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Abstract

Electroencephalographic (EEG) microstates are brain states with quasi-stable scalp

topography. Whether such states extend to the body level, that is, the peripheral

autonomic nerves, remains unknown. We hypothesized that microstates extend at

the brain-heart axis level as a functional state of the central autonomic network.

Thus, we combined the EEG and heartbeat dynamics series to estimate the direc-

tional information transfer originating in the cortex targeting the sympathovagal and

parasympathetic activity oscillations and vice versa for the afferent functional direc-

tion. Data were from two groups of participants: 36 healthy volunteers who were

subjected to cognitive workload induced by mental arithmetic, and 26 participants

who underwent physical stress induced by a cold pressure test. All participants were

healthy at the time of the study. Based on statistical testing and goodness-of-fit eval-

uations, we demonstrated the existence of microstates of the functional brain-heart

axis, with emphasis on the cerebral cortex, since the microstates are derived from

EEG. Such nervous-system microstates are spatio-temporal quasi-stable states that

exclusively refer to the efferent brain-to-heart direction. We demonstrated brain-

heart microstates that could be associated with specific experimental conditions as

well as brain-heart microstates that are non-specific to tasks.
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1 | INTRODUCTION

Wide research supports the idea that brain dynamics measured using

electroencephalography (EEG) has transient quasi-stable states that

manifest through specific scalp topographies of cerebral activity tem-

porally close to peaks of the global field potential (GFP; Lehmann

et al., 1987; Michel & Koenig, 2018; Mishra et al., 2020; Brodbeck

et al., 2012; van de Ville et al., 2010; Khanna et al., 2015), which have

been defined as brain/EEG microstates and associated with atoms of

thought (Lehmann, 1990; van de Ville et al., 2010). Several prototypical

microstates that consistently recur over time have been identified

across participants in multiple studies (Brodbeck et al., 2012; Khanna

et al., 2015; Lehmann et al., 1987; Michel & Koenig, 2018; Mishra

et al., 2020; van de Ville et al., 2010). These microstates are considered

the fundamental building blocks of the chain of spontaneous conscious

mental processes and have been associated with the level of menta-

tion (Michel & Koenig, 2018). Recent research has shown that the

temporal evolution of microstate series varies depending on various

physiological processes, such as sleep, motor tasks, mentation, hypno-

sis, as well as mental and psychiatric disorders (Brodbeck et al., 2012;

Katayama et al., 2007; Khanna et al., 2014; Lehmann et al., 2005;

Pierpaolo et al., 2022; Pirondini et al., 2017; Tait et al., 2020;

Zappasodi et al., 2019). These disorders have been found to manifest

EEG microstates with scale-free dynamics (van de Ville et al., 2010).
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The occurrence of microstates has been based on the current

understanding that brain functions arise from massive parallel proces-

sing in diffused and distributed brain networks (Bressler &

Menon, 2010; Li et al., 2022). Although microstates have historically

been linked to the resting state (RS) of the brain, recent investigations

associated microstate dynamics with other functional cognitive activi-

ties or physiological conditions (Hu et al., 2022; Katayama

et al., 2007; Li et al., 2022; Michel & Koenig, 2018; Pierpaolo

et al., 2022; Pirondini et al., 2017). This allowed the identification of

numerous cortical and subcortical brain regions whose activity has

been linked to microstate dynamics, particularly the insula, thalamus,

amygdala, anterior cingulate cortex, and others (Britz et al., 2010;

Musso et al., 2010).

Even if not expressively mentioned, these regions reportedly

belong to the central autonomic network (CAN; Valenza et al., 2019;

Valenza et al., 2020). CAN is not ascribable to a specific brain region,

since it encompasses the medullary areas, midbrain and amygdala,

thalamus, peripheral autonomic terminations, and cortical regions

(e.g., medial prefrontal cortex, anterior cingulate cortex, and insula;

Govoni et al., 2020; Valenza et al., 2020). The CAN consists of several

components comprising sympathetic and parasympathetic connec-

tions to the central nervous system (CNS) and is strictly involved in

the definition of functional brain-heart interplay (BHI). Indeed, the

BHI represents the functional outcome of a network of chemical, elec-

trical, and anatomical connections that originates in the CAN

(Benarroch, 1993; Catrambone & Valenza, 2021; Quadt et al., 2022;

Thome et al., 2017; Valenza et al., 2019; Valenza et al., 2020).

Research on functional BHI revealed through the analysis of the EEG

and heart rate variability (HRV) series revealed that healthy BHI varia-

tions occur as physiological responses to several events, such as emo-

tion perception (Candia-Rivera, Catrambone, Thayer, et al., 2022),

alternating sleep stages (Silvani et al., 2016), cognitive load (Yu

et al., 2018), intentional movements (Catrambone, Averta,

et al., 2021), and autonomic maneuvers (Catrambone, Talebi,

et al., 2021; Jerath & Barnes, 2009). Moreover, BHI time-series alter-

ations have been reportedly associated with neuropathological condi-

tions, such as mild depression (Catrambone, Messerotti Benvenuti,

et al., 2021), epilepsy (Pernice et al., 2022), and schizophrenia (Schulz

et al., 2013). Functional BHI is a directional phenomenon, meaning

that the influence of brain activity on cardiovascular function is not

necessarily equivalent to the influence of heart activity on cerebral

dynamics (Catrambone, Messerotti Benvenuti, et al., 2021;

Catrambone & Valenza, 2021; Catrambone & Valenza, 2023). More-

over, BHI is a dynamic process that changes over time and in response

to physiological conditions. The influence of BHI is diffused across the

brain, involving networks such as the CAN, the default mode network,

and others.

