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Abstract
Understanding how multifactorial fluctuating environments affect species and 
communities remains one of the major challenges in ecology. The spatial configuration 
of the environment is known to generate complex patterns of correlation among 
multiple stressors. However, to what extent the spatial correlation between 
simultaneously fluctuating variables affects ecological assemblages in real-world 
conditions remains poorly understood. Here, we use field experiments and simulations 
to assess the influence of spatial correlation of two relevant climate variables – 
warming and sediment deposition following heavy precipitation –  on the biomass 
and photosynthetic activity of rocky intertidal biofilm. First, we used a response-
surface design experiment to establish the relation between biofilm, warming, and 
sediment deposition in the field. Second, we used the response surface to generate 
predictions of biofilm performance under different scenarios of warming and 
sediment correlation. Finally, we tested the predicted outcomes by manipulating the 
degree of correlation between the two climate variables in a second field experiment. 
Simulations stemming from the experimentally derived response surface showed how 
the degree and direction (positive or negative) of spatial correlation between warming 
and sediment deposition ultimately determined the nonlinear response of biofilm 
biomass (but not photosynthetic activity) to fluctuating levels of the two climate 
variables. Experimental results corroborated these predictions, probing the buffering 
effect of negative spatial correlation against extreme levels of warming and sediment 
deposition. Together, these results indicate that consideration of nonlinear response 
functions and local-scale patterns of correlation between climate drivers can improve 
our understanding and ability to predict ecological responses to multiple processes in 
heterogeneous environments.
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1  |  INTRODUC TION

Ecosystems face multiple interacting natural and human-driven dis-
turbances whose occurrence, magnitude, and impact vary in space 
and time (Gunderson et al.,  2016; Jentsch et al., 2009; Wernberg 
et al.,  2013). Predicting the ecological impacts of environmental 
fluctuations is essential as anthropogenic climate change alters the 
frequency and intensity of climate extremes (Drijfhout et al., 2015; 
Kirtman et al.,  2013). Most notably, climate variability is already 
impacting on gross primary production at continental scales, and it 
is altering patterns of biodiversity at local scales (Ciais et al., 2013; 
Dornelas et al., 2014; Franks et al., 2007). In the last two decades, 
laboratory and field experiments have documented strong ecolog-
ical effects of environmental fluctuations on species and assem-
blages through changes in frequency, variance, and autocorrelation 
of disturbance, resource supply, or other variables (Benedetti-
Cecchi, 2003; Benedetti-Cecchi et al., 2006; Bernhardt et al., 2018; 
Bertocci et al.,  2005; Crain et al.,  2008; Gunderson et al.,  2016; 
Lawson et al., 2015). One general mechanism explaining these re-
sults is the prevalence of nonlinear response functions relating eco-
logical and environmental variables. Nonlinear responses, where a 
change in the input can generate a disproportionate change in the 
output, are ubiquitous in nature (Denny, 2017; Zhang et al., 2015). 
If f(x) is a nonlinear function of an environmental variable x, non-
linearity causes a mismatch between the expected response under 
average conditions, f(x), and the integrated response under variable 
condition, f(x), such that f(x) ≠ f(x). This mathematical property of 
nonlinear functions is known as Jensen's inequality or nonlinear av-
eraging (Jensen  1906). The sign of the inequality is positive (neg-
ative) for accelerating (decelerating) response functions, whereas 
the magnitude of change depends on the degree of nonlinearity and 
the amount of variability in × (Chesson, 2012; Ruel & Ayres, 1999). 
Ecologists have successfully used Jensen's inequality to model the 
performance of producers and consumers under stressful and vari-
able environmental scenarios (Benedetti-Cecchi, 2005; Benedetti-
Cecchi et al., 2012; Bernhardt et al., 2018; Denny, 2017; Koussoroplis 
& Wacker, 2016; Ruel & Ayres, 1999; Vasseur et al., 2014).

The great emphasis on large temporal and spatial scales of varia-
tion in environmental conditions has overshadowed the importance 
of local-scale environmental variability (Helmuth et al., 2006; Sears 
et al., 2011). Yet, predictions and ecological outcomes at local scales 
can be dramatically different from those generated by global climate 
models (Nadeau et al., 2017). Landscape configuration and hetero-
geneity have been shown to play an essential role in modulating 
the impact of large-scale climate forcing on both plants and animals 
(Dong et al., 2017; Lehtilä et al., 2020; Ohler et al., 2020; Sunday 
et al., 2014). Spatial heterogeneity in the thermal environment may 
create local refugia, allowing species to survive during unusually 
harsh conditions (e.g., during heatwaves). For example, local-scale 
microclimatic conditions in plant communities can determine long-
term resilience in rear edge forests again heatwaves and drought 
pressures (Carnicer et al.,  2021). In addition, spatial heterogene-
ity may also ensure the persistence of thermally sensitive species 

(Angilletta, 2009). However, the extent to which spatially variable 
thermal regimes determine the performance of organisms in natural 
environments remains largely understudied (Dowd et al., 2015).

Despite the widely recognized importance of environmen-
tal variability in influencing organisms' performance, few studies 
have explored the consequences of Jensen's inequality in a multi-
factorial context, incorporating the effect of correlation between 
variables (Koussoroplis & Wacker, 2016; Koussoroplis et al., 2019; 
Pincebourde et al., 2012). The simultaneous effect of multiple fac-
tors may produce nonlinearities that would remain undetected in a 
unifactorial scenario (Koussoroplis et al., 2017). These nonlinearities 
may interact with environmental variance and the degree and di-
rection of the correlation among environmental factors, leading to a 
deviation between organism's performance under constant and vari-
able conditions. Direct evidence of the role of correlation in mod-
ulating organisms' performance stems from recent laboratory and 
mesocosm experiments (Koussoroplis & Wacker, 2016; Koussoroplis 
et al., 2019; Pincebourde et al., 2012). For instance, Koussoroplis and 
Wacker  (2016) have shown how correlation between temperature 
and resource supply influenced the life-history traits of the water 
flea Daphnia magna. To what extent the variance and correlation be-
tween simultaneously fluctuating variables affect ecological assem-
blages under field conditions remains largely untested.

Rocky intertidal habitats have been extensively used as model 
systems to test cornerstone hypotheses in ecology and to un-
ravel the influence of multiple interacting processes (Hawkins 
et al., 2020). Plants and animals living on rocky shores are exposed 
to a mosaic of environmental conditions where key variables such 
as temperature and wave action often covary at experimentally 
tractable spatial scales (Helmuth et al., 2006; Lima & Wethey, 2012; 
Hawkins et al., 2020). The small size and short life span of many or-
ganisms living on rocky shores further facilitate the analysis of mul-
tiple stressors and their correlation in space or time. For example, 
recent studies have used epilithic microphytobenthos (hereafter, 
biofilm) to show how the temporal clustering of extreme events of 
warming and sediment deposition can promote legacy effects and 
drive populations to collapse (Dal Bello et al., 2017, 2019). These and 
other studies have documented strong negative effects of warm-
ing and sediment accretion following heavy rains on rocky intertidal 
organisms (Harley, 2003; Kordas et al.,  2015; Vaselli et al., 2008). 
Substratum complexity, generated by emergent surfaces mixed with 
heterogenous areas with depressions, cracks, and crevices in the 
rock, can result in different patterns of spatial correlation between 
aerial temperature and sediment. For example, positive correlation 
may occur on emergent rocks on sunny days and calm sea, whereas 
cracks and crevices where sediment is more persistent during rough 
sea conditions may introduce negative correlation.

We used a combination of experimental and simulation ap-
proaches to evaluate how spatial correlation between two import-
ant climate variables, warming and sediment accretion following 
run-off, modulated the performance of rocky intertidal biofilm. As 
a first step, we used a response surface design involving 16 combi-
nations of warming and sediment deposition to derive a response 
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surface (hereafter RS) relating the biomass and photosynthetic ac-
tivity of biofilm to the two variables in the field. Then, we used the 
empirically derived RS to simulate the performance of biofilm under 
different correlation scenarios of warming and sediment deposition. 
We expected the performance of biofilm to differ between constant 
and variable conditions owing to nonlinearities in the RS. Finally, we 
tested the predictions originating from our simulations in a second 
field experiment in which we manipulated the spatial correlation 
(positive or negative) and intensity of warming and sediment deposi-
tion in a factorial experiment. Our results provide the first empirical 
evidence of how spatial correlation between interacting stressors 
and nonlinear effects drives small-scale ecological responses of pri-
mary producers in real-world conditions and indicate that local-scale 
patterns between climate variables may play a crucial role in pre-
dicting ecological responses to multiple processes in heterogeneous 
environments.

2  |  METHODS

2.1  |  Study site

The study was done along the coast of Calafuria (Livorno, 43° 30′ 
N, 10°19′ E) between March and December of 2017. The coast is 
composed of gently sloping sandstone platforms with high-shore 
levels (0.3–0.5  m above mean low-level water) characterized by 
populations of barnacles interspersed among areas of seemingly bare 
rock, where biofilm develops. Biofilm at Calafuria is composed mainly 
of cyanobacteria of the genus Rivularia, contributing up to 50% of 
the bacterial assemblage (Maggi et al., 2017) (Figure S1a). As shown 
in a previous study, warming and sediment deposition following run-
off are important drivers of biofilm biomass in this system (Dal Bello 
et al., 2017). Grazing by the littorinid snail Melarhaphe neritoides (L.) 
can also affect the abundance and distribution of the biofilm, mostly 
in late fall and winter (Dal Bello et al., 2017).

