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A B S T R A C T   

Methane (CH4) is a greenhouse gas generated during the feed fermentation processes in the rumen. However, 
numerous studies have been conducted to determine the capacity of plant secondary metabolites to enhance 
ruminal fermentation and decrease CH4 production, especially those plants rich in tannins. This review con-
ducted a descriptive analysis and meta-analysis of the use of tannin-rich plants in tropical regions to mitigate CH4 
production from livestock. The aim of this study was to analyse the effect of tannins supplementation in tropical 
plants on CH4 production in ruminants using a meta-analytic approach and the effect on microbial population. 
Sources of heterogeneity were explored using a meta-regression analysis. Final database was integrated by a total 
of 14 trials. The ‘meta’ package in R statistical software was used to conduct the meta-analyses. The covariates 
defined a priori in the current meta-regression were inclusion level, species (sheep, beef cattle, dairy cattle, and 
cross-bred heifers) and plant. Results showed that supplementation with tropical plants with tannin contents 
have the greatest effects on CH4 mitigation . A negative relationship was observed between the level of inclusion 
and CH4 emission (− 0.09), which means that the effect of CH4 mitigation is increasing as the level of tannin 
inclusion is higher. Therefore, less CH4 production will be obtained when supplementing tropical plants in the 
diet with a high dose of tannins.   

1. Introduction 

A major problem facing our world today is climate change caused by 
the emission of greenhouse gases (GHG) of anthropogenic activity 
(Cardona-Iglesias, Mahecha-Ledesma, and Angulo-Arizala, 2016). 
Overall, livestock contributes to 14–15% of the anthropogenic GHG 
emissions, and ruminants are responsible for two-thirds of this produc-
tion (FAO, 2013; Gerber et al., 2013). These GHG could be methane 
(CH4), carbon dioxide (CO2), and nitrous oxide (NO2) which are major 
contributors to global warming (Ugbogu et al., 2019). In particular, 

ruminants produce around 115 million tons of CH4 per year, a gas 
generated from rumen fermentation, carried out by a microbial complex 
of bacteria, archaea, protozoa and fungi, called "ruminal microbiota" 
(Sandoval-Pelcastre, Ramírez-Mella, Rodríguez-Ávila, & Candelar-
ia-Martínez, 2020). 

Because CH4 has a global warming effect 23 times greater than CO2 
(Ugbogu et al., 2019), the increase in global temperature is having ef-
fects on many species of animals and plants. These effects will increase 
in the coming years, causing crops and fodder to be affected by extreme 
weather (Olesen and Bindi, 2002). In the search for solutions to reduce 
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GHG emissions, the use of tropical plants with anti-methanogenic po-
tential has been suggested (Canul-Solis et al., 2020; Jayanegara et al., 
2020; Ku-Vera et al., 2020a,b; Rivera et al., 2015). However, due to the 
great diversity of tropical plant species with an anti-methanogenic ef-
fect, more research is needed in order to assess which ones have major 
impact on CH4 emissions and the amount whereby the need to be 
included in the diet (Sandoval-Pelcastre, Ramírez-Mella, Rodrí-
guez-Ávila, & Candelaria-Martínez, 2020). Ruminant production sys-
tems in the tropics and subtropical areas are characterized by grazing 
native and introduced grasses varying in quantity and quality 
throughout the year (Becholie, Tamir, Terrill, Singh, and Kassa, 2005). 
Tropical trees (TT) as Leucaena leucocephala, Acacia pennatula, Enter-
olobium cyclocarpum, Gliricidia sepium may contribute to an improve-
ment in ruminants’ feeding due to their high nutritive value (Topps, 
1992). Furthermore, TT contain a range of plant secondary metabolites 
(PSM) (Montoya-Flores et al., 2020; Piñeiro-Vázques et al., 2018), which 
could alter rumen fermentation and consequently reduce CH4 emissions 
(El-Zaiat et al., 2020; Piñeiro-Vázques et al., 2018). 

Tannins are containing into the PSM, and reduce methane due to 
their inhibitory effect on methanogens, protozoa and other hydrogen- 
producing microbes (Patra and Saxena, 2010; Tavendale et al., 2005). 
Temperate climate plants, rich in tannins such as Lotus pedunculatus, 
have been shown to reduce methane production up to 30% (Woodward, 
Waghorn, and Laboyrie, 2004) and can replace other forages in the diet. 
Therefore, the objective of this review and meta-analysis is to show the 
main tropical tannin plants that can be used as natural additives for 
mitigation of CH4 emissions in ruminants. 

2. Controlling rumen-level methane production 

Reducing the output of CH4 generated by ruminal fermentation is a 
great challenge for nutritionists. In fact, the digestive system of rumi-
nants has evolved over the years to use cellulose and polysaccharides by 
means of a pre-gastric fermentation system that produces CH4, however, 
this system represents a disadvantage for the environment in terms of 
contamination (Gill, Smith, and Wilkinson, 2010). On the other hand, 
the level of CH4 yield emitted by ruminant animals related to the amount 
of feed intake (Monteny, Bannink, and Chadwick, 2006). This means 
that, although CH4 yield levels increase directly with feed intake 
(Benchaar, Pomar, and Chiquette, 2001). It is important to consider, that 
not all feed ingredients will ferment in the same way in the rumen, as 
different amounts of CH4/unit of fermented carbohydrate are produced. 
Within concentrate feeding, soluble sugars will produce more CH4 than 
starch per MJ of GE intake, so replacing sugars with starch in concen-
trated feeds will decrease CH4 by 15%, as well as the emission of other 
gases into the environment (Mills et al., 2001). Most studies on dairy 
cows have reported that increasing the proportion of concentrate in the 
diet increases milk production since feed digestibility is improved; 
however, these studies were conducted with cows that produce more 
than 20 kg of milk per day in temperate climates (Olijhoek et al., 2018; 
Yan et al., 2010). However, Robles-Jimenez et al. (2021) reported that 
crossbred F1 dual-purpose cows (½ Bos taurus – ½ Bos indicus) grazing in 
tropical systems and supplemented with 150 – 450 g of concentrate per 
kg of daily milk production did not improve milk yield but increased 
CH4 and N2O production per cow as the concentrate increased in the 
diet, which agrees with Lawrence, O’Donovan, Boland, Lewis, and 
Kennedy (2015) and Dale, McGettrick, Gordon, and Ferris (2015). 

