. Suggestions for future work are given. 

1. Visilog is a trademark of Noesis S.A.R.L. 
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CHAPTER I 

INTRODUCTION 

1.1 Overview of the Problem 

Analysis of a sequence of images is of primary importance to certain machine 

vision applications, where objects are to be detected and tracked over a period of 

time for later analysis. Meaningful measurements of their movements, such as 

linear and angular velocities, rotation and acceleration[1], can be obtained from 

these analysis. Some of the fields of application involving motion tracking 

include: 

(a) Computer vision: detection, recognition and tracking of moving 
objects. 

(b) Industry: robot vision and vehicle navigation. 

(c) Communications: video signal compression using motion-
compensated coding. 

(d) Biomedical imaging: study of the heart and cell motion. 

(e) Meteorology: examination of atmospheric processes using satellite 
images. 

(f) Transportation: highway traffic monitoring. 

Some difficult problems are encountered as the automatic analysis of moving 

images is highly dependent on the recording capabilities, facilities and 

environment in which the vision system is used. A few of the problems are listed 

below. 

1) Moving objects tend to have a blurring effect on the recording 

tape or film and detecting the boundaries of these objects is 

1 
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difficult. 

2) As a large number of frames are to be processed, analyzing 

procedures must be efficient. 

3) Shapes of objects could change from frame to frame and efficient 

algorithms are to be developed to identify it and achieve 

correspondence. 

4) An inherent problem in the analysis of moving images is 

occlusion, since different objects move in different directions 

at different velocities. 

1.2 Automatic Motion Analysis 

Motion analysis can be conducted in a controlled, as well as uncontrolled 

environment. In either case, one needs extensive image processing techniques 

for the analysis of the images, which include pre-processing, edge detection, 

segmentation, Hough transform techniques for line and curve detection[2], 

finding features points to track and finding the correspondence of the points. 

The image processing task can be made simpler by using a high speed recording 

system and good lighting techniques. 

The moving light display (MLD) technique[3] is quite popular in many motion 

analysis schemes. These can be produced by attaching small glass reflectors or 

fluorescent markers on the points of interest. A new technique is being 

developed where a remote tracer is tracked[4]. An emitter is embedded in the 

particle to be tracked. Receivers are used to pick up signals from the emitter, 

which is used to track the particle in 3-D. The emitter is an rf transmitter and 

the receivers are loops of coil (receiving antenna), which are magnetically 

coupled. Another approach is to mark white objects with some distinct black 

geometries like circles (spots), rectangles or any random shape which can be 

easily discernible by the vision system. Such strategies enable high contrast 

images to be obtained. Images recorded with a single camera provide the study 
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of motion analysis in 2-D. Three dimensional motion analysis is possible if a 

second camera is strategically placed to record the motion. 

Motion analysis can be generalized to consist of the following: 

• Setting up the experiment, including lights, lenses, camera location, etc... 

• Recording the movement of objects in space. 

• Analysis of each frame to identify and locate the position of the object. 

a) Noise filtering by applying a smoothing operator 

b) Edge detection operator 

c) Search the edge image for required objects 

d) Find location information (position and orientation) of the object 

1.3 Statement of the Problem 

This thesis is part of an investigation into the study of particle collision, where 

the collision parameters are to be studied. Tracking of a particle in free space 

has some constraints due to the particle moving too fast or in an unsuitable 

environment. 

The problem here is to detect and track, in a controlled environment, the 

motion of two spheres colliding in 3-D space. A high speed imaging system i.e., 

the Kodak Ektapro 1000, is used to record the collision of the two spheres at 

various angles of incidence. The imager is capable of recording at a speed of up 

to 1000 frames per second, with a maximum recording time of 35 seconds. The 

playback capability is at the rate of 30 frames per second, which allows for 

visually checking the quality of the images obtained, before further processing. 

The purpose of the thesis was to set-up the imaging system with lights and 

mirrors so that good dual images are obtained. The spheres selected were white 

with randomly marked black spots on them. Programs were developed on the 

PC so that images acquired sequentially from the Kodak system are 

pre-processed to compute edges. This edge information is utilised to find the 

sphere centers using the Hough transform technique[5]. The marker locations 
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were detected by a simple algorithm. Correspondence of the markers from frame 

to frame was achieved by minimizing the proximal uniformity constraint[6], 

which limits the search space. Trajectories of the markers are displayed on the 

monitor to check that correct correspondence has been achieved. Information of 

the locations of the markers and spheres obtained from frame to frame can be 

used to analyze the translational and rotational distances, velocities and 

accelerations. 

1.4 Overview of the Remaining Chapters 

The chapter 2 briefly surveys other techniques in the area of edge detection, 

Hough transform techniques, Fuzzy clustering methods and correspondence of 

feature points. Emphasis has been placed on the methods related to what has 

been done in this thesis. 

Chapter 3 gives a little insight into the type of vision system used. Some 

salient features of the hardware involved and software used have been 

highlighted and a brief description of the experimental setup has been given. 

Chapter 4 discusses the capabilities of the software Visilog, for accessing 

images, and processing images at the pixel level. A brief description has been 

given on some of the routines used in the program, to obtain the edge image, 

multiple circle detection using Hough transform, and finding the feature points 

or markers on the spheres. 

Chapter 5 deals with the correspondence problem and its implementation. 

An algorithm proposed by Rangarajan and Shah[6], has been discussed in detail 

and a solution to occlusion has also been studied. 

Chapter 6 presents the results of the work conducted. Conclusions drawn 

from the experiments have also been discussed. A note on direction for future 

research is also given. 

Appendix A gives specifications of some of the high speed imaging equipment 

used. 
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Appendix B gives a brief description of the Visilog functions used in the 

programs. 

Appendix C contains a listing of some of the programs used. 



CHAPTER II 

LITERATURE REVIEW 

2.1 Edge Detection 

Edge Detection algorithms drastically reduce the image content thus making 

post-processing of these images computationally less expensive. Extracting 

edges from digital images is an important aspect in any machine vision system, 

where it is necessary for object recognition, feature extraction, or for other image 

processing applications. A brief survey was made on some of the popular edge 

detection operators before choosing an appropriate combination. The two major 

classifications of edge detectors are based depending on whether they use first or 

second derivative properties. 

2.1.1 First Derivative Edge Operators 

2.1.1.1 L.G. Robert's Operator: L.G. Robert[7] was one of the first few 

who developed an edge operator which used a 2 x 2 region of pixels at each 

point. Estimates of the magnitude of the image gradient over a 2 by 2 region are 

perhaps the simplest edge operators. The Robert's magnitude operator R1, 

estimates the derivatives diagonally, i.e., 

d1  = f(i,j) - f(i+1, j+1) (E2.1) 

d2  = f(i+1, j) - f(i, j+1) (E2 . 2) 

R
1 
 = [d12 d22]1/2 (E2.3) 

6 
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Instead of calculating the square root of the sum of squares in the 

equation(E2.1), a computationally simpler operator is the Robert's absolute 

value estimate R2 of the gradient given by 

R2 = IdiI + I d2 I (E2.4) 

2.1.1.2 Sobel's Operator: The Sobel's Operator is probably the most 

wide-spread image processing operator of all categories. According to Sobel[8,9], 

the idea is to estimate the gradient (fx, fy) employing the eight neighbor pixels 

with equal weight. However, because the corner pixels are further apart (with a 

factor !2) and because their difference vectors make 45° with the two main 

directions (another factor J) they should contribute to both fx  and fy  with a 

factor of 2 less than the four pixels in the main directions. Therefore the Sobel 

operator pair (Sx, Sy) written as a convolution kernel is the following: 

10-1 r
-1 -2 -1 

Sx = 20-2 Sy = 0 0 0 1  
10-1 1 2 1J 

A digital gradient may be computed by convolving the two windows with an 

image, one window giving the x component fx  of the gradient and the other giving 

the y component f3,. 

fx(i,  j) = Sx  . n(i, j) (E2.5) 

fY' (i j) = Sy  * n(i, j) (E2.6) 

where n(i, j) is some neighborhood of (i, j) and . represents the sum of the 

products of the corresponding terms. The Sobel operator is a nonlinear compu-

tation of the edge magnitude at (1, j) defined by 

gm(i, j) = ,1( x  +./.;) (E2 . 7) 
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and its angle is defined by 

ifx  
ga(i, j) = tan . (E2.8) 

2.1.1.3 Canny's Operator: Canny[ 10] has formulated an edge operator 

that follows three main performance criteria for edge detection. Assuming that 

edge detection is performed by convolving the noisy edge with a spatial function 

f (x) and by marking edges at the maxima in the output of this convolution, three 

performance criteria are specified. 

• Good Detection: There should be a low probability of failing to 

mark real edge points and low probability of falsely marking non-edge 

points. This criterion corresponds to maximizing signal to noise ratio. 

• Good Localization: The points marked as edges by the operator 

should be as close as possible to the center of the true edge 

• Only One Response to a Single Edge i.e., multiple response to 

edges must be avoided. 

The mathematical forms for the first two criteria are easily obtained, which 

gives a product of the localization term and signal to noise ratio. Using the 

criteria for edge detection as a set of functionals of the unknown operator f, 

variational techniques are used to find the function that maximizes the criteria. 

These two criteria on their own are inadequate to produce a useful edge detector 

and the addition of the third criterion gives an operator that has a very low 

probability of giving more than one response to a single edge. It also provides a 

finite limit for the product of localization and signal to noise ratio. An analytic 

form for the operator was found, which is a sum of four complex exponentials 

and is approximated by the first derivative of a Gaussian. In one dimension the 

maxima in the output of this first derivative operator correspond to the zero-

crossings in the output of a second derivative operator. The detector should be 
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directional, the more directional the better. To obtain a good edge the directional 

output is used and the output of less directional neighbors is suppressed. 

A non-maximum suppression scheme[11] was described, where the gradient 

magnitude is non-maximum suppressed in the gradient direction. This 

algorithm uses a nine pixel neighborhood as shown in the figure 2.1. The 

Interpolated Gradient is given as 

ux uy ux 
 G (x, y+ 1) G 1 = G (x+ 1, y+ 1) +

u (E2.5) 
y y 

and in the opposite direction it is 

ux u — u 
G2= 

u 
G (x-1, y-1) + y x  G (x, y-1) (E2.6) 

y uy 

Px
, 
 y is considered maximum if G(x,y) > G1  and G(x,y) > G2. 
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Figure 2.1 Canny's Non-Maximum Suppression Operator 
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2.1.2 Second Derivative Edge Operators 

In this case, edges are detected as the point where the second derivatives of the 

image crosses zero. Marr operators[12] also called the "Mexican hat" operators 

are filters of the form V2 G where V2 is the Laplacian and G is the two 

dimensional Gaussian distribution. The main idea behind these filters is to first 

smooth the image with a Gaussian shaped filter and then find the edges (using 

the laplacian) in the smoothed image. One of the widely used operators in this 

class has been proposed by Marr & Hildreth[13]. 