2.2  |  Experiment 1: Derivation of the 
response surface

We used a response-surface experimental design involving 16 
combinations of warming and sediment deposition to build a 
warming-sediment response surface (RS) (Figure 1a). The experiment 
was conducted between May and August 2017. In May 2017, 48 
plots consisting of patches of rock 40 × 40 cm fully covered by 
biofilm were marked at their corners with rawl plugs inserted into 
the rock for future relocation. Three replicated plots were randomly 
allocated to each combination of four levels of warming crossed 
with four levels of sediment deposition. Temperature and sediment 
were manipulated following methodologies developed in previous 
studies (Dal Bello et al., 2017). The warming factor included a control 
(ambient temperature) and three levels of elevated temperatures 
(+5°C, +10°C, and +15°C above ambient levels). Plots were heated 

with aluminium chambers equipped with stoves (Figure  S1), with 
warming levels chosen to reflect a wide range of temperatures 
experienced by the biofilm at the study site, from common to rare. 
We characterized individual warming levels as the averaged return 
time of positive thermal anomalies using a 66-year time series of 
temperature measurements (Appendix S1, Figure  S2). Positive 
temperature anomalies of +5°C are common during the central 
hours of the day and have a return time of less than 1 year, while 
anomalies of +10°C have a return time of about 2 years. Anomalies 
of +15°C corresponded to extreme conditions with a return time 
of about 85 years. The warming treatment consisted of keeping the 
difference between the chamber and the ambient air temperature 
as close as possible to the designated treatment level for 2  h 
(Figures S1c, S3a,b). The aerial temperature was constantly measured 
with iButton loggers during the 2 h of warming inside and outside 
the heating chambers. Three additional plots were established as 
control for artifacts (CA) to assess the potential effect of shading 
on biofilm during the heating sessions. CA plots were shaded with 
cardboard chambers, but they were not warmed.

Sediment deposition included a control (no sediment added) and 
three levels of sediment accretion (+0.5 cm, +1.0 cm, and +1.5 cm 
thick layers of sediment deployed over the plots), to mimic the ef-
fects of runoff following heavy rainfall events (Figure S1d). Sediment 
layers about 0.5–1 cm thick originated naturally on flat rocks after 
intense storms (>70 mm within the previous 24 h) and could persist 
for about 2/3 days before being washed away by waves (Figure S1b) 
(Dal Bello et al., 2017). In some areas, depressions on the rock fa-
vored sediment accretion with the formation of mats up to 15 mm 
thick. We mimicked these events by adding to each designated plot 
a layer of sediment collected in the surrounding area and diluted in 
freshwater. Sediment thickness was measured with a caliper and 
adjusted accordingly to the nominal value of the sediment depo-
sition treatment assigned to each plot (Figure  S1c). Warming was 
performed before sediment deposition, but the order in which the 
two stressors are imparted has no effects on the biofilm (Dal Bello 
et al., 2017). Experimental units were monitored in the 2–3 days fol-
lowing treatment application to assess whether sediment thickness 
matched nominal treatment levels and to adjust when necessary. 
Experimental treatments were applied only once as a single pulse; 
due to the impossibility of treating all the 51 plots (48 used to derive 
the response surface and the three CA plots) on the same day, sets 
of 5–6 randomly chosen plots were treated in each of 6 days within 
a month.

Biofilm biomass and photosynthetic activity were evaluated 
after 7, 14, and 21 days since the start of the experiment. Biomass 
was determined by means of an image-based remote sensing tech-
nique that uses chlorophyll a concentration as a proxy (μg chl a 
cm−2). Chlorophyll a was estimated from a ratio of reflectance at 
near-infrared (NIR) and red bands (Ratio Vegetational Index – RVI) 
by means of a IR-sensible camera (ADC), following the method pro-
posed by Murphy and colleagues (Murphy et al., 2009). NIR/red ra-
tios are related to chlorophyll a by a linear relationship, calculated 
on the basis of laboratory chlorophyll a extraction from Calafuria 
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sandstone cores (Dal Bello et al., 2015). Each photo was then han-
dled with a java-routine in ImageJ software to haphazardly select six 
subplots and provide a mean value of biofilm biomass for each plot 
(Schneider et al., 2012).

The physiological status of the photosynthetic apparatus of bio-
film was assessed through a portable underwater pulse-amplitude-
modulated (PAM) fluorometer (Diving-PAM, Walz). Maximum 
photochemical efficiency after 5′ of dark adaptation (henceforth 
dark yield) and effective quantum yield of photosystem II in actinic 
light (henceforth light yield) were used as a proxy of photosynthetic 
efficiency and stress, respectively. Within each experimental plot, 
three and six measurements were haphazardly taken for light and 
dark yield, respectively. Sampling had an average duration of about 
2 h and started around 2.5 h after sunrise and ended at midday. Dark 
yield measurements were taken after 5 min of dark adaptation, while 
light yield was measured under natural light condition.

We used a generalized additive model (GAM) to derive the RS 
from the experimental data.

We obtained a single RS for each response variable (Chl a, dark 
and light yield) by taking averages over the three sampling dates. 
Data were modeled as a function of three smoothers of nominal lev-
els of warming (W) and sediment deposition (S) and their interactions 
(W × S) (with identity link and Gaussian error distribution):

 where the Yijk is the value of the response variable (Chl a, dark and 
light yield) in replicate k, sediment level j, and warming level i, ß0 is the 
intercept, s1 and s2 are thin plate regression splines describing the in-
dividual effect of warming and sediment, te is tensor product smooth 
term modeling the interaction between warming and sediment, and 
� is the Gaussian error term. Smoother terms were selected through 

(1)Yijk
∼ �0 + s1

(

Wi

)

+ s2
(

Sj
)

+ te
(

W × Sij
)

+ �ijk

F I G U R E  1 Flow chart illustrating the main steps of the study. (a) To derive a response surface, we performed a full factorial experiment 
crossing four warming intensities (+0°C, +5°C, +10°C, and +15°C above ambient air temperature, corresponding to 24.8°C, 30.4°C, and 
40.0°C absolute temperatures, respectively) with four levels of sediment deposition (0 cm, +0.5 cm, +1.0 cm, and + 1.5 cm thick layers of 
sediment deployed over the plots). (b) Hypothetical warming and sediment response surface. The response surface was used to generate 
predictions of biofilm performance under variable (B(Warm. , Sed. )) and constant (B

(

Warm., Sed.
)

) conditions for different scenarios of 
spatial correlation between warming and sediment deposition. The inset shows the effect of nonlinear averaging, – i.e., the deviation of 
biofilm performance due to the nonlinearity characterizing the warming-sediment RS – for a specific combination of warming and sediment 
deposition. Warming and sediment deposition are expected to follow a normal bivariate distribution. (c) We performed a field experiment 
to test the predicted outcomes of the simulations by manipulating the intensity and spatial correlation of warming and sediment deposition 
along experimental transects. (d) Transects consisted of three contiguous quadrats of 40 × 40 cm. Spatial correlation between warming 
and sediment deposition was generated by varying the levels of the two variables along the quadrats in a transect. The panel shows a high 
intensity treatment with an average level of warming of +15.5°C above ambient temperature, an average layer of sediment of 1.5 cm, and a 
level of spatial correlation between the two variables of −1.
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a generalized cross-validation procedure. The number of knots was 
set to 4, which corresponded to the number of levels of predictors 
variables. Model assumptions were assessed visually using plots of 
residuals vs. fitted values, box plots of residuals vs. experimental 
conditions, and QQ plots of standardized residuals vs. normal quan-
tiles (Faraway, 2016). GAM fitting was performed using the function 
gam of package mgcv in R 3.5.1 (Wood et al., 2016).

Potential artifacts due to shading effects during warming ses-
sions were assessed through a t-test contrasting control and CA 
plots.

2.3  |  Simulating from the response surface

The RS experiment identified a significant nonlinear response of biofilm 
biomass to warming and sediment deposition (in interaction), but not 
for photosynthetic activity (see RESULTS – Experiment 1: Derivation 
of the response surface). Thus, we used the RS model derived for bio-
mass to simulate the response of biofilm to changes in warming and 
sediment deposition under constant and variable scenarios and for dif-
ferent patterns of correlation between the two stressors.