Another aspect to consider is to know that, in diets rich in concen-
trates, the ruminal pH decreases (this is due to the yield of a large 
amount of volatile fatty acids, VFA), which facilitates the production of 
more propionate, acting as a sink for H2 and, consequently, producing 
less CH4/unit organic matter fermented (OMF) in the rumen (Monteny 
et al., 2006). A second approach aims to reduce the production of CH4 by 
using ingredients or additives specifically intended for that purpose. The 
function of these ingredients is to directly or indirectly inhibit the pro-
cess of methanogenesis. Some PSM and plant extracts are included in 

this category as main secondary compounds that directly inhibit 
methanogens (García-González, González, and López, 2010). 

3. Effect of secondary plant metabolites on CH4 emission 

Due to their availability, TT and fodder is often the main ingredient 
in the diet of animals in tropical and subtropical regions of the world 
(Ayasan, Cetinkaya, Aykanat, and Celik, 2020; Canul-Solis et al., 2020; 
Schultze-Kraft et al., 2018). Feed ingredients (tree foliage, grasses, and 
legumes) from these regions differs from those from temperate regions, 
due to their structure, chemical composition and digestibility (Assou-
maya, Sauvant, and Archimède, 2007). Phytochemicals, circumscribed 
but appropriately chosen (primarily PSM) are attractive because they 
are naturally produced by plants and can be include it in feed rations. 
However, forages from tropical regions may contain secondary metab-
olites that can alter rumen methanogenesis, decreasing the CH4 yield 
(Bodas et al., 2012; Canul-Solis et al., 2020; Jouany and Morgavi, 2007; 
Vélez-Terranova, Campos-Gaona, and Sánchez-Guerrero, 2014). Rumi-
nants fed tropical forage and pasture have been reported to produce 
more enteric CH4 than ruminants fed temperate forage and pastures 
under different climatic conditions (Ku-Vera et al., 2020b), because in 
each climatic region the chemical composition and content of PSM will 
vary. It should be noted that while the IPCC (2006) provides default 
values for emission calculations (i.e., Ym 6.5%), which are used in most 
publications, it also specifies that emission factors need to be precise and 
validated in each country (Van Lingen et al., 2019). In this sense the 
values of Ym change (Ym 0.54% of energy intake) under tropical con-
ditions as well as the type of animaĺs genetics used in this region 
(Montoya-Flores et al., 2020). 

4. Tannin chemistry 

Tannins are natural chemical substances that belong to the group of 
PSM and are produced by plants in their intermediate metabolism. Plant 
secondary metabolites play a role of protection from herbivores, pests 
and pathogens. Secondary metabolites prevent toxicity and act as pre-
cursors to physical defence systems (Bennett and and Wallsgrove, 1994). 

Tannins are polyphenolic compounds of high molecular weight and 
are able to precipitate protein (Patra and Saxena, 2009). Tannins found 
in plants are presented as condensed tannins (CT) and hydrolysable 
tannins (HT) and both vary between fodders (Naumann, Tedeschi, Zel-
ler, and Huntley, 2017). 

Due to their lower risk of toxicity for the animal, anti-methanogenic 
activity has been studied mainly for CT-rich plants or extracts than HT 
(Beauchemin, Kreuzer, O’Mara, and McAllister, 2008), However, there 
are few studies related to the addition of tropical plants containing 
tannins and their antimethanogenic effect. These polyphenolic com-
pounds chemically have variable molecular weights and the ability to 
bind to natural polymers such as proteins and carbohydrates, and are 
found in the wood, bark, fruits, flowers, nuts, leaves, and roots of most 
plant species (Min et al., 2020; Mueller-Harvey, 2006; Ortiz-Do-
mínguez, Posada, & Noguera, 2014). Compared to tropical plants, 
temperate climate plants such as Lotus pedunculatus, which are rich in 
tannins, have also been shown to reduce CH4 excretion by up to 30% 
(Woodward et al., 2004) and can replace the use of other forages in the 
diet. 

In this way, knowing the plants, tree foliage, legumes and other 
natural resources with high potential in the mitigation of CH4 would be 
beneficial for environment protection. However, what is currently 
known is that these substances are antimicrobial compounds that have 
the ability to inhibit abundance of some ruminal microorganisms. This is 
because they have bactericidal or bacteriostatic activities, which pre-
vent growth or activity of methanogens in the rumen, which is due to the 
binding of microbial cell proteins and enzymes (Liu, Vaddella, and Zhou, 
2011; Tavendale et al., 2005). The challenge in ruminant nutrition is to 
implement the use of these natural resources with high tannin content in 
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arid and subtropical areas, since in production systems where it is 
possible to use these supplements, today is a viable alternative to reduce 
environmental pollution. Furthermore, most of the research published 
today on the use of tannins shows positive results (Albores-Moreno et al., 
2018; Alves, Dall-Orsoletta, and Ribeiro-Filho, 2017). 

5. Effect of tannins on rumen microbial population 

The diet has been reported as a predominant factor affecting the 
microbial community composition in the rumen on the host and the 
rumen environment (Henderson et al., 2015). Therefore, when PSM are 
included in the feed, they alter the availability of nutrients and metab-
olites and/or inhibit ruminal microbial metabolism of bacteria, pro-
tozoa, fungi and archea populations (Bodas et al., 2012; Henderson 
et al., 2015; Vasta et al., 2019). 