2.1.2.1 Marr & Hildreth[13]: They propose using zero crossings of the 

operator D2G (x, y) on the given image, where G (x, y) is a two-dimensional (2-D) 

Gaussian distribution and D2  is the second derivative operator for detecting 

intensity changes in the image. The Gaussian operator is used to satisfy 

localization requirements in both the spatial and the spectral domains. Localiza-

tion in the spatial domain arises because most intensity changes are spatially 

localized; hence, the output of the filter should be a smooth function of the 

nearby points. Localization in the spectral domain arises to reduce the range 

over which intensity changes take place. The Gaussian filter satisfies both these 

requirements. For the sake of reducing computations, the operator D2G is 

replaced by the rotation invariant operator V2 G, where V2 is the Laplacian. 

By using V2 G with different widths, zero crossings of V2 G at different scales 

are obtained. 
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2.2 Circle Detection Techniques 

Some of the methods available for circle detection are Least square approach, 

Hough transforms and a more recent method is the Fuzzy clustering technique. 

These techniques are efficient in detecting circles but each has its own 

constraints. If edge data are available in the form of a list of the circle itself the 

least square technique can be applied, but the problem occurs when there is 

noise or if the objects are spread out over the image space. Fuzzy clustering 

techniques may be used to find circles. In objective functional based fuzzy 

clustering algorithms the weighted sum of the distances of the feature vectors 

from cluster prototypes are minimized. The fuzzy memberships are utilized as 

weighting factors. The cluster prototype can be a point or a line or a plane, 

etc.[28]. The Fuzzy c-shell clustering (FCS) method as introduced by Dave[29] 

assumes a cluster structure that is of some s-dimensional hyperspherical shells 

which are simply circles when s=2. Hypersphers refer to boundaries (surfaces 

for s>2). The prototypes do not include interiors-whence the word "shells" to 

descnbe the cluster prototypes. The FCS algorithm uses the Euclidean norm 

and as a result a certain measure of error results from measuring distances that 

are not Euclidean. This technique does have some problems like, it is sensitive 

to noise, sensitve to outliers, etc. The Hough transform is more robust and extra 

data in the image are not too much of a problem. 

2.2.1 Hough Transform Based Techniques 

The Hough Transform, HT was first introduced by P.V.C. Hough[14] as a method 

of detecting complex patterns of points in binary image data. Some of the many 

desirable features of this technique are described. Each image point is treated 

independently and therefore the method can be implemented using more than 

one processing unit. It can recognize partial or slightly deformed shapes. The 

HT method is very robust and random image points are unlikely to contribute 
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much to the accumulator bin. The HT can also simultaneously accumulate evi-

dence for several examples of a particular shape occurring in the same image. 

For the most part HT has been used to detect straight lines. 

Kimme, Ballard and Sklansky[15] have shown that circular arcs can be 

detected and applied their technique to a medical image processing task. 

Essential to their method was the use of edge direction information to constrain 

the range of parameters addressed. Parabolas and ellipses have also been 

investigated by several authors[16,17]. 

Circles are usually described by three parameters their center coordinates 

(a,b) and its radius r. However, if we use extra information concerning the edge 

direction of image features then the circle detection problem can be decomposed 

into a two stage process which involves a 2-D HT to find estimates of the center 

parameters(a,b) [5], followed by a trivial 1-D HT or histogramming step, to find 

the best value of the circle radius. The circle center finding involves intersection 

of straight lines in the 2-D parameter space. Chapter 4 explains this concept in 

a little more detail. 

There has been a reasonable amount of progress in techniques to achieve 

storage and computation savings. Illingworth and Kittler[5,18] have developed 

an iterative coarse-to-fine search strategy for detecting lines and circles in 2-D 

and 3-D parameter spaces. Their implementation is called the adaptive Hough 

transform, AHT. It uses a small accumulator array which is thresholded and 

then analyzed by a connected components algorithm. The shape and extent of 

the connected components determine the parameter limits which are used in the 

next iteration. Limits can be decreased, expanded, rotated or translated depend-

ing on the distribution of the counts in the accumulator. A simple example[5] 

involving searching for circles in a 3-parameter space showed that it was several 

hundred times faster than the standard method. 

The HT has proved a valuable method in a large number of machine vision 

and related areas. It is a very robust method in the presence of extra data and 
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can cope well with situations where some data are missing. Its major problems 

have been that in its simplest implementation it requires a lot of computation 

and a lot of storage for high dimensional arrays. However, it can be seen that a 

lot of research has been focussed on approaches that have led to very fast and 

space efficient digital implementations. 

2.3 Motion Analysis and Feature Point Correspondences 

Motion analysis and matching of feature points has always been an intriguing 

aspect of image processing. Motion analysis and matching of points are inter-

related and the former cannot do without the latter. Motion analysis is possible 

only when feature points in one frame can be matched accurately with 

corresponding points in the next frame. Deriving motion information of an 

object from a sequence of images is a challenging research area in computer 

vision. Processing a sequence of images is definitely complex but the amount of 

information obtained, far outweighs its computational disadvantages. In this 

thesis more emphasis has been placed on feature point correspondence rather 

than the analysis of motion. 

Ullman[19] has proposed a minimal mapping theory for correspondence. 

His approach is probabilistic in nature and he assumes that each point is 

moving independent of every other point. One limitation of this assumption, is 

that if the points being tracked belong to the same object, they move as a rigid 

structure, thus violating the independence assumption. But, when the points in 

a frame belong to different moving objects, the points on different objects move 

independently of each other and the minimal mapping theory works well. At low 

velocities the cost function used by Ullman reduces to the distance. 

Jenkin[3] presented a method for tracking the 3-D motion of points from 

their 2-D images as viewed from a nonconvergent binocular vision system. This 

scheme used the concept of velocity smoothness. Position and velocity of points 

in 3-D were tracked, given the initial 3-D positions and velocity of the points and 
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a sequence of images. Two frames were considered at any instant of time and 

each frame had a left stereo image and a right stereo image. The stereo 

correspondence and the velocity in the first frame are known and the stereo 

correspondence and the velocity in the next frame are to be determined. A 

greedy strategy was used to obtain the best solution. 

Barnard and Thompson[20] use an iterative algorithm to match feature 

points selected in two different frames taken in a small time interval. Initial 

probabilities for matches between pairs of points are made based on a common 

motion heuristic. It restricts the potential match for a point, assuming that a 

point does not move a large distance between frames. The probabilities are then 

refined to strengthen common motion of neighboring points. The algorithm 

terminates when all the probabilities of matches between pairs of points are 

close either to 1 or to 0. 

Sethi and Jain[211 have proposed two iterative algorithms GE (Greedy 

Exchange) and MGE (Modified Greedy Exchange), which minimize the cost 

function called path coherence. Initial correspondence is assumed to be known 

between frame 1 and 2 in GE. Then it extends the trajectories frame by frame 

starting with an assumption that the nearest match is a correspondence. An 

iterative loop exchanges correspondences which improves the cost function 

value. This process continues till correspondence in all the frames is 

established. The difference between GE and MGE is that in MGE initial 

correspondence is not assumed and the process is repeated in the forward and 

backward directions, which could alter the initially assumed correspondence. 

One of the more recent advances in this area has been by Rangaragan and 

Shah[6] who propose a proximal uniformity constraint to solve the correspon-

dence problem. According to this constraint, most objects in the real world 

follow smooth paths and cover a small distance in a small time. Therefore, given 

a location of a point in a frame, its location in the next frame lies in the proximity 

of its previous location. An efficient non-iterative algorithm is proposed which 
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minimizes the proximal uniformity cost function and establishes correspondence over a 

sequence of frames. The assumption in this approach is that initial correspondence in 

the first two frames is known. A more detailed description of this approach is discussed 

in chapter 5. 



CHAPTER III 

DESCRIPTION OF THE VISION SYSTEM 

3.1 Hardware Used 

The Advanced Frame Grabber (AFG) is a high performance member of Imaging 

Technology Incorporated's VISONplus-AT family of board-level image processors. 

The AFG is a two-slot, PC AT based image processor that combines many 

important elements for advanced image processing applications. The AFG is a 

high-resolution video digitizer, frame memory and image processor capable of 

digitizing and displaying RS-170, CCIR and non-standard video images. The 

digitized images are stored in a special on-board image memory. The AFG 

includes the Texas Instruments TMS34010 Graphics Subsystem Processor 

(GSP) for fast graphics, image processing and display control. 

The AFG is a two board set, that plugs directly into two adjacent expansion 

slots in the PC AT. The AFG digitizes the incoming video signal to eight bits of 

resolution. The AFG supports non-standard image sources and line scanners, 

as well as standard RS-170 and CCIR video sources. The AFG memory is 1024 

by 1024 pixels by 16-bits and stores 8-bit, 12-bit and 16-bit image data. The 

AFG provides a separate 512K byte auxiliary memory for the GSP. The image 

memory and auxiliary memory are both mapped in the GSP address space. This 

allows the images to move from one memory to the other to gain additional 

processing space or continue processing in parallel with acquisition. 

17 
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The Kodak Ektapro 1000 motion analyzer consists of an imager, processor, 

controller and a monitor. The imager has an image intensifier assembly behind 

the lens and in front of the sensor. The image intensifier functions as an 

electronic shutter and light amplifier. This increases the imagers ability to 

capture events in low light and to reduce the blurring of objects moving through 

the field of view rapidly. The imager converts the light entering the lens into an 

electrical or video signal. The video signal created in the imager is amplified and 

processed so that it can be transmitted through the imager cable to the 

processor. The main component of the imager is the sensor which is a "solid 

state imaging array". The motion analyzer achieves a frame rate of 1000 frames 

per second by scanning sixteen rows of pixels simultaneously, for a full frame 

image of resolution 239 x 192. 

The Ektapro 1000 processor contains an electronics card bin, a tape 

transport and the power supplies to the system. The processor card bin 

contains eleven printed circuit cards which are required to control the system 

and process the video. The keypad is used to set the operating parameters and 

configure the system for the desired mode of operation. The system operates in 

either the live, record or play mode. 

The controller provides power and control signals to the image intensifier 

assembly. The controller is powered by 110 volts AC and receives a synchroniz-

ing signal from the strobe trigger output of the processor. The gain and gate can 

be adjusted from the controller to vary the light amplification and amount of 

time the electronic shutter is open during each frame respectively. 