While previous research has linked EEG microstates to brain

regions within the CAN, it is unclear whether microstates also exist at

the intersection of the central and autonomic nervous systems (ANS).

To explore this possibility, we investigate the functional connections

between the brain and heart at rest and under cognitive and physical

stress. Our processing pipeline leverages a time-resolved estimation

of functional BHI-related GFP, which we refer to as BHI-GFP. By

hypothesizing that microstates extend to the brain-heart level, we can

explain the global variance of the BHI-GFP series and observe mean-

ingful changes in BHI-microstate dynamics according to experimental

elicitation. We tested this hypothesis using two datasets: one that eli-

cited BHI changes through cognitive workload (CW) stress using mul-

tiple mental arithmetic (Zyma et al., 2019), and another that employed

the cold pressor test (CPT), a well-known method for eliciting a strong

sympathovagal response (Catrambone, Talebi, et al., 2021). The pur-

pose of this study is three-fold: (i) to demonstrate the existence of

BHI microstates as quasi-stable states in BHI; (ii) to verify the applica-

bility of microstate analysis in the BHI context; and (iii) to examine

whether psycho-physiological states affect BHI-derived microstate

dynamics.

2 | EXPERIMENTAL RESULTS

The same nervous system-wise analysis framework was applied sepa-

rately to the two datasets.

2.1 | Cognitive workload task

The experimental results obtained from the analysis of the CW data-

set are reported herein. The dataset analysis identified three BHI-

microstates for each combination of BHI directions and frequency

bands, denoted as CBrain!LF, CBrain!HF, CLF!Brain, and CHF!Brain, where

LF and HF represent HRV-PSD low frequency (LF) and high frequency

(HF), respectively. Figure 1 displays the topographies of the identified

microstate prototypes, along with their associated global explained

variance (GEV). Remarkably, the GEV for both brain-to-heart

F IGURE 1 Experimental results from the cognitive workload
(CW) dataset. The left column makes explicit the direction of the
brain-heart interplay (BHI) and heart rate variability (HRV) frequency
band involved; the right column reports the global explained variance
(GEV), as median across-subject ± standard deviation, associated to
the backfitting operation on the microstate prototypes, which are
represented in the central part of the figure.
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microstates is higher than 70% (approximately 72% for brain-to-LF

BHI and 74% for brain-to-HF BHI), indicating that the microstate anal-

ysis can effectively explain the spatio-temporal dynamics of CBrain!LF

and CBrain!HF, while the same is not true in the opposite direction,

where the GEV is less than 50% for both CLF!Brain and CHF!Brain.

The GEV provides additional information that complements the

topographical representation of the prototypes. Indeed, the BHI

microstate prototypes extracted from CBrain!LF and CBrain!HF

(i.e., both in the direction from the brain to the heart) exhibit a smooth

and physiologically plausible distribution, whereas those extracted

from CLF!Brain and CHF!Brain have a less continuous and more dis-

rupted distribution. Consequently, due to the limited amount of

explained variance and the implausible topographies, we did not con-

sider the heart-to-brain BHI microstates to be robust. As a result, sta-

tistical analysis in that direction was not included here, but the results

are available in Figure S3 of the Supplementary Material.

Table 1 illustrates the precise number of occurrences of each

microstate in the two experimental conditions aggregated for all the

participants, and averaged per window length. Figure 2 graphically

reports the number of occurrences of each microstate for the differ-

ent participants under the two experimental conditions. This allows us

to verify how the distribution of the three BHI microstates changes

from a RS to a CW task. In the context of CBrain!LF, the second micro-

state prototype is the most frequently observed during the RS phase,

while it is as frequent as the third microstate during the CW task. In

contrast, the first microstate does not appear to undergo a significant

change in its frequency of occurrence between the two phases. Turn-

ing to CBrain!HF microstates, during the resting state, the occurrences

of the three prototypes show a clear inhomogeneity, with the third

one being the most frequent and the first one being the least fre-

quent. In contrast, during the CW task, the occurrences of the three

microstate prototypes are more evenly distributed. Specifically, the

first microstate substantially increases its occurrences (from around

44 to 100), while the third one substantially decreases its occurrence

(from 179 to around 119).

To statistically assess the distribution change across the experi-

mental conditions, as explained in Section 4.5, a χ2 statistical test for

contingency table was performed, as reported in Table 1. Moreover,

Table 1 reports the statistics performed on both CBrain!LF and

CBrain!HF which both show extremely low p-values, ≈10�9 and 10�15

respectively. Interestingly, the same statistical test does not provide

any significant difference for non-meaningful microstates, as the

heart-to-brain ones (informally defined as non-meaningful since not

able to explain the overall dynamics due to a low GEV value), as they

distribute randomly and independently from experimental phases

(results not presented here, available in Figure S3 of the Supplemen-

tary Material).

2.2 | Cold pressor test

The experimental results obtained from the analysis of the CPT data-

set identified five BHI microstates across all BHI directions and fre-

quency bands. Figure 3 displays the topographies of the identified

microstate prototypes along with their associated GEV. Consistent

with the CW dataset, the brain-to-heart BHI microstates have a GEV

TABLE 1 Number of occurrences for each brain-to-heart BHI
microstate (i.e., μ1,μ2,μ3) in the two experimental conditions,
normalized per window's time length.

