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Abstract— Background: The quantification of functional
brain-heart interplay (BHI) through analysis of the dynam-
ics of the central and autonomic nervous systems pro-
vides effective biomarkers for cognitive, emotional, and
autonomic state changes. Several computational models
have been proposed to estimate BHI, focusing on a single
sensor, brain region, or frequency activity. However, no
models currently provide a directional estimation of such
interplay at the organ level.

Objective: This study proposes an analysis framework to
estimate BHI that quantifies the directional information flow
between whole-brain and heartbeat dynamics.

Methods: System—wise directed functional estimation is
performed through an ad-hoc symbolic transfer entropy im-
plementation, which leverages on EEG-derived microstate
series and on partition of heart rate variability series. The
proposed framework is validated on two different experi-
mental datasets: the first investigates the cognitive work-
load performed through mental arithmetic and the second
focuses on an autonomic maneuver using a cold pressor
test (CPT).

Results: The experimental results highlight a significant
bidirectional increase in BHI during cognitive workload with
respect to the preceding resting phase and a higher de-
scending interplay during a CPT compared to the preceding
rest and following recovery phases. These changes are not
detected by the intrinsic self entropy of isolated cortical and
heartbeat dynamics.

Conclusion: This study corroborates the literature on the
BHI phenomenon under these experimental conditions and
the new perspective provides novel insights from an organ—
level viewpoint.

Significance: A system-wise perspective of the BHI phe-
nomenon may provide new insights into physiological and
pathological processes that may not be completely under-
stood at a lower level/scale of analysis.

[. INTRODUCTION

It is widely acknowledged that the central nervous sys-
tem (CNS) and autonomous nervous system (ANS) maintain
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continuous functional communication that strongly affects
their activities. The brain network comprising areas that are
functionally linked to neural and non-neural peripheral factors
at different levels, including sympathetic and vagal afferents
and efferents has been defined as central autonomic network
(CAN) [1]-[6]. To illustrate, this network involves cortical
regions including, e.g., medial prefrontal cortex and insular
cortex, as well as involves medullary areas, midbrain, and
amygdala [1], [2], [4], [7], [8].

Within a brain-body framework, the set of complex inter-
actions comprising anatomical, functional, biochemical, and
bioelectrical CNS-ANS links are commonly referred to as
functional brain—heart interplay (BHI). Modulations of the
BHI have been correlated with physiological conditions, such
as emotion perception [9], sleep [10], human body allostatic
responses to external stimuli (e.g., autonomic maneuvers) [11],
deep breathing [12], and cognitive load [13]). Moreover, dys-
functional BHI has been reported in several pathophysiological
conditions [3], [6], [14], [15], including also schizophrenia
[16], epilepsy [17], and mild depression [8]. An important
aspect of BHI assessment is directionality. Indeed, while
CNS actively influences the ANS, a different influence is
concurrently exerted by the ANS to the CNS. For example,
there is a higher neural modulation on heartbeat dynamics in
subclinical depression [8]. Moreover, a cardiac sympathovagal
initiation of a functional brain responds to emotional [9] or
somatosensory [18] stimuli.

The quantification of functional BHI faces a number of tech-
nical issues from a purely methodological viewpoint. These
issues include being intrinsically multimodal and multivariate,
and being diffuse over the CNS and not specifically localized.
Additionally, there is a directionality issue mentioned above
and physiological plausibility that need to be considered when
applying classical signal processing tools. Notwithstanding,
several techniques have been applied or specifically developed
to estimate the BHI. A synthetic data generation model was
developed and exploited in different contexts, stressing the
directionality of the BHI phenomenon [8], [9]. This model has
also been investigated in conjunction with other methods [19],
[20]. Information theory quantifiers were also developed to
disentangle linear and nonlinear interactions [21], [22]. More-
over, measures such as point—process—based transfer entropy
focused on instantaneous heartbeat response to scalp activity
[11]. Furthermore, heartbeat—evoked potentials investigated the
grand—average of scalp response to heartbeats perceived as
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interoceptive stimuli [18]. Other studies have found that BHI
extended to the multifractal domain [23].