These simulations allowed us to explore the interactive effects 
between nonlinearities and environmental variance on biofilm per-
formance and the modulating effect of spatial correlation. We 
started our simulations by generating values of biofilm biomass 
under constant (Yconst,ij) and variable (Yvar,ij) conditions, where i indi-
cated values of temperature (Ti, with i varying between 0 and 20°C 
in steps of 0.5) and j the levels of sediment deposition (Sj, with j vary-
ing between 0.5 and 1.5 cm in steps of 0.5), resulting in a prediction 
grid of 164 values. Biomass values under constant conditions were 
simulated by simply feeding the RS model with the warming and sed-
iment deposition values. To simulate variable conditions, for each 
point in the prediction grid, we generated 1000 values of tempera-
ture and sediment deposition by sampling a bivariate normal distri-
bution 

�

X%
�

�,
∑

��

 with mean � =

⎛

⎜

⎜

⎝

�T

�S

⎞

⎟

⎟

⎠

 and covariance 

∑

=

⎛

⎜

⎜

⎝

�2
T

��T�S

��T�S �2
S

⎞

⎟

⎟

⎠

, where �T and �S corresponded to the chosen 

prediction values, � defined the strength of correlation between pre-
dictors, and �T and �S were the standard deviations of temperature 
and sediment thickness estimated from field measurements during 
the experiment (�T = 4.54°C and �S = 0.41 cm) (Figure S4). In particu-
lar, �Twas calculated from temperatures in control plots, while �S was 
calculated from data of the thickness of sediment deposits taken 
after heavy rainfall events. Thus, the two standard deviations �T and 
�S quantified the natural levels of spatial variability of warming and 
sediment deposition at the study site. We used the mean over 1000 
simulations to obtain the predicted value of biofilm biomass for each 
combination of temperature and sediment deposition from the RS 
model. This procedure was repeated for different values of correla-
tion (�) ranging from −1 to 1, with increments of 0.2.

In addition to recording changes in biofilm biomass in the various 
scenarios, we used the simulated values to compute the total variance 

effect (TVE), a quantity that summarizes the effect of variance and 
correlation between stressors (Koussoroplis & Wacker, 2016). The 
TVE (in percentage) for a given combination of warming i and sedi-
ment deposition j was computed as:

This metric expressed the standardized percentage difference of 
biomass under variable conditions compared with constant ones. 
Therefore, negative values of TVE corresponded to lower values of 
biomass under variable than constant conditions, resulting in a nega-
tive effect of variance on biomass. The opposite applied to positive 
values of TVE.

2.4  |  Experiment 2: Testing predictions

Simulations generated quantitative predictions on the nonlinear re-
sponse of biofilm biomass to changes in variance and correlation be-
tween warming and sediment deposition. We tested some of these 
predictions in a second experiment in which we manipulated the 
intensity and spatial correlation between stressors. In August 2019, 
we marked 12 transects each consisting of three contiguous quad-
rats (40 × 40 cm) in areas originally covered by biofilm (Figure S1d). 
The experiment had a factorial design with two levels of correlation 
(+1 and −1) crossed with two levels of intensity (low: +5°C of warm-
ing and 0.5 cm of sediment deposition; high: +15°C of warming and 
1.5 cm of sediment deposition) and three replicate transects in each 
treatment combination. Each transect constituted a single experi-
mental unit in which spatial correlation was manipulated by exposing 
each of the three quadrats to a specific combination of warming and 
sediment deposition. For example, in the positive correlation treat-
ment, quadrats exposed to high (low) temperatures also received 
high (low) levels of sediment deposition. In contrast, in the negative 
correlation treatment, quadrats exposed to low (high) warming also 
received high (low) levels of sediment deposition (Figure 1d). Initial 
values of temperature and sediment for the three quadrats in each 
transect with designated levels of correlation (+1 and −1) were gen-
erated by sampling a bivariate normal distribution (Figures 1d, S1c,d). 
Due to the small sample size involved (the three quadrats in a tran-
sect), this procedure often resulted in levels of spatial correlation 
that were lower than the nominal level. In these instances, the values 
of the two variables were adjusted arbitrarily to obtain the desired 
level of correlation. As in the first experiment, three additional tran-
sects were used as controls for artifacts (CA) to assess the potential 
effect of shading on biofilm during the heating sessions.

To compute the TVE, each of the four combinations of intensity 
and correlation of stressors was matched with an independent set of 
three replicate transects (12 in total: three replicates × two levels of 
correlation × two levels of intensity) with zero correlation between 
warming and sediment deposition. These additional transects pro-
vided the constant condition at the denominator of Equation 2 and 

(2)TVE(%) =
Yvar,ij − Yconst,ij

Yconst,ij
× 100
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were obtained by imparting the same levels of warming and sediment 
deposition across the three quadrats in each transect. We recognize 
that although these treatments had zero nominal covariance, real-
ized correlations could differ from zero owing to small variation in 
treatments levels across quadrats in a transect. Nevertheless, since 
Equation  2 uses the mean values of biofilm biomass across treat-
ments, it is the realized mean correlation that must be close to zero. 
We verified this expectation by recording the amount of warming and 
sediment deposition imparted to all quadrats during the experiment 
and computing the corresponding correlation values (Figure S4).

Chl a was used as a surrogate for biofilm biomass and was mea-
sured 10 and 18 days after the beginning of the experiment as de-
scribed above (Section 3.1). Treatment effects were evaluated on 
time-averaged Chl a and TVE values in each quadrat using Linear 
Mixed Effect Models (LMEM) (Bates et al.,  2015). In the model, 
Correlation (with two levels: −1 and +1), Intensity (with two levels: 
Low and High), and their interactions (Correlation × Intensity) were 
included as fixed effects, while transects were included as a ran-
dom effect to account for the lack of spatial independence among 
biomass values in different quadrats. Post-hoc contrasts between 
treatments were performed using the “emmeans” package in R 
(Lenth et al., 2018). We evaluated model assumptions using standard 
graphical procedures. 95% confidence intervals (CIs) were computed 
for each experimental condition using non-parametric bootstrap-
ping and were used to assess the convergence of experimental and 
predicted values of biomass and TVE. The bootstrap procedure in-
volved resampling with replacement each experimental condition 
1000 times. The 95% CIs were then calculated as 2.5th and 97.5th 
percentile of the distribution of bootstrapped values.

To assess the effect of error propagation stemming from the 
uncertainty associated with the RS, we calculated the 95% CIs of 
predicted values of biomass and TVE using a bootstrapping tech-
nique. We followed a three-step process: (1) the biomass values ob-
tained in the first experiment for each combination of warming and 
sediment deposition were sampled with replacement to generate a 
bootstrapped dataset; (2) the GAM model (Equation 1) was then fed 
with the bootstrapped data to generate biomass and TVE values for 
each of the four treatment combinations examined in the second 
experiment (see Section 2.3); (3) 95% CIs were finally computed as 
2.5th and 97.5th of the vector of bootstrapped estimates, obtained 
by repeating the steps 1 and 2 above 1000 times.

Data and R-script used in this study are available from Figshare 
(DOI: 10.6084/m9.figshare.14447871).

3  |  RESULTS

3.1  |  Experiment 1: Derivation of the response 
surface

Warming and sediment deposition interactively affected biofilm 
biomass (GAM: WaldWarm×Sed  =  1.09, p < .01; Figure  2a, Table  S1). 
The RS showed four distinct regions with contrasting nonlinear 

responses of biofilm biomass to warming and sediment deposition. A 
concave-8(0–10°C) and at intermediate sediment deposition (1 cm) 
and extreme warming (15°C) (Figure 2a). In contrast, a concave-up 
relation was evident at low to moderate levels of warming (0–10°C), 
at moderate to extreme levels of sediment deposition (1–1.5  cm) 
and, to a less extent, under extreme warming and low sediment 
deposition (Figure  2a). A response surface fitted to absolute 
temperatures (Figure  S5) provided a similar outcome, although it 
explained slightly less variation (delta temperatures in Figure  2a: 
AIC  =  175.0, R2

Adj. = 29%; absolute temperatures in Figure  S5: 
AIC = 178.71, R2

Adj. = 27.7%).
Cross sections of the RS indicated the prevalence of a declining, 

almost linear relations between biomass and warming for all but the 
intermediate levels of sediment deposition, where the relation be-
came positive (Figure 2b). In contrast, biomass changed nonlinearly 
with sediment thickness for all but the intermediate level of warm-
ing (Figure 2c). The relation was concave-down at low to moderate 
levels of warming and sediment deposition, becoming concave-up 
at the most extreme level of sediment thickness. The opposite was 
observed under extreme warming (Figure 2c).

Neither dark nor light yield exhibited a significant relationship 
with warming and sediment deposition (Figure S6, Table S2). Shading 
effects or other artifacts due to the heating chambers were not de-
tected for any of the three variables examined (Figure S7, Table S4).

3.2  |  Simulations

The strength and direction of correlation between warming and 
sediment deposition modulated the compounded effect of these 
stressors on biofilm biomass (Figure  3). At the lowest level of 
sediment deposition (0.5  cm), biofilm biomass exhibited a slight 
positive relationship with the degree of correlation between the 
two stressors, while at the intermediate level of sediment thickness 
(1.0 cm), biofilm showed no variation along the correlation gradient 
(Figure 3a,b). Under extreme sediment deposition (1.5 cm), biomass 
drastically decreased with increasing correlation, collapsing at high 
levels of warming (Figure  3c). Warming reduced biofilm biomass 
across all levels of sediment deposition (Figure 3a–c).

