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Fine-grained Emotion Recognition using Brain-Heart Interplay
measurements and eXplainable Convolutional Neural Networks

Guido Gagliardi∗,1,2,3, Antonio Luca Alfeo1,4, Vincenzo Catrambone1,4,
Mario G.C.A. Cimino1,4, Maarten De Vos2, and Gaetano Valenza1,4

Abstract— Emotion recognition from electro-physiological
signals is an important research topic in multiple scientific
domains. While a multimodal input may lead to additional
information that increases emotion recognition performance,
an optimal processing pipeline for such a vectorial input is
yet undefined. Moreover, the algorithm performance often
compromises between the ability to generalize over an emo-
tional dimension and the explainability associated with its
recognition accuracy. This study proposes a novel explainable
artificial intelligence architecture for a 9-level valence recog-
nition from electroencephalographic (EEG) and electrocardio-
graphic (ECG) signals. Synchronous EEG-ECG information are
combined to derive vectorial brain-heart interplay features,
which are rearranged in a sparse matrix (image) and then
classified through an explainable convolutional neural network.
The proposed architecture is tested on the publicly available
MAHNOB dataset also against the use of vectorial EEG
input. Results, also expressed in terms of confusion matrices,
outperform the current state of the art, especially in terms
of recognition accuracy. In conclusion, we demonstrate the
effectiveness of the proposed approach embedding multimodal
brain-heart dynamics in an explainable fashion.

I. INTRODUCTION

Affective computing focuses on the recognition of emo-
tional and mental states by analyzing heterogeneous infor-
mation with artificial intelligence (AI) algorithms. Inputs
may include audio, video, and electro-physiological signals.
In this context, commonly used signals include electroen-
cephalographic (EEG) [1], electrocardiographic (ECG), elec-
tromyographic, and electrodermal activity signals [2].

It has been acknowledged that the use of multimodal and
multidimensional input may improve emotion recognition
accuracy [3], [4]. Indeed, recent studies highlighted the
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crucial role of the continuous, directional interaction be-
tween the central nervous system and the autonomic nervous
system [6]; such an interaction is generally referred to
functional brain-heart interplay (BHI) [5], [6]. BHI has been
exploited to statistically characterize emotional processing
[6] in accordance with the so-called circumplex model of
affect [7], which is a two-dimensional model describing
an emotion through a combination of valence and arousal.
While the valence dimension accounts for the pleasantness
of an emotion, the arousal dimension quantifies its degree of
activation (intensity) [3], [7].

From a methodological perspective, several AI methodolo-
gies have been successfully applied to classify emotion per-
ception from multimodal electrophysiological signals: e.g.,
convolutional neural networks (CNN), both with standard [8]
or with transfer-learning methodologies [9]. These networks
extract features from input data with convolutions and clas-
sify them with dense neural network classifiers [8] or long-
short term memory [10] units.

Nevertheless, neuroscientists and domain experts need
to understand, and thus validate, the reasoning behind an
automatic emotion recognition approach while employing its
predictions [11], and would like to infer on the underlying
physiological processes in a data-driven fashion. The deep
neural network model works as a black box and cannot
be easily interpreted unless the model is built especially to
exploit specific (e.g., neurophysiological) knowledge [12]–
[14]. EXplainable Artificial Intelligence (XAI) approaches
address this limitation by providing explanations for neural
network models. The most used explanation form is the
feature importance providing the rank of all data attributes by
considering the importance of each attribute to the classifica-
tion. Considering CNN, the most direct way to explore visual
patterns hidden inside the neural unit is filter visualization
[15]. Widely used methods to this end compute the gradients
of the score of a given CNN unit with respect to the input
image. These XAI algorithms are equivalent to the features
importance ones. In fact, if we consider each input data
point as an attribute (or feature), these methods provide the
rank of the relative importance of all the input attribute for
the prediction. In the affective computing framework, while
the role of BHI dynamics in emotional processing has been
recognized, to the best of our knowledge no explainable AI
algorithm has exploited such a multidimensional input yet in
emotion recognition tasks. To overcome this limitation, this
study proposes an XAI CNN-based approach for the fine-
grained identification of 9 different emotional valence levels,
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taking multimodal BHI features as input. More specifically,
we propose a spatial features rearrangement of BHI fea-
tures in accordance with neurophysiology knowledge; then,
an XAI gradient-weighted class activation mapping (Grad-
CAM) [16] visualization technology is exploited to identify
brain regions that are mainly involved in the valence recog-
nition, i.e., regions associated with discriminant features by
the underlying CNN mechanism.