Despite the significant results achieved by these methodolo-
gies, some aspects remain unclear owing to technical details.
Specifically, functional BHI has mainly been identified at
a single EEG-electrode level, thus quantifying the interplay
between single-channel EEG oscillations and heartbeat oscil-
lations, neglecting a nervous-system-wise level of interaction.

Indeed, a recent scientific consensus highlights brain activity
as a whole, as well as embedded networks, as crucial way
of functioning that sustains high-level neural processing [24],
[25]. To this extent, in this study we focus on a whole-brain
activity estimation through identification of EEG microstates
[26], [27].

EEG microstate analysis has been widely employed to
investigate the spatial and temporal properties of the brain
in a non-invasive manner [26]-[29]. It is possible to re-
construct the EEG amplitude topographical distribution on
the scalp surface with a high resolution in time and space
using multi—channel recording arrays and volume conductance
models. Consequently, scalp activity can be visualized as a
series of transient scalp electric-field maps [26], [28]. Each
instantaneous map reflects the sum of momentarily active
brain processes. Therefore, changes in the spatial configuration
of the map imply that different neural elements performed
an activation shift (i.e., passing from inactive to active, or
vice-versa). However, this continuous scalp electrical activity
is instead the concatenation of many building blocks (EEG
microstates), which are quasi-stable topographic maps of
electric potentials. On average, each segment remains stable
for approximately 60 —250ms before rapidly transitioning to a
different topography that remains stable again [26], [28]. Many
reports have found correlations between microstate features
that are consistent with the idea that EEG microstates may
reflect the activity of brain networks, including frequency of
occurrence, transition probabilities, average duration, various
cognitive activities, behavioral states, and neuropsychiatric
diseases. For example, microstates of certain topographies
have a shorter average lifespan in schizophrenia [30], and a
longer lifespan in panic disorder [31]. Microstate series vary
with cognitive and behavioral states, such as drowsiness [32]
and sleep stages [33].

Activity of several cortical and subcortical brain regions
have been linked to microstate dynamics, with particular
reference to the insular cortex, thalamus, amygdala, anterior
cingulate cortex, and others [34], [35]. Remarkably, those
regions are reportedly known belonging to the CAN [2], [4].

Here, we hypothesize that a causal, bidirectional, functional
link occurs between brain microstates and heartbeat dynamics.
Accordingly, we propose a novel methodology to quantify BHI
at a nervous-system-wise level aiming to: i.) investigate the
causal link between microstate series and cardiovascular dy-
namics; #4.) investigate functional BHI at a whole-brain level,
going beyond the standard EEG-channel-specific approach.
To this end, a directional symbolic transfer entropy (STE)
analysis is developed to estimate the information transfer
between a symbolic representation of heartbeat dynamics and a
symbolic representation of whole-brain activity through EEG-

microstates.

[I. SIGNAL PREPROCESSING AND EXPERIMENTAL DATA

Two different experimental conditions eliciting concurrent
CNS and ANS changes were analyzed to validate the proposed
system-wise BHI analysis framework. The first experimental
condition is associated with the cognitive workload performed
through consecutive mental arithmetic calculations, and the
second is associated with the cold pressor test (CPT), an auto-
nomic maneuver that causes strong sympathovagal elicitation
through thermal stress. This study received formal approval
from the qualified ethical committee of the University of Pisa.

A. Mental Arithmetic

Experimental mental arithmetic approaches can activate
the sympathetic nervous system through CNS manipulation.
Participants are usually required to complete various cognitive
tasks by frequently clicking a button or performing algebraic
calculations within a certain amount of time [36]. Although
mental arithmetic tasks have frequently been investigated at
the CNS [37], [38] and ANS [39] levels, only a few studies
have focused on their functional BHI correlates. In response
to stress, variations in cardiac output correlate with neural
activity in the left temporal and lateral frontal lobes [40].
Additionally, the BHI appears to increase in magnitude, and
the information flows from the scalp’s post—central and central
regions to the heart appear to increase during mental arithmetic
[41].