RS CW Total χ2 p-value

CB!LF μ1 39.1 39.15 78.25 23:44 1:7 �10�9

μ2 185.5 127.55 313.1

μ3 82.67 135.37 218.03

CB!HF μ1 44.55 100 144.55 33:16 ≈10�15

μ2 83.77 82.72 166.48

μ3 179 119.35 298.35

Note: The results of the statistical analysis performed through χ2 test for

contingency table are reported in the last two columns. Bold numbers

indicate the experimental phase during which a specific microstate was

more prevalent.

F IGURE 2 Graphical representation of the brain-heart interplay
(BHI) microstates occurrences in the two experimental conditions of
the CW dataset, for both the heart rate variability (HRV) frequency
bands considered (top panel for CBrain!LF, and bottom panel for
CBrain!HF. Each histogram's bar represents the subject-wise sample
given by the number of occurrences of given microstates (whose
prototype topography is represented at the basis of the
histogram bar).
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greater than 70%, indicating that the microstate analysis is capable of

explaining the spatio-temporal dynamics of CBrain!LF and CBrain!HF

(with a GEV of approximately 71% in both HRV bands). In contrast,

the GEV in the opposite direction for CLF!Brain (approximately 35%)

and CHF!Brain (approximately 37%) is less than 40%. BHI microstate

prototypes extracted from CBrain!LF and CBrain!HF in the direction

from brain to heart have smoother and more physiologically plausible

distributions than those extracted from CLF!Brain and CHF!Brain, which

appear less continuous and more disturbed. The results shed light on

the spatio-temporal dynamics of the BHI and suggest a directionality

from the brain to the heart, with more plausible and continuous

microstate prototypes. This behavior was also observed in the experi-

mental results for the CW dataset. Due to the limited amount of

explained variance and the implausibility of the topographies, statisti-

cal analysis on the heart-to-brain BHI microstates are reported in

Figure S4 of the Supplementary Material.

The higher number of BHI microstates makes the graphical repre-

sentation of the results challenging, for which a tabular representation

is preferred. Accordingly, these experimental results are reported in

Table 2, where the precise number of occurrences of each microstate

in the three experimental conditions aggregated for all the partici-

pants, and averaged per window length, are reported (per subject sta-

tistics of single-microstate occurrences are provided in the Table S1

of the Supplementary material, whereas a graphical representation of

Table 2 is provided in Figures S1, S2 of the Supplementary material).

In the context of the CBrain!LF direction, the second microstate proto-

type emerges as the most frequently observed during all phases. Its

occurrence reaches its peak during the resting state, gradually

decreasing until the lowest occurrence is detected in the recovery

phase. Conversely, the first microstate prototype exhibits the lowest

occurrence during rest and reaches its peak in the CPT phase. In terms

of relative change, the fourth (μ4) and fifth (μ5) microstates demon-

strate the most substantial variation. The occurrence of μ5 more than

doubles from rest to recovery, while μ4 reduces its occurrence to one-

third during the corresponding phases.

Shifting to the CBrain!HF direction, the third prototype clearly

emerges as the most frequent across all experimental phases,

although its occurrence undergoes significant changes among them,

decreasing from approximately 240 in rest and CPT to 180 in recov-

ery. Additionally, the presence of the first, fourth, and fifth prototypes

(μ1,μ4,μ5, respectively) is strongly influenced by the experimental

phases. From initial rest to recovery, μ1 nearly doubles its occurrence

(from 51 to 96, approximately), while μ4 almost halves its

occurrence (from 62 to 34, approximately), and μ5 triples its occur-

rence from 20 to 59, approximately.

The BHI-microstate temporal distribution changes from the RS to

the CPT phase to recovery, and the statistical analysis provides strong

supporting evidences, since the p-values obtained are ≈10�18, con-

sidering CBrain!LF, and ≈10�35 for CBrain!HF. It is worth noting that

the statistical test performed on dataset CPT did not reveal any

significant difference for non-meaningful microstates, such as the

heart-to-brain ones. These microstates are informally defined as non-

meaningful because of their low GEV value, which implies that they

cannot explain the overall dynamics effectively. As a consequence,

these microstates distribute randomly and independently from experi-

mental phases. The detailed results of this analysis are available in

Figure S4 of the Supplementary Material. Indeed, if the temporal dis-

tribution of the BHI-microstates was not affected by the participant's

physiological state, which was solicited by the experimental protocol,

TABLE 2 Number of occurrences for each brain-to-heart brain-
heart interplay (BHI) microstate (i.e., μ1,…,μ5) in the three
experimental conditions.

Rest CPT Rec Total χ2 p-value

CB!LF μ1 113.5 126.9 120.7 361.1 38:1 10�18

μ2 253.6 247.1 237 737.7

μ3 26.8 28.2 41.4 96.4

μ4 60.5 37.7 21.2 119.4

μ5 25.6 40.1 58.5 124.2

CB!HF μ1 50.8 64.8 95.7 211.3 61:8 10�35

μ2 106.7 105.7 109.1 321.5

μ3 239.6 245.7 181 666.3

μ4 62.5 38.3 34.2 135

μ5 20.4 25.5 58.7 104.7

Note: The results of the statistical analysis performed through χ2 test for

contingency table are also reported in the last two columns. Bold numbers

indicate the experimental phase during which a specific microstate was

more prevalent.
F IGURE 3 Experimental results from the cold pressor test (CPT)
dataset. The left column makes explicit the direction of the brain-
heart interplay (BHI) and HRV-frequency band involved; the right
column reports the global explained variance (GEV), as median across-
subject � standard deviation, associated with the backfitting
operation on the microstates prototypes, which are represented in

the central part of the figure.
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then all the microstate occurrence tendencies would not change, and

all the microstate occurrences would have an almost uniform distribu-

tion across the experimental phase.

