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A B S T R A C T   

Online control of Additive Manufacturing (AM) processes appears to be the next challenge in the transition 
toward Industry 4.0 (I4.0). Although many efforts have been dedicated by industry and research in the last 
decades, there remains substantial room for improvement. Additionally, the existing scientific literature lacks a 
wide-ranging identification and classification of the primary drivers that enable online control of AM processes. 
This article focuses on online control of one of the most industrially widespread AM processes: metal Laser 
Powder Bed Fusion (L-PBF), with particular emphasis on two subcategories, namely Selective Laser Sintering 
(SLS) and Selective Laser Melting (SLM). Through a systematic literature review, this article initially identified 
over 200 manuscripts. The search was conducted utilizing a defined research query within the Scopus database, 
double checked on Scholar. The results were refined through multiple phases of inclusion/exclusion criteria, 
culminating in the selection of 95 pertinent papers. This article aims to provide a systematic and comprehensive 
review of four identified drivers i) Online controllable input parameters, ii) Online observable output signatures, 
iii) Online sensing techniques, iv) Online feedback strategies, adopted from the general Deming control loop 
Plan-Do-Check-Act (PDCA). Ultimately, this article delves into the challenges and prospects inherent in the 
online control of metal L-PBF.   

1. Introduction 

Born almost forty years ago, Additive Manufacturing (AM) emerges 
as one of the most promising non-conventional manufacturing processes 
and has since become a key enabling technology in the current Industry 
4.0 (I4.0) revolution [1,2]. AM allows for a higher degree of freedom in 
shaping compared to traditional manufacturing methods, but it does 
come with some trade-offs, such as limited mechanical properties and 
process productivity [3]. To date, the aerospace, defense, and biomed-
ical industries have made the most significant investments in this sector, 
driven by the demand for highly customized parts, followed by other 
sectors like tooling, jewelry, and automotive [4]. Around 2018, the hype 
surrounding AM subsided in the mass media, but interest in research and 
commercial applications has never been higher [5,6]. Notably, thou-
sands of companies are now leveraging AM, leading to a remarkable 
industry expansion of 7.5 % that resulted in nearly $12.8 billion in 
revenue in 2020 [7,8]. Within this dynamic landscape, this article fo-
cuses on one specific class of AM technologies, namely Powder Bed 
Fusion (PBF) [9], as depicted by the dotted box in Fig. 1. 

PBF was among the earliest and has remained one of the most ver-
satile AM processes, catering to polymers and metals as well as ceramics, 
composites, and biomaterials [10]. Among several thermal sources, 
laser, and electron beams, respectively referred to as Laser Powder Bed 
Fusion (L-PBF) and Electron Beam Powder Bed Fusion (E-PBF), are the 
most historically acknowledged techniques. The third type of thermal 
source which has recently entered the market uses Infra-Red (IR) lamps 
[11]. Table 1 provides a brief overview of the four subclasses of PBF, 
categorized based on the thermal source, as highlighted in Fig. 1. 

The focus of this article, indicated by the blue/shaded labels in Fig. 1 
and Table 1, lies on L-PBF (i.e., SLS and SLM), with particular emphasis 
on metal powders due to their increasing significance [12,13]. 

Online process control for metal L-PBF is still in its development 
stages [14]. Despite the sophistication of AM machines and digital twin 
capabilities, the process is often operated as an open loop, with users 
manually tuning process parameters based on post-process character-
ization and analysis [15,16]. While some authors and vendors have 
proposed actual online control strategies, they are limited, primarily 
relying on simple alarms or process blocking upon defect detection 
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[4,17,18]. This article aims to investigate current gaps of online control 
by reviewing the state of the art of four major process drivers inspired 
from the Deming cycle [19] loop control (Fig. 2) and following the re-
view protocol proposed by [20]. 

As depicted by Fig. 2, online controllable input parameters are the 
starting point. These parameters are planned (i.e., P-Plan) in advance 
and then actuated during the production process (i.e., D-Do), thereby 
generating process signatures. The next step involves monitoring these 
online observable output signatures using appropriate in-situ sensors (i. 
e., C-Check). Subsequently, the sensors provide a stream of data used to 
adjust the input parameters in accordance with the feedback strategies 
(i.e., A-Act). 

Our article builds upon and extends the reviews conducted by 
[4,17,21–24], adopting aligned standard terminology, considering more 
recent papers, and following the structured approach in reviewing sci-
entific articles for each of the four drivers presented in Fig. 2. Our 
overarching objective is to provide readers with a comprehensive and 
clear understanding of the complexities surrounding online control of 
metal L-PBF processes, tackling interdisciplinarity topics from a holistic 
perspective. 

The remainder of the article is organized as follows and is visually 
presented in Fig. 3. The scope and Research Questions (RQs) have been 
defined as input for the review process. The subsequent article sections 
have been planned and implemented to ensure a logical and coherent 
flow (Fig. 3, center), and the related contributions have been presented 
to address the initial RQs within the scope of this article (Fig. 3, right 

side). 
While Section 1 aims identifying the first contribution of this article 

(i.e., adopting the Deming cycle carefully customized to formalize the 
online control of L-PBF processes), Section 2 introduces the metal L-PBF 
process, providing the context of this work. Section 3 details the struc-
tured procedure adopted to carry out the literature review on the four 
drivers, answering the first RQ1: what aspects do we aim to examine in the 
literature? Section 4 reports and summarizes the state of the art on the 
four drivers, based on the final set of 95 selected papers filtered from an 
initial list of over 200 Scopus indexed papers. This section offers a 
detailed account of the literature, addressing RQ2: what are the primary 
approaches found in the literature? In Section 5, we provide a concise 
overview and takeaways from the main aspects of the four drivers, along 
with their current level of maturity, to answer RQ3: what are the key 
findings from the literature? Section 6 focuses on the future directions and 
challenges concerning data collection, management, and processing for 
metal L-PBF online control, addressing RQ4: what are the main future 
challenges? Although the focus of this article is on metal L-PBF, the 
readers can readily apply the methodology used in this article, including 
the four drivers, to other specific AM techniques and various materials. 

2. Metal L-PBF process overview 

In this section, we present a comprehensive overview of metal L-PBF 
to provide context for the current study. Fig. 4 summarizes the general 
AM process (depicted in white), with the addition of an online closed 
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Fig. 1. The AM technologies classes, descriptions, subclasses, and primary materials from [9]. In blue/shaded the two subclasses in-scope of the present article. For 
each subclass, the extended name is provided from left to right. Binder Jetting (BJ), Laser Engineering Net Shape (LENS), Electron Beam Additive Manufacturing 
(EBAM), Material Jetting (MJ), Nano Particle Jetting (NPJ), Drop On Demand (DOD), Fused Deposition Modeling (FDM), Multi Jet Fusion (MJF), Selective Laser 
Sintering (SLS), Selective Laser Melting (SLM), Electron Beam Melting (EBM), Laminated Object Manufacturing (LOM), Stereolithography (SLA), Digital Light 
Processing (DLP), Continuous Digital Light Processing (CDLP). (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article). 

Table 1 
The four PBF processes, short description, thermal source and required power. In blue the process in-scope of the present article.  

PBF 
subclasses 

Short description Thermal 
source 

Required 
power 

MJF In the MJF process, IR lamps pass over the surface and distribute the heat on previously jetted material to selectively melt plastic 
powder particles. 

IR 
lamps 

Low 

SLS is a specific type of L-PBF that uses lasers to bind powder by only melting the particles’ surface. It usually requires further 
processing (e.g., infiltration) to make the component fully dense. 

Laser beam Low 

Also known as Direct Metal Laser Sintering (DMLS) or Direct Metal Laser Melting (DMLM). As opposed to SLS, SLM uses high 
power laser beams to melt the powder particles, fusing to the previous layers to produce fully dense parts. 

Laser beam High 

EBM The EBM process deals with high power energy similarly to SLM, but it uses electron beams instead of the laser-based approach. 
This latter process is mainly used for metals. 

Electron 
beam 

High  
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control loop (shown in green) and Statistical Process Control (SPC)/ 
monitoring (shown in orange). The high-level flow diagram illustrates 
the different phases of the process (represented by solid boxes) and the 
outputs (represented by dotted boxes). Solid arrows indicate the logical 
flow of the process, while dotted arrows represent the information flow. 