The first dataset (D1) was EEG During Mental Arithmetic
Tasks [42], which is publicly available from the Physionet.org
data repository (https://physionet.org/content/eegmat/1.0.0/).
This dataset is comprised of EEG and ECG gatherings from
36 healthy volunteers undergoing a 180s resting phase and a
60s mental cognitive workload task (i.e., performing mental
arithmetic). Recordings from four subjects were rejected after
visual inspection owing to gross artifacts. Thus, data from
32 persons (24 females) with ages of 18 4+ 2.01 years on
average were retained for further processing. The electro-
physiological signals were sampled at 500 Hz. The eligibility
criteria were normal or corrected—to—normal visual acuity,
normal color vision, no clinical manifestations of mental or
cognitive impairment, and no learning disabilities. The use
of psychoactive medication, drug or alcohol addiction, and
psychiatric or neurological complaints were considered as
additional exclusion criteria.

Power line notch (50H z) and [0.5H z — 45H z] band—pass
filters were applied in the EEG series before independent
component analysis, and were used to identify artifacts (i.e.,
eyes, muscles, and cardiac pulsation) that were subsequently
rejected. Further details on signal acquisition and preprocess-
ing can be found in [42]. EEG signals were re-referenced in
accordance with the REST method [43], as per recommen-
dation from a previous microstate investigation [44]. To have
series with equal length, we took the first segment of 60s for
each experimental condition.
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B. Cold Pressor Test

Several studies have extensively investigated BHI changes
during a CPT [11], [23], [45]. The CPT is a test for exam-
ining the body’s autonomic functioning and CNS response to
intense thermal and sub—pain—threshold stimuli [46]-[48]. A
CPT activates physiological systems such as the baroreflex to
maintain the body in a homeostatic state through the enhanced
sympathetic activity of the ANS [49]. Pragmatically, this
process typically entails submerging a distal limb (hand or
foot) in cold water for 1 to 5min. Numerous cortical and
subcortical brain regions are involved in the brain correlates
of a CPT, such as frontal regions in various frequency bands,
posterior—parietal areas in the alpha band, and peripheral—
bilateral temporal regions in the beta band [11], [48], [50].
Therefore, it is hypothesized that BHI estimates employing
an organ—level whole-brain approach may be suitable for
studying physiological responses to CPT. Furthermore, BHI
findings have highlighted diffuse bidirectional interplay with
stronger intervention of brain dynamics into the heartbeat
activity [11], [45], [51].

The second dataset (D2) used in this study was collected
from 30 healthy right-handed subjects (26.7 yrs on average; 15
males) who volunteered to participate in the experiment. The
subjects were seated on a comfortable chair and performed
an initial 3min resting state followed by the actual cold
pressor stimulation, which consisted of submerging their non-
dominant hand into cold water that was maintained at approx-
imately 4 °C. Participants were asked to hold the position for
up to 3min, which is considered a time threshold that will not
elicit pain perception [47]. However, participants were free to
remove their hand if they felt uncomfortable. As a result, six
participants did not reach 2min of cold pressor stimulation
and were excluded from further analysis (i.e., 24 subjects
remaining). Physiological signals were recorded using a 128-
electrode EEG and 1-lead ECG with a sampling frequency of
500 Hz. Researchers may obtain raw data through reasonable
mail requests if ethical requirements are met.

An R-beat detection from the ECG series was applied
using the well-known Pan—-Tompkins algorithm [52], followed
by an automated and visually inspected artifact rejection, all
implemented in Kubios Software [53].

EEG signals were preprocessed through the Harvard
Automated Processing Pipeline for Electroencephalography
(HAPPE), which is extensively described in [54]. Then, the
EEG signals were implemented through an EEGLAB tool-
box in MATLAB software (MathWorks Inc.) [55]. Briefly,
57 more external channels were rejected, then a bandpass
filter (between 1and 100 Hz) and notch filter (50 Hz) were
applied. Furthermore, bad channels were removed after being
identified as the most external 1% tail of a joint distribution
based on high—order statistical moments. HAPPE implements
a wavelet—enhanced independent component analysis to detect
and remove periodic artifacts (e.g., eye blink, heartbeats, and
respiration). Subsequently, an automated independent com-
ponent analysis based algorithm was used to remove the
remaining artifacts (e.g., muscular and motor) [54]. Rejected
EEG channels were spherically interpolated and the final 71

channels were re-referenced in accordance with the REST
method [43], as per recommendation from a previous mi-
crostate investigation [44]. To have series with equal length,
we took the first segment of 2min for each experimental
condition.