The monitor is connected to the processor using the coaxial cable supplied 

with the system. The resolution of the monitor is 239 x 192 

The Kodak Communication Interface (CI) sets the communication protocol 

for control and access with a computer or a terminal which supports the RS-

232-C protocol or IEEE-488 (GPIB) protocol. The CI board supports both serial 

communication and parallel communication. The CI provides a means of 
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externally controlling the EKTAPRO 1000 motion analyzer and accessing the 

internal data. 

A 486 PC is used for communicating with the processor i.e., to issue 

commands, download and upload images, pre-processing the images using Visi-

log and to compute the correspondence. 

3.2 Software Used 

Visilog[22] is a computer vision software from Noesis which incorporates both 

image processing and analysis libraries and a command monitor. The standard 

Visilog distribution includes 

• Image processing and analysis algorithms libraries 

• A set of development tool libraries, to create or access 

images, control display, etc... 

• The source code of a command monitor, which can generate 

the executable task associated with this monitor 

• A number of source code of basic programs to illustrate 

the development of new functions of Visilog 

• Technical documentation 

This software package can run on a large number of system configurations, 

from simple PC or PC-compatible systems to scientific workstations and main-

frame computers. A typical system configuration is shown in the figure 3.1. The 

system configuration to run Visilog and its monitor is composed of: 

• a computer running on MS-DOS, a Microsoft C compiler 

and a disk to store data 

• a display device which is an additional image display 

board supported by NOESIS 

• a control terminal from which to issue commands to the 

system with a mouse device 
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• An acquisition device, i.e., camera input and image digiti- 

zation 

The system configuration for the system used in this set-up is shown in 

figure 3.2. The Visilog package manipulates images, a set of two-dimensional 

data stored on disk files or in the image memory. These images are visualized on 

the display memory and its associated display screen. This display memory is 

just a window of the image memory available to display data and processed 

results. In our case the display memory is identical to the image memory as 

they are actually the same additional board. 



Figure 3.1 A Typical System Configuration 
N 
I-, 



Figure 3.2 System with Imaging Board 
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tv 
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3.3 Description and Working of the Setup 

3.3.1 Description 

Giving a brief description of the experimental set-up, it consists of the following: 

• Two tubes wider than the spheres with settings to vary the 

angle. 

• Two spheres with randomly placed markers on it. 

• Two solenoids mounted on the tubes and connected to a 

triggering device. 

• A mirror placed behind the expected collision space at an 

angle of approximately 45°. 

• Suitably placed lights to illuminate the collision area. 

• A computer to control the triggering device, recording and 

to process the downloaded images. 

• A high speed imaging system i.e., Kodak Ektapro 1000, 

with its accessories like the camera, processor, controller, 

etc. 

3.3.2 Working: 

The experimental set-up has been designed keeping certain constraints in view. 

Collision of the two spheres is expected every time they are released in an 

obstacle free environment. There must be provision to vary the angle at which 

the spheres are released. The spheres must roll through the tubes smoothly 

with little or no friction from the tubes. The triggering mechanism must release 

both the spheres at the same time instant to enable collision. 

The tubes are made of plastic and they are wider than the spheres to provide 

smooth rolling. The tubes are mounted on stands that are capable of rotating 

about their base and the tubes themselves can also be rotated and set at the 
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desired angle. A mirror is placed right behind the collision space at an angle of 

45°  to obtain the top view of the spheres. Solenoids mounted on the end of the 

tube allow the sphere to rest at the beginning of the tube before release. The 

solenoids are connected to a triggering device with a +24 volt supply. The 

triggering device can be activated by the computer using the software VID2 [23]. 

This triggers the solenoids which releases the spheres and after a short time 

interval activates the recorder. 

The imager is placed such that the collision area is in focus and the mirror 

image is also within the field of view. The lighting arrangements are made so as 

to provide a clear image with little or no glare and proper distribution of light 

over the set-up. The camera is connected to the processor and the controller. A 

communication link exists between the PC486 and the processor. Images can be 

observed on the monitor. The communication network of the various 

components are shown in a schematic view in the figure 3.3. The recording 

speed of the imaging system is set at 1000 frames per second and it has a 

playback capability of 30 frames per sec. It can be further slowed down by 

jogging the frames step by step. This allows the collision of the spheres to be 

observed at an extremely slow rate. 

After the collision of spheres has been recorded, it is replayed and a sequence 

of image frames before and after collision are selected for image processing. 

These image frames are transferred from the tape to the PC486 disk using 

VID2[23]. Now the images are processed individually to find the edges, 2-D 

circle and marker coordinates, which is the main area of interest in this thesis. 

The marker coordinates are later matched from frame to frame to track the 

trajectories of these markers. 

The Kodak Ektapro imager has a frame resolution of 239 x 192, which is 

scanned from left to right, bottom to top, row by row. As a result the coordinates 

of the image begin at the lower left hand corner, with the origin starting at (1, 1). 
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Images in Visilog are read differently from the imager i.e., the image is read 

from left to right, top to bottom, row by row. This puts the origin at the top left 

hand corner, with the origin starting at (1, 1). This has got to be kept in mind 

when transferring images from the Kodak Ektapro to the Visilog system. 



Figure 3.3 Schematic view of the communications and experimental setup 
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CHAPTER IV 

PREPROCESSING USING VISILOG 

4.1 Introduction to Visilog 

visilog[221 is a computer vision software package which incorporates both image 

processing and analysis libraries and a command monitor. This package can be 

used as a set of libraries, which can be combined by the user to perform certain 

specific vision tasks and to develop standalone programs more specific to the 

users requirement or area of interest. It can also be used as a Computer Vision 

development environment, where over two hundred Vision operations are 

activated using the command interpreter. 

Standard image processing tools, such as arithmetic and logic operations 

between images, display and acquisition control, convolution and elementary 

high or low pass filtering and standard edge detection algorithms are included in 

this package. It also incorporates some of the most advanced vision tools, rang-

ing from Mathematical Morphology operations to Modern Edge Detection 

schemes. A more detailed description of Visilog is given in the appendix. 

Standalone programs have been developed in this Thesis which provide a 

greater flexibility in performing the vision functions, allows new image 

processing tasks to be coded in 'C' and also removes the necessity of the user to 

key in commands after every step through the interpreter. Standalone programs 

are designed to run outside the interpreter context, with a minimum of 

interaction with the user. There is a set of global variables which describe the 

27 
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display configuration, the image memory size and content, etc... These variables 

are necessary and must be initialized prior to any call to a Visilog routine. Such 

initialization takes place in the starting phase of Visilog and has been grouped in 

one function, which must be called prior to any image access or operation in a 

standalone program. 

Giving a brief description of the computer implementation of the Visilog 

functions, the program can be considered as divided into three main 

subroutines with other supporting subroutines. The three main subroutines 

being 

• Edge( ) 

• Hough( ) 

• Marker( ) 

Before these subroutines can be executed there are certain procedures and 

functions to be followed which are a vital part of the program. As mentioned 

earlier the function to be called before any image processing operation can be 

performed is stclain ( ). When this function is called a set of global variables are 

automatically allocated and initialized. The declaration of this function is: 

stdaln (flag, argc, argv) 

long *flag; 

int argc; 

char *argil ]; 

The flag pointer points to 0 for standalone applications. The argc, argv 

arguments are the standard command line processing arguments of 'C'. Once 

stdaln ( ) is called, the application program knows of the image memory, the 

display memory, their type or configuration and will permit access to images, 

acquisition display and processing functions. 
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4.2 Accessing Images in Visilog 

4.2.1 Image 

Images are formed of picture elements or pixels of a specific arithmetic format. 

The data is organized according to some pre-defined rules which must be 

specified. In Visilog the images are considered to gather three classes of infor-

mation: 

• Image Header, describing the arrangement of the image 

information, type of arithmetic format, image size, etc. 

• Image User Header, user stored customized information. 

• Image Pixels, stored as rows of consecutive pixels. 

Whenever image data is to be accessed, the headers and the pixel informa- 

tion 

 

are also simultaneously accessed. 

4.2.2 Accessing Images 

Accessing images is very similar to the standard file access routines in 'C'. The 

task is to open the files, read the input file, modify the information, write the 

new information to the output file and then close all the open files. Images are 

referenced by their name from the user point-of-view. To access images in 

programs an image handle is obtained, which is associated to the image name. 

An image handle is a new 'C' object which is declared as 

IMAGE nf, 

Each time a valid image handle is retrieved, information to the image header 

and pixels is simultaneously accessed. Image handles are opaque structures 

defined in the visilog.h include file. An image handle returns a pointer to a 

structure of type image, that is a pointer to some place in the CPU memory of the 

system. This pointer is not initialized and as such cannot be used. When 

functions like image_0, xgrakf ) or dupnf (), are enlled enough memory space to 
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hold a structure of type image is first dynamically allocated, then the structure 

fields are filled with proper values, then the valid pointer to that allocated space 

is returned, which can be used. One of the functions which returns a valid 

image handle important to the program is image_( ). The declaration of this 

function is: 

IMAGE image_(name, mode, verify, control) 

char *name; 

char *mode; 

char *verify; 

IMAGE *control; 

The argument name points to the name of the image. 

The mode argument specifies the type of access required for the image and 

contains one of the list [e,s,c,t]. 

• "e" specifies that the image already exists. 

• "s" specifies image to be created if it does not exist or over 

write if it does exist. 

• "c" specifies image will be created even if it already 

existed. 

• "t" specifies that a temporary image is created and will be 

destroyed when the handle is released. 

The verify argument specifies type of verification to perform on the size and 

arithmetic format of the image, an empty string " " checks nothing. 

The control argument is a free IMAGE handle used to specify the image 

header information. Free IMAGE handles are obtained by calling the dupnf ( 

)function, such as 

control = dupnf ( NULL); 

Once the IMAGE handles have been obtained it is important to release these 

handles. To release the IMAGE handle the name of the image is passed by 
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address to the function ferrnnf ( ). 

Accessing images in Visilog can be generalized by paying attention to the 

following points: 

• Declare image handles 

IMAGE handle; 

• Retrieve proper image handles 

handle = image_( ); 

• Release handles when no longer required 

fermnf (&handle); 

4.3 Program Description 

4.3.1 A brief description of the algorithm and functions used 

1) Initialize( ): Initializes and clears the image memory. 

2) Check(name): Assuming that a maximum of 20 frames are stored in the 

hard-disk a check is made to see if the sequence of images named exists or 

not. 

3) Starting(name): Starts a loop which sends the name of the images to be 

processed one at a time till all the frames are processed for a maximum of 20 

frames. 

4) Process(name,namel,frame): This passes the name of the image to functions 

where the images are called and processed. 

5) Flush_marker( ): Array locations which store the coordinates of the centers of 

the spheres and markers are initialized to 0. 