Control-limit detection in SPC are widely recognized as the industry 
standard for in-situ detection and control of L-PBF processes [25]. 
Traditional SPC control charts, pioneered by Shewhart, enable the 

establishment and maintenance of statistical control over critical out-
puts in complex manufacturing and process environments. By analyzing 
samples and assessing quality characteristics, control charts help iden-
tify changes in process levels and detect non-random patterns that 
indicate the need for intervention. An out-of-control situation occurs 
when special causes, in addition to common-cause variations inherent in 
the process, begin to influence the process output. Control limits (i.e., 
upper, and lower), calculated using different methods, serve as thresh-
olds for sample data and prompt necessary actions such as process 
adjustment or investigation when measures fall outside these limits. 
Despite the potential demonstrated by using process limits as a viable 
and practical method for detecting undesirable conditions, the focus of 
control charts is on identifying abnormal process conditions rather than 
identifying individual defects or implementing real time process cor-
rections. Therefore, the alarms provided by the recorded data are not 
sufficient to manage the inevitable and unpredictable variations of the 
process conditions and to ensure parts’ consistency. Additionally, these 
detection limits are often hardcoded and derived from experimental 
processes, operator experience, or simulations, rather than being 
learned from data, as is the case with new trending Machine Learning 
(ML) techniques [26]. For this reason, an advanced control strategy 
(Fig. 4, green) with closed online control loop (red enclosed area) is 
needed [27]. In the following Sections 2.1 and 2.2, a brief description of 
offline control loops and general AM activities is reported. This intro-
duction aims to provide a comprehensive understanding of the 
manufacturing process behind the four drivers reviewed for closed on-
line control loop. 

2.1. Requirements, constrains and knowledge management 

During the part design stage (Fig. 4, white, left-side), a virtual 3- 
Dimensional (3D) model of the geometry intended for manufacturing is 
created using Computer-Aided-Design (CAD) software [28] or derived 
from scan data of an existing physical object [29]. Subsequently, the 3D 
model is converted into a Standard Tessellation Language (STL) file 
format, which describes the surface of the object using triangular facets 

Fig. 2. Graphical outline of the article. The four drivers are highlighted in the 
boxes. Each box has been labeled via the initials of Deming’s control loop steps 
(P-Plan, D-Do, C-Check, A-Act) [19]. 
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of the art of metal L-PBF. 
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[30]. This mathematical separation of the 3D volumetric model into 
slices generates a machine-readable G-Code that contains all in-
structions for the motors and other machine components, serving as 
additional input parameters [31,32]. 

As shown in Fig. 4 (white, right-side), the production process re-
quires setting up controllable input parameters for the AM machine. 
These parameters can be categorized into two main groups: i) predefined 
parameters that remain constant throughout the entire process and ii) 
online controllable input parameters. Predefined input parameters 
include: laser type (e.g., CO2, Nd: YAG, laser fiber) [33–35], laser 
operating mode (i.e., continuous, pulsed) [36], laser beam quality factor 
[37]; powder properties (e.g., material, size, thermophysical and flow-
ability properties [38,39]); inert gas type (e.g., argon, nitrogen) [40]; 
and recoating mechanism (e.g., stiff scraper, soft squeegee, roller) [41]. 
Detailed information about online controllable input parameters (i.e., 
one of the four drivers reviewed in this article) will be provided in 
Section 4. Through proper knowledge management and offline loops 
(Fig. 4, external loops), experimental correlation of input parameters 
and output signatures can be derived. These correlations are utilized in 
both SPC and closed control approaches to achieve desired properties of 
the manufactured part, typically through experimental data-driven 
approach (e.g., Design of Experiments DOE) [44]. SPC acts as a safe-
guard by halting production if process signatures deviate beyond 
acceptable limits. On the other hand, the closed control approach goes 
beyond mere monitoring when an issue arises. It involves a feedback 
loop that dynamically modifies specific controllable input parameters 
during the manufacturing process [42]. This adjustment is done in real 

time to align the output signatures with the desired ones. 
The external loops can be associated also to the “long run”, or “sys-

temic” corrective actions promoted by ISO 9001 continuous improve-
ment approach, which relies on developing process knowledge through 
objective evidence (i.e., process logs) [43]. However, the development 
of these offline cycles is beyond the scope of this article, and the desired 
output signatures as well as related input parameters are assumed 
known in the following sections. 

2.2. Production process, post processing and quality control 

As shown in Fig. 5, the production process is performed using L-PBF 
system (i.e., AM machine) made by several sub-systems, which are 
introduced in the following. 

The primary process subsystems include the optical chain, identified 
by the elements ①-⑦, and the powder feeding system, represented by 
elements ⑧–⑭. In Fig. 5, the (blue) arrows indicate the degrees of 
freedom of the moving parts. The production process begins by loading 
the powder into the supply chambers ⑭. The powder feed pistons and 
baseplates ⑪ are initially positioned at the minimum excursion (i.e., 
lowest position), while the building piston and baseplate ⑩ are set at 
their maximum excursion (i.e., highest position). Layer by layer, alter-
nating left to right supply chambers ⑭, the recoating mechanism ⑨ 
spreads the powder feed supply ⑫ on the top of the powder bed ⑧, 
which has been lowered by the height of one layer moving ⑩ down. A 
fresh layer of powder coated on top of the previous layer is therefore 
scanned and locally fused by the energy input of a laser beam ⑦. The 

Observable 

output

signatures

Controllable 

parameters

Production 

process

Post 

processing

Offline

quality 

control

Start

Online

feedback

Part design

(3D model)
Output 

part

Knowledge 

and expertise 

management

(e.g.,

controllable 

parameter 

and output 

signatures

correlation)

Desired 

output 

signatures

Desired 

proprieties

definition

Constraints 

definition

Closed Online Control Loop 

Offline 

feedback

Process log

Requirements 
and constraints

Offline Data-Driven Control Modelling 

Online 

sensing

Online SPC, 

control 

chart

Observable 

output 

signatures

Error 

message or

interrupt

Online SPC / Monitoring

Offline Chart Definition and Refinement

Process log

Desired input 

parameters

Offline

feedback

x

Observed 

output

signatures

Online 

sensing

Observed 

output 

signatures

Fig. 4. AM process flow diagram with general activities in white. Closed online control loop in green and industrial standards (with SPC) in orange. The green red 
enclosed area represents the core of the current article. Offline data-driven control modeling represents the refinement and tuning loop of the controller, involving 
the development of relationships between controllable parameters and observable signatures through a data-driven approach. The orange area represents the core of 
the SPC and monitoring process. Offline chart definition and refinement represents the offline tuning for SPC, including tasks such as limits definition and refinement. 
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laser beam is provided by a laser source ①, transferred by the laser beam 
transfer ② to the optical components such as collimator ③ and beam 
expander ④, and deflected by a scanner system. The scanner system 
utilizes x-y moving mirrors ⑤ driven by galvanometers to accurately 
position the laser spot along the scanning path. To ensure high precision, 
the scanner is liquid-cooled due to its sensitivity to thermal deformation. 
Finally, f-theta lens ⑥ are used to focus the laser beam. This sequence is 
repeated until the 3D object is completed inside the building chamber 
⑬. Typically, the baseplate and powder bed are preheated, and the 
building chamber ⑬ is protected with inert gas. Excess material can be 
disposed of in an overflow tank and reused in the next building job [45]. 

After the actual production process has been completed, several 
downstream steps are required to finish the AM process. As illustrated in 
Fig. 4, for instance, the part must be post processed (e.g., removal from 
the baseplate and cleaning of powder residues). Depending on the 
application of the manufactured part and the specific requirements, 
additional post processing steps such as machining, surface, heat, or 
chemical treatment may also be necessary [45]. Finally, offline quality 
control is carried out to assess the conformity of internal and external 
features of the produced part [46,47]. 

3. Material and method 

This research was conducted through a systematic literature review, 
re-adapting the methodology proposed by [20] and widely used by other 
academics [48]. In the current article, we introduced a novel deductive 
approach derived from the Deming cycle [19], which inspired us to 
explore and categorize the four main drivers considered for online 
control of metal AM. Table 2 details the steps followed for this review 
and answers to RQ1: what aspects do we aim to examine in the literature? 