[1l. SYSTEM—WISE BHI ANALYSIS FRAMEWORK

A comprehensive diagram is presented in Fig. 1 and a
detailed description of the proposed system—wise BHI analysis
framework is provided below.

A. EEG Microstate Analysis

Extensive details on the microstates identification from EEG
signals are reported in [26], [29], and a MATLAB toolbox may
also be used for their estimation [56].

Briefly, microstates are defined as EEG scalp topogra-
phies that do not change over a short time window (about
60 — 250ms) [26]. Consequently, microstates associated with
different topographies alternate over time and may be task- and
subject-specific. Identification of microstates from EEG sig-
nals is performed through non-parametric clustering, and each
cluster denotes a microstate. A cluster is primarily assigned to
peaks (i.e., local maxima) of the global field potential (GFP)
[29], which is the standard deviation across all EEG electrodes
calculated at each time sample [57]. In this study, the so-called
modified k-means clustering algorithm was used [29], [56].
The dataset-specific number of microstates k was identified
according to a metacriterion that accounts for different fit
measures such as global explained variance, cross-validation
criterion, Krzanovsky-Ly criterion, and variance [26]. A final
visual inspection analysis is then performed to verify the
physiological plausibility of the identified topographies, also
known as prototypes. Once identified, each microstate proto-
type is assigned to each EEG sample based on the similarity
between EEG scalp topography and prototypes. The reliability
of this procedure, also known as back-fitting, is evaluated
through a goodness-of-fit analysis based on the calculation
of global explained variance [26]. Finally, microstate series
is smoothed through the calculation of the mode in non-
overlapping windows with 250ms length to ensure continuity,
i.e., minimizing rapid changes [56], and to match the timing
of cardiovascular variability dynamics.

B. Heart Rate Variability analysis

Heart Rate Variability (HRV) series were interpolated
through a spline function to obtain a uniform sampling rate
of 4Hz that matches the microstates sampling rate. Then,
the series were symbolized through a partition operation. A
max — min transformation was applied to all the datasets,
experimental conditions, and subjects to obtain sequences of
symbols. The partition was defined as a quantization through
five amplitude levels after the maximum and minimum values
were determined within each signal. Each level was associated
with a symbol between 1 and 5.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in IEEE Transactions on Biomedical Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TBME.2023.3240593

GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2023

( e — \ EEG ECG
icrostate Analysis:
- EEG preprocessing (500 Hz) (500 Hz)
- GFP peaks search - Artifact removal
- Average referencing - Pan-Tompkin algorithm
- Segmentation (modified k-means) Heart Rate
- Number of microstates selection il
- Back-fit microstates on EEG Microstate Variabllity ==
- Temporal Smoothing - Interpolation
\ j sequence - Resampling (4Hz)
(500 Hz) i
s ~ RR series
Downsampling (mode microstate in (4 Hz)
250 ms non-overlapping windows) Max-min quantization
~ o (8 levels)
Microstate :
Quantized
sequence sequences
(4 Ha) Words formation
(tuples of 3 symbols)
Symbolic Symbolic
sequence sequence
(brain) (heart)
Symbolic Symbolic
Self Entropy Transfer Transfer Self Entropy
(brain) Entropy: Entropy: (heart)
heart - brain brain - heart

Fig. 1: Schematic representation of the proposed computational methodology.

C. Symbolic Transfer Entropy

In order to estimate the system-wise functional BHI, a
robust formulation of Symbolic Transfer Entropy (STE) based
on permutation entropy [58], [59] was implemented.

For a given, but otherwise arbitrary i, m amplitude values
X; = z(),x(i+1),...,2( i+ (m —1)l) were arranged in
ascending order
1)l), where [ denotes the time delay, m is the embedding
dimension, and {k;; ...k;n} € N represent the rearrange-
ment indexes [58]. Consequently, a symbol was formalized
as &; = (ki1,kio, ..., kim). After that, it was possible to
estimate the joint and conditional probabilities of the sequence
of permutation indices using the relative frequency of the
symbols. In this study, the embedded dimension is set to
m=3.