6) Edge(name,frame): Image from the disk is called and its edges are obtained. 

7) Hough(image,frame): Multiple circle detection is done using the hough 

transform technique for a maximum of 4 spheres. 
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8) Marker(name,frame): Markers in the image are detected in the lower two 

spheres. 

9) Check_points(name,frame): Markers obtained in the previous function are 

superimposed on the original image to make a visual check for accuracy. 

10) Storing(name,frame): In this function the coordinates obtained for the 

centers of the spheres and the markers are stored in two separate output 

files. 

A listing of the programs used is available in the appendix. Of all the func-

tions used in this program only a few need to be explored in detail. 

4.3.2 Initialize( ) 

Initialization must be done before proceeding onto the image accessing/process-

ing routines. This is accomplished by the function initialize( ). The 256 x 256 

image memory partitioning is selected and the Visilog default image format and 

image tables are initialized. The display memory and the CPU memory are 

cleared and any images stored in this location are lost. 

4.3.3 Edge(char* name,int frame) 

The name of the image and the frame number being processed are passed as 

arguments to this function. The first step performed in this function is to 

declare all the image handles necessary within the function. A control image 

structure is created with a call to dupnf O, and since no reference image is 

needed the argument to this function is NULL and default image parameters are 

assigned to that structure. An image handle is declared to obtain an existing 

image from the disk and another is created to store this image into the display 

memory with calls to the image_( ) function. Linear black and white look-up 

tables are defined with a call to x/utst ( ) and the zoom factor is set at two using 

xzoom ( ) i.e., a 256 x 256 window is set. This allows the image to be displayed 

over the whole screen of the Visilog monitor, as the image size obtained from the 
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disk is 239 x 192. The image from the disk is copied into the image memory with 

the scopy_() ) function and is displayed onto the monitor with the function 

xvisu O. As the control structure with default parameters is no longer required 

the control image handle is released with a call to ferninf O. Another control 

structure is created, with the image obtained from the disk passed as an address 

to the dupnf ( ) function so that its physical parameters are referenced. Other 

image handles are created with this control structure and passed as addresses 

to the function sedge3_( O. This function performs an elementary edge detection 

with the Sobel[9] mask. The X gradient and Y gradient images are computed 

from the input image. This function does not yield a gradient amplitude image 

which is then obtained by using the function scrnpas_( ). 

Next a non-maximum suppression function is applied to get a good edge 

image following a method proposed by Canny[111. This function is called 

srmcsup_( ), it takes the X gradient image, Y gradient image and the gradient 

amplitude image as the input and returns a pointer to the output edge image. 

The X and Y gradient images are used to determine the gradient orientation and 

only points for which the gradient amplitude is a local maxima are marked as an 

edge. Resulting edges retain the original gradient amplitude and form curves 

and lines of thickness one. The resulting edge image can be displayed on the 

monitor with xvisu_(). A threshold is set on the image so that only relevant edge 

points are retained and the rest can be deleted. This helps to remove all 

unwanted data and any extraneous information that is not required can be 

eliminated, drastically reducing the image content, thus making post-processing 

of these images computationally less expensive. The function used in this case 

is called sthr O, which returns a binary output. As the output is binary, the 

control handle must be reset with the correct arithmetic format using set code() ) 

and an image handle assigned to the output image. The input image is the edge 

image from the previous function and an array of low and high thresholds are 

the parameters to this function. The output points of the binary image obtained 
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are defined as: 

0(n, rn) = 1 iff low <= I(n,m) <= high, I(n,m) is input image 

0(n,rn) = 0 otherwise. 0(n, m) is output image 

This gives a good edge image of the spheres with the markers on it. Since the 

images have been recorded in 2-D the spheres are represented as circles in the 

image. The edge image obtained in the above procedure is stored onto the disk 

so that it can be accessed by other routines and the image memory is not 

overloaded. The subroutine hough( ) is now called for the detection of circles. All 

the image handles which were used within this function now have to be released 

with individual calls to the fermi-if ( ) function to allow the memory locations to 

be free for the next operation. The figure 4.1 shows a good example of an image 

and the results obtained using the Sobel's operator, non-maximum suppression 

and thresholding. 
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Figure 4.1 a) Shows the grey level image 
b) Image after Sobels operator 
c) Image after Non-Maximum Suppression 
d) Edge image after thresholding 
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4.3.4 Hough(input,frame) 

The edge image and the frame number being processed are passed as arguments 

to this function. This subroutine detects the centers of circles using the Hough 

Transform technique[5,24]. In this routine the images are accessed at the pixel 

level as compared to the functions used so far which take advantage of the 

elementary Visilog routines. Image handles are declared and a null control 

structure is created. The edge image stored in the disk in the previous function 

is recalled for further processing. 

To locate the circle centers we incorporate a constraint that the vectors which 

are normal to the circle boundary must all intersect at the circle center(ao, bo). 

Estimates of these normal directions are obtained from local gray-level edge 

detection operators, i.e., the Sobel operator. The figure 4.2 illustrates how the 

knowledge of (x, y, 0) leaves only (a, b) as parameters. Mapping (x, y, 0) triplets 

into 2-D parameter space produces a straight line. The intersection of many of 

these lines identifies the circle center coordinates. 

Since the circle finding problem has been formulated to produce a two stage 

algorithm which involves a 2-D HT to find the estimates of the center parameters 

(a, b), the accumulator array can be considered as a 2-D image of the Hough 

transform. This algorithm has been implemented in this thesis. 

An image is created to store the 2-D accumulator array and initialized to 

zero. A check is made in the edge image for the edge points using the function 

readpx ( ) and at every edge point the X and Y gradients are computed from the 

original image and the direction angle is found. For the image parameter range 

the HT is accumulated and every increment is updated in the accumulator 

image using the writpx ( ) function. The accumulator image is analyzed for local 

maxima and its coordinates give the center of the circle. 

This method can be extended to detect multiple spheres in an image. After 

the first center has been found, a region of 10 x10 pixels are reduced to zero 

around that center, and a search for maxima is made again. This can continue 
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for a predetermined threshold value below which no circle is assumed to be 

detected. The robust nature of the HT algorithm is seen in figure 4.3 where the 

presence of noise does not affect the center of the circle and figure 4.4 shows 

that multiple circles are detected quite accurately 

Figure 4.2 Relationship between (x, y, 0) and center parameters 

(a, b) for a circle. 



Figure 4.3 Shows the circle center using Hough transform 

Figure 4.4 Shows multiple circle detection 
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4.3.5 Marker(char* name,int frame): 

The name of the image and the frame number being processed are passed as 

arguments to this function. All the image handles and variables necessary 

within the function are declared. The main aim of this routine is to locate all the 

markers on the lower two spheres in the image which is accomplished with a 

simple heuristic approach. The display memory is cleared with a call to visclr ( ) 

and a control image structure is created with a call to dupnf (NULL). The thresh-

olded image stored in the disk, in the function edge, is accessed and displayed. 

Extra data in the image is eliminated with a call to elimin( ) which deletes all 

information outside the radius of the circles whose coordinates were found in 

the function hough(). Labelling of the image is done for which the parameters of 

the control structure is changed by set code( ). The labelling operation is 

performed by slabel ( ) with a binary image as its input. Starting from the binary 

image, it gives a grey level image where all the pixels of a connected component 

have a unique grey level value, thus labelling each connected component. The 

number of connected components is computed from the labelled image using the 

function snumbe_( ). 

Now that the connected components are labelled, each labelled object is 

analyzed separately to find the markers. Separating every labelled object for 

analysis, from the main image poses a problem. This problem is alleviated due 

to the fact that every labelled component in the labelled image has a unique grey 

level which can be thresholded. A simple algorithm is incorporated at this point 

to locate the markers. 

• For i = 1 to number of components do 

• Threshold to separate the object of component number i 

• Find area of the component i 

• If area lies within the specified range do 

• Compute inertia moments of component i 

• Check if the component lies within the bounds specified 
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• Check if the component location is within the radius of the 

lower two spheres 

• If above conditions are satisfied the component is one of 

the required markers 

• Increment component number and begin loop again 

A temporary image is created which can store a binary image. The labelled 

image is thresholded with a call to sthr ( ) and the number of the component 

itself is used as the low and high level of the threshold. This gives us an image of 

that particular numbered component stored in the temporary image handle as a 

binary image. The first component is now separated from the labelled image and 

is available for further processing. The area of the component is found by using 

the function sarea ( ) which computes the surface area of the binary image as 

the sum of non-zero pixels. Area of the component is now checked against the 

range of size of the markers. If within the range then siriert ( ) gives the inertia 

moments of the binary image which are computed as below: 

moment(0) =  
NEX, 

1 
moment(11 =  

NEY, 

Where N is the number of non-zero pixels, (Xn,Yn) the coordinates of such 

pixels. A check is made to make sure the component is bounded within a 

certain box and the location of their X and Y coordinates are within the radius of 

the two spheres. When these conditions are satisfied, the component is termed 

as a marker and its location is stored. The figure 4.5 shows that marker 

locations have been located. 
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Figure 4.5 Shows the markers and displays the number located 



CHAPTER V 

ESTABLISHING CORRESPONDENCE 

5.1 Definition 

Given n frames taken at different time instants and m points in each frame, the 

problem of motion correspondence is to map a point in one frame to another 

point in the next frame such that no two points map onto the same point[6]. 

This definition of the problem and the method for its solution as proposed by 

Rangarajan and Shah has been studied in this thesis. 

5.2 Proximal Uniformity Function 

The aim is to obtain a one to one correspondence ctok between points of the kth 

frame and the (k + 1)th frame. It is assumed that objects in space move a small 

distance in a small amount of time and their motion is smooth or uniform. 

Therefore the location of a point from one frame to the next will be in the 

proximity of the previous location and the objects are assumed to follow a 

proximal uniform path. A proximal uniformity function 6, was proposed which 

• obeys the following criteria. 

• In the two successive frames selected the speed of the 

objects does not change much. 

• Direction in the two successive frames do not change 

much. 
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• There is very small displacement between any two successive 

frames. 

The proximal uniformity function is defined as follows: 

where 1 __ p, q, r S m; 2 Skm-1; q = (13k-1(p); Xq' Xr
k+ 1 
 is the 

vector from point q in frame k to the point r in frame k + 1 and I X denotes the 

magnitude of the vector X. The ith point in the jth frame is denoted by the vector 

Xi  in 2-D coordinates. 

The first term in the proximal uniformity function represents a relative 

change in velocity and the second term represents a relative displacement. The 

numerator in each term is an absolute quantity and the denominators represent 

sums of absolute quantities for all possible matches. The first term takes care of 

smooth and uniform trajectories and the second term forces proximal matches. 