Using the proposed research string, we performed a query on Scopus 
[49], the largest database of peer-reviewed scientific literature [50]. A 
query is a structured sequence of words in the field of Information 
Retrieval (IR) used to formalize the search of information (e.g., scientific 

papers, patents, websites) on a given database. Selected keywords are 
connected by logical elements, such as “OR”, “AND”, “NOT” [51]. After 
Phase 1–3 we initiated the defined query on Scopus advanced search 
portal, yielding 217 contributions. Subsequently, Phase 4 involved 
refining these contributions through automatic inclusion/exclusion 
criteria, resulting in a reduction to 133 papers. Initially, conference 
papers were excluded due to their typically lower scientific impact and 
robustness. In Phase 5, a thorough examination of titles, abstracts, and 
keywords led to a further reduction to 86 contributions. In Phase 6, we 
conducted manual refinement via Google Scholar to triangulate the re-
sults, incorporating two relevant additional review papers. Recognizing 
the advantages and limitations of conference papers, i.e., faster publi-
cation versus reduced robustness, a threshold of 30 citations was 
established for inclusion. As a result, 7 conference papers were added. 
The final set of 95 papers underwent an in-depth analysis to extract 
information pertaining to each of the four drivers (i.e., input parameters, 
output signatures, sensing techniques, feedback strategies) as per RQ2: 
what are the primary approaches found in the literature?. 

4. The four drivers 

In this section, we classified the collected 95 papers into the four 
identified drivers according to Fig. 2. Table 3 provides details about the 
classified papers and the corresponding article sections that offer an in- 
deep review of each driver. 

4.1. Input parameters and output signatures overview 

In the metal L-PBF process, many different parameters (i.e., over 50) 
impact the ultimate quality of the finished 3D part [22]. Such 
complexity creates a significant challenge in understanding process 
physics and developing an effective process control strategy. According 
to [17], L-PBF process variables can be identified as process parameters 
and process signatures. 

Fig. 5. The L-PBF system and its main components. ①—laser source, ②—laser beam transfer, ③—collimator, ④—beam expander, ⑤—scanning mirror, ⑥— f-theta 
lens, ⑦—laser beam, ⑧—powder bed, ⑨—recoating mechanism, ⑩—build piston and baseplate, ⑪—powder feed piston and baseplate, ⑫—powder feed supply, 
⑬—building chamber, ⑭—powder supply chamber. 
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Process parameters are input to the process. They are either 
potentially controllable (e.g., laser power and spot size, scanning speed, 
layer thickness, scanning strategy) or predefined (e.g., laser wavelength, 
powder bed material and type, inert gas type). The focus of this article 
will concern controllable parameters used to control the heating, 
melting, and solidification process, thus maintaining part quality during 
the process [17]. 

Process signatures occur during the actual built and are often called 
“the voice of the process”. They are dynamic characteristics of the 
powder heating, melting, and solidification processes. These signatures 
are categorized into two classes: observable signatures and derived sig-
natures [17]. The former can be observed and measured during the 
process by using in-situ sensing devices and are considered in this 
article. 

Controllable and predefined input parameters are related to the 
observable and derived output signatures [17]. Thus, developing cor-
relations between input parameters and output signatures support 
actual closed-loop control, with the goal of embedding process knowl-
edge into future control approaches [4,17,21–23]. This aspect is intro-
duced in Fig. 4 and detailed in Fig. 6, which recall the initial Fig. 2 by 
offering an overview of the two drivers. 

As depicted in Fig. 6, the process’s online controllable input pa-
rameters (detailed in Sections 4.1.1) and online observable output sig-
natures (described in Sections 4.1.2) were both arranged in three main 
subcategories (i.e., laser, powder bed, and building ambient). For those 
readers interested in a broader overview on predefined parameters (in 
addition to the ones highlighted in Section 2) and related signatures, 
which are not in the scope of this article, the following extensive reviews 
are suggested [17,22]. 

In the following Table 4, the retrieved papers are classified based on 

the highlighted categories in Fig. 6, following the preliminary classifi-
cation adopted in Table 3 for these two drivers. 

4.1.1. Online controllable input parameters 

4.1.1.1. Laser. As for online controllable laser parameters, the laser 
power (P) and the scanning speed (v) identified in Fig. 6 are crucial to 
define the amount of energy transferred in the affected zone [22]. While 
the power indicates the amount of energy transferred per second, the 
speed determines the time spent in the same area. Therefore, equilib-
rium between these two parameters avoids the formation of defects (e. 
g., pores) [52]. The scanning strategy is another parameter suited for 
online control and deals with the pattern that the laser beam follows to 
irradiate the selected region of the powder bed. Given a specific scan-
ning strategy (e.g., the zig-zag strategy shown in Fig. 6), the laser beam 
moving along that path at a certain scanning speed over the powder 
[53]. Moreover, during the L-PBF process, it is possible to shift the laser 
beam focus or defocus by displacing the building piston and baseplate ⑩ 
in Fig. 5 along the z axis to increase laser spot size (d). The diameter of 
the spot can influence the energy transmitted and the area affected by 
the powder bed [54]. 

4.1.1.2. Powder bed. When focusing on the powder bed, the recoating 
speed (r), dosing (d) and compression (c) of the powder are others online 
controllable input parameters that have direct influence on the final 
density and quality of the printed parts [55]. Another parameter to 
consider is the layer thickness (t), which refers to the spacing between 
layers [56]. Notably, thicker layers can result in larger sizes, potentially 
elevating the melt pool temperature [56]. The hatch space (h) parameter 
refers to the distance between centers of adjacent laser beam tracks [57]. 

Table 2 
Review protocol according to [20]. Used databases: Scopus [49] (and Google Scholar for triangulation).  

Review phase Detail Outcome 

1. Keywords identification The keywords identification was driven by the research purpose and the 
scope of the review. Five main orthogonal concepts (i.e., location, timing, 
goal, process, and material) have been defined and instantiated in the 
specific case by words and synonyms. 

Location:(in-situ; in situ; inline; in-line; in line) 
Timing:(online; on-line; on line; real-time; real time) 
Goal:(monitoring; control; feedback) 
Process:(selective laser melting; selective laser sintering; powder bed 
fusion; SLM; PBF; SLS) 
Material: metal 

2. Query string development The operator “AND” was necessary for isolating the previously defined 
orthogonal concepts that must be (all) embedded in the query outcome. 
The “OR” operator was used to concatenate semantically similar 
keywords for a specific concept (synonyms). Please note that despite 
location and time concepts are orthogonal, for a broader query we merged 
these two categories via “OR” operator. 

((“in-situ” OR “in situ” OR “inline” OR “in-line” OR “in line”) OR 
(“online” OR “on-line” OR “on line” OR “real-time” OR “real time”)) 
AND (“monitoring” OR “control” OR “feedback”) AND (“selective laser 
melting” OR “selective laser sintering” OR “powder bed fusion” OR 
“SLM” OR “PBF” OR “SLS”)AND(“metal”) 

3. Potential addition of 
keywords 

An initial advanced search was carried out using the Scopus database 
“Title, abstract, keywords” criteria. The keywords within the papers 
resulting from this search were then analyzed through Scopus analytics. 
Current keywords were found to be suitably comprehensive. 

TITLE-ABS-KEY((“in-situ” OR “in situ” OR “inline” OR “in-line” OR “in 
line” OR “online” OR “on-line” OR “on line” OR “real-time” OR “real 
time”) AND (“monitoring” OR “control” OR “feedback”) AND (“selective 
laser melting” OR “selective laser sintering” OR “powder bed fusion” OR 
“SLM” OR “PBF” OR “SLS”) AND (“metal”)) 

4. Automatic refinement of 
the identified papers 

The papers from Phase 3 were filtered according to the inclusion/ 
exclusion criteria. In particular, the following inclusion conditions were 
applied: Source type = Journal OR Review OR Conference review OR 
Book chapter; Language = English; Time window = 2007 – Today (July 
2022). 

Input: 217 papers 
Output: 133 papers 

5. Manual refinement 
(exclusion) 

During this phase, the titles, abstracts and keywords of the 133 papers 
were carefully examined to determine their relevance to our research 
topic and objectives. In cases of uncertainty regarding the exclusion, the 
entire content was inspected before making the decision to remove the 
paper. 