Fluctuating conditions of low to moderate warming (0–10°C) 
and low sediment deposition depressed biofilm biomass compared 
with a constant environment, whereas environmental variability 
became beneficial to biofilm at larger temperatures (18–20°C), de-
termining a shift from a negative to a positive TVE (Figure 4a). This 
trend reversed at the intermediate level of sediment deposition, 
with the TVE declining consistently along the warming gradient 
(Figure 4b). The TVE exhibited a funnel-shaped pattern along the 
warming gradient at the extreme level of sediment deposition, 
with negative (positive) correlation driving positive (negative) ef-
fects of variance on biofilm biomass (Figure 4c). Overall, the effect 
of a negative correlation between stressors on the TVE shifted 
from negative to positive with increasing levels of sediment depo-
sition (compare Figure 4a with c).
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3.3  |  Experiment 2: Testing predictions

The impact of warming and sediment deposition on biofilm was 
strongly modulated by the degree of spatial correlation between 
these stressors (Figure 5a). The analysis identified a significant in-
teraction between correlation and treatment intensity (LMEM for 
the Correlation × Intensity interaction: t  =  2.98, p < .05, df =  12; 
Figure  5a, Table  S3). Negative correlation increased significantly 
biofilm biomass compared with the positive correlation treatment at 
high intensity of warming and sediment deposition, whereas the op-
posite (not significant) pattern occurred when the two stressors were 

imparted at low intensity (Figure 5a, post-hoc contrasts, Table S3). 
Observed values of biofilm biomass were close to simulated val-
ues, and differences could be considered not significant under the 
more intense conditions of warming and sediment deposition where 
treatment means were embraced in the simulated CIs (Figure 5a). In 
agreement with the outcomes of the simulations, negative correla-
tion was beneficial to biofilm biomass under the most stressful con-
ditions, whereas the opposite was observed under low intensity of 
warming and sediment deposition (Figure 5a).

Similarly to what observed for biofilm biomass, spatial correla-
tion and treatment intensity interactively affected the TVE, (LMEM 

F I G U R E  2 Biofilm biomass as a function of warming and sediment deposition. (a) Response surface (RS) relating biofilm biomass to 
warming and sediment deposition. Blue regions of the curve indicate positive values of the curvature (approximated by its second derivative) 
and reflect a concave-down region of the RS, while red regions indicate a locally concave-up curvature. Data shown are mean values of 
biofilm biomass (n = 3) estimated as μg chl a cm−2 for each combination of warming and sediment deposition. Cross sections of the response 
surface are shown across levels of warming (b) and sediment deposition (c).
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for the Correlation × Intensity interaction: t = 3.23, p < .01, df = 12; 
Figure 5b, Table S3). The TVE was significantly larger for negative 
compared with positive correlation at high intensity of warming and 

sediment deposition, whereas the opposite (not significant) pat-
tern was observed at low treatment intensity (post-hoc contrasts, 
Table S3). Similarly to what observed for biomass, the experimental 

F I G U R E  3 Biomass simulations for 
different correlation scenarios of warming 
and sediment deposition. Panels show 
the response of biofilm biomass (as μg chl 
a cm−2) for different levels of warming, 
sediment deposition, and their spatial 
correlation in simulations. Black dots 
indicate the values of the two variables 
and their correlation chosen as treatment 
levels in the subsequent experimental test 
of simulation predictions.

F I G U R E  4 Total variance effect (TVE). 
Joint warming-sediment variance and 
correlation effects on biofilm biomass 
(μg chl a cm−2) as a function of warming 
(∆T) at each of three levels of sediment 
deposition: 0.5 cm (a), 1.0 cm, (b) and 
1.5 cm (c). The TVE quantifies the change 
of biofilm biomass between variable 
and constant conditions for a given 
combination of sediment and warming.
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    |  9 of 13RINDI et al.

results for the TVE matched the expectations originating from sim-
ulations; observed and expected values were statistically undistin-
guishable under positive correlation (treatment means were within 
the simulated CIs) (Figure 5b).

LMEMs indicated no differences between controls for artifacts 
and controls for the three response variables examined (Figure S8, 
Table S5).

4  |  DISCUSSION

Jensen's inequality has provided a phenomenological model for 
interpreting and predicting how environmental fluctuations and 
nonlinear response functions interactively affect organisms' per-
formance (Denny & Benedetti-Cecchi, 2012; Ruel & Ayres, 1999). 
Recent laboratory studies have extended Jensen's inequality to a 
multifactorial context, showing how correlation between multiple 
ecological drivers can shape the response of organisms to environ-
mental fluctuations (Pincebourde et al., 2012, 2016; Koussoroplis 
& Wacker, 2016; Koussoroplis et al., 2017–2019). Consideration of 
multiple factors and their correlation provides a more realistic view 
of the performance of organisms in fluctuating environments, com-
pared with the analysis of individual factors. Yet, empirical tests 
of these ideas in real-world conditions have lagged behind theory 
(Chesson, 2012; Koussoroplis et al., 2017).

Combining simulations with field experiments, our study 
showed how the degree of spatial correlation between warming 
and sediment deposition modulated the impact of these stress-
ors on rocky intertidal biofilm through the total variance effect 

(TVE). In principle, the direction and magnitude of the TVE for a 
specific combination of warming and sediment deposition should 
reflect the degree and direction (concave-up or concave-down) of 
the curvature of the response surface (RS) (Denny & Benedetti-
Cecchi, 2012). Jensen's inequality correctly identifies the direction 
of nonlinear averaging effects for univariate response functions 
(Benedetti-Cecchi, 2005; Ruel & Ayres, 1999; Foray et al., 2014; 
Wetzel et al., 2016). In contrast, predicting from response surfaces 
(multiple predictors) requires consideration of the direction and 
degree of correlation between variables. In our analysis, outcomes 
consistent with Jensen's inequality were observed for regions of 
the RS where deviations from linearity (i.e., the curvature) were 
more pronounced. Negative values of the TVE corresponded to a 
strong positive curvature of the RS (concave-down), such as those 
obtained at low and intermediate levels of sediment deposition in 
combination with either low or elevated warming, respectively. In 
contrast, positive values of the TVE were observed at intermediate 
levels of sediment deposition and low warming, where the RS had 
a strong negative curvature (concave-up). The modulating effect of 
spatial correlation was not strong enough to change the sign of the 
TVE for these combinations of stressors (Figures 2 and 4).

The correlation effect –  i.e. the contribution of spatial cor-
relation to nonlinear averaging – emerges when two stressors act 
non-additively, that is, when the effect of the concurrent change 
of two stressors is different from the sum of the effects of chang-
ing each stressor individually (Crain et al.,  2008; Koussoroplis 
et al., 2017). In our simulations, the moderate correlation effect 
in the low-intensity condition originated from the mild antagonis-
tic effect of warming and sediment deposition, where low levels 

F I G U R E  5 Testing predictions. Predicted vs. experimental values of biomass (μg chl a cm−2) as a function of the correlation and 
intensity of warming and sediment deposition. Yellow and dark-green filled circles indicate mean biofilm biomass under negative and 
positive correlation, respectively (n = 3). Gray circles refer to mean biomass of transects exposed to constant conditions (n = 3). Purple 
reversed-triangles indicate mean biomass of plots exposed to constant conditions derived from the first experiment (n = 3). Yellow and 
dark-green empty squares are the expected values of biofilm biomass obtained from simulations under low (∆T = +5°C and sediment 
deposition = 0.5 cm) and high (∆T = +15°C and sediment deposition = 1.5 cm) intensity, respectively. Error bars are non-parametric 
bootstrapped 95% confidence intervals. In particular, error bars of predictions incorporate the effect of error propagation stemming from 
uncertainty associated with the RS.
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of sediment deposition (0.5  cm) may have buffered the adverse 
effects of warming through nutrient release and reduction of 
desiccation stress (Figure 4a) (Larson & Sundbäck, 2012; McKew 
et al., 2011; Nakamoto et al., 2000). The correlation effect evan-
ished with increasing sediment deposition, weakening the inter-
action between sediment and warming. Increasing sediment loads 
may have generated hypoxic conditions at the sediment–biofilm 
interface, such that the antagonistic buffering effect caused by 
the 0.5 cm layer of sediment switched into a negative effect op-
erating additively with warming under the thicker 1.5  cm layer. 
The correlation effect reversed under high warming and sediment 
deposition, with a positive spatial correlation of the two variables 
resulting in adverse effects on both the TVE and biofilm biomass 
compared with negative spatial correlation (Figures 4c and 5a,b). 
Such inversion of the correlation effect could also reflect a switch 
from an antagonistic to a synergistic effect of warming and sed-
iment deposition on biofilm biomass. However, caution must be 
paid in interpreting this inversion, as no previous experiments 
have directly characterized the nature (antagonistic or synergistic) 
and the magnitude effect of warming and sediment deposition on 
rocky intertidal biofilm.