2.3 | Microstates comparison between datasets

Figure 4 displays the p-values associated with the global dissimilarity

(GD) between all pairs of microstates, focusing on the brain-to-LF (left

panel) and brain-to-HF interplay (right panel). Notably, concerning the

brain-to-LF microstates, all microstates from the first dataset

(CW) exhibit significant similarity with at least two prototypes

obtained from the CPT dataset. However, two CPT prototypes (i.e., the

third and the fifth) show no significant similarity with any of the

microstates detected in the CW dataset. Similarly, in the context of

brain-to-HF interplay, all CW prototypes identified demonstrate sig-

nificant similarity with some of the microstates detected in the CPT

dataset, with p-values reaching as low as 4:1e�6. However, one

CPT microstate lacks any significant global similarity with any of the

CW prototypes.

3 | DISCUSSION AND CONCLUSION

The main objective of this study was to investigate the possibility of

detecting quasi-stable states in the dynamics of the cortical brain-

heart axis using the microstate technique. Specifically, we aimed to

explore the extent to which the microstates approach can be used

to identify and analyze the spatio-temporal patterns of the functional

brain-heart interactions. Since the brain regions associated with corti-

cal EEG microstates belong to the CAN (Britz et al., 2010; Musso

et al., 2010), we hypothesized that the brain-heart microstates, identi-

fied at the cortical level using EEG and heartbeat dynamic analysis,

could exist as well. Functional BHI comprises dynamic time-resolved

measurements that could be quasi-stable in topography based on the

standard microstate definition. Thus, we engineered an analysis pipe-

line that builds a BHI-associated GFP starting from an electrode-wise

BHI directional time-resolved estimation through the synthetic data

generation (SDG) model (Catrambone et al., 2019), and then exploited

the EEG-microstate analysis to identify the microstate prototypes

fitted with the participant experimental series. We performed statisti-

cal analysis to test the obtained BHI-microstate goodness of fit, and

test whether microstate occurrences change across different experi-

mental phases. The present study used two available experimental

datasets already used in BHI studies: the first concurrently elicited the

CNS and the ANS responses through CW, and the second was charac-

terized by a strong sympathovagal stimulation delivered via a CPT.

Specific discussion is presented as follows.

3.1 | Directional asymmetry

Experimental results demonstrated a clear asymmetry between the

brain-to-heart and heart-to-brain directional BHI systems. Indeed,

analyses of both the datasets in the top-down direction (i.e., brain-to-

heart) resulted in the definition of the microstate prototypes that

were physiologically plausible and well-fitted BHI dynamics in terms

of the GEV, considering both the HRV frequency bands. Conversely,

the microstate analysis performed in the bottom-up direction

(i.e., from the heart to the brain) did not effectively summarize the

electrode-wise BHI behavior, even when considering both the HRV

LF and HF bands. As a result, it was not possible to identify meaning-

ful microstates that could capture the complex spatio-temporal pat-

terns of the BHI in this direction.

The consistency of this result obtained by multiple datasets and

frequency bands allows, with some limitations, a high-level consider-

ation about directionality. Indeed, BHI is known to be a strongly direc-

tional phenomenon, and brain-to-heart interplay significantly differs

from the heart-to-brain one (Govoni et al., 2020); nevertheless, this

study suggests that BHI microstates exist, but only in the direction

from the brain to the heart. The authors believe that this discrepancy

is intrinsic to the BHI phenomenon and entwined to the capability of

the microstate analysis. As mentioned previously, BHI in the form

of CNS control over ANS activity takes place at different levels and

involves multiple brain networks (e.g., CAN and default mode

F IGURE 4 p-values associated to global dissimilarity
(GD) calculated for all BHI brain-to-LF (left panel) and brain-to-HF
(right panel) microstates, extracted during resting state in CPT dataset
(rows) and CW dataset (columns). Colored cells and bold text highlight
significant GD (p-value < :05).
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network) whose activity reverberates throughout and concurrently

takes input from the entire scalp (Valenza et al., 2019, 2020). In con-

trast, direct cortical CNS responses to electrophysiological heart activ-

ity occur in different brain regions separately at the electrode level

(e.g., see heartbeat evoked potentials; Coll et al., 2021), which could

be a more spatially and temporally localized process (Pollatos

et al., 2005) rather than a whole-brain one manifesting quasi-stable

states. Furthermore, microstate analysis builds upon the hypothesis

that quasi-stable states exist across the spatio-temporal scalp activity

distribution and thereby, could be a powerful tool for capturing dif-

fuse whole-brain behavior and might not capture transient localized

brain activity (van de Ville et al., 2010). Thus, to summarize, the main

reasons supporting the existence of BHI-microstates only in the brain-

to-heart direction rely on this analysis capability to capture diffuse

whole-brain behavior, and on the intrinsic BHI features being more

diffuse over the scalp in the descending direction. Speculating these

results from the viewpoint of the global workspace model (Dehaene

et al., 1998) might attribute the brain-to-heart interplay to the unique

global workspace and the heart-to-brain interplay to specialized and

modular processors (Dehaene et al., 1998), without necessarily labeling

them as conscious processes.