Input: 133 papers 
Output: 86 papers 

6. Manual refinement 
(inclusion) 

In this phase, the same query was executed in Google Scholar to 
supplement the results through triangulation. A total of 2 additional 
review papers were chosen and included into the final set. Furthermore, 
conference papers that have been previously removed in Phase 4 were 
reconsidered for further analysis. Abstracts of conference papers with at 
least 30 Scopus citations were reviewed, leading to the selection of 7 new 
conference papers. 

Input: 86 papers 
Output: 95 papers 

7. Papers review and 
classification based on the 
four drivers 

The selected 95 papers were reviewed and classified to ascertain their 
individual contributions to each of the four drivers: input, output, 
sensors, feedback strategy. 

Analysis of the papers  
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Lastly, the base plate temperature (Bt) stands as another online 
controllable parameter with a notable impact on the powder bed tem-
perature. This temperature regulation proves significant in reducing 
thermal stresses in SLS/M parts, achieved through the mitigation of 
process thermal gradients [58]. 

4.1.1.3. Ambient. As for the ambient (or built environment) and other 
unwanted reactions, inert gas is fed through the build chamber to create 

an inert atmosphere to avoid oxidation. In this case, the direct online 
controllable parameter is the gas flow velocity (g). This influences 
directly other characteristic of the chamber (e.g., relative pressure and 
oxygen content) and indirectly the quality of the manufactured part 
[59]. In addition to the shielding properties of the inert atmosphere, the 
gas flow velocity is directly responsible for the removal of spatter and 
welding fumes originating from the process zone [59]. 

To conclude the overview about online controllable input 

Table 3 
The 95 pertinent papers collected and classified according to the four drivers and their respective article sections.  

Article section Description Relevant review 
papers 

Other papers (review/research) 

4.1.1 Online controllable input 
parameters 

Key input parameters that can be controlled during the metal L-PBF production 
process 

[4,17,22,23] [52–59] 

4.1.2 Online observable output 
signatures 

Primary online observable output generated by a metal L-PBF production process 
(i.e., signatures) 

[4,17,22,23] [18,55,59–82] 

4.2.1 Online sensing techniques Primary sensing techniques employed for online monitoring of metal L-PBF 
production processes 

[4,18,21–23,83,84] [52,54,63,65,69,78,79,84–138] 

4.2.2 Online feedback strategies Primary feedback strategies for implementing online corrective actions in the 
metal L-PBF production process 

[17,22,23,42] [139–141]  

Fig. 6. Expanded version of Fig. 2. Classification of the online controllable input parameters in the L-PBF process (left). Classification of the online observable output 
signatures in the L-PBF process (right). Schematic representation of L-PBF along with labels for some controllable input parameters and observable output signatures 
(center). The light blue arrow in the schematic representation highlights the direction of the laser beam, and the light blue dotted path illustrates the scan-
ning strategy. 

Table 4 
Manual labeling of the pertinent retrieved papers concerning the online controllable input parameters and output signatures.  

Driver Laser Powder bed Ambient 

Online controllable input parameters [22,52–54] [55–58] [59] 
Online observable output signatures Melt pool: [60–69] 

Track: [18,70–78,81,82] 
[55,79,80] [22,59]  
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parameters, it is necessary to introduce a Key Performance Indicator 
(KPI) defined by aggregating some of the process parameters described 
above and used to characterize the process. The laser power (P) 
measured in (W = J/s) divided by the scanning speed (v) measured in 
(mm/s), together with the hatch space (h) measured in (mm) and the 
layer thickness (t) measured in (mm), define one of the most critical KPI, 
namely the energy density Ed = P/htv (J/mm3) [59]. 

4.1.2. Online observable output signatures 

4.1.2.1. Laser (melt pool). Melt pool (c.f. Fig. 6) is the primary class of 
online observable signatures that involves any process dealing with a 
laser beam aimed at achieving a local fusion of the material [60]. In the 
literature, numerous melt pool related signatures have been considered 
for monitoring purposes [61,62]. Geometrical features such as width, 
depth and relative cross-sectional shape of the molten material have 
been treated to some extent to monitor the process stability [63]. Under 
laser processing, the temperature gradient determines the speed of 
phase transitions, chemical reactions, microstructure, and material 
properties [64]. Melt pool temperature (1D, 2D, and 3D profile [65,66]) 
is, therefore, one of the most dynamically studied signatures [67,68]. 
The plume is another signature which can be observed during the laser 
processing. It is formed by the partial material vaporization, which may 
also lead to the formation of plasma because of metallic vapor ioniza-
tion. The plume differs from the surrounding atmosphere, and it can 
interfere with the optical properties of the laser (e.g., beam profile and 
local energy density) [69]. 

4.1.2.2. Laser (track). Track (or solidified material) is the second class 
of online signatures related to the material affected by the laser beam. As 
shown in the graphical representation of Fig. 6, once the melt pool so-
lidifies, the material turns into a solid track [71], which significantly 
impacts the final quality of the part due to defects [70]. Among main 
observable online defects deriving from the melt pool solidification, 
porosity, balling, surface issues and other (e.g., cracking and deforma-
tion) should be considered [4,72]. Porosity consists of voids inside the 
bulk of the fused material [73]. Two separate mechanisms mainly 
determine the formation of such pores. The first is an incomplete melting 
of the powder because of low power or high scan speed [81]. The second 
is the “keyhole effect” (i.e., melt pool’s material is vaporized, resulting 
in a bubble-like cavity upon solidification), often caused by high power 
or low scan speeds [74]. The formation of solidified balls of material on 
the part surfaces after melting (i.e., balling) often occurs where the 
powder used in an L-PBF process has high surface tension in the liquid 
phase [4]. These balls can form highly rough surfaces or pores between 
two or more balls when in contact, and similarly to the previously 
presented defects their monitoring is crucial [75]. Residual stress is 
another significant issue in AM-manufactured metal parts, and often the 
thermal gradient mechanism and the cool-down phase of molten top 
layers cause cracking (e.g., delamination) or geometric deformation 
[76,77,82]. Others geometric and dimensional issues (e.g., stair-case 
effect, shrinkage, and displacement) can occur during the processing 
[18] as well as surface defects and roughness which are a significant 
factor in the fatigue and crack nucleation [78]. 

4.1.2.3. Powder bed. As shown on the right side of Fig. 6, another class 
of observable output signatures encompasses those associated with the 
powder bed. Signal acquisition in this context can be executed subse-
quent to (or during) the deposition of the powder bed itself, prior to the 
laser sintering or melting of the following layer. Within this realm of 
signatures, ensuring the homogeneity of the coated powder stands out as 
a particularly critical aspect for monitoring. Some papers demonstrate 
that during the recoating process, numerous defects might arise, and 
ununiform distribution of the powder can be detected [55]. Moreover, 
powder bed monitoring of fused clumps of powder or ejected material (i. 

e., spatter) from the melt pool has been reported [79]. Spatter can be 
classified as droplet spatter and powder spatter, both arising because of 
the impact of metallic vapor [80]. 

4.1.2.4. Ambient. The final set of observable signatures which influence 
the process stability and, therefore, the part quality concern the inert gas 
of the building chamber [59]. Oxygen (O2) level is probably the most 
critical process environmental signature on the quality metrics [59] 
since oxygen can lead to oxide formation in metal, change wettability, 
and energy required for welding. Ambient relative pressure and tem-
perature are also important signatures to be controlled during the pro-
duction process. The former influences vaporization of metal as well as 
oxygen content. The latter impacts heat transfer, powder preheat, and 
residual stress [22]. 

4.2. Sensing techniques and feedback strategies overview 

As detailed in Section 2, the laser beam scans at a controlled scanning 
speed the selected locations of the powder bed. Then, it fuses the powder 
to the solid material underneath by either complete melting (i.e., SLM) 
or partial melting (i.e., SLS). A single layer of metal is “cast” upon a 
previous layer resulting in complex correlations between online 
controllable input process parameters and online observable output 
process signatures. The result is that there is a need for real time, closed 
loop process feedback and sensors to ensure quality, consistency, and 
reproducibility by online adjustment of the input parameters based on 
observed signatures [17]. 

Although numerous papers provide an overview on the application 
of sensing techniques (i.e., 3rd driver) for monitoring purposes in metal 
L-PBF [4,21–23,83,84], a structured classification of the sensors and 
their application on L-PBF following the approach presented in Fig. 2, is 
missing. Moreover, as for feedback online strategies (i.e., 4th driver), 
only a few studies have been published regarding an actual imple-
mentation of either reactive, corrective, or feedback control actions for 
metal SLS/M process based on detected signatures. For this reason, the 
pre-classified papers of Table 3 are analyzed also in this context. 