The observed differences among correlation scenarios might 
also reflect a shift in species composition. Although physiological 
responses to stress may occur within a few days in microorgan-
isms, longer periods (months) may be necessary for these effects 
to translate into compositional shifts (Schimel et al.,  2007). In a 
parallel experiment, we found that changes in species composition 
in response to warming required at least 4 months to be detected 
(L. Rindi, unpublished data). Since the experiment presented here 
lasted 3 months, we are more inclined to believe that outcomes were 
driven more by physiological responses than shifts in species com-
position within the biofilm.

Although the direct manipulation of warming and sediment re-
produced the effects of intensity and spatial correlation observed in 
the simulations, RS predictions may be affected by error propagation 
(Figure 5). This likely reflected the uncertainty associated with esti-
mating the RS from field data. However, results of the bootstrapping 
analysis showed that despite a moderate fit (R2 = 0.29), our RS gen-
erated realistic predictions of response of biofilm to changes in in-
tensity and spatial correlation of warming and sediment deposition.

Our study examined the effects of nonlinearities and correla-
tion between variables at small spatial scales. Whether our RS could 
predict the TVE at larger spatial scales remains an open question. 
Scale-transition theory uses Jensen's inequality (nonlinear aver-
aging) and measures of environmental variances and correlations 
to extrapolate local ecological patterns (e.g., population dynamics 
within patches of habitat) to broader scales (e.g., regional popula-
tion dynamics) (Benedetti-Cecchi et al., 2012; Chesson et al., 2005; 
Melbourne & Chesson, 2006). The effect of Jensen's inequality in-
creases with the degree of nonlinearities and with the amount of 
variance encountered when embracing larger spatial or temporal 
scales. Thermal performance curves are a typical example of non-
linear response functions that have been widely used to model 

population responses in fluctuating environments (Denny,  2017; 
Kingsolver & Woods, 2016; Koussoroplis & Wacker, 2016). Studies 
have shown how the shape of performance curves may change de-
pending on the duration and history of exposure to stressful condi-
tions, acclimatation, and ontogeny that may all affect the accuracy 
of temporal predictions from Jensen's inequality (Kingsolver & 
Woods, 2016; Kremer et al., 2018; Sinclair et al., 2016). Similar ef-
fects may occur when extrapolating across spatial scales. Due to the 
patchy nature of the rocky intertidal environment, biofilm assem-
blages might become increasingly different in terms of disturbance 
legacies, acclimatation, and overall response to warming and sed-
iment deposition with increasing spatial scales, compromising the 
ability of the RS to predict patterns at larger scales. Although these 
caveats remain to be clarified, our study shows how consideration of 
nonlinear response functions and spatial correlation can help eluci-
dating the influence of multiple processes at small spatial scales in a 
heterogeneous environment.

Focusing on local patterns and processes is important because 
small-scale variability is ubiquitous in nature, and most of the inter-
actions between organisms and the surrounding environment occur 
at the scale of the microhabitat (Korell et al.,  2021; Pincebourde 
et al.,  2016; Potter et al.,  2013). Yet, microhabitat heterogeneity 
can promote adaptation by buffering populations against adverse 
environmental conditions and small-scale processes can drive large-
scale patterns of community stability (Grman et al., 2010; Riddell 
et al.,  2021). For example, ridges and depressions may generate 
various patterns of correlation among solar radiation, freezing, and 
moisture in tundra systems, providing favorable microclimates for 
the persistence, growth, and adaptation of dominant shrub species 
that are responsible for coarse-scale vegetation shifts (greening) in 
Arctic and Alpine ecosystems (Dobbert et al., 2021). Similar small-
scale patterns of correlation between leading environmental vari-
ables are expected to occur in other terrestrial and aquatic systems 
where landscape features and topographic complexity promote fine-
scale environmental heterogeneity (Deák et al., 2021). Assessing the 
generality of nonlinear and correlation effects as mechanisms shap-
ing small-scale ecological patterns is important to better understand 
the compound effects of multiple processes and the ecological role 
of microclimates in changing environments.

Climate change projections for the 21st century involve modifica-
tions of the spatiotemporal patterns of climate variables (Gunderson 
et al., 2016; Hayashida et al., 2020; Young & Ribal, 2019). The spatial 
context in which organisms are embedded, such as landscape and 
microtopographic features, strongly filter and modify the climate-
change signal (Pincebourde et al., 2016). The thermal mosaics orig-
inating from the topographic complexity of rocky intertidal shores 
are an example of a filtered signal (Helmuth et al., 2006). In the same 
vein, filtered signals may originate in a multifactorial context when 
topographic features generate small-scale patterns of correlation of 
environmental variables. As we have shown here, local patterns of 
correlation may play a crucial role in modulating the effect of cli-
mate extremes, ultimately influencing average biofilm biomass at 
the scale of the shore. Our analysis signals the need for researchers, 

 20457758, 2022, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.9418 by U

niversita' D
i Pisa, W

iley O
nline L

ibrary on [19/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  11 of 13RINDI et al.

resource managers, and policymakers aiming at predicting the im-
pact of multiple stressors to account for current and possibly future 
spatiotemporal patterns of correlation among stressors. Black swans 
can occur in space as well as in time (Anderson & Ward, 2019), but 
the spatial context is often overlooked in the analysis of ecological 
extremes. Spatial correlation should be explicitly incorporated into 
multiple-stressors studies (Gunderson et al., 2016), risk-assessment 
framework (Côté et al.,  2016; Goussen et al.,  2016) and coupled 
environmental-physiological models (Pincebourde et al.,  2016; 
Rezende et al., 2014). Our study shows how the inclusion of correla-
tion between drivers can improve predictions from Jensen's inequal-
ity in real-world conditions. Further experimental work is needed to 
evaluate the generality of these findings in other ecosystems and 
over a wider range of environmental variables.

AUTHOR CONTRIBUTIONS
Jianyu He: Data curation (equal); methodology (equal). Lisandro 
Benedetti-Cecchi: Conceptualization (equal); funding acquisition 
(lead); project administration (lead); resources (lead); supervision 
(equal); writing – original draft (equal); writing – review and editing 
(equal).

ACKNOWLEDG MENTS
We thank Chiara Ravaglioli for constructive comments to the 
manuscript and Caterina Mintrone for field and technical assistance. 
The research was supported by the University of Pisa under projects 
PRA_2017_19 and PRA_2020_76.

CONFLIC T OF INTERE S T
Authors declare no conflict of interest.

DATA AVAIL ABILIT Y S TATEMENT
Data are available on Figshare at the following https://doi.
org/10.6084/m9.figshare.14447871.

ORCID
Luca Rindi   https://orcid.org/0000-0002-2279-4214 
Jianyu He   https://orcid.org/0000-0001-8032-5064 
Lisandro Benedetti-Cecchi   https://orcid.
org/0000-0001-5244-5202 

R E FE R E N C E S
Anderson, S. C., & Ward, E. J. (2019). Black swans in space: modeling 

spatiotemporal processes with extremes. Ecology, 100, e02403. 
https://doi.org/10.1002/ecy.2403

Angilletta, M. J. (2009). Thermal adaptation: A theoretical and empirical 
synthesis. Oxford University Press. https://doi.org/10.1093/acpro​
f:oso/97801​98570​875.001.1

Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear 
mixed-effects models using Lme4. Journal of Statistical Software, 
67(1), 48. https://doi.org/10.18637/​jss.v067.i01

Benedetti-Cecchi, L., Tamburello, L., Bulleri, F., Maggi, E., Gennusa, V., & 
Miller, M. (2012). Linking patterns and processes across scales: The 
application of scale-transition theory to algal dynamics on rocky 

shores. Journal of Experimental Biology, 215(Pt 6), 977–985. https://
doi.org/10.1242/jeb.058826

Benedetti-Cecchi, L. (2003). The importance of the variance around 
the mean effect size of ecological processes. Ecology, 84(9), 2335–
2346. https://doi.org/10.1890/02-8011

Benedetti-Cecchi, L. (2005). Unanticipated impacts of spatial variance 
of biodiversity on plant productivity. Ecology Letters, 8(8), 791–799. 
https://doi.org/10.1111/j.1461-0248.2005.00780.x

Benedetti-Cecchi, L., Bertocci, I., Vaselli, S., & Maggi, E. (2006). Temporal 
variance reverses the impact of high mean intensity of stress in cli-
mate change experiments. Ecology, 87(10), 2489–2499. https://doi.
org/10.1890/0012-9658(2006)87[2489:tvrti​o]2.0.co;2

Bernhardt, J. R., Sunday, J. M., Thompson, P. L., & O'Connor, M. I. (2018). 
Nonlinear averaging of thermal experience predicts population 
growth rates in a thermally variable environment. Proceedings of the 
Royal Society B: Biological Sciences, 285(1886), 20181076. https://
doi.org/10.1098/rspb.2018.1076

Bertocci, I., Maggi, E., Vaselli, S., & Benedetti-Cecchi, L. (2005). 
Contrasting effects of mean intensity and temporal variation of dis-
turbance on a rocky seashore. Ecology, 86(8), 2061–2067. https://
doi.org/10.1890/04-1698

Carnicer, J., Vives-Ingla, M., Blanquer, L., Méndez-Camps, X., Rosell, 
C., Sabaté, S., Gutiérrez, E., Sauras, T., Peñuelas, J., & Barbeta, 
A. (2021). Forest resilience to global warming is strongly mod-
ulated by local-scale topographic, microclimatic and biotic 
conditions. Journal of Ecology, 109(9), 3322–3339. https://doi.
org/10.1111/1365-2745.13752

Chesson, P. (2012). Scale transition theory: Its aims, motivations and 
predictions. Ecological Complexity, 10(June), 52–68. https://doi.
org/10.1016/j.ecocom.2011.11.002

Chesson, P., Donahue, M., Melbourne, B., & Sears, A. (2005). Chapter 
6: Scale transition theory for understanding mechanisms in meta-
communities. In M. Holyoak, M. A. Leibold, & R. D. Holt (Eds.), 
Metacommunities: Spatial dynamics and ecological communities. The 
University of Chicago Press.

Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., & Chhabra, 
A. (2013). Carbon and other biogeochemical cycles. In T. F. Stocker, 
D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. 
Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Climate Change 2013: 
The Physical Science Basis. Contribution of Working Group I to the 
Fifth Assessment Report of the Intergovernmental Panel on Climate 
Change (pp. 465–570). Cambridge University Press. doi:10.1017/
CBO9781107415324.015

Côté, I. M., Darling, E. S., & Brown, C. J. (2016). Interactions among eco-
system stressors and their importance in conservation. Proceedings 
of the Royal Society B: Biological Sciences, 283(1824), 20152592. 
https://doi.org/10.1098/rspb.2015.2592

Crain, C. M., Kroeker, K., & Halpern, B. S. (2008). Interactive 
and cumulative effects of multiple human stressors in ma-
rine systems. Ecology Letters, 11(12), 1304–1315. https://doi.
org/10.1111/j.1461-0248.2008.01253.x

Dal Bello, M., Maggi, E., Rindi, L., Capocchi, A., Fontanini, D., Sanz-
Lazaro, C., & Benedetti-Cecchi, L. (2015). Multifractal spatial dis-
tribution of epilithic microphytobenthos on a Mediterranean rocky 
shore. Oikos, 124(4), 477–485. https://doi.org/10.1111/oik.01503

Dal Bello, M., Rindi, L., & Benedetti-Cecchi, L. (2017). Legacy effects 
and memory loss: How contingencies moderate the response 
of rocky intertidal biofilms to present and past extreme events. 
Global Change Biology, 23(8), 3259–3268. https://doi.org/10.1111/
gcb.13656

Dal Bello, M., Rindi, L., & Benedetti-Cecchi, L. (2019). Temporal cluster-
ing of extreme climate events drives a regime shift in rocky inter-
tidal biofilms. Ecology, 100(2), e02578. https://doi.org/10.1002/
ecy.2578

 20457758, 2022, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.9418 by U

niversita' D
i Pisa, W

iley O
nline L

ibrary on [19/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.6084/m9.figshare.14447871
https://doi.org/10.6084/m9.figshare.14447871
https://orcid.org/0000-0002-2279-4214
https://orcid.org/0000-0002-2279-4214
https://orcid.org/0000-0001-8032-5064
https://orcid.org/0000-0001-8032-5064
https://orcid.org/0000-0001-5244-5202
https://orcid.org/0000-0001-5244-5202
https://orcid.org/0000-0001-5244-5202
https://doi.org/10.1002/ecy.2403
https://doi.org/10.1093/acprof:oso/9780198570875.001.1
https://doi.org/10.1093/acprof:oso/9780198570875.001.1
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1242/jeb.058826
https://doi.org/10.1242/jeb.058826
https://doi.org/10.1890/02-8011
https://doi.org/10.1111/j.1461-0248.2005.00780.x
https://doi.org/10.1890/0012-9658(2006)87%5B2489:tvrtio%5D2.0.co;2
https://doi.org/10.1890/0012-9658(2006)87%5B2489:tvrtio%5D2.0.co;2
https://doi.org/10.1098/rspb.2018.1076
https://doi.org/10.1098/rspb.2018.1076
https://doi.org/10.1890/04-1698
https://doi.org/10.1890/04-1698
https://doi.org/10.1111/1365-2745.13752
https://doi.org/10.1111/1365-2745.13752
https://doi.org/10.1016/j.ecocom.2011.11.002
https://doi.org/10.1016/j.ecocom.2011.11.002
https://doi.org/10.1017/CBO9781107415324.015
https://doi.org/10.1017/CBO9781107415324.015
https://doi.org/10.1098/rspb.2015.2592
https://doi.org/10.1111/j.1461-0248.2008.01253.x
https://doi.org/10.1111/j.1461-0248.2008.01253.x
https://doi.org/10.1111/oik.01503
https://doi.org/10.1111/gcb.13656
https://doi.org/10.1111/gcb.13656
https://doi.org/10.1002/ecy.2578
https://doi.org/10.1002/ecy.2578


12 of 13  |     RINDI et al.

Deák, B., Kovács, B., Rádai, Z., Apostolova, I., Kelemen, A., Kiss, R., 
Lukács, K., Palpurina, S., Sopotlieva, D., Báthori, F., & Valkó, O. 
(2021). Linking environmental heterogeneity and plant diversity: 
The ecological role of small natural features in homogeneous land-
scapes. Science of the Total Environment, 763, 144199. https://doi.
org/10.1016/j.scito​tenv.2020.144199

Denny, M. (2017). The fallacy of the average: On the ubiquity, util-
ity and continuing novelty of Jensen's inequality. The Journal of 
Experimental Biology, 220(2), 139–146. https://doi.org/10.1242/
jeb.140368

Denny, M., & Benedetti-Cecchi, L. (2012). Scaling up in ecology: 
Mechanistic approaches. Annual Review of Ecology, Evolution, and 
Systematics, 43(1), 1–22. https://doi.org/10.1146/annur​ev-ecols​ys-
10271​0-145103

Dobbert, S., Pape, R., & Löffler, J. (2021). How does spatial hetero-
geneity affect inter-  and intraspecific growth patterns in tun-
dra shrubs? Journal of Ecology, 109, 4115–4131. https://doi.
org/10.1111/1365-2745.13784

Dong, Y., Li, X. X., Choi, F. M. P., Williams, G. A., Somero, G. N., & 
Helmuth, B. (2017). Untangling the roles of microclimate, be-
haviour and physiological polymorphism in governing vul-
nerability of intertidal snails to heat stress. Proceedings of the 
Royal Society B: Biological Sciences, 284, 20162367. https://doi.
org/10.1098/rspb.2016.2367

Dornelas, M., Gotelli, N. J., McGill, B., Shimadzu, H., Moyes, F., Sievers, 
C., & Magurran, A. E. (2014). Assemblage time series reveal bio-
diversity change but not systematic loss. Science, 344(6181), 296–
299. https://doi.org/10.1126/scien​ce.1248484

Dowd, W. W., King, F. A., & Denny, M. W. (2015). Thermal variation, 
thermal extremes and the physiological performance of individu-
als. The Journal of Experimental Biology, 218, 1956–1967. https://doi.
org/10.1242/jeb.114926

Drijfhout, S., Bathiany, S., Beaulieu, C., Brovkin, V., Claussen, M., 
Huntingford, C., Scheffer, M., Sgubin, G., & Swingedouw, D. (2015). 
Catalogue of abrupt shifts in intergovernmental panel on cli-
mate change climate models. Proceedings of the National Academy 
of Sciences, 112(43), E5777–E5786. https://doi.org/10.1073/
pnas.15114​51112

Faraway, J. J. (2016). Extending the linear model with R. Chapman and Hall/
CRC. https://doi.org/10.1201/b21296

Foray, V., Desouhant, E., & Gibert, P. (2014). The impact of thermal 
fluctuations on reaction norms in specialist and generalist par-
asitic wasps. Functional Ecology, 28(2), 411–423. https://doi.
org/10.1111/1365-2435.12171

Franks, S. J., Sim, S., & Weis, A. E. (2007). Rapid evolution of flower-
ing time by an annual Plant in Response to a climate fluctuation. 
Proceedings of the National Academy of Sciences, 104(4), 1278–1282. 
https://doi.org/10.1073/pnas.06083​79104

Goussen, B., Price, O. R., Rendal, C., & Ashauer, R. (2016). Integrated 
presentation of ecological risk from multiple stressors. Scientific 
Reports, 6(1), 36004. https://doi.org/10.1038/srep3​6004

Grman, E., Lau, J. A., Schoolmaster Jr, D. R., & Gross, K. L. (2010). 
Mechanisms contributing to stability in ecosystem function depend 
on the environmental context. Ecology Letters, 13(11), 1400–1410. 
https://doi.org/10.1111/j.1461-0248.2010.01533.x

Gunderson, A. R., Armstrong, E. J., & Stillman, J. H. (2016). Multiple 
stressors in a changing world: The need for an improved perspec-
tive on physiological responses to the dynamic marine environ-
ment. Annual Review of Marine Science, 8, 357–378. https://doi.
org/10.1146/annur​ev-marin​e-12241​4-033953

Harley, C. D. G. (2003). Abiotic stress and herbivory interact to set range 
limits across a two-dimensional stress gradient. Ecology, 84(6), 
1477–1488. https://doi.org/10.1890/0012-9658

Hawkins, S. J., Pack, K. E., Hyder, K., Benedetti-Cecchi, L., & Jenkins, S. 
R. (2020). Rocky shores as tractable test Systems for Experimental 
Ecology. Journal of the Marine Biological Association of the United 

Kingdom, 100(7), 1017–1041. https://doi.org/10.1017/S0025​
31542​0001046

Hayashida, H., Matear, R. J., Strutton, P. G., & Zhang, X. (2020). Insights 
into projected changes in marine heatwaves from a high-Resolution 
Ocean circulation model. Nature Communications, 11(1), 4352. 
https://doi.org/10.1038/s4146​7-020-18241​-x

Helmuth, B., Broitman, B. R., Blanchette, C. A., Gilman, S., Halpin, P., 
Harley, C. D. G., O'Donnell, M. J., Hofmann, G. E., Menge, B., & 
Strickland, D. (2006). Mosaic patterns of thermal stress in the 
rocky intertidal zone: Implications for climate change. Ecological 
Monographs, 76(4), 461–479.