Using symbol sequences «; and y;, ST Ey _, x is expressed
as:
p(xits| @i, gi)

p(zi4s|2:)
where the sum runs over the entire symbolic series, ¢ indicates
the time step (in this case § = [ = 250ms), and the log has
a base of 2. Thus, STFEy_, x is provided in bits. Moreover,
STEx_y is specularly defined [58].

As suggested by [58], the directionality index was defined
as Dx—oy = STEy_,x — STEx_y. Dx—y quantified the
preferred information flow direction, assuming positive and
negative values for net couplings where Y was mainly driving
X and X was mainly driving Y, respectively. Dx=y =
0 is expected for symmetric bidirectional couplings. Note
that Dx—y is an index of directionality and not an index

STBy x = Y _ p(xis, &, 9i) log ()

of coupling strength. Additionally, ST Ex_,y represents the
strength of coupling from X to Y, which is not related to
coupling from Y to X.

For comparison reasons, the information associated with each
system (central nervous system and cardiovascular system)
was estimated through the calculation of self entropy (SE)
[59], [60], which quantifies the average reduction in uncer-
tainty on x;4s resulting from the knowledge of z; [60].
Formally SE is defined as follows:

. p(xiys|s)
SEx = E Tit s, T4 lo —7
X p( - ) s P($i+6)

where the sum runs over the entire symbolic series, d indicates
the time step (in this case § = [ = 250ms), and the log has a
base of 2.

The framework was implemented in MATLAB (Mathworks,
Inc.), and the source code is available on a GitHub repository
at https://github.com/CatramboneVincenzo
/BHI_SymbolicTransferEntropy.

2)

D. Statistical Assessment and Comparisons

Functional brain-heart interplay estimates were employed
to separately investigate significant changes between experi-
mental conditions for the two datasets.

To this end, non-parametric statistics was employed, which
did not make assumptions on the original distribution nature
and was recognized to be robust against outliers [61]. D1
experimental sessions (resting state and arithmetic mental
workload) were compared using a signed-rank test for paired
samples, and D2 experimental sessions (resting state, CPT, and
recovery) were compared groupwise using the nonparametric
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Friedman test for multiple paired samples [61], and pair-wise
through a signed-rank test. Significance was set at 1 %.

Reliability of STE estimates was performed through a
surrogate data analysis, with a null hypothesis of no causal
interactions between systems [62].

Specifically, to test the reliability of an estimate, e.g.,
STFEy _,x, where Y is the driver system and X is the target
system, we generated 500 synthetic series by random shuffling
of the driver series. Consequently, while the surrogate driver
series has the same statistical distribution as the original series,
the target series is unaltered and so is its autocorrelation
function. The distribution of STE from the surrogate series
constitutes the reference distribution of the null hypothesis,
allowing for the calculation of p-value for the original statistic
STFEy_,x. If the original estimate was more external than
the 5% tail of the null distribution, the estimate was deemed
significant and retained for further analyses. In our study,
X and Y refer to brain and cardiovascular system through
symbolic EEG-microstate and RR series, respectively, on both
D1 and D2 datasets.

IV. RESULTS

The same system—wise analysis framework was applied for
datasets D1 and D2.

A. Mental Arithmetic

The application of the microstate analysis to dataset D1
(mental arithmetic) led to the identification of three microstates
for all subjects and experimental conditions. These microstates
are illustrated in Fig. 2, also in terms of their temporal
dynamics, along with an exemplary EEG series from a random
subject (specifically, subject 31, first 5 seconds of the mental
arithmetic task). Their topographical representations appear
smooth over the scalp and can be associated with three main
’gradient directions’. The first represented an occipital-to—
frontal gradient, whereas the second was in the opposite
direction, introducing a slight left—to-right shift. The third
microstate individuated a clear left—to-right gradient that was
symmetric to the medial axis.