5.1. Effect of tannins on rumen bacteria and methanogens 

The high molecular weight and polyphenolic nature of tannins result 
in the formation of complexes with microbial enzymes or cell walls. 
Thus, the exerted activity may cause the inhibition of cellulolytic or 
proteolytic bacteria or methanogens (Mannelli et al., 2019; McSweeney, 
Palmer, Bunch, and Krause, 2001). The mode of action of tannins is 
strictly dependant on their chemical structure as well as the bacteria 
species (Vasta et al., 2019). Condensed tannins (CT) were recognized to 
have a stronger binding with nutrients than hydrolysed tannins (HT), 
mainly due to the fact they have a higher grade of polymerization, which 
makes their degradation in the rumen environment more difficult 
(Jayanegara, Goel, Makkar, and Becker, 2015). On the contrary, HT 
have been reported to have a greater protein precipitation capacity that 
has been related to higher biological activity and a higher methane 
mitigation capacity in comparison to CT. Additionally, the HT activity 
may be enhanced by the direct toxic methanogenic activity exerted by 
HT fractions, produced as a consequence of HT degradation by rumen 
microorganism enzymes, i.e. tannase (Bhat, Singh, and Sharma, 1998; 
Jayanegara et al., 2015). 

The CT have been proposed to directly inhibit some ruminal gram- 
positive specialized fibrolytic bacteria (Fibrobacter succinogenes, Rumi-
nococcus albus, Ruminococcus flavefaciens, Butyrivrio proteoclasticus) in 
an in vivo study with fistulated ewes (Costa et al., 2018). In another 
study, Fibrobacter succinogenes and total methanogens population inhi-
bition (up to 36%), have been reported in vitro, either supplementing CT 
or HT (Jayanegara et al., 2015). 

Salami et al. (2018), included 4% of either CT (Mimosa pudica, 
Uncaria gambir) or HT (Castanea sp., Caesalpinia spinosa) in lambs’ diet, 
and did not observe a difference in absolute abundance of bacteria and 
fungi, while methanogens (− 12%) abundance decreased similarly with 
both types of tannins. In a recent in vitro study, the same concentration 
of chestnut tannins (HT) was fermented, and methane produced was 
reduced by 12.5% compared to control, while acetate production 
increased (Cappucci et al., 2021). Goel and Makkar (2012) suggested 
that HT directly inhibit methanogens activity, and, therefore, they might 
affect less fibre digestibility, which can be compromised by the inclusion 
of CT in the diet. Tavendale et al. (2005) evaluated in broth culture the 
growth and methane production of tMethanobrevibacter ruminantium 
testing either polymeric or oligomeric CT fractions from Lotus pedun-
culatus. The polymeric CT fractions were the only effective in inhibiting 
the growth, thus demonstrating the importance of PSM chemical 
structure and synergistic effect of all components to directly inhibiting 
methanogens along with other rumen microorganism activities (Man-
nelli et al., 2019). The reduction of fibre digestibility, when CT sources 
were included in the diet, was thereby supported by the reduction of 
total VFA production mainly explained by the reduction of acetate 
production, as evaluated in sheep fed with an inclusion of 16 g/Kg dry 
matter (DM) intake of quebracho extract (Buccioni et al., 2015). How-
ever, total VFA production was not impaired with a level of tannins 

inclusion less of than 2 g/Kg DM (Table 1). This low dosage might be not 
always sufficient to achieve a methane mitigating effect. Hence, a 
dosage above 20 g/Kg of tannins has been proposed by Jayanegara, 
Leiber, and Kreuzer (2012). In accordance with Salami et al. (2018) both 
HT and CT extracts could impact the ruminal microbiome when sup-
plemented at moderate levels (<50 g/Kg DM, Mueller-Harvey, 2006), 
but their detrimental effect on fibrolytic bacteria should be considered 
when animals are fed with high-fibre diets. The contrasting results 
concerning rumen fermentation traits, microbial population, and 
methane production can be at least partially explained by the hetero-
geneity of tannin chemical structures from plants, the various dosages 
intake and the feeding regimen (Patra and Saxena, 2011; Vasta et al., 
2019). Moreover, microbial adaptation to tannins might occur through 
mechanisms of some bacteria such as the formation of protective exo-
polysaccharide layer around the cells, degradation of tannins, and 
modification of cell membrane (Patra and Saxena, 2011). 

5.2. Effect of tannins on rumen protozoa 

The antiprotozoal activity of some PSM might be relevant since 
methanogens colonizing ciliate protozoa were suggested to be respon-
sible for 9 – 25% of methanogenesis in rumen fluid (Henderson et al., 
2015; Newbold, Lassalas, and Jouany, 1995). The antiprotozoal activity 
of tannins is contrasting, and Patra and Saxena (2009) suggested that the 
effect is plant dependant, having the tannin structure-activity relation-
ship a major role in the mechanism of action (Mueller-Harvey, 2006). 
HT have been proposed to permeate through protozoa membranes, thus 
compromising methanogens associations (Patra and Saxena, 2011). In 
the study by Malik et al. (2017), male sheep diets were supplemented 
with tanniniferous tropical tree leaves (Ficus benghalensis, Artocarpus 
heterophyllus and Azadirachta indica) containing 7.1–10.8 g/Kg DM of 
CT. The digestibility was not compromised, whereas methane produc-
tion was reduced (up to 26%). The authors suggested that methane 
reduction can be explained by the decrease of protozoa number (− 23%). 
Moreover, CT appeared to affect Entodinimorphs protozoa more than 
Holotrichs protozoa (Malik et al., 2017). A similar reduction of protozoa 
number (− 21%) was reported by Salami et al. (2018), including 4% of 
both CT (mimosa, gambier) or HT (chestnut, tara) in lamb’s diet. 
However, other studies conducted in vivo and reported in Table 2 
showed that methane reduction was not always related to a decrease of 
protozoa number. 