The proposed BHI-XAI-CNN approach is tested on pub-
licly available data from the MAHNOB-HCI dataset [17],
which is a benchmark dataset for multimodal emotion recog-
nition. Achieved performances are compared against state-
of-the-art architectures processing the MAHNOB data for
valence recognition, as well as against an EEG-XAI-CNN
approach whose multidimensional input comprises EEG
power information exclusively.

II. MATERIALS AND METHODS
A. Experimental Dataset

The MAHNOB-HCI dataset [17] (available at
https://mahnob-db.eu/hci-tagging/ ) comprises recordings
gathered from 27 healthy volunteers (age range, 19–40
years; 15 females) undergoing emotional video elicitation.
In this study, physiological signals as 32-channel EEG
and 3-lead ECG, both sampled at 256Hz, were retained
for further analyses. The experimental data comprise EEG
and ECG signals recorded during 20 video trials, extracted
from movies, with a duration of 35 to 117 s. Participants
were asked to provide subjective ratings on their perceived
emotional experience through a 0-8 Likert-type scale for
the valence and arousal dimensions. Consequently, each
subject associated an emotional elicitation with one out of
9 valence levels. Each participant signed a consent form,
and the experiment was approved by the local ethical
committee. Further details on the experimental design and
data acquisiton can be found in [17].
B. Features Processing and features extraction

1) Unimodal EEG features: The EEG preprocessing pro-
cedure aimed to obtain artifact-free signals and comprised
frequency filtering, large artifact removal (e.g., eye move-
ments, cardiac-field artifact), interpolation of contaminated
channels, and average re-referencing [18]. An extensive
description of the applied preprocessing procedure can be
found in [6].

Briefly, the EEG power spectral density (PSD) was ex-
tracted through Welch’s method with a Hanning window.
PSD time series were integrated every 2 seconds, without
overlapping, within canonical four frequency bands, namely:
θ ∈ (4 − 8]Hz, α ∈ (8 − 12]Hz, β ∈ (12 − 30]Hz, and
γ ∈ [30− 45]Hz. EEG and ECG data included in this study
referred to 20 videos, and each of which was watched by 27
subjects. Each video (with different length) was segmented
in non-overlapping 2s windows, and EEG power and BHI
features (as described below) were then derived from each
of these segments. Consequently, a total number of 20.055
instances, each instance characterized by 32 (channels) × 4
(frequency bands) features, was available for the explanable
classification procedure.

(a) (b)

Fig. 1: (a) Matrix rearrangement of the input features in a
11x9 matrix; (b) Interpretation of the 2x2 block matrix as a
grayscale image.

2) Multimodal Brain-Heart Interplay features: Quanti-
tative BHI features were estimated using a synthetic data
generation model, which has been extensively described in
[6], [19]. At a glance, the model equations were developed
to generate synthetic brain and heart rate series. On the brain
side, multiple oscillators may generate synthetic EEG signals
whose amplitude is modeled as a first-order autoregressive
with exogenous cardiac processes; the exogenous term then
refers to the functional heart–to-brain interplay. On the
cardiovascular side, an integral pulse frequency modulation
model generates synthetic heart rate variability (HRV) series,
whose embedded parameters are modulated by EEG activity
and then quantify the functional brain-to-heart interaction.
In this study, features of brain-to-heart interplay defined in
the high-frequency range of heartbeat dynamics (between
0.15Hz and 0.4Hz) were retained for further classification
purposes.