The experimental results for the two BHI directions (from
heart-to—brain and brain-to-heart) and SFE estimations (SEy
and SEp) are shown as boxplots with highlighted statistical
differences in Fig. 3.

Sub-panels (a) and (b) represent SE boxplots for the EEG-
microstate (SEp) and heartbeat (SEpg) series, respectively.
Subpanels (c) and (d) represent ST E boxplots for heart—to—
brain (ST E'y _, g) and brain—to-heart (ST Eg_, ) information
transfer, respectively. Note that 24 out of 32 estimates resulted
statistically significant in the surrogate data analysis on both
STEy_.p and STEp_, . Notably, SE measures did not
significantly changed between the two experimental phases in
terms of central tendency.

Evident differences have been found between the two exper-
imental conditions in both directions considering BHI esti-
mations, as shown in Figs. 3(c) and (d). More specifically,
the statistical comparison between mental workload and the

EEG channels

microstes
N W
|

Fig. 2: Exemplary 5s time window from subject 31 during a
mental arithmetic task. Top panel shows EEG series, whereas
middle panel shows the associated microstates symbolic time
series; each microstate symbol is associated with a specific
scalp topography that is shown on the right. Microstate scalp
topography changes corresponding to the highlighted area are
shown in the bottom panel.
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Fig. 3: Graphical representation of experimental results on
dataset D1 for resting state (green boxes, on the left of
each sub-panel) and mental arithmetics (MA), represented by
blue boxes, on the right of each sub-panel. a) SEy values
calculated on heartbeat series. b) SEp values calculated on
EEG microstate series. ¢) ST E from heart-to-brain. d) STFE
from brain—to-heart. Statistically significant comparisons us-
ing the non-parametric Wilcoxon test for paired samples are
represented with asterisks (p-values < 0.01).
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Fig. 4: Graphical representation of BHI-directionality index
calculated on dataset D1 for resting state (green box, on
the left) and mental arithmetics (MA, blue box). Statistically
significant comparisons using the nonparametric Wilcoxon test
for paired samples are represented with asterisks (p-values
< 0.01).

STFEy_. p calculated during the resting phase resulted in a p-
value of p = 2.7016e — 05. However, estimations resulted in a
p-value of p = 1.8215e — 05 when applied to ST Ep_, j7. Fo-
cusing on the absolute values of ST'E estimations, ST Ey_, p
achieved higher values than ST Ep_,p, indicating that the
directional index Dp—py was significantly positive (Fig. 4).
This quantifies the higher level of interplay in the heart—to—
brain direction for both experimental conditions.

The differences between the two experimental conditions
can be inferred from the results presented in Fig. 3. Specif-
ically, the elicitation provided by the cognitive workload
implied appreciable difference in terms of the amount of
information exchanged, or better interchanged, between the
two systems bidirectionally. Such interchange, during the
mental arithmetics task, become more predominantly heart-
to-brain directed (Fig. 4).

B. Cold Pressor Test

The application of the microstate analysis to dataset D2
(CPT) led to the identification of five microstates for all
subjects and experimental conditions. These microstates are
illustrated in Fig. 5, also in terms of their temporal dynamics,
along with an exemplary EEG series from a random subject
(specifically, subject 30, first 5 seconds of resting state).

In this case, two additional microstates prototypes were

identified with respect to dataset D1, namely the second and
the fifth. This may be due to the higher level of variability
introduced by the CPT dataset in terms of brain dynamics,
particularly in the central area of the scalp, and on the right
temporal lobe.
The experimental results for the heart—to—brain and brain—
to—heart BHI directions, as well as for SEy and SEg are
summarized as boxplots with highlighted statistical differences
in Fig. 6.