Jensen, J. L. W. V. (1906). Sur les fonctions convexes et les inégalités 
entre les valeurs moyennes. Acta Mathematica, 30, 175–193. 
https://doi.org/10.1007/BF024​18571

Jentsch, A., Kreyling, J., Boettcher-Treschkow, J., & Beierkuhnlein, 
C. (2009). Beyond gradual warming: Extreme weather events 
Alter flower phenology of European grassland and heath 
species. Global Change Biology, 15(4), 837–849. https://doi.
org/10.1111/j.1365-2486.2008.01690.x

Kingsolver, J. G., & Woods, H. A. (2016). Beyond thermal performance 
curves: Modeling time-dependent effects of thermal stress on 
ectotherm growth rates. The American Naturalist, 187, 283–294. 
https://doi.org/10.1086/684786

Kirtman, B., Power, S. B., Adedoyin, J. A., Boer, G. J., Bojariu, R., 
Camilloni, I., & Doblas-Reyes, F. J. (2013). Near-Term Climate 
Change: Projections and Predictability. In T. F. Stocker, D. Qin, G.-
K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, 
V. Bex, & P. M. Midgley (Eds.), Climate Change 2013: The Physical 
Science Basis. Contribution of Working Group I to the Fifth Assessment 
Report of the Intergovernmental Panel on Climate Change (pp. 953–
1028). Cambridge University Press. https://doi.org/10.1017/
CBO97​81107​415324.023

Kordas, R. L., Dudgeon, S., Storey, S., & Harley, C. D. G. (2015). Intertidal 
community responses to field-based experimental warming. Oikos, 
124(7), 888–898. https://doi.org/10.1111/oik.00806

Korell, L., Auge, H., Chase, J. M., Stanley Harpole, W., & Knight, T. M. (2021). 
Responses of plant diversity to precipitation change are strongest at 
local spatial scales and in drylands. Nature Communications, 12(1), 
2489. https://doi.org/10.1038/s4146​7-021-22766​-0

Koussoroplis, A.-M., Pincebourde, S., & Wacker, A. (2017). Understanding 
and predicting physiological performance of organisms in fluctuat-
ing and multifactorial environments. Ecological Monographs, 87(2), 
178–197. https://doi.org/10.1002/ecm.1247

Koussoroplis, A.-M., Schälicke, S., Raatz, M., Bach, M., & Wacker, A. 
(2019). Feeding in the frequency domain: Coarser-grained envi-
ronments increase consumer sensitivity to resource variability, co-
variance and phase. Ecology Letters, 22(7), 1104–1114. https://doi.
org/10.1111/ele.13267

Koussoroplis, A.-M., & Wacker, A. (2016). Covariance modulates the 
effect of joint temperature and food variance on ectotherm 
life-history traits. Ecology Letters, 19(2), 143–152. https://doi.
org/10.1111/ele.12546

Kremer, C. T., Fey, S. B., Arellano, A. A., & Vasseur, D. A. (2018). Gradual 
plasticity alters population dynamics in variable environments: 
thermal acclimation in the green alga Chlamydomonas reinhart-
dii. Proceedings of the Royal Society B: Biological Sciences, 285, 
20171942. https://doi.org/10.1098/rspb.2017.1942

Larson, F., & Sundbäck, K. (2012). Recovery of microphytobenthos 
and benthic functions after sediment deposition. Marine Ecology 
Progress Series, 446, 31–44. https://doi.org/10.3354/meps0​9488

Lawson, C. R., Vindenes, Y., Bailey, L., & van de Pol, M. (2015). 
Environmental variation and population responses to global change. 
Ecology Letters, 18(7), 724–736. https://doi.org/10.1111/ele.12437

Lehtilä, K., Vinter, T., & Dinnetz, P. (2020). Plant response to habi-
tat amount and configuration in Swedish forests. Diversity and 
Distributions, 26(3), 329–339. https://doi.org/10.1111/ddi.13019

 20457758, 2022, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.9418 by U

niversita' D
i Pisa, W

iley O
nline L

ibrary on [19/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1016/j.scitotenv.2020.144199
https://doi.org/10.1016/j.scitotenv.2020.144199
https://doi.org/10.1242/jeb.140368
https://doi.org/10.1242/jeb.140368
https://doi.org/10.1146/annurev-ecolsys-102710-145103
https://doi.org/10.1146/annurev-ecolsys-102710-145103
https://doi.org/10.1111/1365-2745.13784
https://doi.org/10.1111/1365-2745.13784
https://doi.org/10.1098/rspb.2016.2367
https://doi.org/10.1098/rspb.2016.2367
https://doi.org/10.1126/science.1248484
https://doi.org/10.1242/jeb.114926
https://doi.org/10.1242/jeb.114926
https://doi.org/10.1073/pnas.1511451112
https://doi.org/10.1073/pnas.1511451112
https://doi.org/10.1201/b21296
https://doi.org/10.1111/1365-2435.12171
https://doi.org/10.1111/1365-2435.12171
https://doi.org/10.1073/pnas.0608379104
https://doi.org/10.1038/srep36004
https://doi.org/10.1111/j.1461-0248.2010.01533.x
https://doi.org/10.1146/annurev-marine-122414-033953
https://doi.org/10.1146/annurev-marine-122414-033953
https://doi.org/10.1890/0012-9658
https://doi.org/10.1017/S0025315420001046
https://doi.org/10.1017/S0025315420001046
https://doi.org/10.1038/s41467-020-18241-x
https://doi.org/10.1007/BF02418571
https://doi.org/10.1111/j.1365-2486.2008.01690.x
https://doi.org/10.1111/j.1365-2486.2008.01690.x
https://doi.org/10.1086/684786
https://doi.org/10.1017/CBO9781107415324.023
https://doi.org/10.1017/CBO9781107415324.023
https://doi.org/10.1111/oik.00806
https://doi.org/10.1038/s41467-021-22766-0
https://doi.org/10.1002/ecm.1247
https://doi.org/10.1111/ele.13267
https://doi.org/10.1111/ele.13267
https://doi.org/10.1111/ele.12546
https://doi.org/10.1111/ele.12546
https://doi.org/10.1098/rspb.2017.1942
https://doi.org/10.3354/meps09488
https://doi.org/10.1111/ele.12437
https://doi.org/10.1111/ddi.13019


    |  13 of 13RINDI et al.

Lenth, R., Singman, H., Love, J., Buerkner, P., & Herve, M. (2018). 
Estimated marginal means, aka least-squares means. R Package 
Version 1.15-15, 34(1), 10.

Lima, F. P., & Wethey, D. S. (2012). Three decades of high-resolution 
Coastal Sea surface temperatures reveal more than warming. Nature 
Communications, 3(1), 704. https://doi.org/10.1038/ncomm​s1713

Maggi, E., Rindi, L., Dal Bello, M., Fontanini, D., Capocchi, A., Bongiorni, 
L., & Benedetti-Cecchi, L. (2017). Spatio-temporal variability in 
Mediterranean rocky shore microphytobenthos. Marine Ecology 
Progress Series, 575, 17–29. https://doi.org/10.3354/meps1​2216

McKew, B. A., Taylor, J. D., McGenity, T. J., & Underwood, G. J. (2011). 
Resistance and resilience of benthic biofilm communities from 
a temperate saltmarsh to desiccation and rewetting. The ISME 
Journal, 5(1), 30–41. https://doi.org/10.1038/ismej.2010.91

Melbourne, B. A., & Chesson, P. (2006). The scale transition: Scaling up 
population dynamics with field data. Ecology, 87(6), 1478–1488. 
https://doi.org/10.1890/0012-9658(2006)87[1478:tstsu​p]2.0.co;2

Murphy, R. J., Underwood, A. J., & Jackson, A. C. (2009). Field-based 
remote sensing of intertidal epilithic chlorophyll: Techniques 
using specialized and conventional digital cameras. Journal of 
Experimental Marine Biology and Ecology, 380(1–2), 68–76. https://
doi.org/10.1016/j.jembe.2009.09.002