Time-resolved information of directional BHI series were
condensed through the median calculated within non-
overlapping 2-second window, independently for each chan-
nel. The same calculation has been performed to condense
the time-resolved information of EEG power series, thus
resulting in the same cardinality of the BHI feature set.
C. Arrangement of spatial features into an image

The 32 input features (i.e. one for each EEG channel)
are arranged in a sparse matrix following the standard 10-20
EEG electrode placement scheme (see Fig. 1.a). Elements
not corresponding to an electrode location are set to zero. A
single matrix like the one represented in Fig. 1.a is built for
each of the four frequency bands (i.e., θ, α, β, and γ) and,
subsequently, they are combined together to form a 2 × 2
block matrix (see Fig. 1.b). Between each block, a padding
space of 3 null elements is been placed to avoid overlapping
between electrodes of different blocks during convolution.
Eventually, the matrix is interpreted as a gray-scale image
(Fig. 1.b) to be fed as a single instance to the CNN algorithm.
D. CNN Model

The CNN architecture implemented in this study takes
the 2 × 2 block matrix of shape 25 × 21 × 1 as input and
processes it with two convolutional layers, with depths of
32 and 64 respectively, and a rectified linear unit (ReLU)
activation function. The size of the convolutional filters was
set to 3×3 in order to prevent overlapping between electrodes
location of different frequency blocks in the 2 × 2 block



matrix, as mentioned above. Then, a flattening layer was
inserted before the final two dense fully connected layers,
which included 512 and 9 neurons, respectively. The last
level included 9 neurons and a softmax activation function
in accordance with the number of classes to be recognized.
To prevent overfitting during training, a dropout level has
been added after the flattening level.

E. Grad-CAM Saliency Maps

Grad-CAM algorithm [16] provides visual explanations for
CNN decisions in classification tasks. Given an input image
to a trained model, Grad-CAM produces a coarse localization
map that highlights important regions of the image according
to the model decision process. Contextualizing, here Grad-
CAM highlights the physiological correlates for the specific
valence-level predicted.

In this study, the processing of Grad-CAM explanations
mainly involved two phases: first, a smoothing filter was
applied to the generated activation map to filter out outliers,
i.e., pixels that can have intense colour but are isolated and
located in regions of low intensity; Second, the matrix input
scheme shown in Fig. 1.b was overlaid on the smoothed
activation map to isolate the original physiological correlates
and provide a clearer representation of the brain activation
map. To do so, each null pixel of the input image is manually
set as zero.

III. RESULTS

The proposed CNN model has been trained both with
BHI features and with EEG power features (for comparison
reason) to perform a 9-level valence emotion recognition.
The model was tested on a subject-independent 10-fold
montecarlo cross-validation scheme.

Tab. I illustrates the aggregated results expressed in terms
of average accuracy, precision, recall, and F1 score; the
last three metrics were obtained through weighted average
[20]. Such results are provided both in case of EEG power
input and BHI input. Significantly higher classification per-
formance (≈ 20%) are with the BHI features, and this is
consistently observed for all the evaluation metrics.

TABLE I: Average % accuracy, precision, recall, and F1
score during cross-validation with the proposed CNN archi-
tecture considering EEG power and BHI-related features over
9 levels valence classification.

Features Accuracy Precision Recall F1-score
EEG power 78.02% 78.45% 78.09% 78.09%
BHI 97.20% 97.08% 97.12% 97.12%

Fig. 2 shows the average classification results in the case of
EEG power and BHI inputs expressed in terms of a precision-
confusion matrix. Each term ci,j of the confusion matrix C
of dimension 9× 9 is equal to the number of input samples
belonging to level i and predicted as level j. Levels range
from 0 to 8. Eventually, for readability purposes, each value
ci,j has been divided by the support of the i-level. The BHI-
based architecture achieves its maximum performances with
98.0% ± 1.1% precision when predicting level 7, whereas

(a) EEG valence Classification (b) BHI valence Classification

Fig. 2: Precision Confusion Matrices. Valence classification.

the EEG-based one achieves 79.4%±4.5%. The EEG-based
architecture achieves its best performance predicting level 6
with 80.2%± 4.86%, being outperformed by the BHI-based
one which achieves 87.3%± 0.4%.

Tab. II shows a comparison analysis between the afore-
mentioned results and previous findings in the literature in
valence recognition using the MAHNOB-HCI dataset with
different modalities as input. Zhang et al. [8] propose a
multimodal-CNN approach for emotion recognition based
on EEG, electromyography, and electrooculogram, obtaining
high accuracy (90.50%) and underlining the effectiveness of
considering multiple physiological signals, but it does not
take into consideration cardiovascular dynamics. Siddhart et
al. [10] and Huang et al. [9] consider both EEG signals
obtaining similar results to our CNN EEG-based approach,
Huang et al. also consider facial features obtaining lower
results in comparison with the others. Those results highlight
the impact of introducing BHI features for emotion classifi-
cation.