A major assumption being made with this proximal uniformity function is 

that (1)1, an initial correspondence, is known. Knowing the initial correspon-

dence the algorithm correctly marks the trajectories of the points from frame to 

frame. The correspondence cbk is determined by minimizing the cost function 

Es(xk-1 k k+1\  
P ' Xq' Xr 1 • 
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5.3 Implementation of the Algorithm 

It is a non-iterative greedy algorithm A, assigning correspondence of points in 

one frame to the points in the next frame. 

Algorithm A 

Fork■ = 2 to n - 1 do 

• A matrix M (m * m) is constructed, where 

—1 k 
MU, = o (Xp , Xq, Xr 

k +1 
) , when (13k-1(p) = L Points 

from the kth frame are along the rows and points from 

(k+ 1)th frame along the columns. 

• For a = 1 to m do 

i. The minimum element Li, It] in each row i of M is 

identified. 

ii. A priori matrix B is computed, such that for each i, 

BU, = 

in 

M j] + E m [ k, /i]  

j =1,j#1, k=1,k#i 

iii. The El, 1t] pair with highest priority value B[1, is 

selected and clik(i) = li  is assigned. 

iv. The row i and the column Ii  in M is masked. 
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5.4 The Occlusion Problem 

The algorithm A above does not provide for the occlusion of points. Occlusion is 

an inherent problem in the tracking of feature points. An object is considered to 

be occluded if it does not appear in the image due to other objects overlapping on 

it and feature points in that part are missed. Another reason for missing feature 

points is because they may not have been detected by the image processing 

algorithm even though they were present in the image. The different cases of 

occlusion can be due to the following occurrences: 

• Points visible in frame k may not be visible in frame k+1 

• Points occluded in frame k become visible in frame k+1 

• Points visible in frame k get occluded in frame k+1 and 

some points occluded in frame k become visible in frame 

k+1. 

An assumption is made that there is no occlusion in the first two frames that 

are being analyzed and all points are visible in these frames. The first time a 

case of occlusion occurs it is a case 1 occlusion. The modified algorithm detects 

this case of occlusion and fills up for the missing point in the (k+ 1)th frame and 

hence the algorithm never comes across the cases 2-3. Modifications to the 

algorithm A yields the algorithm B. 

Algorithm B 

• Fork = 2 to n - 1 do 

• A matrix M (m * mk+1) is constructed, where 

MIL 
k 

= 6 (Xp — 1Xcr 
kX k + 1

) , when 4)k-1(p) = L 

mk  points from the lcth frame are along the rows and 

mk+1 points from (k+1)th frame along the columns. 

• If (mk+1  < mk) then it is a case of occlusion so do 

i. For a = 1 to mk+i  do 

* The minimum element (h, j] in each column j of M is 

identified. 
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* The priority matrix B is computed such that 

m 

13[1,i7 = E m [i, ii • 
i = i, i# ii  

* The pair [!i, j] with the highest priority value B[!i, j] 

is selected and assignment cl3k(1) = j is made. 

* Row !i and column j are masked in M. 

ii. The points mk  - mk+1  for which correspondence 

has not been found are identified. New feature 

points are created in frame ki-1 for the missing 

points by extrapolating the correspondence from 

frame k - 1 to frame k. 

iii. Set rrik+i  = m 

else there is no occlusion 

i. Algorithm A 

Points in the frame k that do not have corresponding points in the frame 

k+ 1 are identified and new points are created corresponding to those missing 

, k, points. If a point a in frame k with coordinates kxa
k 
' ya) which correspond to a 

,, 
point c in frame k - 1 with coordinates (xc

k —1 
 , y

k
c 

— 
1) does not have a corre- 

sponding point in the frame k + 1, then a point b with coordinates 

+1 k+1, 
(xb ,y b 1)  is created to correspond to point a with the equations, 

k+1 k + k k-1 xb = xa  (xa —xc  ) 

k+1 k k k— 1 
Yb = Ya+ (Ya — Yc ) 

This extrapolation ensures smoothness in velocity, both in magnitude and 

direction. 



CHAPTER VI 

RESULTS AND CONCLUSIONS 

6.1 Results 

In this chapter, the results are presented for the experiments conducted on two 

spheres colliding in space at various angles of incidence. Good images were 

recorded by varying the gain and gate to control the light intensity and the 

electronic shutter speed. Selected images were processed and excellent edge 

images and marker locations were obtained. The algorithm proposed by Ranga-

rajan and Shah[6], was implemented and found to work quite efficiently. The 

figures, tables and graphs presented in this chapter give a good illustration of 

automatic image analysis. 

Figure 6.1 illustrates the effectiveness of the procedure adopted and program 

developed using Visilog. Figure 6.1b, is a typical example of obtaining an edge 

image of single pixel width, using the Sobel and Canny edge operators. It also 

shows the efficiency and robust nature of the Hough transform technique in 

finding multiple circle center locations. Figure 6.1c is the result of locating the 

markers and their positions. 

Figures 6.2, 6.3, 6.4, 6.5 show a sequence of 7 frames that are processed to 

find sphere centers, marker locations and trajectories of the markers. Figure 6.6 

is a graph to show the trajectory set for the spheres and markers. The numbers 

on the graph give the frame number at which the coordinates were found. It is 

observed that collision has occured in the 4th frame. 
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An example of correspondence is shown using another set of data where, 

Table 1 and Table 2 show the marker locations for the sphere on the left side 

before and after correspondence and its related graph is shown in figure 6.7. 

The various markers are matched correctly without any false matches taking 

place. 

Figures 6.8, 6.9, 6.10, show another sequence of 7 frames. In figure 6.9 it is 

observed that in the 3rd frame a marker in the right sphere is not located. The 

tabulations for marker locations on the spheres at the right side of the frame, 

before correspondence is shown in Table 3, where the missing marker in the 3rd 

frame has been assigned (0, 0) as its coordinates. Tabulations for the corre-

sponded marker locations are shown in the Table 4. We find that the matching 

algorithm correctly interpolates the coordinates for the missing point and 

assigns it to its proper position. This an excellent illustration of the correspon-

dence algorithm where the problem of occlusion is taken care of. Figure 6.11 is 

a graphical representation of the trajectories of the spheres and markers for this 

sequence of images. 
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Figure 6.1a Shows the grey level image of the two spheres in the col-
lision space. 
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Figure 6.1b Shows the edge image obtained from the grey level image 
using the Sobel and Canny edge operators. The centers 
of the spheres are also marked using the Hough trans-
form technique. The robust nature of this technique to 
multiple center detection in the presence of noise i.e., 
edge points other than that of the circles, is clearly seen. 
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Figure 6.1c Shows that all the markers have been succesfully located 
and the number of markers found is displayed on the 
image. The algorithm used is quite accurate. 
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Figure 6.2 Shows a sequence of grey level images recorded at 
1000frames/sec 
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Figure 6.3 Shows the edge image for the sequence of frames 
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Figure 6.4 Shows that the markers have been successfully located and 
the number of markers found is displayed. 
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Figure 6.5 Shows the first and the last frames superimposed. The 
trajectories for each of the markers are displayed. 
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Figure 6.6a Shows the trajectories of the spheres and its mirror image. 

The spheres were released at an angle of 15°  

Figure 6.6b Shows the trajectories of the markers on the spheres. 
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Table 1: Coordinates of the markers on the left sphere before 
achieving correspondence 

frame marker 1 marker 2 marker 3 marker 4 marker 5 

1 (95.14, (81.07, (87.22, (81.57, (96.00, 
91.36) 93.71) 99.67) 109.79) 108.88) 

2 (105.07, (92.00, (95.24, (86.07, (100.07, 
97.29) 95.21) 102.47) 109.36) 114.36) 

3 (102.62, (103.47, (115.00, (92.20, (104.13, 
97.85) 106.13) 105.33) 109.47) 118.80) 

4 (113.42, (99.86, (111.13, (122.58, (108.00, 
102.67) 109.79) 111.00) 114.42) 123.00) 

5 (112.64, (97.07, (108.13, (118.20, (101.47, 
111.27) 114.71) 118.67) 124.50) 129.29) 

6 (95.00, (110.67, (104.20, (94.76, (112.45, 
120.50) 121.42) 127.07) 135.59) 135.55) 

7 (93.07, (107.87, (100.00, (88.94, (105.77, 
126.57) 132.07) 135.57) 141.35) 146.62) 

Table 2: Coordinates of the markers on the left sphere after 
achieving correspondence 

frame marker 1 marker 2 marker 3 marker 4 marker 5 

1 (95.14, (81.07, (87.22, (81.57, (96.00, 
91.36) 93.71) 99.67) 109.79) 108.88) 

2 (105.07, (92.00, (95.24, (86.07, (100.07, 
97.29) 95.21) 102.47) 109.36) 114.36) 

3 (115.00, (102.62, (103.47, (92.20, (104.13, 
105.33) 97.85) 106.13) 109.47) 118.80) 

4 (122.58, (113.42, (111.13, (99.86, (108.00, 
114.42) 102.67) 111.00) 109.79) 123.00) 

5 (118.20, (112.64, (108.13, (97.07, (101.47, 
124.50) 111.27) 118.67) 114.71) 129.29) 

6 (112.45, (110.67, (104.20, (95.00, (94.76, 
135.55) 121.42) 127.07) 120.50) 135.59) 

7 (105.77, (107.87, (100.00, (93.07, (88.94, 
146.62) 132.07) 135.57) 126.57) 141.35) 
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Figure 6.7a Shows the trajectories of the spheres and its mirror image. 