3.2 | Task-specific microstates

The experimental results reported in this study translate to the BHI

domain what was already known about EEG-microstates being task-

specific. Although most of the literature investigating EEG microstates

mainly focused on the resting state, most studies often employ the

same handful of microstate prototypes, studies based on diverse

experimental protocols proved that different conditions lead to task-

specific EEG-microstate definitions (Michel & Koenig, 2018; van de

Ville et al., 2010). Our analysis revealed the presence of three distinct

microstates in the CW task dataset (consisting of a RS and a mental

arithmetic task) and five microstates in the CPT dataset (which was

divided into rest, CPT, and recovery phases, each lasting 3 min) for

both brain-to-LF and brain-to-HF directions. The greater number of

microstates identified in the CPT dataset compared to the CW dataset

may be attributed to the higher complexity of the cognitive task

required by the CPT protocol. In fact, while the CW tasks elicit cogni-

tive and affective stress (Zyma et al., 2019), the CPT also involves pain

and haptic perception, together with motor control and a strong sym-

pathovagal response (Catrambone, Barbieri, et al., 2021; Chang

et al., 2002). It is possible that the increased cognitive demands of the

CPT task resulted in more pronounced changes in the spatio-temporal

dynamics of the BHI, which were captured by the microstate analysis.

However, we conducted a comprehensive statistical comparison

between the microstate prototypes' topographies extracted from the

two datasets at a spatial level. The results highlighted the consistency

between the identified microstates and the physiological processes

underlying the BHI phenomenon. Nonetheless, we acknowledge the

presence of some differences in the microstate configurations related

to BHI. We believe these discrepancies can be attributed to two main

factors. First, inherent variations may arise due to the relatively small

sample sizes in the datasets, with 32 and 26 subjects for CW and

CPT, respectively. Conducting further analyses on larger cohorts

would be valuable in establishing a more universal BHI microstate

configuration, especially during the resting state. Second, it is crucial

to note that the datasets, particularly the EEG data, underwent differ-

ent preprocessing procedures. Unfortunately, due to the use of

different experimental equipment in the two experiments, specifically

the preprocessed nature of the CW dataset that had already been

published, it was not feasible to replicate the specific preprocessing

pipeline in a homogeneous manner. Despite these challenges, our

study provides valuable insights into the BHI phenomenon and the

microstate configurations related to it. Future research endeavors,

focusing on larger sample sizes and standardizing data acquisition and

preprocessing methods, would be instrumental in furthering our

understanding of the neural mechanisms underlying BHI.

3.3 | Spatio-temporal changes

Considering the dynamic changes and evolution of the BHI microstate

occurrences, it was found that both CW and CPT elicitation results in

statistically significant changes in the distribution of occurrences of

the previously identified microstates.

Regarding the CW task, the microstate analysis for both brain-

to-LF and brain-to-HF dimensions revealed the presence of a “resting
state” microstate prototype, which occupies most of the resting phase

and decreases its relative occurrence during the mental task. This pro-

totype was identified as a microstate μ2 in the brain-to-LF dimension

and a microstate μ3 in the brain-to-HF dimension. In addition to this

prototype, two other microstates were found to have a relative pres-

ence change between the RS and the task phase.

Similar considerations were made for the CPT results, where

brain-to-LF and brain-to-HF analyses identified five microstate proto-

types. Table 2 shows that the second prototype (μ2) is the most fre-

quent during the RS in the brain-to-LF analysis, while the third

prototype (μ3) is the most frequent in the brain-to-HF analysis during

the same phase. Figure 3 shows the topographical representation of

these prototypes, which are extremely similar among themselves and

share this similarity with the most frequent microstate identified in

the analysis of the CW task. Specifically, the topography can be

described as a gradient map extending from the central area of the

scalp to the most external regions, particularly along the vertical axis.

These prototypes have the same gradient going from the central

region to the peripheral regions, which is also present in similar topog-

raphy but with inverted polarity (e.g., μ3 of the CBrain!LF microstates

extracted in the CW dataset). At the speculation level, it is possible to

infer that these topographies might represent non-specific micro-

states associated with the brain-to-heart interplay during rest. Addi-

tionally, at a speculation level, owing to the timing in the order of

seconds and its whole-brain nature, we may associate calcium waves

in the brain as involved in the directional, descending brain-heart

communication.
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3.4 | Study limitations and further developments

Although informative, the two experimental paradigms cannot be

considered exhaustive, and further investigations are needed to con-

fute such considerations about BHI-microstate directionality,

together with other factors directly influencing BHI, such as respira-

tion (Zaccaro et al., 2022). We acknowledge that BHI microstates

may extend to subcortical regions, and we recognize the importance

of investigating both cortical and subcortical microstates of the

brain-heart axis. However, in this study, we focus solely on the

microstates of the cortical brain-heart axis. Future work could

explore subcortical microstates of the BHI by utilizing brain data,

including functional magnetic resonance imaging and cardiovascular

variability series. From a methodological viewpoint, we exploited an

ad-hoc model based on SDG that can provide time-resolved

channel-wise estimation of directional functional BHI (Catrambone

et al., 2019) and has been validated in several pathophysiological

conditions (Candia-Rivera, Catrambone, Barbieri, & Valenza, 2022;