According to the article outline, Fig. 7 recalls the initial Fig. 2 by 
offering an overview of the two drivers treated in this section. In Section 
4.2.1, a classification of sensors suitable for online, in-situ, metal SLS/M 
signature monitoring based on two types of physical responses (i.e., 
electromagnetic, and acoustic) retrieved by the literature search are 
proposed, and subclasses are generated on reviewed papers (Table 5). As 
shown by Fig. 7 these sensors, after data processing and analysis provide 
the information necessary for the online feedback strategies reviewed in 
Section 4.2.2. 

4.2.1. Online sensing techniques 
As shown in Table 5 and accordingly to our query output, the elec-

tromagnetic signals class covers a series of sensors that work in a broad 
range that copes X-Ray (XR), visible light till the Near InfraRed (NIR) 
and IR wavelengths (from 0.01 to 2300 nm). In this class also multi-
spectral emission spectroscopy (i.e., within specific wavelength ranges 
across the electromagnetic spectrum) have been labeled. Regarding 
general information, irrespective of the sensor type, the mounting 
method involves two main approaches: co axial and off axial systems. In 
co axial configurations, the sensors utilize the optical path of the power 
source. In off axial configurations, the sensors are positioned outside the 
optical path, with a specific angle of view for the region of interest [4]. 
Acoustic sensing is the second category that the authors identified in the 
retrieved papers. In this case, no specific subclasses have been labeled. 

Standard sensors (e.g., velocity and spatial transducer) nowadays 
widely embedded in Numerically Controlled (NC) machines aiming for 
controlling specific input parameters are out of the scope of the 
following classification. Commercial sensing solutions for online signa-
ture monitoring are out of scope as well. The following accurate papers 
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can be considered for more details [4,18,21]. 
In Fig. 8, we present a visual summary of the comprehensive review 

of sensing techniques for monitoring purposes analyzed in the following 
sections. The left side (Fig. 8a) displays two bar graphs, illustrating the 
citation count and maximum cited paper at the top, and the publication 

count and H-index according to the Scopus database at the bottom. 
These metrics are reported for each reviewed sensing technique, 
providing insights into the quantity and quality of published papers 
categorized by sensor types, and reinforcing the information initially 
provided in Table 5. Notably, Visible-NIR and NIR-IR sensors 

Fig. 7. Expanded version of Fig. 2. Classification of common in-situ sensors suitable for monitoring online observable output signatures and depiction of online 
feedback strategies applied in literature. 

Table 5 
Manual labeling of pertinent retrieved papers for the electromagnetic and acoustic source sensing approach. All sensor types have been organized to emphasize and 
summarize crucial features (such as sampling rate, cost and time, #retrieved papers, signatures detectable and references to retrieved papers).   

Sensor type Sampling rate 
[kHz] 

Costs and time 
consuming 

Number of papers 
retrieved 

Signatures detectable Retrieved papers 

Electromagnetic XR 50 High  5 Melt pool: depth/shape 
Track: porosity, balling, surface 
issue 
Powder bed: ejected material 

[52,63,85–87] 

Visible-NIR >1–900 Low  26 Melt pool: width/shape 
Track: porosity, balling, crack/ 
deform, surface issue 
Powder bed: ejected material, 
homogeneity 

[54,79,88–110,136] 

NIR-IR 0.05–10 Low  19 Melt pool: width/shape, plume, 
temperature profile 
Track: porosity 

[65,69,84,111–124,133,134,138] 

Multispectral 0.01–170 Medium-high  3 Melt pool: width/shape, plume, 
temperature 
Track: porosity, surface issue 

[125–127] 

Acoustic Sonic or 
ultrasonic 

3 - >20 Low  8 Melt pool: depth and width 
Track: porosity, surface issue 
Powder bed: ejected material 

[78,128–132,135,137]  
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demonstrate extensive academic resonance, being the most cited and 
presenting the highest H-index. Lower scientific relevance is associated 
with multispectral approaches, while XR and sonic or ultrasonic (i.e., 
acoustic) sensing techniques gather certain interest but are still far from 
visible-NIR and NIR-IR. 

On the right side (Fig. 8b), a radar graph visually represents the 
number of covered signatures by each specific sensing technique, based 
on the information summarized in Table 5. Again, Visible-NIR and NIR- 
IR sensors demonstrate extensive coverage, encompassing a wide range 
of signatures (i.e., NIR-IR for melt pool and visible-NIR for track and 
powder bed). Regarding ambient signatures, no scientific papers have 
been retrieved addressing this aspect from a sensing perspective. 

Based on the above observations, it is evident that Visible-NIR is 
frequently employed in conjunction with NIR-IR systems (laser wave-
length and pool thermal signature), as discussed in Section 5 (see Section 
6, data variety). 

In the following Sections 4.2.1.1-4.2.1.5 we provide a detailed re-
view of the retrieved papers for sensing techniques dived in the identi-
fied classes and subclasses (Table 5). 

4.2.1.1. XR. Ultra-fast in-situ real-time XR imaging seems to be the one 
of the most promising technique due to its relatively recent introduction 
and continuous growth during the years. At the same time, compared to 
other techniques suffer for less flexibility and more costly and time 
expensive set-up. As introduced by one of the first studies in [85], 
scientifically and technologically significant phenomena in metal L-PBF 
(e.g., melt pool dynamics, keyhole porosity, powder ejection and phase 
transformation) can be monitored via XR. On this initial stage, addi-
tional papers have been published and an open architecture prototype of 
a compact XR system was reported in [86]. A step further in high-speed 
synchrotron XR imaging has been introduced by [63]. Similarly, to the 
previous papers, they used a horizontal set-up (the laser had an angle of 
incidence of 7◦ relative to the sample surface normal) and 50 kHz frame 
rate. As main result, the authors correlate the projective melt pool ge-
ometries to laser absorption proposing the use of a total backscattered 
light detection system for real time process control of keyholes, melt 
pool’s aspect ratio deviations, and instabilities [63]. Furthermore, in 
[52] the authors propose an experiment on pulsed wave metal L-PBF to 

study the cavity and porosity pattern formation (i.e., melt pool dy-
namic), which is a well-known issue in this operating mode [52]. Similar 
to [63] but more recent study has been reported by [87]. By simulta-
neous in-situ synchrotron XR (50 kHz frame rate), the authors directly 
probe the interconnected fluid dynamics of the vapor jet formed by the 
laser and the depression it produces in the melt pool demonstrating how 
unstable keyhole is accompanied by a transition to chaotic flow in the 
plume [87]. In the present article, the contribution on XR Computed 
Tomography (XCT) has not been included due to the conventional off-
line (i.e., post-process) inspection. This technique is only mentioned as a 
comparison (i.e., ground truth) to online techniques. 