6. Effect of tannins on CH4 emission 

6.1. In vitro studies 

The inclusion of tannins directly from plants or as plant extracts, in 
ruminant diets, has been showed to decrease CH4 above 20 g/kg 
(Jayanegara et al., 2011). In this sense, Goel and Makkar (2012) re-
ported that CH4 synthesis from ruminal fermentation has been reduced 
by to 50% in response to tannin or plant extracts containing these 
polyphenolic compounds (Patra and Saxena, 2010). Authors who con-
ducted experiments on plants with high tannin content (Molina-Botero 
et al., 2019; Morgavi, Martin, Jouany, and Ranilla, 2012; Patra and 
Saxena, 2011; Tavendale et al., 2005) agreed that tannin plants reduce 
CH4 production due to their antimicrobial properties, for example, 
Jayanegara et al. (2015) found that all tannins decreased CH4 concen-
tration in a linear or quadratic manner, and they also reported that the 
magnitude of the decrease was greater for plants containing hydro-
lysable tannins than for those plants rich in condensed tannins. The 
mode of action and the effects that tannins have on the animal will 
continue to be the subject of research. Reduction of nematode egg 
excretion and worm burden have been also reported in small ruminants 
fed with tanniferous plants (Birhan, Gesses, Kenubih, Dejene, and 
Yayeh, 2020; Marley, Cook, Keatinge, Barrett, and Lampikin, 2003; 
Mengistu et al., 2017; Minho, Filippsen, Amarte, & Abdalla, 2010; 
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Naumann et al., 2017; Oliveira et al., 2011). The inclusion of tropical 
tanniferous plants in vitro studies has been reported (Table 3). For 
example, Albores-Moreno et al. (2018) reported that supplementation 
with Leucaena leucocephala at a concentration of 950 g/kg DM in an in 
vitro study on diets for cattle based on Pennisetum purpureum grass, is a 
feeding alternative that can promote greater efficiency and synthesis of 
microbial biomass, increase the proportions of propionic and butyric 
acid, and decrease the output of enteric CH4 up to 15.6 to 31.6%. 
Rodríguez, Britos, Rodríguez-Romero, and Fondevila (2011) studied the 
effect of inclusion of plant tanniferous extracts equivalent to 240 mg of 
Acacia cornigera or Albizia lebbekoides added to 800 mg Pennisetum pur-
pureum, A. cornigera, and A. lebbekoides and reported that CH4 

concentration (ml/ml gas) was lower (14 and 7%, respectively) than 
Pennisetum Purureaum as a control after 24 h of incubation. Tan et al. 
(2011) evaluated the effects of CT from Leucaena leucocephala at 15 mg 
of CT/500 mg DM reducing CH4 excretion by ~47%, while Carulla, 
Kreuzer, Machmüller, and Hess (2005) reported that supplementation of 
25 g/kg of CT (12.5 mg CT/500 mg DM) from Acacia mearnsii in sheep 
fed ryegrass with a reduction of CH4 emissions by ~12%. In an in vitro 
study, Petlum, Paengkoum, Liang, Vasupen, & Paengkoum, 2019 eval-
uated the inclusion of CTs of a higher molecular weight as Azadirachta 
indica, showing stronger effect than those of a lower molecular weight as 
Leucaena leucocephala on CH4 excretion. The inclusion of Siamese neem 
suppressed CH4 output at inclusion levels of 2, 4 or 6 mg/100 g DM, 

Table 1 
Effect of dietary tannins on methane production and other major effects in vitro and in vivo studies.  

Plant Dosage Trial type Unit Methane 
reduction 
potential (% of 
control) 

Other major effects 
reported 

References 

Acacia tannins 50 g/kg DM In vitro mL/ 
24h 

15% − 11% of total VFA Staerfl, Kreuzer, and Soliva, 
2010 

Chestnut and sumarch (HT) and 
mimosa and quebracho (CT) 

1 g/L In vitro mL/ 
L 

3% CT 
7% HT 

− 14% CT and 
− 5.8% HT of total 
VFA 

Jayanegara et al., 2015 

Chestnut leaves ~24 mg/g DM of HT 
tannin 

in vitro mL/ 
24h 

28% − 13% total VFA Terranova, Kreuzer, Braun, 
and Schwarm, 2018 

CT from leaves of Gliricidia sepium, 
Leucaena leucocephala, and 
Manihot esculenta. 

0, 0.25, 0.5, 0.75, 
and 1.0 g CT/Kg, 
respectively 

In vitro and in vivo 
(rumen-cannulated 
sheep) 

mL/ 
24h 

Up to 22% (in 
vitro) 

Up to − 25% (in vitro) 
of total VFA 
No effect on 
Methanogens 
population (in vivo) 

Rira et al., 2015 

Vaccinium vitis idaea 140 g of extract 
containing 2 g of 
tannins/kg DM 

In vivo (Polish 
Holstein-Friesian 
dairy) 

mM 8% − 46% rumen NH3 

− 35% Protozoa 
− 21% Methanogens 
No effect on total VFA 

Cieslak, Zmora, 
Pers-Kamczyc, and 
Szumacher-Strabel, 2012 

Acacia mearnsii tannin extract 7 g/Kg DMI In vivo (dairy cows) g/ 
day 

32% No effect on milk 
production 

Alves et al., 2017 

Chestnut or Chestnut+Quebracho 
tannin extract 

1.5 g/Kg In vivo (crossbred 
steers) 

g/ 
day 

No effect No effect on Protozoa 
population 
No effect on total VFA 
production 

Aboagye et al., 2018 

CT, Condensed tannins; HT, Hydrolysable tannins; VFA, Volatile Fatty Acids. 

Table 2 
Effect of dietary tropical taniferous plants on methane production in vivo studies.  