The spheres were released at an angle of 250  

Figure 6.7b Shows the trajectories of the markers on the spheres. 
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Figure 6.8 Shows a sequence of edge images when the spheres were 
released at an angle of 10° 
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Figure 6.9 Shows the marker locations found in all the frames except 
in the 3rd frame, where only 9 have been found. 
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Figure 6.10 Shows the superimposed image of the first and last 
frames. The trajectories for the feature points are 
displayed. 
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Table 3: Coordinates of the markers on the right sphere with a point 
missing in the 3rd frame before correspondence 

frame marker 1 marker 2 marker 3 marker 4 marker 5 

1 (156.07, (142.46, (148.26, (156.13, (141.57, 
92.57) 90.69) 84.68) 75.93) 75.07) 

2 (149.07, (136.62, (143.35, (153.71, (139.14, 
90.57) 85.85) 81.18) 74.41) 70.14) 

3 (142.08, (138.56, (150.07, (137.23, (0.00, * 
87.77) 77.06) 72.93) 65.69) 0.00) 

4 (136.58, (127.57, (136.00, (148.06, (137.45, 
84.50) 74.14) 73.50) 72.35) 62.36) 

5 (136.00, (150.88, (139.00, (131.00, (143.92, 
81.80) 73.94) 71.00) 69.00) 60.69) 

6 (136.57, (152.94, (142.59, (135.77, (150.73, 
77.93) 74.94) 68.18) 64.15) 60.36) 

7 (154.42, (138.07, (146.94, (157.42, (154.42, 
75.47) 72.93) 65.87) 60.58) 75.47) 

Table 4: Coordinates of the markers on the right sphere after 
achieving correspondence 

frame marker 1 marker 2 marker 3 marker 4 marker 5 

1 (156.07, (142.46, (148.26, (156.13, (141.57, 
92.57) 90.69) 84.68) 75.93) 75.07) 

2 (149.07, (136.62, (143.35, (153.71, (139.14, 
90.57) 85.85) 81.18) 74.41) 70.14) 

3 (142.08, (130.78, * (138.56, (150.07, (137.23, 
87.77) 81.01) 77.06) 72.93) 65.69) 

4 (136.58, (127.57, (136.00, (148.06, (137.45, 
84.50) 74.14) 73.50) 72.35) 62.36) 

5 (136.00, (131.00, (139.00, (150.88, (143.92, 
81.80) 69.00) 71.00) 73.94) 60.69) 

6 (136.57, (135.77, (142.59, (152.94, (150.73, 
77.93) 64.15) 68.18) 74.94) 60.36) 

7 (138.07, (142.08, (146.94, (154.42, (157.42, 
72.93) 59.54) 65.87) 75.47) 60.58) 
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Figure 6.11a Shows the trajectories of the spheres and its mirror image. 

The spheres were released at an angle of 10°  

Figure 6.11b Shows the trajectories of the markers on the spheres. 
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6.2 Conclusions 

The high speed imaging system i.e., Kodak Ektapro 1000 has been effectively 

utilised to obtain clear images of the two colliding spheres. The Sobel and Canny 

edge detection techniques have been successfully used to get good edge images 

as well as gradient images. 

The Hough transform technique has proved once again to be robust and the 

detection of multiple circle centers poses no problem even in the presence of 

noise. This technique has been implemented in a PC 486 with the help of 

Visilog and the AFG card. The computational excesses of HT are significantly 

reduced by using the gradient information from the edge image and the parame-

ters being reduced to two. This makes the accumulator array to be just 2 

dimensional. Implementation of this technique in the PC was made possible due 

to the fact that Visilog considers images as 2-D objects, hence the accumulator 

array was converted into an image and stored in the image memory provided by 

the AFG card. 

The method used in this thesis gives a fairly good result for the detection of 

multiple circle centers, but still the accuracy is limited to a pixel. Subpixel 

accuracy can be obtained by using the adaptive Hough transform technique and 

further research must be conducted in this area. 

Once the sphere centers are found, the markers were easily located by 

searching the space within the spheres for connected components having a 

specified area range. Centroids of these connected components were then 

found, which give the coordinates of the markers. One of the disadvantages of 

this method is that if the markers are a little blurred due to poor lighting and 

focussing, its area may lie outside the specified range and fail to be counted as a 

marker. 
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Correspondence is achieved using the proximal uniformity constraint[6], 

proposed by Rangarajan and Shah, the assumptions being that initial corre-

spondence is given and that all points are visible in the first two frames. This 

algorithm is found to work quite well for most of the sessions conducted. Track-

ing of the markers was possible when they were well spread over the sphere, but 

when the markers were too close to each other in a cluster the algorithm failed to 

make a correspondence. Occlusion of any marker is not a problem as the 

algorithm first makes a correspondence of all the markers that are found and 

then interpolates a value for the one that is not found. 

If the algorithm is used by itself then the assumptions themselves are also 

found to be the limitations of this algorithm. This is true considering that 

human intervention is necessary to give an initial correspondence between the 

first two frames and the idea of automation is lost. A gradient based optical 

flow[30] method can be used for establishing the correct initial correspondence 

which was not incorporated in this thesis. Another limitation or assumption 

that was missed by the authors[6] was that if some other feature points are 

detected other than the ones required, then the algorithm fails completely i.e., 

no new points must be found in the entire sequence of images. This is a major 

limitation as the main focus is to track all the points observed in the entire 

sequence. 

Overall it can be summarized that all the methods implemented performed 

reasonably well and allowed us to track the markers over a series of image 

frames with correct correspondence. Further work is necessary in motion 

tracking to incorporate the third dimension, i.e., to track 3-D coordinates of the 

feature points. 



APPENDIX A 

SPECIFICATIONS OF THE KODAK SYSTEM 

PROCESSOR 

Controls 

Menu-driven Keypad: LCD display provides user access to all system 

functions. Includes six dedicated functions keys 

and ten-multi-function keys. 

Power Switch: Easily accessible. 

Eject Switch: Ejects tape cassette. 

Operating Features: 

Recording Technique: Linear FM. 

Recording Medium: 1/2" high density tape. 

Tape Handling: Cassette (700ft.) 

Frame Rates: Records at 30, 60, 125, 250, 500, 1000 

full frames/sec. Up to 6000 pictures/sec. 

Frame Formats: 1, 2, 3, 4 or 6 pictures/frame 

Recording Time: A minimum of 16 minutes at 30 fps and a 

minimum of 30 seconds at 1000 fps. 

Normal Playback: 30 frames per second. 

Single Step: Displays one frame at a time, forward or reverse. 

Jog: Displays successive frames, forward or reverse, 

at a slow, continuous rate. 

Fast Forward/Rewind: Moves tape at 300 ips forward or reverse. This 
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rate is faster than the highest recording speed. 

BOT/EOT: Optically senses the beginning of tape and the 

end of tape to prevent overruns. 

Search: Moves the tape to a given video frame. 

Heads 

Record & Playback: Two Microgap heads, each providing 19 

channels-- 16 video, 2 timing, and 1 

unsupported. 

Erase: Permanent magnet. 

Video Output 

Compatible with: NTSC or PAL 

Gamma Correction: Variable from 0.1 to 1.0 

Grey Sr.ale: 256 levels. 

Size: 17"x22"x12 1/4". 

Weight: Approximately 80 lbs. 

Power: 110/220 VAC, 60/50 Hz, 8 amps/4 amps. 

IMAGER 

Control Keys: Live, Record & Stop 

I/O Jacks: Video, Audio, & Remote Trigger. 

Sensor: 192x240 pixel NMOS array. 

Lens Mount: C-Mount, with electronic remote control 

capability for zoom, focus and exposure. 

Tripod Mount: 1/4-20 and 3/8-16 with standard ANSI hole 

pattern. 

Cables: 15 ft. standard. 

Size: Approximately 9"x4"x5" 

Weight: Approximately 5 lbs. 
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Power: Derived from processor. 

KEYPAD 

Dedicated-function Keys 

Live: Displays live image on viewfinder and monitor. 

Record: Starts recording. 

Stop: Stops recording or playback and freezes the last 

image in frame store. 

Replay: Moves tape to first frame of most recent 

recording session and plays back at 30 fps. 

Play: Plays a recording in any selected playback mode. 

Help: Provides short cut paths through menu tree. 

System Software Menu 

System Setup: Controls Imager selection, overlay format, 

position and size, frame rate and division factor, 

automatic lens functions and session numbers. 

Move Tape: Controls playback mode and event markers. 

Video Display: Enables reticle, gamma adjustment, interlaced 

video and saved image. 

Environment: Controls time and date. 



APPENDIX B 

SOME DEVELOPMENT TOOLS IN VISILOG 

Image Access Routines 

dupnf_( ) Retrieves a free image handle 

C Definition IMAGE dupnfinj); 

IMAGE *rtj Pointer to reference image. 

image( ) Retrieves IMAGE handle of a given image object 

C Definition IMAGE irnage_(name,mode,verify,nfc); 

char *name; Pointer to the image name. 

char *mode; Pointer to the access type. 

char *verify; Pointer to verification flags. 

IMAGE *nfc; Pointer to the control image. 

readpx ( ) Read a pixel 

C Definition void readpx (nf,x,y,buffer); 

IMAGE *nf; Pointer to the image. 

long *x, *y; Pointer to the position. 

char *val; 

writpx ( ) Writes a pixel 

C Definition void writpx_(nf,x,y,buffer); Pointer to the image. 

IMAGE *nf; Pointer to the image. 

long *x, *y; Pointer to the position. 

char *val; 
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Display And Acquisition Routines 

visclr ( ) Clears the display memory 

C Definition int visclr ( ); 

xiutst ( ) Sets the lookup tables to pre-defined tables 

C Definition int xlutst (type); 

long *type; Pointer to table type. 

xvisu_() Positions the display window on an image 

C Definition IMAGE *a Pointer to the image. 

xzoom_() Sets the hardware zoom factor 

C Definition int xzoom (n); 

long *n; Pointer to the zoom factor. 

zgrtxt ( ) Draws text onto an image 

C Definition int zgrtxt (nf,test,coor;lcol,size,bcol,orient); 

IMAGE *n_f; Pointer to the image. 

char *text; String to write. 

long corrf2J; X & Y left upper coordinates 

long *lcol; Pointer to the letter level. 

long size[2]; Pointer to the X,Y letter size. 

long *bcol; Pointer to the background 

level. 

long *orient; Pointer to the orientation flag. 
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Point To Point Operations 

sarit ( ) Arithmetic operations 

C Definition void sarit (nfil,nfi2,nfo,topp,tfg); 

IMAGE *nfil; Pointer to input image 1. 

IMAGE *nfi2; Pointer to input image 2. 

IMAGE *nfo; Pointer to the output image. 

long *top; Pointer to the operation code. 

long *tfg; Pointer to the operation type. 

sthr ( ) Thresholding of images 

C Definition void sthr (nfi,nfo,level,value,option); 

IMAGE *nfi; Pointer to the input image. 

IMAGE *nfo; Pointer to the output image. 

long level[2]; Low and high threshold. 

long value[3]; Low, mid & high output values 

long *option; Pointer to the operation code. 

Analysis Operations 

sarea_() ) Surface of binary image 

C Definition void sarea (nfi,area); 

IMAGE *nfi; Pointer to the input image. 

long *area; Pointer to the surface 

parameter. 

sinert_( ) Inertia moments 

C Definition void sinert (nfi,moment); 

IMAGE *nfi; Pointer to the input image. 
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float moment[5]; Array of inertia moments. 

snumbe_( ) Number of connected components 

C Definition void snumbe_(nfi,nfw,number); 

IMAGE *nfi; Pointer to the input image. 

IMAGE *nfw; Pointer to the work image. 

long *number; Pointer to the number of cells. 

Morphology Operations 

slabel_( ) Labelling of connected components 

C Definition void slabel (nAnfo); 

IMAGE *nfi; Pointer to the input image. 

IMAGE *nfo; Pointer to the output image. 