4.2.1.2. Visible-NIR. Meanly dealing with visible or NIR spectra, digital 
imaging is often associated with vision systems, which nowadays are 
tremendously adopted both in the industrial and consumer industry 
using spatially resolved sensors such as Charge Coupled Devices (CCD) 
and Complementary Metal Oxide Semiconductor (CMOS) [88]. Due to 
the flexibility, low cost, and continuous improvement of visible/NIR 
imaging techniques, they have been adopted for decades in laser-based 
manufacturing and its level of adoption is at an early maturity stage. 
Among the reviewed articles, in [89] a high-speed camera (10 kHz) was 
utilized with telescopic lenses to monitor the interaction of laser pa-
rameters (i.e., power and speed) and material signatures (i.e., melt pool 
and spatter). In another paper, the authors present a system based on a 
camera with 300 kHz frame rate as a compromise between the capability 
of capturing the laser kinematics and the computational feasibility of in- 
process image analysis [90]. A similar approach was applied also in 
[91,92] on high frame rate cameras (1–25 kHz) some years later. In the 
same year of [90], another step forward in the processing of image 
datasets generated from optical camera has been introduced by [93]. In 
their paper, the authors used a fixed (off-axis) field of view camera 
ranging in the 6–900 kHz frame rate and propose a method to transform 
the high-speed image data such that the melt pools appear as viewed 
through a coaxially aligned optical setup. In 2019 a supervised learning 
technique (i.e., Bayesian inference) was proposed as a solution for quasi- 
real-time (layer-wise) track (e.g., pores/surface issues) control [94]. 
Real time monitoring systems to enhance repeatability and quality 
control using collected videos to train CNNs with a semi-supervised 
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Fig. 8. (a) Last decade of published papers on online sensing techniques and (b) extent of coverage of monitored signatures using each specific sensing technique.  
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model are proposed by Yuan et al. [136]. These papers opened the era of 
ML adoption in the optical imaging monitoring (and even forecasting) as 
demonstrated by the significant amount of optical sensing and ML 
contributions in the recent years [95–105]. Papers specifically focused 
on spatter analysis were published in [79,106,107]. Other relevant pa-
pers, such as the one published in 2019 by [108], report high-resolution 
in-situ monitoring for the identification of optical features correlated 
with the part density and mechanical properties. Similar papers based 
on layer-wise optical control of defects on the layer surface were pro-
posed in [54,109]. On the other hand, in [110] the author proposed an 
optical dimensional measuring method coding the surface profile layer 
with structured light, which is recorded by a CCD camera. The point 
cloud coordinates output are compared with the CAD model to detect 
errors in powder coating or layer thickness consolidation. Finally, we 
report another paper that proposes an online optical system based on 
industrial cameras to collect images and detect SLM powder bed 
spreading issues (e.g., powder bed surface homogeneity) [97]; for this 
specific application a low frame rate has been demonstrated to be suf-
ficient (0.023 kHz). 

4.2.1.3. NIR-IR. Heat transfer is a driving force of the L-PBF [111]. The 
formation and dynamic behavior of the molten pool as well as the liquid 
metal cooling and solidification have a direct impact on microstructure, 
residual stress, and deformation of components. Spatially integrated 
single channel sensors (e.g., photodiodes and pyrometers) have wide-
spread use in melt pool monitoring of advanced laser processing as well 
as cameras with special wavelength filters and frame rates [84]. A layer 
wise approach based on relative surface temperature (i.e., thermal ra-
diation) measurements was developed for subsurface defects identifi-
cation (e.g., lack of fusion) [112]. Another layer wise approach was 
proposed by [113]. In this paper, the authors used a high-speed 
(100–250 Hz) thermal imaging system (i.e., dual-wavelength imaging 
pyrometer with temperature range 1500–2500 ◦C) to capture melt pool 
temperature variations. Similarly, in [114] two-color pyrometry data 
sets were used to estimate instantaneous temperatures, melt pool ori-
entations and aspect ratios [114]. Further application of pyrometers 
adoption for melt pool temperature analysis can be retrieved. For 
example, [115] proposed melt pool temperature time series analysis via 
ML for pores detection using a 100 kHz pyrometer as sensing source. 
Additionally, temperature distribution in the sintering zone has been 
studied using a video camera, along with maximum surface temperature 
control in the irradiation spot using a high-speed two-wavelengths py-
rometer [133]. Other examples using IR camera and pyrometer applied 
for SLM process visualization and control can also be found varying the 
sampling rate from 2 to 3 kHz [134]. In a more recent paper, another 
application of ML is proposed for IR data obtained from a thermal 
camera (50 Hz) [116]. Other applications on online monitoring of melt 
pool geometry (i.e., width/shape) were carried out via IR camera with 
58 Hz frame rate and a working range 600–3000 ◦C by [117]. Similarly, 
a methodology for IR imaging feature extraction was proposed by 
[65,138]. In [118] the authors proposed an approach based on IR images 
acquired with an off-axial IR camera (50 Hz frame rate) to detect 
possible deviations of plume from a stable behavior in AM zinc powder 
processing (temperature range 100–500 ◦C) [118]. Additional papers on 
processing thermal videos captured during the SLM of zinc powder are 
reported by the same research group [69,119]. Furthermore, a Short- 
Wave Infrared (SWIR) thermal camera (2.5 kHz frame rate) measure-
ments to compile voxel-based part representations and understand how 
the complexities in the thermal history affect part performance was 
proposed by [120]. The same author proposes an updated version of the 
previous paper using SWIR thermal camera for porosity probability 
mapping [121]. Among the most recent papers, [122] details a design 
and validation for an online in-situ monitoring system for the detection 
of some melt pool signatures (e.g., temperature profile, temperature 
gradient, cooling rate) [122]. Recently, another in-process 

thermography as an in-situ monitoring tool was presented by [123]. To 
conclude we also report a novel alternative set-up for investigating the 
melt pool in the cross section, based on high-speed (10 kHz frame rate) 
thermographic camera mounted orthogonally to the scanned plane 
behind a glass [124]. 

4.2.1.4. Multispectral. As opposed to the previously reviewed tech-
niques, multispectral emission spectrometry counts a few published 
papers. Despite Optical Emission Spectroscopy (OES) has previously 
been implemented in laser welding processes for plume (e.g., chemical 
species and temperature) and melt pool features (e.g., depth to width) as 
well as DED process monitoring, it seems that these approaches for metal 
L-PBF are novel and at an early adoption stage [125,126]. In more de-
tails, in [125] the spectrometer is split into the laser beam path of the 
SLM system to measure the visible light emitted from the melt pool size 
and plume in-process at 14 Hz frame rate and correlated it with the melt 
pool properties of samples. OES has been proved to be useful also for 
SLM porosity monitoring. As described by another paper, optical emis-
sion signatures can be captured via in-situ multispectral photodetector 
sensor at 100 kHz frame rate [126]. Accordingly to the authors, the 
porosity-level within each layer of a test part was quantified using XR 
Computed Tomography (CT) as ground truth to train a ML model that 
take OES data as input and predict the percentage porosity-level in each 
layer. This approach is found to predict the porosity on a layer-by-layer 
basis with an accuracy of ~90 % in a computation time <0.5s [126]. A 
more recent paper still based on ML prediction model proposes a dataset 
obtained via an area-scan hyper fast (170 kHz frame rate) hyperspectral 
(i.e., from across the electromagnetic spectrum) camera as input to 
predict the surface roughness [127]. The hyperspectral images obtained 
from the process were labeled with the surface roughness as determined 
by a confocal microscope and used to train a Convolutional Neural 
Network (CNN). Overall, the results suggest that hyperspectral data does 
provide crucial information about the L-PBF process, and that hyper-
spectral imaging could potentially help establish on-line product quali-
fication [127]. 

4.2.1.5. Acoustic. Electromagnetic monitoring methods reviewed in the 
previous sections are common but are mainly limited to observing only 
the surface of the AM build (except XR). Acoustic sensing either inducing 
sonic or ultrasonic waves, is broadly adopted for nondestructive testing, 
and monitoring internal features (e.g., porosity) [128] due to the 
simplicity and low cost of the related sensors (i.e., microphones) [4]. 
Acoustic Emission (AE) techniques are based on sonic or ultrasonic 
sensors, which receive waves that relay back information about the in-
side and have been proposed for in-situ process monitoring [135,137]. A 
first class of retrieved papers rely on Laser Ultrasonics (LU), which uses 
lasers to generate and detect ultrasonic waves and produce images 
known as B-scans and C-scans. For example, the authors of [128] pro-
pose an LU technique for porosity measurements. In their paper, the 
authors explore the current capability of the LU testing technique to 
detect subsurface defects in metal L-PBF in comparison to XR CT [128]. 
Another paper based on LU testing in presented in [78]. Here the authors 
established a system to detect the surface defects of SLM samples that 
have a different surface roughness. The influences of the surface 
roughness on the LU signal-to-noise ratio distribution and defect sizing 
accuracy were studied as well [78]. Other papers focused on the air-born 
acoustic emission generated due to the SLM laser interaction to the 
material [129]. In their paper, the authors report the utilization of a 
microphone mounted in the building chamber sampling acoustic data at 
100 kHz for porosity formation (i.e., keyhole mode) monitoring. Simi-
larly, [130] proposed a method based on the in-process acoustic signals 
monitoring via a microphone. Finally, we recall the recent paper from 
[131] in which an ultrasonic time of flight measurement monitoring 
technique is numerically and experimentally used to study the behavior 
of laser-induced melting pools, including depth and width estimation as 
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well as phase transition and other dynamics in real time [131]. To 
conclude, the most recent retrieved paper is about the application of 
transfer learning (i.e., a paradigm where a model already trained on a 
similar task is re-used with minimum training to accomplish a new task) 
to improve current ML generalization for online monitoring of different 
metals in SLM [132]. In their paper, the authors propose the utilization 
of AE spectrogram on a certain metal for capturing acoustic data 
correlated to specific signatures (e.g., pores, balling) and retrain the 
already trained model to other metals via material-specific spectrograms 
[132]. 