Plant CT (g kg− 1 

of DM)1 
Doses (g 
kg− 1 of DM) 

Species CH4 Production % CH4 reduction2 Effect on microbial population References 

Leucaena leucocephala 2.70, 8.20 
and 12.30 

120, 240 
and 360 

Crossbred 
heifers 

162.9, 154.8 and 
140.00 g/d− 1 

6.49, 11.14 and 
19.64 

No changes in Protozoa, 
Bacteria and Methanogens 
counts 

Montoya-Flores et al. 
(2020) 

Samanea saman +
Pennisetum 
purpureum 

1.20, 2.40 
and 3.60 

900, 935 
and 965 

Crossbred 
heifers 

89.63, 72.03 and 
59.30 L/d− 1 

25.83, 40.40 and 
50.93 

No changes in Protozoa count (Valencia-Salazar 
et al., 2017) 

Leucaena leucocephala 21.00 in all 
doses 

200, 400, 
600 and 800 

Crossbred 
heifers 

101.20, 87.40, 74.90 
and 53.50 L/d− 1 

26.30, 36.35, 
45.45 and 61.03 

No changes in Protozoa count Piñeiro-Vázques et al. 
(2018) 

Lolium perenne - 185 Dairy cattle 260.00 g/d− 1 10.34 - Woodward et al. 
(2002) 

Hedysarum coronarium 2.72 130 Dairy cattle 253.90 g/d− 1 15.37 - Woodward et al. 
(2002) 

Lolium perenne - 161 Dairy cattle 360.63 g/d− 1 10.00 - Woodward et al. 
(2004) 

Lotus corniculatus - 121 Dairy cattle 343.24 g/d− 1 14.19 - Woodward et al. 
(2004) 

Sericea lespedeza 153.00 881 Goat 6.30 g/d− 1 12.00 Protozoa count increased in 
the long period 

Puchala et al. (2012) 

Leucaena leucocephala 40.00 820 Sheep 7.80 g/d− 1 25.71  Dias-Moreira et al. 
(2013) 

Styzolobium aterrimum 40.00 690 Sheep 10.40 g/d− 1 0.95 - Dias-Moreira et al. 
(2013)  

1 CT, Condensed tannins (g kg− 1 of DM). 
2 % CH4 reduction compared with the control diet, CT, Condensed tannins ((g kg− 1 of DM)),. 
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while supplementation of Leucaena leaves showed reductions on CH4 
production at 6 mg/100 mg DM of supplementation. Huang et al. 
(2010), 2011) suggested that chemical structure and molecular weight 
of the CTs influenced their efficacy to manipulate rumen fermentation, 
with specific effect on CH4 mitigation output. Hassan and Benchaar 
(2012) added Valonea (Quercus aegilops; Nutriad-Adisseo®) extracts as 
sources of HT, showing that CH4 excretion reduced up to 11% at 50 g/kg 
DM. On the other hand, Vandermeulen et al. (2018) evaluated the effect 
of Desmanthus spp. which emitted less CH4 (mL/g OM incubated) than 
the reference grass hay at 72 h (C. gayana) up to 23%. In vitro studies 
vary in their response to CH4 production and that seems to depend on 
the concentration of CT, which is affected by various management and 
environmental factors such as nutrient soil composition, light intensity, 
and temperature (Albores-Moreno et al., 2019; Frutos, Hervas, Giraldez, 
and Mantecon, 2004; Yang et al., 2018). Thus, we can notice that the 
differences in the concentrations of CT amongst studies vary with plant 
species, and geographical locations of plants. It is difficult to extrapolate 
in vitro to in vivo results, due to the variation between results and doses. 
Therefore, it is highly recommended to evaluate the effect of the sup-
plementation of tanniferous plants on CH4 mitigation in vivo studies. 

7. Meta-analysis: methodology 

To quantify the overall effect of the inclusion of tannins on CH4 
emissions in ruminants (In vivo studies), a meta-analysis process was 
carried out. A compressed and structured search of articles was carried 
out using the search engines Google Scholar, PubMed. Different sets of 
the following keywords were provided to field experts to integrate the 
study database: "ruminants", "tropical plants", "secondary metabolites", 
"tannins", "methane emission", "treatment" (control vs tropical plant), “in 
vitro”, and “in vivo”. 

Only articles peer reviewed, written in English containing an 
experimental set up were included in the current literature review. To be 

considered, the studies must met the following inclusion and exclusion 
criteria according with Lean, Thompson, and Dunshea (2014): a) studies 
published in an international peer-reviewed scientific journal, b) spe-
cific procedures for random assignment of animals to each treatment 
(experimental design), c) report minimum means squares and a measure 
of variability, and c) report the sample size of each group (Fig. 1). 

The final database included the publications from 2002 to 2021 and 
comprised the following information of least squares means, variability 
measures [standard error of mean (SEM), standard error of differences 
(SE) or standard deviation (SD)] and number of experimental units for 
both groups to each output variables, animal species as sheep (Ovis 
aries), goat (Capra hircus), cattle (Bos Taurus and Bos indicus), beef and 
dairy cattle and crossbred heifers, plant, dose, CH4 emission from the 
control and tannin groups, as well as the number of repetitions. The CH4 
values from in vitro studies were homogenized to mL/g DM, g/d, or mL/ 
d. With regard to in vivo studies all were adjusted and expressed in g 
CH4/d. Current analysis, random effects models were fitted to estimate 
the effect size (ES), the 95% confidence interval and the statistical sig-
nificance of ES for each outcome variable, using the ’meta’ package 
version 4.6–0 (Schwarzer, Carpenter, & Rücker, 2015) in the R statistic 
software version 3.3.1 (R Core Team, 2016). The ES was calculated as 
standardized mean difference (SMD) using the methods described by 
Hedges (1981) for the fixed effects and by DerSimonian and Laird, 
(2015) for random effects models. The studies that reported outcome 
variables in the same unit of measure aid to calculate the raw mean 
difference (RMD), which permits ES interpretation under original 
measures units (Appuhamy et al., 2013). The current systematic review 
analyses studies performed in different places with different methods 
and under different animal management; hence, the heterogeneity was 
needed (Higgins, 2008). Heterogeneity of results amongst trials was 
reported using the I2 statistic (Higgins & Green, 2011). The I2 represents 
the approximate proportion of total variability and indicate estimates 
that can be attributed to heterogeneity, which was calculates as: 

Table 3 
Effect of dietary tropical taniferous plants on methane production in vitro studies.  