Edge Detection Operations 

scmpas ( ) Compass gradient 

void scmpas_(nfi,nfg,nfo,ty,scale,red); 

IMAGE *nfi; Pointer to the input image. 

IMAGE *nfg; Pointer to gradient amplitude. 

IMAGE *nfo; Pointer to orientation image. 

long *typ; Pointer to the kernel indicator. 

long *scale; Pointer to the scaling factor. 

long *red; Pointer to the reduction factor. 

sedge3_( ) 3 x 3 Edge detectors 

C Definition void sedge3_(nfi,nfx,nfy,ty,scale,red); 
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IMAGE *nft Pointer to the input image. 

IMAGE *nfx; Pointer to X gradient image. 

IMAGE *nfy; Pointer to Y gradient image. 

long *typ; Pointer to the kernel indicator. 

long *scale; Pointer to the scaling factor. 

long *red; Pointer to the reduction factor. 

srnxsup_( ) Detection of the local crest lines in gradient 

C Definition void smxsupinfx,nfy ,nfi 1 t, nfe); 

IMAGE *nfx; Pointer to X gradient image. 

IMAGE *nfy; Pointer to Y gradient image. 

IMAGE *nfi iv Pointer to gradient amplitude. 

IMAGE *nfe; Pointer to the output edge. 



APPENDIX C 

PROGRAM LISTING USING VISILOG 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "../h/terminal.h" /* Tty manager */ 

#include "../h/visilog.h" /* Visilog structures */ 
#include "../h/interl.h" /* External variables */ 

/****************************************************************/ 

/* THE MAIN PROGRAM *1 

FILE *out_filel, *out_file2; 
long coor[2], size[2], *level; 
int radix = 10; 
char bufj31; 
char *str; 
float point[20][2]; 
int center[4][2]; 
int sphere, sphl, sph2; 
float dist[20]; 
int files = 0; 
int no_markers; 
int colsn = 0; 

main(argc,argv) 
int argc; char **argv; 
{ 

long ttyflag = 0; argc = 0; 
stdaln_(&ttyflag,argc,argv); 

/* Initializes VISILOG context */ 

initialize0; . 
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starting(argv[1]); 
chdir(Old_Dir); 
exit(0); 

1 

initialize() 
1 

M_MMODE = 0; 
vlgini_(); /* Mode 256x256 is set */ 
if (V ID != NO_DISPLAY) 

visclr_(); 
if (M_ID == CPU_MEMORY) 

memclr (); 
printf ("\nCleared display memory. \n"); 

1 

/* Check if the file exists */ 

check(char* name 1) 
{ 

FILE *in_file; 
char name[ 151; 
int i; 

for (i = 1; i <= 20; i++) /* Assume max of 20 frames to process */ 
{ 

sprintf (name, "%s.%d", name 1, i); 
in_file = fopen (name, "r"); 
if (in_file == NULL) 
1 

if (i == 1) 
1 

printf ("\n\n\n\nImage files do not exist.\n"); 
1 
else 
1 

fclose (in_file); 
break; 

1 
1 
else 
{ 

fclose (in_file); 
files = files + 1; 
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} 
1 
printf ("\n\n\nNumber of image files to process are %d\n", files); 

1 

starting(char* name 1) 
1 

FILE *in_file; 
char name[15]; 
int i; 

check(name 1); 
sprintf (name, "%s1.dat", name1); 
out_file1 = fopen(name, "w"); 
sprintf (name, "%s2.dat", name1); 
out_file2 = fopen(name, "w"); 

for (i = 1; i <= files; i++) /* Assume max of 20 frames to process */ 
1 

sprintf (name, "%s.%d", namel, i); 
process(name,name l,i); 

1 
} 

/* Image processing functions start */ 

process(char* name,char* namel,int frame) 
1 

flush_marker(); 
edge(name,frame); /* Edge detection process */ 
marker(name,frame); /* Labelling is done */ 

check_points(name); 
storing(name l ,frame); 

1 

/* Function to detect the edge of the image */ 

edge(char* name,int frame) 
{ 

IMAGE nffile , /* File image from CPU */ 

nforig , /* Input memory image *1 

nfg, /* Gradient amplitude image */ 
nfo, /* Gradient orientation image*/ 
nthr, /* Threshold image */ 

nflab, /* Labelled image */ 

nfx , /* X Gradient image *1 
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nfy, /* Y Gradient image *1 

nfe; /* Edge image *1 

IMAGE nfc; /* Control structure *1 

long typ = 0; /* Kernel indicator */ 

long red = 0; /* Reduction indicator */ 

long scale = 1; /* Scaling factor *1 

long levell 1]; /* Array of low & high thres */ 
long value[3]; /* Array of low, mid & high */ 

/* Create a control image structure */ 

nfc = dupnf (NULL); 

/* Get an existing image from file */ 

strcpy(nfc->file, name); 
nffile = image_(nfc->file,"e","",&nfc); 

/* Copy the image into memory & display */ 

strcpy(nfc->file,"init"); 
nforig = image_(nfc->file,"c","",&nfc); 
xlutst_(&zero); /* Linear B&W lut's *1 
xzoom_(&two); /* Zoom factor of 2 */ 
xvisu_(&nforig); /* Show the input image */ 
scopy_(&nffile,&nforig); /* Does the copying */ 
fermnf (&nfc); 
printf ("\nProcessing image %s. \n", name); 

/* Create a gradient image */ 

nfc = dupnf (&nforig); 
nfg = image_("nfg1","s","",&nfc); 
nfo = im age_("nfo 1" , " s" ,"" , &nfc); 
nfx = image_(" nal","s","",&nfc); 
nfy = image_("nfyl","s","",&nfc); 
sedge3_(&nforig, &nfx, &nfy, &typ, &scale, &red); 
scmpas j&nforig,&nfg,&nfo,&three,&one,&zero); 
xvisu_(&nfg); 
printf ("\nAmplitude image. \n"); 

/* Create an edge image */ 

nfe = image_("nfol","s","",&nfc); 
smxsup_(&nfx,&nfy,&nfg,&nfe); 
xvisu_(&nfe); 
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printf ("\nEdge Detection is Done. \n"); 
/*sleep(3);*/ 

/* To obtain a thresholded image */ 

set_code(nfc,I_BIN,16,2); 
nthr = image_("Athr","s","",&nfc); 
level[0] = 18; 
level[1] = 184; 
sthr_(&nfe,&nthr,level,value,&zero); 
printf (" \nThresholded image. \n \n"); 

/* Hough Transform */ 

hough(&nforig,frame); 

/* Close all image handles */ 

fermnf (&nforig); fermnf (&nfx); 
fermnf (&nfy); fermnf (&nfe); fermnf (&nfc); 
fermnf (&nfg); fermnf (&nfo); ferrnnf (&nthr); 

1 

/* Flush all previous marker & center coordinates *1 

flush_marker() 
{ 

int i; 

for (i = 0; i < 4; i++) 
{ 

center[i][0] = 0; 
center[i][1] = 0; 

1 
for (i = 0; i < 20; i++) 
1 

point[i][0] = 0; 
point[i][1] = 0; 

1 
1 

/* Function to label the image and to find the centers 
of the connected components */ 

marker(char* namel,int frame) 
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{ 
IMAGE nffile , /* Threshold image from CPU */ 

nforig , 1* Input memory image *1 

nthr, /* Threshold image */ 

nfo, 
temp, 
nflab; /* Labelled image *1 

IMAGE nfc; /* Control structure */ 

char *name = "thr"; /* Image file from disk */ 

int 1, j, k, 1, m, val, sum, mark, dad; 
int cxl, cx2, cx3, cx4, cyl, cy2, cy3, cy4; 
float x, y; 
float moment[5]; 
long xl, yl, x2, y2; 
long number; 
long level[1]; /* Array of low & high thres */ 
long value[3]; /* Array of low, mid & high */ 
long area; /* Area of the image *1 

coor[0] = 10; coor[1] = 30; 
size[0]= 1; size[1]= 1; 
(*level) = 255; 

/* Get the thresholded image from the disk */ 
visclr_(); 
nfc = dupnf (NULL); 
strcpy(nfc->file,name); 
nffile = image Jnfc->file,"e","",&nfc); 

/* Copy the image into memory & display */ 
strcpy(nfc->file,"ajax"); 
nforig = image_(nfc->file,"c","",&nfc); 

xlutsti&two); /* Linear B&W lut's */ 

xzoom_(&two); /* Zoom factor of 2 */ 

xvisu_(&nforig); /* Show the input image */ 
scopy (&nffile,&nforig); /* Does the copying */ 

printf ("\nThresholded image. \n"); 
/*sleep(3);*/ 

/* Labelling the connected components */ 

set_code (nfc, I_LABEL, 16,2) ; 
strcpy(nfc->file,"nfg1"); 
nflab = image_(nfc->file,"s","",&nfc); 

/* Eliminate extra data */ 
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elimin(&nforig, &nflab); 

xvisu_(&nflab); 
slabel_(&nflab, &nflab); 
printf ("\nLabelling done. \n"); 
scopy (&nflab,&nforig); 

/* To count the number of components */ 
snumbe J&nflab,NULL,&number); 
printf ("\nNumber of connected components = %ld\n", number); 

/* Finding the center of each component */ 
set_code(nfc,I_BIN,16,2); 
temp = image_("ajax","s","",&nfc); 

mark = 150; 
printf ("Finding markers for image %s. \n", name1); 
k = 0; 
for (i = 1; i <= number; i++) 
1 

level[0] = i; 
level[1] = i; 
sthr_(&nflab,&temp,level,value,&zero); 
area = 0; 
sarea j&temp,&area); 
if (area > /*8*/7) 
{ 

for (j = 0; j < 5; j++) 
moment[j] = 0.0; 

sinert j&temp,moment); 

x = moment[0]; 
y = moment[1]; 
x2 = x + 0.5; 
y2= y + 0.5; 

if (area <= 19/*20*/) 
{ 

sum = 0; 
for (1 = x-3/*4*/; 1 <= x+3/*4*/; 1++) 

for (m = y-3/*4*/; m <= y+3/*4*/; m++) 
{ 

xl = 1; 
yi = m; 
readpx_(&temp,&x1,&y1,&val); 
sum = sum + val; 
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} 
if ((sum==area) && (distanc aint)x,(int)y))) 
{ 

point[k][0] = moment[0]; 
point[k][1] = moment[1]; 
scopy_(&temp, &nforig); 
xvisui&nforig); 
k++; 
printf ("\nMarker : %d (%6.2f,%6.2f)\n", k, x, y); 
/*printf ("Area of the marker = %ld\n", area); 
printf ("X = %7.2f, Y = %7.2f\n", x, y); 
printf ("x = %7.2f, y = %7.2f xy = %7.2f\n", 

moment[2], moment[3], moment[4]);*/ 
str = itoa(k,buf,radix); 
writpx_(&nforig,&x2,&y2,&mark); 
zgrtxt j&nforig,str,coor,level,size,&zero,&zero); 
sleep(2); 
zgrtxt_(&nflab,str,coor,level,size,&zero,&zero); 
writpx_(&nflab, &x2, &y2, &mark); 
xvisu_(&nflab); 