Catrambone & Valenza, 2021). Nevertheless, functional BHI assess-

ments may be performed using different methods at a single EEG

channel level. For example, some methods focused on the direct fast

brain response to a single heartbeat, namely heartbeat evoked

potentials (for a review see; Park & Blanke, 2019), while others have

attempted to estimate the information exchange in a larger time win-

dow (Catrambone & Valenza, 2021; Faes et al., 2011; Pernice

et al., 2022). Moreover, it has been argued that the spectral

approach to quantify ANS activity through LF and HF separation is

not specific for sympathetic or vagal activity only; nevertheless, its

use remains a public standard in the scientific community (Rajendra

Acharya et al., 2006; Valenza et al., 2018). Future developments

about BHI-microstates may be directed toward a source localization

analysis to better characterize the physiological meaning of the

microstates.

3.5 | Conclusion

We demonstrated the existence of microstates of the brain-heart axis,

focusing on cortical dynamics as estimated through EEG series and

heartbeat dynamics from ECG. Such nervous-system-wise microstates

are spatio-temporal quasi-stable states that refer exclusively to the

efferent brain-to-heart direction and changes in the number and

topography under different experimental conditions. Most brain-heart

microstates are non-specific to tasks, including physical or mental

stress. We may also conclude that directional, descending brain-heart

communication not only originates at a single region level but also

functionally at the whole-brain level. Overall, the study provides

insights into the complex and dynamic nature of the BHI and high-

lights the potential of microstate analysis as a useful tool for studying

brain-heart interactions. The extension of EEG microstates to the

body level might open novel perspectives in the study of interocep-

tion and might be considered as “atoms of interoception”.

4 | MATERIALS AND METHODS

4.1 | Experimental data and preprocessing

Two separate experimental paradigms eliciting concurrent CNS and

ANS responses were used to validate the proposed system-wise BHI

analytical framework. This study was formally approved by the local

ethics committee of the University of Pisa under protocol num-

ber 0036590=2021.

4.1.1 | Cognitive workload dataset

One of the numerous noninvasive ways to activate the ANS through

CNS manipulation is to allow human participants to perform CW

through mental arithmetic. A generic paradigm consists of asking par-

ticipants to complete cognitive tasks repetitively by clicking a button

or performing mental algebraic calculations in a controlled time win-

dow (Zygmunt & Stanczyk, 2010). In addition to the obvious cognitive

functionality involving high-level brain regions, these tasks strongly

stress the ANS; in fact, CW tasks have been investigated at both the

CNS (Inouye et al., 1993; Wang & Sourina, 2013) and ANS (Bernardi

et al., 2000) levels separately; however, only a few studies have

focused on their functional BHI correlates (Catrambone &

Valenza, 2023). It has been found that in response to stress, modula-

tion of the cardiovascular activity is related to cerebral activity in the

left frontal and temporal areas (Gray et al., 2007). Furthermore, stud-

ies have shown that during the CW task, there is an increased flow of

information originating from the posterior-central and central lobes

of the brain directed toward the heart (Yuan et al., 2010). Thus, the

first dataset (CW) analyzed was EEG during mental arithmetic tasks

(Zyma et al., 2019), published in the Physionet.org data repository

(https://physionet.org/content/eegmat/1.0.0/).

This dataset consists of concurrent recordings of electrophysio-

logical brain (EEG), using a 10–20 standard 19 electrodes cap, and a

1-lead cardiovascular (ECG) activity, sampled at 500 H, from

36 healthy participants who volunteered to perform 3 min of CW fol-

lowing an equally long initial resting state. Signals from four partici-

pants were rejected owing to gross artifacts after visual inspection.

Eventually, data from 32 participants (8 males, 18�2:01 years on

average) were used for further analysis. The eligibility criteria for the

study included subjects with normal or corrected-to-normal vision,

normal color perception, no clinical history of mental or cognitive

impairment, and no learning disabilities. Specific exclusion criteria

included psychiatric or neurological complaints, drug or alcohol addic-

tion, and the use of psychoactive medication.

Data were provided after preprocessing, performed through a

power line notch at 50 Hz, followed by 0:5�45½ �Hz band-pass filter-

ing, and independent component analysis was used to reject common

artifacts (i.e., ocular, muscular, and cardiac). More details on this data-

set, including acquisition and signal preprocessing, are available in

(Zyma et al., 2019).
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4.1.2 | Cold pressor test dataset

CPT is a commonly used autonomic maneuver aimed at verifying the

body's autonomic functionality and CNS response to rapid and main-

tained temperature stimuli delivered by contact (Cui et al., 2002;

Ferracuti et al., 1994; Lovallo, 1975), commonly submerging a distal

limb (i.e., hand or foot) or face, in cold water, with a temperature

maintained between 0 and 4�C for 1–5 min. Indeed, CPT strongly

activates the body systems, such as the baroreflex and the sympa-

thetic nervous system, to actively respond to the allostatic state

induced by the stimulation to return to the homeostatic equilibrium

(Cui et al., 2002). On the EEG side, cortical and subcortical brain

regions elicited by the CPT have been detected in the frontal areas in

a wide spectrum, bilateral temporal parts in the β frequency band, and

posterior-parietal regions in the α band (Catrambone, Talebi,

et al., 2021; Chang et al., 2002; Ferracuti et al., 1994). Previous stud-

ies have addressed CPT-induced BHI changes (Candia-Rivera, Catram-

bone, Barbieri, & Valenza, 2022; Catrambone, Barbieri, et al., 2021;

Catrambone & Valenza, 2023), finding diffuse bidirectional interplay,

with a preferred directed intervention from brain dynamics to heart-

beat (Candia-Rivera, Catrambone, Barbieri, & Valenza, 2022;

Catrambone et al., 2019; Catrambone, Talebi, et al., 2021). Thus, an

organ-level whole-brain approach for BHI estimation should be partic-

ularly suitable for this experimental environment.