Plant CT (g kg− 1 of DM Doses (g 
kg− 1 of 
DM) 

CH4 Production % CH4 

reduction 1 
References 

Pennisetum purpureum + Neomillspaughia emargiata; P. 
purpureum + Tabernaemontana amygdalifolia; P. 
purpureum + Piscidia piscipula; P. purpureum + Leucaena 
leucocephala; P. + Havardia albicans 

P. p + N. e = 52.90; P. p + T. a =
0.52, P. p + P. pis=8.19, P. p +
L. l = 5.90, P. p + H. a = 5.40 

950 25.80 – 33.00 L/ 
kg− 1 of digested 
DM 

12.47 – 31.57 Albores-Moreno et al. 
(2018) 

Pennisetum purpureum + Acacia cornigera; P. purpureum +
Albizia lebbekoides; P. purpureum + Leucaena leucocephala 

P. p + A.c = 19.7; P.p + A.l =
88.6; P.p + L.l = 66.0 

104 0.22 mL 4.35 Rodríguez et al. (2011) 

Leucaena leucocephala + Panicum maximum - 53 5.50 mL/g DM 63.09 Tan et al. (2011) 
Acacia mearnsii, Schinopsis balansae, Castanea sativa, 

Quercus aegilops 
A. m = 820.00; S. b = 904.00; C. s 
= 57.00; Q. a = 80.00 

200 4.48 – 4.77 mL 36.4 – 40.27 Hassanat and Benchaar 
(2012) 

Delonix regia seed meal - 6.6, 20 
and 30 

114.4, 105.4 and 
94.1 mL 

9.07, 16.22 
and 25.20 

Supapong et al. (2017) 

Digitaria eriantha+ Leucaena leucocephala 4.10 60 5.8 mL/g DM of 
substrate 

42.00 Petlum, Paengkoum, 
Liang, Vasupen, & 
Paengkoum, 2019 

Digitaria eriantha+ Azadirachta indica A. Juss. 7.90 20, 40 
and 60 

3.3, 1.7 and 0.01 
mL/g DM of 
substrate 

67.00, 83.00 
and 99.90 

Petlum, Paengkoum, 
Liang, Vasupen, & 
Paengkoum, 2019 

Desmanthus leptophyllus, Desmanthus virgatus, Desmanthus 
bicornutus 

- 1000 29.8 – 33.6 mL/g 
OM fermente 

11.79 – 21.77 Vandermeulen et al. 
(2018) 

Leucaena leucocephala, Acacia saligna, Atriplex halimus L.l = 67.00; A.s = 72.00; A.h =
5.3.00 

500 9.5 – 9.7 mL / g 
DM 

22.40 – 24.00 El-Zaiat et al. (2020) 

Calliandra calothyrsus, Acacia nilotica, Gliricidia sepium, 
Leucaena leucocephala, Manihot esculenta, Musa spp 

C.c = 58.20; A.n = 73.00; G.s =
94.90; L.l = 77.80; M.e = 88.60; 
M.spp = 84.30 

100 1.41 mL/d 64.04 Rira, Morgavi, Popova, 
Maxin, and Doreau, 2021 

Acacia nilotica leave, Acacia nilotica leaves A.n.l = 80.00; A.n.p = 157.00 25, 50, 
75, 100 

1.41 mL/d 64.04 Rira et al., 2019 

Castanea sativa, Schinopsis lorentzii 53.80 15 and 30 54.70 mL/ g DM 44.40 Menci et al., 2021 
Arachis pintoi, Cratylia argéntea, Calliandra calothyrsus 29.00 200 0.78 g/d 50.31 Hess et al., 2003 
Brachiaria humidicola, Vigna unguiculata, Calliandra 

calothyrsus, Flemingia macrophylla 
- 15 13.00 mL/d 80.92 Tiemann et al., 2008  

1 % CH4 reduction compared with the control diet. 
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Fig. 1. PRISMA flow diagram of the systematic review from initial search and screening of publications included in the meta-analysis.  

Fig. 2. Forest plot of methane production, expressed as Dry Matter Intake (DMI, g tannins/d) from studies focused on tannins supplementation in ruminants.  
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I2 =
Q − (k − 1)

Q
× 100 

Where Q is the X2 heterogeneity statistic and K is the number of 
trials. I2 values of 25%, 50% and 75% represented small, moderate, and 
high levels of heterogeneity, respectively. For output variables that 
showed substantial heterogeneity (I2>50%), mixed effects regression 
models (meta-regression analysis) were constructed to explore sources 
of heterogeneity using the ’metaphor’ package (Viechtbauer, 2010). The 
covariates defined a priori in the current meta-regression were inclusion 
level, species (sheep, beef cattle, dairy cattle, and cross-bred heifers) and 
plant. 

8. Results from meta-analysis 

A total of 14 articles were analysed to assess the effect of tannins 
supplementation on CH4 emissions of ruminants (Fig. 2). According to 
the obtained database, two meta-analysis were carried out in the current 
work. The first meta-analyses assessed the effect of tannins supple-
mentation on CH4 enteric emission in ruminant using in vivo studies (n =
19 trials). In vivo techniqués database allowed to estimate the raw mean 
difference (RMD) and standardized mean difference (SMD) because all 
studies reported the CH4 emission in the same unit (g/d). The second 
meta-analysis evaluated the effect of tannins supplementation on CH4 
emissions of overall studies (in vivo = 19; vitro = 45 trials). However, 
because those studies reported CH4 emission in different units of mea-
surement, only the SMD was estimated (Table 4). In both meta-analyses 
the values of heterogeneity (I2) were greater than 25%, therefore the 
sources of heterogeneity were explored. 