4.2.2. Online feedback strategies 
As highlighted by several authors, because of the L-PBF process 

complexity (i.e., over fifty input parameters and as many observable 
signatures), actual feedback on AM machines is still far from the in-
dustrial application [17,22]. To date, the L-PBF process is an open-loop 
control system with several in-situ monitoring capabilities (Section 
4.2.1). Unfortunately (and typically), a trial-and-error approach is 
adopted to set up experimental parameters, which are fixed throughout 
the entire build process. These approaches are insufficient to ensure part 
quality since parameters need to be dynamically adjusted in response to 
the underlying evolution of process signatures [23,42]. Despite the lack 
of standard control protocols for L-PBF AM systems, in this section we 
report the restricted set of retrieved articles that propose an actual 
feedback control system and closed-loop strategy in detail. 

As reported in Section 2, most AM processes start from a CAD file and 
the creation of digital position commands for galvo and power laser 
control as a series of x-y-power entries stored into the G-Code. One the 
most used protocols for galvo control is the xy2–100 [139]. In this 
protocol, the digital position commands are packaged into 20-bit 
packets and transmitted at 2 MHz clock rate to the galvo digital-to- 
analog (D/A) receiver, converted to analog voltage to drive the galvo 
motor through a local Proportional-Integral-Derivative (PID) loop. 
Similarly, the laser power on most commercial laser units can be 
controlled through an analog voltage input, where the digital power 
command can be transmitted and converted (D/A) as galvo control 
signal [139]. According to the above, the authors of [139] propose a 
feedback control system for controlling the laser power in an L-PBF 
process based on locally varying signatures (i.e., relative proportion of 
solid or powder material near to the melt pool) [139]. A factor called the 
Geometric Conductance Factor (GCF) was calculated, and laser power 
was linearly scaled to the GCF throughout the build modifying the power 
of the x-y-power array in real time for overhangs and edges. The algo-
rithm was implemented on the controller of the National Institute of 
Standards and Technology (NIST) open Additive Manufacturing 
Metrology Testbed (AMMT) system, and the in-situ melt pool intensity 
was measured via high-speed (10 kHz rate frame) camera, configured 
for co-axial melt pool monitoring [139]. As shown in Table 6 this 
contribution offers a practical and valuable application to the field of 
control. 

Another interesting application of feedback control can be found in 
the work of Adnan et al. [140]. In their research, the authors proposed a 
feedback system based on a novel intelligent compensation architecture 
consisting of two systems (i.e., System1 and System2). System1 is 
considered as the primary control function and is designed for real time 

control of the L-PBF machine’s discharging, coating, and polishing 
loops, utilizing its fast and intuitive capabilities. On the other hand, 
System2 is developed as a secondary tuning function, employing a Melt 
Pool Images (MPI)-based approach with a CCD coaxial camera and a 
hybrid model classifier based on ML tools, such as Convolutional Neural 
Networks (CNNs) and Long Short-Term Memory (LSTMs). System2 aims 
to determine and assess the appropriate thresholds and parameters of 
System1 based on the ratios of different MPI classes in an offline manner 
[140]. 

Lastly, another paper on actual online control presented a theoretical 
approach and a valuable comparison between PID control (i.e., the in-
dustry standard) and Model Predictive Control (MPC) in maintaining the 
required melt pool width and depth, controlling laser speed and power 
[141]. One of the primary advantages of PID is its effectiveness when a 
qualitative relationship between the desired output and control input is 
known. After some parameter tuning, control can be conducted without 
the necessity of a physical model. For the L-PBF process, if melt pool 
width or depth is below the desired value, increasing the laser power is a 
well-established solution. Similarly, if laser scanning speed is among the 
control inputs, reducing the scanning speed is known to increase both 
melt pool width and depth at the same laser power level. In all cases, PID 
controllers require direct observation of controlled performance to 
derive an error term for determining control actions. The capability for 
in-situ monitoring, as reported in Section 4.2.1, indicates that melt pool 
features can be observed in real time through various sensing tech-
niques, with some constraints on the sampling rates in the order of kHz. 
However, when multiple control inputs are used to control the output 
response, there is a lack of mechanism to coordinate or optimize these 
inputs for achieving improved control output. Furthermore, when con-
trol objectives involve both observable and indirectly observable out-
puts, along with multiple control inputs, the effectiveness of the PID 
control comes into question [141]. For these reasons, the authors pro-
posed advanced MPC. While such models are computationally expen-
sive, they are significantly more flexible in producing results under 
different settings. They can be conducted offline but are closely associ-
ated with ML. 

Supervised ML involves training a model on labeled datasets, where 
the relationship between input data and output is known. The model 
learns from these labeled examples to predict outcomes for unseen data. 
In the context of L-PBF, supervised learning algorithms can be employed 
to classify defects, predict temperature distributions, or estimate part 
quality based on sensor data (i.e., regression). On the other hand, un-
supervised ML involves training a model on unlabeled datasets, where 
the structure and patterns in the data are not explicitly known. By 
continuously monitoring the process, such models can detect abnormal 
conditions that might lead to defects or process failures 
[24,103,142,143]. Semi-supervised ML, as advanced technique, utilizes 
both labeled and unlabeled data, combining the benefits of both su-
pervised and unsupervised approaches. Another advanced approach is 
reinforcement learning, which incorporates an intermediary level of 
information into the algorithm. It is assumed that the training data will 
provide intermediate level of information about the true and false re-
sults. In this case, the system becomes “intelligent” in a trained envi-
ronment based on rewards or punishments linked to the accuracy of the 
results. Furthermore, hybridization represents the frontier of research 

Table 6 
Pertinent retrieved papers concerning control strategy and their features comparison.  

Paper Control strategy Paper Contribution to control Practical 
application 

Computational 
requirements 

[139] PID control embedded in Additive 
Manufacturing Metrology Testbed NIST 

Practical implementation and experiment of a control system and proposal of 
Geometric Conductance Factor (GCF) calculation: Melt pool solid/liquid factor 

Yes Low 

[140] Intelligent compensation architecture based 
on online and offline control loops 

Theoretical presentation of control loops (Airflow circulation, Powder filling 
and spreading, Laser galvanometer) 

No Moderate 

[141] Model Predictive Control (MPC) Comparison of online PID controllers in contrast to offline ML-based predictive 
model 

No High  
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where multiple models are adopted to optimize the overall system’s 
performance, “leveraging” the strengths of different approaches to 
achieve enhanced results [24,104,141–143]. 

According to the above, MPC first requires a physical model to 
conduct the control (e.g., Finite Element (FE) models that can predict 
the melt pool size (e.g., length, width, and depth)) under different 
process parameter settings and assumed boundary conditions. Secondly, 
supervised ML algorithms are trained based on the generated datasets 
from FE models. The third step is to further characterize the inherent 
model bias under different process parameter settings, and to quantify 
the uncontrollable process uncertainty (e.g., powder and laser property) 
presented in the experiments. The final updated ML model can be 
considered as a digital representation (or digital twin) of the physical 
process [141]. 

5. Results and discussion 

In Section 4, the four proposed drivers for an online control of metal 
AM have been reviewed. We focused on the logical loop of the Deming 
cycle (aka PDCA) and considered the 95 papers resulting from a struc-
tured literature review method proposed in Section 3.  

• Firstly, the online controllable input parameters (i.e., 1st driver) 
were reviewed in Section 4.1.1 as the planning step (i.e., P)  

• Secondly the online observable output signatures (i.e., 2nd driver) 
were treated in Section 4.1.2 as the result of the doing step (i.e., D)  

• Thirdly the online sensing techniques (i.e., 3rd driver) were 
addressed in Section 4.2.1 as the monitoring or checking step (i.e., C)  

• Finally, the few actual online feedback strategies (i.e., 4th driver) 
retrieved were reported in Section 4.2.2 as the corrective actions or 
act step (i.e., A). 