First, sub—panels (a) and (b) represent SE boxplots for the
EEG microstate (SEp) and heartbeat (SEjy) series, respec-
tively. Second, sub—panels (c) and (d) display ST E informa-

EEG channels

o - T 4 @
GHERGEHEGY

Fig. 5: Exemplary 5s time window from subject 30 during
resting state. Top panel shows EEG series, whereas middle
panel shows the associated microstates symbolic time series;
each microstate symbol is associated with a specific scalp to-
pography that is shown on the right. Corresponding microstate
scalp topography changes are shown in the bottom panel.

tion transfer boxplots for heart—to-brain (STFEy_,g) on the
bottom left, and brain—to-heart (ST Ep_ y) on the bottom
right, respectively. Note that 20 out of 24 estimates resulted
statistically significant in the surrogate data analysis on both
STEy_p and STEp_, y. Specifically, SEy and SEp did
not report any significant group-wise differences between the
experimental conditions (initial rest, CPT, and recovery) and
the same was reported by the ST Ey_,p analysis. A single
pair-wise significant comparison between CPT and recovery
was detected in the SEp analysis, with SEx in CPT being
significantly lower than during recovery.

Significant statistical differences were found among
STFEp_, g values extracted in the three experimental
conditions (Friedman test p-values p = 0.0004) when
focusing on BHI estimates through information transfer, as
shown in Fig. 6(c). Interestingly, no differences were detected
in STEy_,p, even if it reached higher values on average
than STEp_ . This was also reported for Dp—=py values,
which were generally positive, as shown in Fig. 7. This
quantifies the higher level of interplay in the heart—to—brain
direction for all the experimental conditions compared to the
brain—to—heart direction. These results align with those found
in dataset D1.

V. DISCUSSION

This study proposed a novel framework to estimate nervous-
system-wise directional functional BHI, which exploited mi-
crostates to summarize information for a whole—scalp EEG
time series. The framework includes a uniform partition to
represent HRV dynamics, and STE to quantify directional
information transfer between the brain and heart. Accordingly,
particular attention was paid to the directionality of BHI,
discovering that heart—to—brain interaction was a driving phe-
nomenon compared to the brain—to-heart direction, in terms
of absolute values. Indeed, previous studies on functional
BHI highlights the importance of directionality assessment
and may indicate a task- and state- dependent dominance for
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Fig. 6: Graphical representations of experimental results on
dataset D2 for resting state (red boxes, on the left of each sub—
panel), CPT (green boxes, on the center of each sub—panel),
and recovery phase (blue boxes, on the right of each sub-
panel). a) SE values calculated on EEG microstate series. b)
SE values calculated on heartbeat series. ¢) ST E, from heart—
to-brain (STFEgy_,g) on the left, and from brain—to-heart
(STEp_, ) on the right. Statistically significant comparisons
using the nonparametric Friedman test for multiple paired
samples are represented with asterisks (p-value = 4 * 10™%),
as well as pairwise Wilcoxon test results.
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Fig. 7: Graphical representations of BHI-directionality index
calculated on dataset D2 for resting state (red box, on the left),
CPT (green box, on the center), and recovery phase (blue box,
on the right). Friedman statistics test p-value = 0.0743.

the brain-to-heart and heart-to-brain information flow [8], [9],
[19], [21], [63], [64]. To illustrate, the functional heart-to-brain
direction shows early changes during emotional processing in
healthy subjects, therefore emotions may be associated with
brain responses to peripheral changes to emotional stimuli [9].
Moreover, the functional brain-to-heart direction is dominant
in resting state in subclinical depression [8].

Two different datasets were analyzed to validate the pro-
posed model. The first dataset (D1) consisted of publicly
available electrophysiological signals recorded during a cog-
nitive workload task. The second dataset (D2) consists of
strong sympathovagal and cerebral changes elicited through
a CPT. A proof of concept of this research has been published
in [65]. While findings of this study corroborate earlier re-
search that highlights BHI occurring at single EEG channel
level, they build further knowledge based on analysis at a
whole-brain level. From a physiological viewpoint, results
on mental arithmetics (dataset D1) are in agreement with
previous findings [40], [66], [67], highlighting strong changes
in directional functional BHI. In fact, no significant differences
were found in EEG microstate or partitioned HRV series SE.
However, directed STEy_,p and STEp_. g were signifi-
cantly enhanced by the mental arithmetic task with respect
to the preceding resting state. Furthermore, the directionality
index Dp—p showed a positive sign, suggesting that heart—
to—brain information transfer mainly drives such experimental
conditions. First, scalp and heartbeat activity are known to
be strongly affected by mental arithmetic in terms of power
spectral density with respect to the resting state [40], [67],
[68]. However, this does not necessarily imply a variation
in the entropy of their activity. Second, mental arithmetics
significantly enhance communication between the brain and
heart in both directions, quantified here as ST F, which in-
creases during mental calculation with respect to resting state,
both in the ST EFy_, g and ST Eg_, g estimations. The authors
believe that this may be due to the concurrent action of the
cognitive and affective elicitation induced by the experimental
task, which therefore might be associated with changes in
heart—to—brain communications [9]. Note that cognitive stress
reverberated together with sympathovagal activation in the
limbic regions (e.g., amygdala), cortical regions (e.g., ventro—
medial-prefrontal cortex), salience network, and brain areas
and networks involved in CAN [68]-[70].