8.1. In vivo studies meta-analysis 

The in vivo studies showed a positive response in mitigating CH4 
emission due to the inclusion of tannins in the diets of ruminants 
through the feeding of tropical plants (SMD = − 0.86; P = 0.005) (Fig. 2). 
The response to tannin content has a moderate heterogeneity (I2 =

50.5%) that can be explained by the type of plant offered, level of in-
clusion and animal species. With regard to the type of animal that was 
fed Leucaena leucocephala and the combination of Samanea saman +
Pennisetum purpureum, showed the greatest mitigation effects of CH4 
according to the meta-regression analysis (Fig. 3, Table 4). The effect of 
tannins was most evident in heifers with an effect size of − 1.3 compared 
to dairy cows (ES = − 0.06), beef cattle (ES = 0.02) and sheep (ES =
− 0.32) (Fig. 2). Finally, a negative relationship was observed between 
the level of inclusion of tannins and CH4 emission (− 0.09), by increasing 
the dose of tannins, the difference between control and treatment in-
creases, although in a negative direction (Fig. 3). This means that, the 
higher the dose of tannins, the treatment group will emit less CH4 
compared with control, showing differences between the type of plant 
used, with a rather interesting effect on Leucaena leucocephala and 
Samanea saman, being mostly condensed tannins in ruminant animal 
production. 

8.2. Overall meta-analysis 

The global response of tannins supplementation in ruminants (in vivo 
and in vitro studies) when all available studies where analysed depicts a 
SMD of − 0.60 to the random effect model. The heterogeneity was 
considerably lower than overall meta-analysis (I2 = 27%) in comparison 
with the meta-analysis of in vivo studies (I2 = 50%). Sub-group analysis 
revealed differences of tannins supplementation response according 
with the measure technique of CH4 emission. The effect size of in vitro 
studies was lower (− 0.51; 95% CI − 0.76 – − 0.26) compared with in vivo 
studies (− 0.86; 95% CI − 1.35 – − 0.38) (Fig. 4). With regard to sources 
of tannins (Table 4), the highest mitigation response was observed in 
Flemingia macrophylla (− 2.21; 95% CI − 3.53 – − 0.89) followed by 
Samanea saman (− 2.02; 95% CI − 3.17 – − 0.86) and Leucaena leucoce-
phala (− 1.46; 95% CI − 1.95 – − 0.97). The studies that supplemented 
Schinopsis lorentzii showed a higher effect size (− 3.31; 95% CI − 6.88 – 
− 0.26), however the confidence intervals were wide and included zero 
value. 

9. Discussion from meta-analysis 

The combination of Samanea saman and Pennisetum purpureum 
(Valencia-Salazar et al., 2017) in cattle diets have been shown to 
contribute to the reduction of CH4 up to 50.9% (Table 2), showing the 
greatest mitigation effects of CH4 according to the results of the 
meta-regression analysis. On the other hand, in an in vivo study with 
lambs, Dias-Moreira et al. (2013) evaluated the effect of three forages, 
Leucaena leucocephala, Styzolobium terrimum and Mimosa caesalpiniaefo-
lia , reporting that with the use of Leucaena leucocephala there is a greater 
reduction in CH4 emissions (~25%). El-Zaiat et al. (2020) carried out in 
vitro and in vivo studies on sheep (Table 3), confirming that in the in vitro 
study, the supplementation of Leucaena leucocephala, Atriplex halimus or 
Acacia saligna to the diet (50/50) reduced CH4 output to almost 23% 
compared with the control group, and in the in vivo study in sheep diets, 
showed reductions of 11.45% in the CH4 production. Tiemann et al. 
(2008) in an in vitro study found an 80% reduction of CH4 by including 
Flemingia macrophyla, followed by Leucaena leucocephala with variations 
in CH4 reduction (30–60%) in vitro studies (Table 3), which may be due 
to the different levels of inclusion, which coincided with our results 
(Table 4). 

Ku-Vera et al. (2020a) confirmed that the use of Leucaena leucoce-
phala in beef cattle has a mitigating effect on CH4 when fed at levels of 
up to 30–35% DM. Furthermore, Ku-Vera et al. (2020a) mentioned that 
the legume Samanea saman which contains saponins, has demonstrated 
to have a mitigating effect on enteric CH4 in cattle and sheep housed in 
respiration chambers, since saponins break the membrane of the rumen 
protozoa thus decreasing the number of methanogenic protozoa and 
archaea. This result of the use of tropical plants was confirmed by 
Ku-Vera et al. (2020b) who, by incorporating ground foliage and pods 

Table 4 
Standardized mean difference (SMD) and 95% CI of enteric CH4 emissions of 
ruminants supplemented with tannins.  

Source Effect size 
(SMD) 

95% CI 
Lower Upper 

Acacia cornigera − 0.49 − 1.92 0.92 
Acacia mearnsii − 0.58 − 1.24 0.06 
Acacia nilotica − 0.76 − 5.53 3.9 
Albizia lebbekoides − 0.78 − 2.26 0.70 
Caesalpinia gaumeri 0.15 − 0.98 1.28 
Calliandra calothyrsus − 0.93 − 1.96 0.09 
Castanea sativa − 0.67 − 1.32 − 0.01 
Flemingia macrophylla − 2.21 − 3.53 − 0.89 
Gliricidia sepium − 0.13 − 2.23 1.96 
Havardia albicans 0.21 − 0.91 1.35 
Hedysarum coronarium − 0.06 − 0.75 0.63 
Leucaena leucocephala − 1.46 − 1.95 − 0.97 
Manihot esculenta 0.02 − 1.93 1.99 
Mimosa caesalpiniaefolia 1.77 − 0.56 4.12 
Musa spp − 0.88 − 6.28 4.50 
Neomillspaughia emargiata 0.04 − 1.08 1.17 
Piscidia piscipula − 0.03 − 1.16 1.09 
Quercus aegilops − 0.50 − 1.15 0.14 
Samanea saman − 2.02 − 3.17 − 0.86 
Schinopsis balansae − 0.54 − 1.20 0.10 
Schinopsis lorentzii − 3.31 − 6.88 0.26 
Schinopsis quebracho 0.021 − 0.54 0.58 
Styzolobium aterrimum − 0.23 − 1.85 1.38 
Tabernaemontana amygdalifolia − 0.12 − 1.26 1.00 
Vigna unguiculata 2.07 0.79 3.32 
Gliricidia sepium+Enterolobium 

cyclocarpum+Brachiaria brizantha sepium 
− 0.28 − 1.09 0.52 

SMD is the standardized mean difference estimated of the random model. 
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from tropical trees and shrubs into beef cattle rations, obtained a 
decrease of between 10% and 25% in CH4 (g CH4/kg DM intake), and 
those responses depended on the species of plant and the level of intake 
of the ration. 