Nadeau, C. P., Urban, M. C., & Bridle, J. R. (2017). Coarse climate change 
projections for species living in a fine-scaled world. Global Change 
Biology, 23, 12–24. https://doi.org/10.1111/gcb.13475

Nakamoto, H., Suzuki, N., & Roy, S. K. (2000). Constitutive expression 
of a small heat-shock protein confers cellular thermotolerance and 
thermal protection to the photosynthetic apparatus in cyanobac-
teria. FEBS Letters, 483(2–3), 169–174. https://doi.org/10.1016/
s0014​-5793(00)02097​-4

Ohler, L.-M., Lechleitner, M., & Junker, R. R. (2020). Microclimatic ef-
fects on alpine plant communities and flower-visitor interactions. 
Scientific Reports, 10(1), 1366. https://doi.org/10.1038/s4159​8-
020-58388​-7

Pincebourde, S., Murdock, C. C., Vickers, M., & Sears, M. W. (2016). 
Fine-scale microclimatic variation can shape the responses of or-
ganisms to global change in both natural and Urban environments. 
Integrative and Comparative Biology, 56(1), 45–61. https://doi.
org/10.1093/icb/icw016

Pincebourde, S., Sanford, E., Casas, J., & Helmuth, B. (2012). 
Temporal coincidence of environmental stress events modu-
lates predation rates. Ecology Letters, 15(7), 680–688. https://doi.
org/10.1111/j.1461-0248.2012.01785.x

Potter, K. A., Arthur Woods, H., & Pincebourde, S. (2013). Microclimatic 
challenges in global change biology. Global Change Biology, 19(10), 
2932–2939. https://doi.org/10.1111/gcb.12257

Rezende, E. L., Castañeda, L. E., & Santos, M. (2014). Tolerance land-
scapes in thermal ecology. Functional Ecology, 28(4), 799–809. 
https://doi.org/10.1111/1365-2435.12268

Riddell, E. A., Iknayan, K. J., Hargrove, L., Tremor, S., Patton, J. L., Ramirez, 
R., Wolf, B. O., & Beissinger, S. R. (2021). Exposure to climate 
change drives stability or collapse of desert mammal and bird com-
munities. Science, 371(6529), 633–636. https://doi.org/10.1126/
scien​ce.abd4605

Ruel, J. J., & Ayres, M. P. (1999). Jensen's inequality predicts effects of 
environmental variation. Trends in Ecology & Evolution, 14(9), 361–
366. https://doi.org/10.1016/S0169​-5347(99)01664​-X

Schimel, J., Balser, T. C., & Wallenstein, M. (2007). Microbial stress-
response physiology and its implications for ecosystem function. 
Ecology, 88, 1386–1394. https://doi.org/10.1890/06-0219

Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH image to 
ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671–675. 
https://doi.org/10.1038/nmeth.2089

Sears, M. W., Raskin, E., & Angilletta, M. J. (2011). The world is not flat: 
Defining relevant thermal landscapes in the context of climate 
change. Integrative and Comparative Biology, 51, 666–675. https://
doi.org/10.1093/icb/icr111

Sinclair, B. J., Marshall, K. E., Sewell, M. A., Levesque, D. L., Willett, C. 
S., Slotsbo, S., Dong, Y., Harley, C. D. G., Marshall, D. J., Helmuth, 
B. S., & Huey, R. B. (2016). Can we predict ectotherm responses to 
climate change using thermal performance curves and body tem-
peratures? Ecology letters, 19, 1372–1385. https://doi.org/10.1111/
ele.12686

Sunday, J. M., Bates, A. E., Kearney, M. R., Colwell, R. K., Dulvy, N. K., 
Longino, J. T., & Huey, R. B. (2014). Thermal-safety margins and 
the necessity of thermoregulatory behavior across latitude and 
elevation. Proceedings of the National Academy of Sciences of the 
United States of America, 111, 5610–5615. https://doi.org/10.1073/
pnas.13161​45111

Vaselli, S., Bertocci, I., Maggi, E., & Benedetti-Cecchi, L. (2008). Effects 
of mean intensity and temporal variance of sediment scouring 
events on assemblages of rocky shores. Marine Ecology Progress 
Series, 364(July), 57–66. https://doi.org/10.3354/meps0​7469

Vasseur, D. A., DeLong, J. P., Gilbert, B., Greig, H. S., Harley, C. D., 
McCann, K. S., Savage, V., Tunney, T. D., & O'Connor, M. I. (2014). 
Increased temperature variation poses a greater risk to species than 
climate warming. Proceedings of the Biological Sciences, 281(1779), 
20132612. https://doi.org/10.1098/rspb.2013.2612

Wernberg, T., Smale, D. A., Tuya, F., Thomsen, M. S., Langlois, T. J., de 
Bettignies, T., Bennett, S., & Rousseaux, C. S. (2013). An extreme 
climatic event alters marine ecosystem structure in a global bio-
diversity hotspot. Nature Climate Change, 3(1), 78–82. https://doi.
org/10.1038/nclim​ate1627

Wetzel, W. C., Kharouba, H. M., Robinson, M., Holyoak, M., & Karban, R. 
(2016). Variability in plant nutrients reduces insect herbivore per-
formance. Nature, 539(7629), 425–427. https://doi.org/10.1038/
natur​e20140

Wood, S. N., Pya, N., & Säfken, B. (2016). Smoothing parameter 
and model selection for general smooth models. Journal of the 
American Statistical Association, 111(516), 1548–1563. https://doi.
org/10.1080/01621​459.2016.1180986

Young, I. R., & Ribal, A. (2019). Multiplatform evaluation of global trends 
in wind speed and wave height. Science, 364(6440), 548–552. 
https://doi.org/10.1126/scien​ce.aav9527

Zhang, Z., Yan, C., Krebs, C. J., & Stenseth, N. C. (2015). Ecological 
non-monotonicity and its effects on complexity and stability of 
populations, communities and ecosystems. Ecological Modelling, 
312(September), 374–384. https://doi.org/10.1016/j.ecolm​
odel.2015.06.004

SUPPORTING INFORMATION
Additional supporting information can be found online in the 
Supporting Information section at the end of this article.

How to cite this article: Rindi, L., He, J., & Benedetti-Cecchi, 
L. (2022). Spatial correlation reverses the compound effect 
of multiple stressors on rocky shore biofilm. Ecology and 
Evolution, 12, e9418. https://doi.org/10.1002/ece3.9418

 20457758, 2022, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.9418 by U

niversita' D
i Pisa, W

iley O
nline L

ibrary on [19/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1038/ncomms1713
https://doi.org/10.3354/meps12216
https://doi.org/10.1038/ismej.2010.91
https://doi.org/10.1890/0012-9658(2006)87%5B1478:tstsup%5D2.0.co;2
https://doi.org/10.1016/j.jembe.2009.09.002
https://doi.org/10.1016/j.jembe.2009.09.002
https://doi.org/10.1111/gcb.13475
https://doi.org/10.1016/s0014-5793(00)02097-4
https://doi.org/10.1016/s0014-5793(00)02097-4
https://doi.org/10.1038/s41598-020-58388-7
https://doi.org/10.1038/s41598-020-58388-7
https://doi.org/10.1093/icb/icw016
https://doi.org/10.1093/icb/icw016
https://doi.org/10.1111/j.1461-0248.2012.01785.x
https://doi.org/10.1111/j.1461-0248.2012.01785.x
https://doi.org/10.1111/gcb.12257
https://doi.org/10.1111/1365-2435.12268
https://doi.org/10.1126/science.abd4605
https://doi.org/10.1126/science.abd4605
https://doi.org/10.1016/S0169-5347(99)01664-X
https://doi.org/10.1890/06-0219
https://doi.org/10.1038/nmeth.2089
https://doi.org/10.1093/icb/icr111
https://doi.org/10.1093/icb/icr111
https://doi.org/10.1111/ele.12686
https://doi.org/10.1111/ele.12686
https://doi.org/10.1073/pnas.1316145111
https://doi.org/10.1073/pnas.1316145111
https://doi.org/10.3354/meps07469
https://doi.org/10.1098/rspb.2013.2612
https://doi.org/10.1038/nclimate1627
https://doi.org/10.1038/nclimate1627
https://doi.org/10.1038/nature20140
https://doi.org/10.1038/nature20140
https://doi.org/10.1080/01621459.2016.1180986
https://doi.org/10.1080/01621459.2016.1180986
https://doi.org/10.1126/science.aav9527
https://doi.org/10.1016/j.ecolmodel.2015.06.004
https://doi.org/10.1016/j.ecolmodel.2015.06.004
https://doi.org/10.1002/ece3.9418

	Spatial correlation reverses the compound effect of multiple stressors on rocky shore biofilm
	Abstract
	1|INTRODUCTION
	2|METHODS
	2.1|Study site
	2.2|Experiment 1: Derivation of the response surface
	2.3|Simulating from the response surface
	2.4|Experiment 2: Testing predictions

	3|RESULTS
	3.1|Experiment 1: Derivation of the response surface
	3.2|Simulations
	3.3|Experiment 2: Testing predictions

	4|DISCUSSION
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST
	DATA AVAILABILITY STATEMENT

	REFERENCES