TABLE II: Comparison with the state-of-the-art approaches
for valence levels recognition on the same dataset.

Method modality # levels Accuracy
Huang [9] EEG, Facial f. 2 75.21%
Siddharth [10] EEG 2 80.77%±0.77%
Zhang [8] EEG, EOG, EMG 2 90.50%
CNN (this study) EEG 9 78.02%±1.55%
CNN (this study) BHI (EEG, ECG) 9 97.38%±0.50%

The explanations using the Grad-CAM algorithm were
obtained for each input sample and then aggregated on the
same predicted class, considering their mean. The resulting
global explanations are expressed as topographical maps of
features importance (Fig. 3). Dark regions of the image refer
to features that are more important for predicting valence,
while lighter regions refer to features that are less important,
i.e. in dark regions, brain-heart interactions in a specific
frequency band have a high influence on the classification
results, while in lighter regions they have a low impact.
Moreover, in wide dark regions, the emotional information is
spread all over the scalp, while in restricted ones the model
focuses only on a small portion of the features neglecting the
others. In particular, Fig. 3 shows aggregated explanations for
level 4. In the α and θ bands, we have large dark regions



Fig. 3: Topographical representation of the feature impor-
tance for predicted valence level 4.

targeting the frontal, temporal and occipital lobes. In β and
γ, the dark regions are rather restricted, which means that
emotional information is concentrated only in certain parts
of the frontal and occipital lobes. Moreover, by comparing
the bands, it becomes clear that the BHI features in θ and α
are chosen by the model to be more relevant than β and γ.

IV. DISCUSSION

In this study, a novel explainable AI architecture for a 9-
level fine-grained recognition of emotional valence has been
developed. The architecture employs a CNN with an image-
based features rearrangement scheme for measurements gath-
ered from a person’s scalp, as well as a Grad-CAM-based
methodology to provide explanations for the classification.

The proposed methodology has been tested on the
publicly-available MAHNOB-HCI dataset, also by compar-
ing EEG power and BHI feature sets. While the proposed
architecture provided satisfactory performance metrics with
both feature sets (see Tab. I and Fig. 2), the use of
BHI features outperforms the EEG-based approach. Such
a significant improvement of approximately 20% is in line
with current psychophysiology knowledge highlighting the
crucial role of brain-heart interplay in emotional processing
[6]. Moreover, this is in agreement with previous findings
suggesting that the use of a multimodal and multidimensional
input for emotion recognition [3], [4].

The role of brain-heart interaction in the recognition of
emotions is also underlined by the comparison between
the proposed architecture and the state-of-the-art approaches
available in the literature (see Tab. II). These results suggest
that, when only the EEG features are used, our model shows
similar performance to the literature, but performs a 9-level
classification rather than a binary classification; furthermore,
the model can effectively leverage BHI and outperforms
other approaches that also use multimodal features.

The Grad-CAM visualization technique was applied to
extract the prediction explanations from the model in com-
bination with the proposed image rearrangement for the
EEG-related measurements, allowing the system to provide
easy-to-read explanations that highlight the CNN architecture
decision-making process (Fig.3).

Future works will be directed toward testing on additional
emotional dimensions, such as the arousal dimension and
discrete models of emotion; further BHI features (e.g., heart-
to-brain direction, multiple HRV frequency bands) will be
tested as well, also considering more challenging cross-
validation setups, e.g. leave-one-out. From the XAI point of
view, other ways to extract explanations will be also taken

into consideration looking in the direction of global or class-
wise explanations.

V. CONCLUSION

Multimodal physiological signals allowing for the calcula-
tion of BHI features through ad hoc neurophysiological mod-
elling are suitable inputs for a CNN-based, explainable AI
architecture for a high-performance multi-class classification
problem. The study highlights the relevance of embedding
psychophysiology knowledge (in this case BHI dynamics)
in an XAI framework for an automatic emotion recognition
task.
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