Piñeiro-Vázques et al. (2018) evaluated the use of Leucaena leuco-
cephala in crossed heifers and reported that, the higher the dose con-
centration, the lower the CH4 emission, indeed they obtained a 61% 
decrease in CH4 at a dose of 800 g/kg DM of Leucaena leucocephala. This 
result agrees with Montoya-Flores et al. (2020) and Valencia-Salazar 
et al. (2017) in another study with crossed heifers, reporting that the use 
of Samanea saman + Pennisetum purpureum pod meal decreases CH4 
emissions as its inclusion increases, since, from the inclusion of 0, 10, 20 
and 30%, the latter decreased 50.9% of CH4 in L/d. 

Rumen CH4 yield represents an energy loss of up to 0.12 of the total 
feed intakes (Olijhoek et al., 2018). In this sense, if the inclusion of 
tannins reduce CH4 output (Ku-Vera et al., 2020a,b), plants containing 
these compounds should have a positive impact on energy utilization, as 
well as a reduction of the environmental impact of livestock production 
(Vázquez-Carrillo, Montelongo-Pérez, González-Ronquillo, 
Castillo-Gallegos, & Castelán-Ortega, 2020). However, a selective effect 
of tannins on fibrolytic bacteria occurred, with Ruminococcus albus being 
most affected, in agreement with the negative effects of saponins on this 
species (Galindo et al., 2016). These different bacterial responses to 
tannins might be due to the specific attachment mechanisms to the 

substrate and the fermentation pattern (Koike and Kobayashi, 2009), as 
well as by the different modes of action of tannins depending on their 
source (Tiemann et al., 2008). In the present study, the inclusion of 
tropical forage rich in tannins seems to reduce CH4 emission in vivo 
trials, but responses vary amongst plant sources, doses and animal 
species (Figs. 2, 3). 

Since the concentration of tannins varies depending on the plant, 
(Fig. 3, Table 4) it is observed that Leucaena leucocephala shows a better 
effect in terms of CH4 reduction compared with Styzolobium térimum at 
the same concentration. Likewise, it was observed that Leucaena leuco-
cephala and Samanea saman showed a greater effect in the decrease of 
CH4, compared to other plants such as Brachiaria brizantha, Gliricidia 
sepium, Enterolobium cyclocarpum, this effect was found in cross breed 
cattle. Puchala et al. (2012) found a 12% decrease in CH4 in goats when 
adding Sericea lespedeza (Table 2). Likewise, Dias-Moreira et al. (2013) 
obtained a reduction of CH4 in sheep up to 25% when supplementing 
Leucaena leucocephala, being lower when supplementing Styzolobium 
térimum (0.99%), although both plants contained the same concentra-
tion of tannins (40 g CT/kg− 1 of DM), this effect may be due to the fact 
that 19% more L. Leucocephala was administered compared to Styzo-
lobium térimum. On the contrary, when supplementing Mimosa cae-
salpiniaefolia there was no effect on the reduction of CH4, possibly due to 
the amount administered in the diet (530 g/kg DM), being 34% less TC 
compared with L. leucocephala. Beauchemin, McGinn, Martinez, and 

Fig. 3. Relationship between the level of inclusion of tannins (g/kg dry matter intake) from tropical plants and methane production in ruminants.  

Fig. 4. Forest plot of methane production (SMD) according with measurement technique from studies of ruminants supplemented with tannins. SMD is the stan-
dardized mean difference estimated of the random model. 
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McAllister (2007) when supplementing Schinopsis balansae in beef cattle, 
found a CH4 reduction of 0.96%, being very similar to that found by 
Puchala et al. (2012) when supplementing Mimosa caesalpiniaefolia. 
When supplementing Hedysarum coronarium, Woodward, Waghorn, 
Lassey, and Laboyrie (2002) found CH4 reductions of 14%, with a con-
centration of condensed tannins of 2.72 g/100 g DM in Hedysarum cor-
onarium. However, in general a negative relationship was observed 
between the level of tannin inclusion and CH4 emission. The reduction in 
CH4 production observed with the use of tannins could be attributed to 
the fact that they inhibit the activity of microbial enzymes, decrease the 
populations of protozoa and cellulolytic bacteria and form links with 
forage proteins, reducing the degradation of ruminal protein (Jakh-
mola, Taruna, and Raghuvans, 2010; Moscoso et al., 2017). However, an 
important factor to consider is that the concentration of plant tannins 
(HT and CT) are known to have both adverse and beneficial effects 
depending on their concentration and nature, besides other factors such 
as season, geographical region, animal species and genetics, animal 
physiological stage and dietary composition (Goel and Makkar, 2012; 
Piluzza, Sulas, and Bullitta, 2014) and derived from it, the effect on the 
decrease of CH4 excretion in ruminants (Fig. 2). Therefore, supple-
menting tropical and subtropical plants in the diet with a high dose of 
tannins will result in less CH4 production. 

10. Final remarks 

The efficacy of CTs from plant materials to reduce CH4 emission 
depends on the plant species and possibly to the environment in which 
they are grown. Supplementation of tannin-rich plants such as Leucaena 
leucocephala, Flemingia macrophylla and Samanea saman in vitro and in 
vivo studies, have a positive effect on the reduction of CH4 in ruminants. 
Other tropical tannin-rich plants such as Shinopsis lorentzii, Musa spp, 
Acacia spp., and Albizia spp. can reduce CH4 , but further in vivo studies 
are suggested to determine rumen microbiome and rumen metabolites. 
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