Online feedback strategies outlined in Section 4.2.2 use in-situ sen-
sors (identified Section 4.2.1) to collect data of online observable output 
signatures (defined in Section 4.1.2) and adjust in real-time the related 
online controllable input parameters (defined in Section 4.1.1). From 
the review of the previous sections, it is possible to derive a few final 
considerations for each driver and answer to the RQ3: what are the key 
findings from the literature? 

5.1. Input parameters/output signatures 

The L-PBF process has undergone extensive study and analysis, 
resulting in the establishment of a universal hardware architecture (AM 
system or machine) and a specific physical process (selective fusion of 
powder using a laser beam). Consequently, the input parameters and 
output signatures of the process are well-defined and categorized. Fig. 6 
and Table 4 provide a summary of the first two drivers. However, it is 
widely acknowledged in the literature that directly applying physics 
heat transfer or fluid dynamics equations to metal system is unfeasible 
due to various uncontrolled contingencies that impact each layer’s 
fabrication [144]. For laser-based material processing, DoE based 
Response Surface Methodology (RSM) is commonly utilized for process 
development and determining processing parameter values that yield 
desired properties to avoid anomalies [142]. While there has been sig-
nificant research on experimentally and analytically understanding the 
correlations between input parameters and output signatures (e.g., laser 
power/speed and melt pool signatures), the complexity of the overall 
phenomena requires more advanced data driven approaches. 

5.2. Sensors 

Drawing on numerous papers providing an overview of sensing 
techniques [4,21–23,83,84], this article presents a structured 

classification of sensors and their application in L-PBF, following the 
innovative approach presented in Fig. 2 and detailed in Fig. 7. Table 5 
summarizes the correlation between sensors and process signatures. The 
reviewed sensors, extensively discussed in recent literature and under-
going significant development in recent years, enable the monitoring of 
all significant (i.e., useful) process output signatures. However, despite 
the progress in sensor development, implementing an efficient and 
structured sensor architecture in AM industrial applications remains a 
challenging goal. While many papers focus on specific aspects of 
sensing, there is still a lack of a general overview and a comprehensive 
cost-benefit analysis. Based on the reviewed papers of Table 5, it is 
evident that among various sensing techniques (i.e., XR, visible-NIR, 
NIR-IR, multispectral, acoustic), significant research attention is 
directed towards visible-NIR and NIR-IR sensors, as depicted in Fig. 8a. 
This emphasis can be attributed to their ability to offer cost- 
effectiveness, simplified installation, and fast calibration processes. 
However, the primary reason lies in the extensive coverage of process 
signatures as depicted in Fig. 8b. 

5.3. Control 

Despite the interesting papers that have been reviewed, the central 
message conveyed by this article is the noticeable void in the literature 
concerning the practical application of closed online control loops in 
metal AM. Out of the 217 reviewed papers, only one presents an actual 
implementation of online control, and just two others offer compre-
hensive theoretical approaches that necessitate a digital twin of the 
process (Table 6). This highlights the need for increased research 
attention in this crucial realm in the forthcoming years. As depicted in 
Fig. 4 and serving as a facilitator for the concept of external offline loops, 
the closed-loop system not only provides real time control but also 
generates invaluable data that can be stored for continuous process 
improvement. Through the analysis of historical sensor data and cor-
responding adjustments in process parameters, manufacturers can gain 
insights into process trends and performance. This data-driven feedback 
loop enables refinements in ML models and process strategies, leading to 
further optimization of the AM process over time. 

6. Outlook and open challenges 

As discussed in the previous sections, researchers developed 
advanced sensing techniques for big data collection and maturity on 
sensors seems to be reached. On the other hand, ML is now the new 
frontier of research for big data processing, which is strictly related to 
sensors and control. The big data concept has never been so suited as for 
this context by defining the 3Vs (Velocity, Volume, Variety) as following 
challenges that address RQ4: what are the main future challenges?. 

As a matter of fact, and as shown in Section 4, the necessity of dealing 
with fast growing (velocity), memory-intensive (volume), high- 
dimensionality (variety) datasets is fostering the adoption of advanced 
ML approaches to solve the problem of L-PBF data processing [18,144]. 
In this context, data-driven techniques such as supervised, unsupervised 
and reinforcement learning, are progressively assuming greater signifi-
cance in in-situ monitoring and process control tasks [18,142,143]. 

6.1. Velocity challenge 

Regardless of the type of sensor used, online control requires that the 
sensors have a very fast response time and a high degree of spatial res-
olution [21]. Laser scanning speed in SLS/M are typically on the order of 
100 to 1000 mm/s, while the laser focus area is on the order of 10–100 
μm. Any electromagnetic monitoring system must be equally capable of 
reacting to these high scanning velocities and rapid melt pool dynamics 
in addition to being able to resolve slight spatial variations [145]. For 
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example, phenomena such as spatter, plume formation, laser modula-
tion, and melt-pool oscillations may require data acquisition rates 
exceeding 10 kHz. These constraints lead to the utilization of relatively 
data-intensive, streaming imaging sensors in a real time monitoring and 
feedback control system [146]. 

While sensing techniques have achieved a high level of sampling rate 
and coverage for the majority of metal L-PBF process signatures (as 
reviewed in Section 4.2.1), the main challenge lies in the application of 
the data analysis methods within the context of ML or classical statistical 
approaches, especially in terms of real time defect detection computa-
tional speed. Another issue pertains to the speed of updating AM ma-
chine parameters. 

6.2. Volume challenge 

Due to the high frame rate requirements (e.g., ranging from a few to 
hundreds of kHz as shown in Table 5, Section 4.2.1), existing commer-
cial in-situ monitoring systems result in the generation of enormous 
volumes of data (e.g., 100 GB for a 10 mm height cylindrical sample), 
which are very difficult to store and analyze up to the present date. For 
this reason, several authors propose data reduction techniques such as 
Principal Component Analysis (PCA) as a potential solution for man-
aging heavy datasets [4,90]. 

Despite these efforts, there remain unresolved issues, specifically 
there is a lack of a common reference data structure, as well as of 
standard practices and unified systems for storing and handling infor-
mation with a real big data approach [18]. This, added to the difficulty 
and costs related to data annotation, sets many challenges to the crea-
tion of suitable databases to train and validate ML algorithms. Research 
and standard bodies (e.g., ASTM, ISO, NIST) may address this issue in 
the interest of widespread market exploitation. A first step toward the 
development of a standard data-structure for AM processes, is the AM 
Material Database (AMMD) [151]. This is an open platform developed 
by the NIST, which provides a flexible data schema that is suitable for 
AM, included L-PBF, providing a reliable benchmark for the training and 
validation of ML algorithms. 

6.3. Variety challenge 

Using multiple sensor-based systems (i.e., sensor fusion [147]) to 
collect data from the manufacturing process is essential for better part 
quality monitoring and improving data collection capability. For 
example, a recent and promising paper illustrates a new technique that 
synchronizes high-speed XR imaging with high-speed IR imaging to L- 
PBF processes in real time and simultaneous observation of multiple 
phenomena (e.g., 3D melt pool visualization, vapor plume dynamics, 
spatter formation, thermal history, and point cooling rates) [148]. Other 
research is ongoing toward integrating new process sensors (e.g., ac-
celerometers) and monitoring tools to allow for detailed characteriza-
tion of the signatures [149], or integrating synchronized, in-situ 
acquisition of a thermal camera, high-speed visible camera, photodiode, 
and laser modulation signal during fabrication [146]. As an additional 
impetus to the sensor fusion approaches, this may lead to a hybridization 
with other traditional and non-traditional production processes, result-
ing in increased interest in data fusion [150]. 

7. Conclusion 

This article suitable for expert and non-expert readers, introduces the 
AM technologies focusing on metal L-PBF. More in detail, SLS/M are the 
two processes on which online control is investigated following a 
structured framework. A comprehensive explanation of the production 
process is provided, encompassing the definition and review of the 
principal online controllable input parameters and observable output 
signatures. Additionally, this article reviews and discusses sensing 
techniques designed to capture signature signals from these types of 

processes. The state of the art on online feedback strategies is for closed 
loop control. Among these approaches, ML exhibit the highest potential 
for employing advanced techniques to tackle the three critical chal-
lenges associated with online control and big data framework (i.e., 3Vs: 
velocity, volume, and variety) in metal L-PBF. The developments and 
advancements in ML technologies are thoroughly reviewed, and prom-
inent open challenges are identified and classified. 
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