The second dataset (CPT) employed was recorded from

24 healthy volunteers (26:7 years on average; 9 females), all right-

handed. The participants were seated on a comfortable chair; cold

pressor stimulation was performed after an initial 3min resting state.

The CPT was implemented by asking the participants to hold the non-

dominant hand (i.e., the left hand) into a basket full of iced water for

up to 3min, a time threshold that researches attests as not eliciting

pain perception on average (Cui et al., 2002). However, the volunteers

were not constricted and completely free to remove their hands if

they felt uncomfortable.

Electrophysiological recordings were obtained employing a

128-electrodes EEG and 1-lead ECG with a sampling frequency of

500 Hz. No subject, recording devices, or any instrumentation was in

common between the two datasets (i.e., CW and CPT).

The ECG raw series were bandpass filtered and analyzed using

the Pan–Tompkins algorithm (Pan & Tompkins, 1985) to detect

R-peaks, which were subsequently analyzed using the Kubios Soft-

ware (Tarvainen et al., 2014) to reject artifacts, and finally visually

inspected for further analysis. EEG series preprocessing was per-

formed partially following the Harvard Automated Processing Pipeline

(HAPPE), proposed and described in detail in (Gabard-Durnam

et al., 2018), using the MATLAB (MathWorks Inc.) EEGLAB toolbox

(Delorme & Makeig, 2004). Briefly, the peripheral channels were

rejected, followed by bandpass series (between 1 and 100 Hz) and

notch (at 50 Hz) filtering. We identified and removed artifacted chan-

nels by calculating the area under the curve for each channel and

marking it as artifacted if it exceeded 3 standard deviations of the dis-

tribution of all channels. The remaining channels were compared with

their neighbors using the weighted-by-distance-correlation as a

distance metric. To improve the accuracy of microstate results, we re-

referenced the channels offline using the REST method (Yao, 2001),

which has been recommended in previous microstate investigations

(Hu et al., 2018). The REST method involves transforming EEG data

into a reference-independent source space and then back-projecting

the data onto the scalp electrodes using a weighting matrix. This

method has been shown to enhance the reliability and reproducibility

of EEG microstate analysis.

4.2 | Signal preprocessing

The time-resolved power spectral density (PSD) on the EEG time

series was obtained by the well-known short-time Fourier transform

using a Hamming window of 2 s (that is, 1000 samples) and a window

step of 0:1s, resulting in time series sampled at 10Hz. The PSD was

then integrated into the commonly analyzed EEG spectral band

between 1 and 45 Hz. On the other hand, the time-resolved PSD on

the HRV series was estimated using the smoothed pseudo-

Wigner-Ville distribution integrated into the interval 0:04Hz–0:15 Hz

(i.e., power in the low-frequency band LF) as a non-specific marker of

sympathovagal activity, and in the range 0:15Hz–0:4Hz (i.e., power

of high-frequency HF band) for parasympathetic activity. The two

PSD power series derived from HRV (LF and HF) were sampled at

10Hz to be homogeneous with those derived from the EEG.

4.3 | Brain-heart interplay estimation

BHI reports were produced using a SDG model (Catrambone

et al., 2019). Formally, the model constructs an EEG series according

to a multi-oscillator model whose amplitudes are generated by a first-

order exogenous autoregressive process (Al-Nashash et al., 2004),

where the exogenous term models time-resolved communication

from the heart to the brain.

Meanwhile, the RR dynamics were modeled by extending the

pulse frequency modulation model proposed by Brennan et al. (2002),

where the function driving sympathovagal activity has an exogenous

term, representing the direction-specific from brain-to-heart coupling

index.

In summary, time-varying directional BHI biomarkers represent an

immediate assessment of heart-to-brain and brain-to-heart interac-

tions for combinations of EEG and HRV frequency components,

respectively. The main idea behind the conceptualization of this model

is that the electrophysiological signals of the two systems are not

independent from each other, and the introduced coupling terms

attempt to formalize these interactions. More specifically, a positive

value of CB!HF tnð Þ indicates that at time tn, an increase in the EEG-

PSD in frequency band B is associated with a proportional increase in

the HRV-PSD series in the HF band. In other words, the power of the

EEG signal in the specified frequency band is positively correlated

with the power of the HRV signal in the HF band, suggesting a func-

tional relationship between the two signals.
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The inverse model formulation and derivation of the entire BHI

biomarker suite are extensively described in (Catrambone et al., 2019;

Catrambone, Messerotti Benvenuti, et al., 2021), and an easy-to-use

MATLAB implementation is freely available in (https://it.mathworks.

com/matlabcentral/fileexchange/72704-brain-heart-interaction-

indexes). To calculate the directional BHI indices, we used the frame-

work described above, which involved separate analysis of the HRV-

PSD in the LF and HF bands, as well as the EEG-PSD spectrum in the

1�45½ �Hz range. Specifically, we extracted the following directional

BHI indices: CBrain!LF, CBrain!HF, CLF!Brain, and CHF!Brain. These indices

reflect the directional influence between the brain and heart, with

CBrain!LF and CBrain!HF indicating the influence of brain dynamics on

the HRV-PSD in the LF and HF bands, respectively, and CLF!Brain and

CHF!Brain indicating the influence of the HRV-PSD in the LF and HF

bands on the EEG-PSD.