The experimental results on dataset D2 showed insignificant
differences between experimental conditions (resting state,
CPT, and recovery) in SEy and SEp, except for the CPT
vs recovery SFEp comparison. This was not surprising be-
cause previous studies on the same dataset needed to employ
non—Gaussian expansion to find differences that were not
detected in the linear analysis of HRV [71] and EEG [72]
series. Differences in the experimental phases were detected
in STEp_, g, which is consistent with previous studies [11],
[45]. Tt should be noted that literature on BHI changes elicited
by a CPT has also highlighted variations in the heart—to—brain
direction, which was not found in the present study. This is not
surprising because of the peculiarities of the methodologies
introduced. Specifically, the STE techniques allow for an
organ-level quantification of the BHI and reasonably loses
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some partial region- or frequency- specific dependencies that
are not spread over the scalp and spectrum. Focusing on the
directionality of BHI in experiment D2, the index Dp—pg
showed a positive sign, even if no differences were enhanced
among the experimental conditions. This confirmed a main
heart—to—brain directional interplay.

Results referred to an embedding dimension m = 3. This

dimension limits the curse of dimensionality and thus may be
the best compromise between possible embedding dimensions,
especially considering the different dynamics associated with
heartbeat and EEG series.
There were some limitations in the present study, which
focused on brain-heart interplay and neglected important
autonomic covariates, such as respiratory activity and blood
pressure. Moreover, ST E only measures part of the BHI dy-
namics; to illustrate, it does not reach the multifractal domain
as the BHI is known to do [23]. The proposed surrogate
data analysis employing random permutation of the driver
series may constitute a sub-optimal evaluation; generation of
time-shift surrogates or iterative-adjusted amplitude Fourier
transform surrogates [73] should also be investigated used in
future studies. Future research should also focus on applying
the developed framework to other datasets that include healthy
persons in various experimental settings (such as emotional
elicitation) and subjects with pathological conditions, particu-
larly those with mental or mood disorders.

VI. CONCLUSION

This study proposed a novel analysis framework to quantify
the directional information flow between brain and heartbeat
dynamics and investigated functional BHI. The proposed
framework relied on information theory for STE estimation,
microstate analysis to summarize EEG dynamics in a symbolic
series of quasi—stable states, and statistical assessment through
synthetic data generation. Two different datasets were utilized
to validate the methodology. The first dataset focused on
cognitive workload and the second investigated an autonomic
maneuver as a CPT. The experimental results aligned with
past research, highlighting the strong changes elicited by the
experimental conditions with respect to the related baseline.
From a purely methodological viewpoint, the proposed esti-
mation of BHI provided novel insights into functional brain—
heart communication. This includes: (i) Employing microstate
series to quantify BHI; (ii) Providing directional estimates,
thus quantifying information transfer from—heart—to—brain and
from—brain—to-heart separately; (iii) Providing a directionality
index, quantifying the main direction of information flow;
(iv) Being the first attempt estimating functional BHI at the
organ level, thus going beyond the usual estimates at the
single—sensor level; (v) Statistically assessing the calculated
measures against the null BHI hypothesis using surrogate data
generation.

The proposed technique provides new organ—level insights
and perspectives on functional directional BHI and the frame-
work can be used to represent factors related to various organs
and systems in networks, which could be extremely useful in
high-level studies such as network physiology.
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