} 
} 

} 
1 
printf ("\nThe number of markers visible are : %2d\n", k); 
if (frame == 1) 
1 

fprintf (out_filel, "%d %d \n\r", files, sphere); 
fprintf (out_fi1e2, "%d %d \n\r", files, k); 

1 
xvisu_(&nflab); 
zgrbct_(&nflab,str,coor,level,size,&zero,&zero); 

/* Close all image handles */ 
fermnf (&nffile); fermnf (&nforig); fermnf (&nflab); 
fermnf (&nfc);fermnf (&nthr); fermnf (&nfo); fermnf (&temp); 

1 

/* Eliminate extra data from the image before labelling */ 
elimin(input, output) 
IMAGE *input, *output; 
1 

int i, j, k, val; 
int cx, cy; 
long x, y; 
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for (i = 0; i < sphere; I++) 
1 

cx = center[i][0]; 
cy = center[i][1]; 
for (j = cx-21; j <= cx+21; j++) 

for (k = cy-21; k <= cy+21; k++) 
{ 
x= j; 
y = k; 
readpx_(input, &x, &y, &val); 
writpx_(output, &x, &y, &val); 

} 
} 

1 

/* To check if all points found are correct */ 

check_points(char* name) 
1 

IMAGE nffile , /* File image from CPU */ 
nforig ; /* Input memory image */ 

IMAGE nfc; 
int i, val; 
long x, y; 
char beep; 

/* Create a control image structure */ 

nfc = dupnf (NULL); 

/* Get an existing image from file */ 

strcpy(nfc->file, name); 
nffile = image_(nfc->file,"e","",&nfc); 

/* Copy the image into memory & display */ 

strcpy(nfc->file,"init"); 
nforig = image_(nfc->file,"c","",&nfc); 
xlutst_(&zero); /* Linear B&W lut's */ 
xzoom_(&two); /* Zoom factor of 2 */ 

xvisu_(&nforig); /* Show the input image *1 
scopy_(&nffile,&nforig); /* Does the copying *1 

val = 255; 
beep = 7; 
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for (i = 0; i < 20; i++) 
1 

x = pointfill0] + 0.5; 
y = point[i][1] + 0.5; 
if ((x == 0) && (y == 0)) 

break; 
writpx_(&nforig, &x, &y, &val); 

1 
printf ("\nProcessing of image %s completed. \n", name); 
printf ("Hit any key to continue .... %c\n", beep); 
sleep(1); 
printf ("%c", beep); 
getch(); 

fermnf (&nffile); fermnf (&nforig); fermnf (&nfc); 
1 

/* Detects the centre of circles using the Hough Transform technique */ 

hough(input,frame) 
IMAGE *input; 
1 

IMAGE nffile, /* Threshold image from CPU */ 
nforig, /* Input memory image */ 

nfacm, /* Accumulator image */ 

h_t; /* " " in CPU */ 

IMAGE nfc; 
int i, j, k, 1, n, val, vall, val2, val3, va14, val5, val6, val7, val8; 
int maxi, imax, jmax, sumx, sumy, val9, van°, val11, va112; 
int p, q, r, cl, c2; 
int maxyl, maxy2; 
long x, y, z, xl, yl, x2, y2; 
double valuel, value2, dir, dirl; 
char beep; 

/* Get the thresholded image from the disk */ 
/*visclr_();*/ 
nfc = dupnf (NULL); 
strcpy(nfc->file,"thr"); 
nffile = image_(nfc->file,"e","",&nfc); 

/* Copy the image into memory & display */ 
strcpy(nfc->file,"ajax"); 
nforig = image_(nfc->file,"c","",&nfc); 
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xlutst_(&two); /* Linear B&W lut's */ 
xzoom_(&two); /* Zoom factor of 2 */ 

xvisu_(&nforig); /* Show the input image */ 
scopy_(&nffile,&nforig); /* Does the copying */ 

strcpy(nfc->file,"nfg1"); 
nfacm = image_(nfc->file,"s","",&nfc); 
sarit_(&nfacm,&zero,&nfacm,&two,&zero); 

printf ("Hough Transform in progress. \n"); 
printf ("BE PATIENT Computations being done \n"); 
n = 0; 
z = 0; 
for (i = 1; i <= 192; i++) 

for (j = 1; j <= 239; j++) 
{ 

x= j; 
Y = i; 
readpx_(&nforig,&x,&y,&val.); 
if (val == 1) 
{ 

xl = x-1; 
yl = y-1; 
x2 = x+1; 
Y2 = y+1; 
readpx_(input,&xl,&y1,&val 1); 
readpx_(input,&xl,&y,&val2); 
readpx_(input, &x 1, &y2, &val3); 
readpx_(input,&x2,&ylAval4); 
readpx_(input,&x2,&y,&val5); 
readpx_(input,&x2,&y2,&val6); 
readpx_(input,&x,&y1,&val7); 
readpx_(input,&x,&y2,&val8); 
sumx = va13 + 2 * val8 + va16 - (vall + 2 * val7 + va14); 
sumy = val 1 + 2 * val2 + val3 - (val4 + 2 * va15 + val6); 
n++; 
for (k = 1; k <= 239; k++) 
{ 

if (sumx != 0) 
{ 

value1 = sumx; 
value2 = sumy; 
dir = atan(value2/value1); 
dirl = (180.0/3.142) * dir; 
if (dirl < 0.0) 
{ 
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dirl = dirl + 180.0; 
dir = dirl * 3.142/180.0; 

1 
if (dir != 0) 
{ 

1= - k/tan(dir) + (i + j/tan(dir)); 
if ((I > 0) && (1 <= 192)) 
I 

z++; 
printf ("%ld\r", z); 
xl = k; 
y1 = I; 
readpx_(&nfacm,&x1,&ylAval9); 
vall0 = val9 + 1; 
writpx_(&nfacm,&x1,&y1,&val10); 

1 
1 

1 
1 

1 
1 
xvisu_(&nfacm); 

h_t = image_("Atrough","s","",&nfc); 
scopy_(&nfacm, &h_t); 
beep = 7; 

printf ("\n"); 
printf ("Number of edge points = %d\n", n); 
printf ("Finding centers \n"); 

sphl = 0; 
maxyl = 0; 
for (r = 0; r < 4; r++) 
{ 

maxx = 0; 
for (i = 1; i <= 192; i++) 

for (j = 1; j <= 239; j++) 
{ 

x= j; 

y = i; 
readpx_(&nfacm, &x, &y, &val5); 
if ((maxx < val5) && (val5 > 16)) 
I 

maxx = val5; 
imax = j; 
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jmax = i; 
} 

1 
if (maxx != 0) 
1 

printf ("center(%3d,%3d) maxi = %d \n", imax, jmax, maxx); 
x = center[r][0] = imax; 
y = center[r][1] = jmax; 
if Umax > 90) /*(maxyl <= jmax)*/ 
1 

/*maxyl = jmax;*/ 
sph2 = sphl; 
sphl = r; 

1 
vall = 250; 
writpx_(&nforig,&x,&y,&val1); 
for (p = imax - 16; p <= imax + 16; p++) 

for (q = jmax - 16; q <= jmax + 16; q++) 
1 

x1 = p; 
yl = q; 
writpx_(&nfacm,&xl ,&y1,&zero); 

1 
if (r == 3) 
1 

sphere = 4; 
printf ("\nNumber of spheres found is %d\n", sphere); 

1 
1 
else 
{ 

sphere = r; 
printf ("\nNumber of spheres found is %d\n", sphere); 
break; 

} 
1 

if (sphere >= 2) 
1 
printf ("lowest 2 spheres are: (%d %d) (%d %d)\n", center[sphl][0], 
center[sphl][1], center[sph2] [0], center[sph2][11); 

value 1 = abs(center[sph1][0] - center[sph2][0]); 
value2 = abs(center[sph1][1] - center[sph2][11); 
dist[frame] = sqrt(pow(value1,2) + pow(value2,2)); 
printf ("dist[%d] = %6.2f\n", frame, dist[frame]); 
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if ((dist[frame] > dist[frame-11) && (colsn != 1) && (frame != 1)) 
1 

printf ("Collision occured at the %2d frame. \n", frame-1); 
colsn = 1; 

1 
1 
xvisu j&nforig); 
printf ("Hit any key to continue ....%c\n", beep); 
sleep(1); 
printf ("%c", beep); 
getch(); 

fermnf (&nfacm); fermnf (&nfc); fermnf (&nforig); fermnf (&nfille); 
fermnf (&h_t); 

1 

/* Check if the markers are within the lowest 2 spheres only */ 

distanc(x,y) 
1 

int e, f, valuel, value2; 
double a, b, c, d; 

e = x; 
f = y; 
a = abs(center[sph1][0] - e); 
b = abs(center[sphl][1] - 0; 
c = abs(center[sph2][0] - e); 
d = abs(center[sph2][1] - 0; 
valuel = sqrt(pow(a,2) + pow(b,2)); 
value2 = sqrt(pow(c,2) + pow(d,2)); 

/*if (((a < 21) && (b < 21)) I I ((c < 21) && (d < 21)))*/ 
if ((valuel < 21) I I (value2 < 21)) 

return 1; 
else 
return 0; 

1 

/* To place the centers and the markers in two seperate files */ 

storing(char* namel,int frame) 
1 

int i, j; 
int maxy = 0; 
char name[15]; 
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if (frame > 1) 
1 

sprintf (name, "%sl.dat", name1); 
out_file1 = fopen(name, "a"); 
sprintf (name, "%s2.dat", name1); 
out_file2 = fopen(name, "a"); 

1 
for (i = 0; i < sphere; i++) 
1 

fprintf (out_filel, "%d %d ", center[i][0], center[i][1]); 
/*if (maxy < center[i][1]) 

maxy = center[i][1];*/ 
1 
fprintf (out_file 1, "\n\r"); 
for (i = 0; i < 20; i++) 
1 

if ((point[i][0] == 0) && (point[i][1] == 0)) 
break; 

/*if (point[i][1] < maxy-40) 
continue; * / 

fprintf (out_file2, "%6.2f %6.2f ", point[i][0], point[i][1]); 
1 
fprintf (out_file2, "\n\r"); 
fclose (outille1); 
fclose (out_file2); 

1 
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