4.4 | BHI-microstates derivation

The procedure to identify and extract microstates from normal EEG

activity is standard and can be found in a comprehensive description

in (Michel & Koenig, 2018) and a freely available MATLAB toolbox

(Poulsen et al., 2018). In this study, the procedure was adapted for the

estimation of BHI microstates.

To derive BHI microstates, we first substituted the EEG series

with the BHI series to calculate the topographic maps of BHI-derived

GFP. Here, BHI-GFP corresponds to the spatial standard deviation of

BHI, estimating the time-resolved amount of BHI accounting for the

data of all EEG electrodes, following the definition of EEG-GFP

(Skrandies, 1990).

Next, BHI-GFP peaks were identified, and a modified k-means

algorithm was used to cluster the BHI-GFP instants to the spatial pro-

totypes. The number of BHI-microstates was chosen based on a

meta-criterion that considers a trade-off between different measures

of fit (GEV, cross-validation criterion, Krzanowski–Lai criterion, and

dispersion; Michel & Koenig, 2018) and the physiological plausibility

of topographical maps individuated by the algorithm.

After selecting the microstate prototypes, they were fitted to the

entire BHI series. During this procedure, each BHI topographical sam-

ple was assigned to a specific microstate prototype based on the level

of similarity. The goodness of fit was measured using the GEV, which

quantifies the amount of variance of the original GFP dynamics

explained by the newly obtained microstate occurrence time series.

To ensure continuity, a smoothing operation was implemented using a

smoothing window of 250 ms with no overlap, as sharp changes in

the obtained series could be attributed to physiological and algorith-

mic noise (Poulsen et al., 2018).

Due to dataset peculiarity (e.g., number of channels, preproces-

sing procedure, and task), the BHI-microstates derivation was per-

formed separately for dataset CW and CPT. Different BHI

spatiotemporal dynamics elicited by different experimental datasets

(i.e., CW and CPT in this study) are expected to result in different

numbers and configurations of microstates, similar to classical EEG

microstate analysis (Michel & Koenig, 2018). Furthermore, the BHI-

microstates derivation was performed once for all the experimental

phases enclosed in the same dataset, meaning that, for example, the

same microstates were derived from both resting state, cold pressor

phase, and recovery phase of the CPT dataset. This was done follow-

ing the hypothesis that if no spatiotemporal changes were present,

then the same microstates would occur with a similar frequency of

occurrences. A statistical analysis was conducted to verify this

hypothesis. The microstates derivation analysis was repeated inde-

pendently for all combination of BHI directions (i.e., brain-to-heart

and heart-to-brain) and HRV frequency bands (i.e., LF and HF).

4.5 | Statistical analysis

The primary objective of this study was threefold. First, we aimed to

verify the existence of BHI microstates. Second, we sought to evalu-

ate the ability of the microstate technique to explain the dynamics of

the BHI. Lastly, we aimed to investigate whether the BHI dynamics

change in response to sympathovagal elicitation.

To assess the existence of BHI microstates and the capability of

the technique to capture their dynamics, we utilized the GEV of the

channel-wise BHI time series. This measure provided an estimate of

the microstate's ability to explain the global variance of the estimated

BHI across the scalp. Additionally, we qualitatively evaluated the

physiological plausibility of the extracted microstate topographies, as

is commonly performed during EEG artifact rejection procedures.

These operations were implemented separately considering different

HRV-related frequency bands and BHI directions.

Second, under the null hypothesis of no variation during different

stimuli, the number of occurrences of each microstate should not

change. To verify this, we exploited the χ2 statistical test for the con-

tingency table.

A schematic representation of the processing pipeline is shown in

Figure 5.

F IGURE 5 Schematic representation of the proposed
computational methodology.
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4.6 | Quantitative comparison between
microstates

To quantitatively assess the comparison of microstate topographies,

we employed the GD, a widely-used measure in EEG microstate stud-

ies (Murray et al., 2008; Pierpaolo et al., 2022; Zappasodi et al., 2017).

It is important to note that microstate prototypes are polarity invari-

ant, meaning that both topographic homogeneity and topographic

inversion are considered equivalent. Consequently, the GD is a non-

linear measure, assuming minimal and maximal values for equivalent

topographies. To ensure comparability between the prototypes from

the two datasets, we applied an interpolation procedure to the micro-

state prototypes obtained in the CW analysis, resulting in prototypes

with the same number of channels as those obtained using CPT. Our

analysis focused on the brain-to-LF and brain-to-HF frequency bands

based on previous results.

To assess the statistical robustness of the measured GD, we per-

formed 1000 random permutations for each comparison, creating a

null distribution of surrogate data composed of randomly independent

topographies. Each permutation involved shuffling the values across

different channels of the prototypes being compared (e.g., microstate

1 of the CPT dataset and prototype 1 of the CW dataset), thereby

preserving the same statistical characteristics as the original data. By

comparing the real GD value with the permuted ones, we obtained a

p-value, enabling us to make statistically informed conclusions about

the dissimilarity or similarity of microstate topographies between the

two datasets.
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